1
|
Li P, Galek P, Grothe J, Kaskel S. Carbon-based iontronics - current state and future perspectives. Chem Sci 2025; 16:7130-7154. [PMID: 40201167 PMCID: PMC11974446 DOI: 10.1039/d4sc06817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Over the past few decades, carbon materials, including fullerenes, carbon nanotubes, graphene, and porous carbons, have achieved tremendous success in the fields of energy, environment, medicine, and beyond, through their development and application. Due to their unique physical and chemical characteristics for enabling simultaneous interaction with ions and transport of electrons, carbon materials have been attracting increasing attention in the emerging field of iontronics in recent years. In this review, we first summarize the recent progress and achievements of carbon-based iontronics (ionic sensors, ionic transistors, ionic diodes, ionic pumps, and ionic actuators) for multiple bioinspired applications ranging from information sensing, processing, and actuation, to simple and basic artificial intelligent reflex arc units for the construction of smart and autonomous iontronics. Additionally, the promising potential of carbon materials for smart iontronics is highlighted and prospects are provided in this review, which provide new insights for the further development of nanostructured carbon materials and carbon-based smart iontronics.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Przemyslaw Galek
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
- Fraunhofer IWS Winterbergstrasse 28 01277 Dresden Germany
| |
Collapse
|
2
|
Shi Y, Zhu Y, Liu S, Fu L, Chen J, Liu J, Tang L, Gao J, Song P. Multi-Hierarchically Constructing Durable and Flame Retardant CNF/MXene/PDMS Composite Aerogels for Superhigh Electromagnetic Shielding Performance and Ultralow Thermal Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500556. [PMID: 40207674 DOI: 10.1002/smll.202500556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Indexed: 04/11/2025]
Abstract
There is a significant increase in the demand for lightweight and compressible electromagnetic interference (EMI) shielding materials in various fields. Though MXene aerogels hold immense potential as EMI shielding materials, several shortcomings including poor water resistance, low mechanical robustness, easy oxidation, and high cost limits of their wide application. This work reported a novel strategy involving the co-assembly of MXene and cellulose nanofibers (CNF) through directional freezing and freeze-drying, followed by the capsulation-concreting of a thin layer of flame-retardant polydimethylsiloxane (PDMS) onto the aerogel, to multi-hierarchically construct a series of high-performance CNF/MXene/PDMS composite aerogels. The lightweight CNF/MXene/PDMS/MPP-Zr@PDA composite aerogel achieved ultrahigh EMI shielding effectiveness of 96.8 dB (X-band) and utilization efficiency of 1713.27 dB g g-1. Furthermore, the PDMS coating effectively imparted excellent compressibility and durability to the 3D scaffold, resulting in a compressive strength of 17.01 kPa for the composite aerogel, representing 199.5% increase compared to CNF aerogel. Additionally, the composite aerogel exhibited outstanding flame-retardant properties (54.6% reduction in heat release rate), ultralow thermal conductivity of 0.0530 W m-1 K-1 and excellent hydrophobicity. Therefore, the durable and flame-retardant CNF/MXene/PDMS composite aerogels hold promising applications in EMI protection, thermal management, smart fire detection, and other specific fields.
Collapse
Affiliation(s)
- Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Yanjun Zhu
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Shan Liu
- College of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Libi Fu
- College of Civil Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Juntian Chen
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Jiawen Liu
- College of Environment and Safety Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD, 4300, Australia
| |
Collapse
|
3
|
Liu M, Zhang L, Rostami J, Zhang T, Matthews K, Chen S, Fan W, Zhu Y, Chen J, Huang M, Wu J, Wang H, Hamedi MM, Xu F, Tian W, Wågberg L, Gogotsi Y. Tough MXene-Cellulose Nanofibril Ionotronic Dual-Network Hydrogel Films for Stable Zinc Anodes. ACS NANO 2025; 19:13399-13413. [PMID: 40130552 DOI: 10.1021/acsnano.5c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Developing ionotronic interface layers for zinc anodes with superior mechanical integrity is one of the efficient strategies to suppress the growth of zinc dendrites in favor of the cycling stability of aqueous zinc-ion batteries (AZIBs). Herein, we assembled robust 2D MXene-based hydrogel films cross-linked by 1D cellulose nanofibril (CNF) dual networks, acting as interface layers to stabilize Zn anodes. The MXene-CNF hydrogel films integrated multifunctionalities, including a high in-plane toughness of 18.39 MJ m-3, high in-plane/out-of-plane elastic modulus of 0.85 and 3.65 GPa, mixed electronic/ionic (ionotronic) conductivity of 1.53 S cm-1 and 0.52 mS cm-1, and high zincophilicity with a high binding energy (1.33 eV) and low migration energy barrier (0.24 eV) for Zn2+. These integrated multifunctionalities, endowed with coupled multifield effects, including strong stress confinement and uniform ionic/electronic field distributions on Zn anodes, effectively suppressed dendrite growth, as proven by experiments and simulations. An example of the MXene-CNF|Zn showed a reduced nucleation overpotential of 19 mV, an extended cycling life of over 2700 h in Zn||Zn cells, and a high capacity of 323 mAh g-1 in Zn||MnO2 cells, compared with bare Zn. This work offers an approach for exploring mechanically robust 1D/2D ionotronic hydrogel interface layers to stabilize the Zn anodes of AZIBs.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liming Zhang
- College of Textile and Clothing, Qingdao University, Qingdao 266071, China
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Teng Zhang
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| | - Kyle Matthews
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| | - Sheng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Wenjie Fan
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yue Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- Qigndao Key Laboratory of Marine Extreme Environment Materials, Ocean University of China, Qingdao 266100, China
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Feng Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- Qigndao Key Laboratory of Marine Extreme Environment Materials, Ocean University of China, Qingdao 266100, China
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia Pennsylvania 19104, United States
| |
Collapse
|
4
|
Kokol V, Lakshmanan S, Vivod V. Electrochemical Capacitance of CNF-Ti 3C 2T x MXene-Based Composite Cryogels in Different Electrolyte Solutions for an Eco-Friendly Supercapacitor. Gels 2025; 11:265. [PMID: 40277701 PMCID: PMC12026625 DOI: 10.3390/gels11040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Cellulose nanofibrils (CNFs) are promising materials for flexible and green supercapacitor electrodes, while Ti3C2Tx MXene exhibits high specific capacitance. However, the diffusion limitation of ions and chemical instability in the generally used highly basic (KOH, MXene oxidation) or acidic (H2SO4, CNF degradation) electrolytes limits their performance and durability. Herein, freestanding CNF/MXene cryogel membranes were prepared by deep freeze-casting (at -50 and -80 °C), using different weight percentages of components (10, 50, 90), and evaluated for their structural and physico-chemical stability in other less aggressive aqueous electrolyte solutions (Na2/Mg/Mn/K2-SO4, Na2CO3), to examine the influence of the ions transport on their pseudocapacitive properties. While the membrane prepared with 50 wt% (2.5 mg/cm2) of MXene loading at -80 °C shrank in a basic Na2CO3 electrolyte, the capacitance was performed via the forming of an electroactive layer on its interface, giving it high stability (90% after 3 days of cycling) but lower capacitance (8 F/g at 2 mV/s) than in H2SO4 (25 F/g). On the contrary, slightly acidic electrolytes extended the cations' transport path due to excessive but still size-limited diffusion of the hydrated ions (SO42- > Na+ > Mn2+ > Mg2+) during membrane swelling, which blocked it, reducing the electroactive surface area and lowering conductivities (<3 F/g).
Collapse
Affiliation(s)
- Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (S.L.)
| | | | | |
Collapse
|
5
|
Chen M, An X, Zhao F, Chen P, Wang J, Zhang M, Lu A. Boosting Sensitivity of Cellulose Pressure Sensor via Hierarchically Porous Structure. NANO-MICRO LETTERS 2025; 17:205. [PMID: 40163259 PMCID: PMC11958932 DOI: 10.1007/s40820-025-01718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Pressure sensors are essential for a wide range of applications, including health monitoring, industrial diagnostics, etc. However, achieving both high sensitivity and mechanical ability to withstand high pressure in a single material remains a significant challenge. This study introduces a high-performance cellulose hydrogel inspired by the biomimetic layered porous structure of human skin. The hydrogel features a novel design composed of a soft layer with large macropores and a hard layer with small micropores, each of which contribute uniquely to its pressure-sensing capabilities. The macropores in the soft part facilitate significant deformation and charge accumulation, providing exceptional sensitivity to low pressures. In contrast, the microporous structure in the hard part enhances pressure range, ensuring support under high pressures and preventing structural failure. The performance of hydrogel is further optimized through ion introduction, which improves its conductivity, and as well the sensitivity. The sensor demonstrated a high sensitivity of 1622 kPa-1, a detection range up to 160 kPa, excellent conductivity of 4.01 S m-1, rapid response time of 33 ms, and a low detection limit of 1.6 Pa, outperforming most existing cellulose-based sensors. This innovative hierarchically porous architecture not only enhances the pressure-sensing performance but also offers a simple and effective approach for utilizing natural polymers in sensing technologies. The cellulose hydrogel demonstrates significant potential in both health monitoring and industrial applications, providing a sensitive, durable, and versatile solution for pressure sensing.
Collapse
Affiliation(s)
- Minzhang Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoni An
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Fengyan Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Pan Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Junfeng Wang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Miaoqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
6
|
Vural M, Demirel MC. Biocomposites of 2D layered materials. NANOSCALE HORIZONS 2025; 10:664-680. [PMID: 39815818 DOI: 10.1039/d4nh00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties. These biocomposites are great for modulating electron, photon, and phonon transport in nanoelectronics and photonic devices but are challenging to translate into bulk materials. Combining 2D crystals with biomolecules enables various 2D nanocomposites with novel characteristics. This review has provided an overview of the latest biocomposites, including their structure, composition, and characterization. Layered biocomposites have the potential to improve the performance of many devices. For example, biocomposites use macromolecules to control the organization of 2D crystals, allowing for new capabilities such as flexible electronics and energy storage. Other applications of 2D biocomposites include biomedical imaging, tissue engineering, chemical and biological sensing, gas and liquid filtration, and soft robotics. However, some fundamental questions need to be answered, such as self-assembly and kinetically limited states of organic-inorganic phases in soft matter physics.
Collapse
Affiliation(s)
- Mert Vural
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Melik C Demirel
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
7
|
Paul TK, Khaleque MA, Ali MR, Aly Saad Aly M, Bacchu MS, Rahman S, Khan MZH. MXenes from MAX phases: synthesis, hybridization, and advances in supercapacitor applications. RSC Adv 2025; 15:8948-8976. [PMID: 40129646 PMCID: PMC11931508 DOI: 10.1039/d5ra00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
MXenes, which are essentially 2D layered structures composed of transition metal carbides and nitrides obtained from MAX phases, have gained substantial interest in the field of energy storage, especially for their potential as electrodes in supercapacitors due to their unique properties such as high electrical conductivity, large surface area, and tunable surface chemistry that enable efficient charge storage. However, their practical implementation is hindered by challenges like self-restacking, oxidation, and restricted ion transport within the layered structure. This review focuses on the synthesis process of MXenes from MAX phases, highlighting the different etching techniques employed and how they significantly influence the resulting MXene structure and subsequent electrochemical performance. It further highlights the hybridization of MXenes with carbon-based materials, conducting polymers, and metal oxides to enhance charge storage capacity, cyclic stability, and ion diffusion. The influence of dimensional structuring (1D, 2D, and 3D architectures) on electrochemical performance is critically analyzed, showcasing their role in optimizing electrolyte accessibility and energy density. Additionally, the review highlights that while MXene-based supercapacitors have seen significant advancements in terms of energy storage efficiency through various material combinations and fabrication techniques, key challenges like large-scale production, long-term stability, and compatibility with electrolytes still need to be addressed. Future research should prioritize developing scalable synthesis methods, optimizing hybrid material interactions, and investigating new electrolyte systems to fully realize the potential of MXene-based supercapacitors for commercial applications. This comprehensive review provides a roadmap for researchers aiming to bridge the gap between laboratory research and commercial supercapacitor applications.
Collapse
Affiliation(s)
- Tamal K Paul
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Abdul Khaleque
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Md Romzan Ali
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Mohamed Aly Saad Aly
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta GA 30332 USA
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI) Shenzhen Guangdong 518052 China
| | - Md Sadek Bacchu
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Saidur Rahman
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University Bandar Sunway Malaysia
- Department of Engineering, Lancaster University Lancaster UK
| | - Md Zaved H Khan
- Laboratory of Nano-Bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology Jashore 7408 Bangladesh
- Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| |
Collapse
|
8
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
9
|
Saleh AK, El-Sayed MH, El-Sakhawy MA, Alshareef SA, Omer N, Abdelaziz MA, Jame R, Zheng H, Gao M, Du H. Cellulose-based Conductive Materials for Bioelectronics. CHEMSUSCHEM 2025; 18:e202401762. [PMID: 39462209 DOI: 10.1002/cssc.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The growing demand for electronic devices has led to excessive stress on Earth's resources, necessitating effective waste management and the search for renewable materials with minimal environmental impact. Bioelectronics, designed to interface with the human body, have traditionally been made from inorganic materials, such as metals, which, while having suitable electrical conductivity, differ significantly in chemical and mechanical properties from biological tissues. This can cause issues such as unreliable signal collection and inflammatory responses. Recently, natural biopolymers such as cellulose, chitosan, and silk have been explored for flexible devices, given their chemical uniqueness, shape flexibility, ease of processing, mechanical strength, and biodegradability. Cellulose is the most abundant natural biopolymer, has been widely used across industries, and can be transformed into electronically conductive carbon materials. This review focuses on the advancements in cellulose-based conductive materials for bioelectronics, detailing their chemical properties, methods to enhance conductivity, and forms used in bioelectronic applications. It highlights the compatibility of cellulose with biological tissues, emphasizing its potential in developing wearable sensors, supercapacitors, and other healthcare-related devices. The review also addresses current challenges in this field and suggests future research directions to overcome these obstacles and fully realize the potential of cellulose-based bioelectronics.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, 91431, Saudi Arabia
| | - Mohamed A El-Sakhawy
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, 11753, Egypt
| | | | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hongjun Zheng
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Mengge Gao
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Haishun Du
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
10
|
Wang C, Gao B, Xue K, Wang W, Zhao J, Bai R, Yun T, Fan Z, Yang M, Zhang Z, Zhang Z, Yan X. Stretchable [2]rotaxane-bridged MXene films applicable for electroluminescent devices. SCIENCE ADVANCES 2025; 11:eadt8262. [PMID: 40053581 PMCID: PMC11887812 DOI: 10.1126/sciadv.adt8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Titanium carbide (Ti3C2TX) MXene has prominent mechanical properties and electrical conductivity. However, fabricating high-performance macroscopic films is challenging, as weak interlayer interactions limit their mechanical performance. Here, we introduce [2]rotaxane, a mechanically interlocked molecule, to enhance MXene films. Compared to pure MXene (fracture strain: 4.6%, toughness: 0.6 MJ/m3), [2]rotaxane-bridged MXene (RBM) films achieve record-high strain (20.0%) and toughness (11.9 MJ/m3) with only 3.6% [2]rotaxane by weight. Additionally, RBM films endure 500 stretch cycles (0 to 15% strain) with stable and reversible resistance alterations, making them ideal for stretchable electrodes. Notably, RBM films enable stretchable electroluminescent devices with reliable operation under 20% elongation and customizable luminescent patterns. This innovative use of mechanically interlocked molecules to cross-link MXene platelets advances MXene films and other two-dimensional materials in stretchable electronics.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Boyue Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xue
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Wenbin Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Tinghao Yun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Mengling Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Zhitao Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Xu P, Quan K, Wei X, Li Y, Xu S. Vertical porous 1D/2D hybrid aerogels with highly matched charge storage performance for aqueous asymmetric supercapacitors. Front Chem 2025; 13:1550285. [PMID: 40093992 PMCID: PMC11906718 DOI: 10.3389/fchem.2025.1550285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Asymmetric supercapacitors (ASCs) have attracted widespread attention because of their high energy density, high power density and long cycle life. Nevertheless, the development of anodes and cathodes with complementary potential windows and synchronous energy storage kinetics represents a pivotal challenge. We propose to construct nanochannel-coupled vertically porous CNF/Ti3CNTx and CNF/rGO hybrid aerogel electrodes via a unidirectional bottom-up cryoprocess. The vertically porous structure will greatly shorten the ion diffusion path and enhance the charge/ion transfer/diffusion kinetics, and the inserted cellulose nanofibers (CNFs) will impede the re-stacking of the nanosheets and enlarge the interlayer nano-channels, thus improving the accessibility of electrolyte ions. Ultimately, all-solid-state ASCs assembled based on nanochannel-coupled vertically porous MXene and graphene aerogel can achieve an excellent energy density of 20.8 Wh kg-1 at 2.3 kW·kg-1, a high multiplicity performance, and retains 95.1% of energy density after 10,000 cycles. This work not only demonstrates the great superiority of nanochannel-coupled vertically porous hybrid aerogels, but also provides an effective strategy for designing asymmetric supercapacitor electrodes with matched structural and electrochemical properties.
Collapse
Affiliation(s)
- Panji Xu
- School of Physics Science and Technology, Guangxi University, Nanning, China
| | - Kunhua Quan
- School of Physics Science and Technology, Guangxi University, Nanning, China
| | - Xiyuan Wei
- School of Physics Science and Technology, Guangxi University, Nanning, China
| | - Yubing Li
- School of Physics Science and Technology, Guangxi University, Nanning, China
| | - Shuaikai Xu
- School of Physics Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Wen H, Si Y, Chen Z, Xin Y, Cao S, Chen C, Zu H, He D. GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12731-12738. [PMID: 39950987 DOI: 10.1021/acsami.4c23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm-1. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of "turning trash into treasure" and highlights the potential of MS for the next generation of electronic devices.
Collapse
Affiliation(s)
- Haofan Wen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yunfa Si
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Zibo Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yitong Xin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shaowen Cao
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haoran Zu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
13
|
Hamedi MM, Sandberg M, Olsson RT, Pedersen J, Benselfelt T, Wohlert J. Wood and Cellulose: the Most Sustainable Advanced Materials for Past, Present, and Future Civilizations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415787. [PMID: 39777803 DOI: 10.1002/adma.202415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Wood, with its constituent building block cellulose, is by far the most common biomaterial on the planet and has been the most important material used by humans to establish civilization. If there is one single biomaterial that should be studied and used by materials scientists across disciplines to achieve a sustainable future, it is cellulose. This perspective provides insights for the general materials science community about the unique properties of wood and cellulose and how they may be used in advanced sustainable materials to make a substantial societal impact. The focus is on sawn wood or cellulose fibers produced at scale by industry and the more recent cellulosic nanomaterials, highlighting the areas where these cellulose-based materials can be valorized into higher-order functions. Numerous articles have comprehensively reviewed different areas where cellulose is currently used in advanced materials science. The objective here is to provide general insight for all material scientists and to provide the opinions about the areas in which cellulose and wood have the largest potential to make a significant societal impact, especially to realize next-generation sustainable materials for construction, food, water, energy, and information. Discussing key areas where future research is needed to open avenues toward a more sustainable future is ended.
Collapse
Affiliation(s)
- Mahiar Max Hamedi
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Mats Sandberg
- RISE, Research Institutes of Sweden AB, Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, Södra Grytsgatan 4, Norrköping, 60233, Sweden
| | - Richard T Olsson
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jan Pedersen
- NCAB Group AB, Löfströms allé 5, Sundbyberg, 17266, Sweden
| | - Tobias Benselfelt
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jakob Wohlert
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
14
|
Hang CC, Zhang C, Guan QF, Ye L, Su Y, Yu SH. Cellulose Nanofiber-Supported Electrochemical Percolation of Capacitive Nanomaterials with 0D, 1D, and 2D Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414904. [PMID: 39601230 DOI: 10.1002/adma.202414904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Cellulose nanofiber (CNF) represents a promising support material to strengthen the mechanical property of free-standing supercapacitor electrodes comprised of conducting nanomaterials. Although efforts have been focused on improving the performance of the CNF-supported electrode, the percolation of capacitive nanomaterials within the insulating CNF matrix, and its correlation with the nanomaterial's dimensionality are still underexplored. In this work, membrane supercapacitor electrodes are fabricated by incorporating CNF with 0D, 1D, and 2D capacitive nanocarbons respectively to study the impact of their dimensionality. It is found that the percolation pathway of the nanocarbons is dependent on their dimensionality. By introducing a new definition termed as electrochemical percolation threshold, the threshold weight percentages to realize effective electrochemical percolation are determined to be 60.0, 14.3, and 66.7% for 0D, 1D, and 2D nanocarbons, respectively. Increasing the weight percentage beyond the threshold typically results in improved electrochemical percolation but reduced mechanical strength, and both trends are dependent on the nanocarbon's dimensionality. The results provide guidance to design efficient and robust CNF-supported supercapacitor electrodes by controlling the dimensionality and density of the active material. The insights regarding the electrochemical percolation threshold can be applied to other energy-storage nanomaterials to advance the development of insulator-supported supercapacitors.
Collapse
Affiliation(s)
- Chen-Chen Hang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Chao Zhang
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Qing-Fang Guan
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liqing Ye
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yude Su
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
15
|
Zhang X, Xin D, Yu Z, Sun J, Li Q, He X, Liu Z, Lei Z. Highly capacitive MXene film by incorporating poly(3,4-ethylenedioxythiophene) hollow spheres prepared through an interfacial oxidation polymerization. J Colloid Interface Sci 2025; 677:472-481. [PMID: 39154440 DOI: 10.1016/j.jcis.2024.08.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Sheets stacking of Ti3C2Tx MXene dramatically reduces the ion-accessible sites and brings a sluggish reaction kinetics. While introducing transitional metal oxides or polymers in the MXene films could partially alleviate such issue, their enhanced performances are realized at the expense of electrode conductivity or cycling stability. Herein, we report an alternative spacer of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hollow spheres (HSs) which are fabricated by a facile template-assisted interfacial polymerization. The Fe3+ ions electrostatically adsorbed on the -SO3H groups of the sulfonated polystyrene spheres (S-PS) initiate the polymerization of uniform PEDOT shell, yielding uniform PEDOT HSs after dissolving the S-PS core. Introducing these PEDOT HSs in the MXene film generates the highly flexible MXene-PEDOT (MP) films featuring hierarchically porous network and high conductivity (283 S cm-1). Consequently, specific capacitance of 218 F g-1 at 3 mV s-1, along with a forty-folds decrease in relaxation time constant (1.0 vs 39.8 s) has been achieved. Moreover, the MP film also exhibits nearly thickness-independent capacitive performances with film thickness in the range of 10-46 μm. A maximal energy density of 21.2 μWh cm-2 at 1015 μW cm-2 together with 92 % capacitance retention over 5000 cycles are achieved for the MP-based solid-state supercapacitor. The intrinsic high conductivity, excellent mechanical flexibility and good structure integrity are responsible for such outstanding electrochemical behaviors.
Collapse
Affiliation(s)
- Xianchi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Diheng Xin
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhiyuan Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
16
|
Li Z, Wu D, Wang Q, Zhang Q, Xu P, Liu F, Xi S, Ma D, Lu Y, Jiang L, Zhang Z. Bioinspired Homonuclear Diatomic Iron Active Site Regulation for Efficient Antifouling Osmotic Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408364. [PMID: 39340282 DOI: 10.1002/adma.202408364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/04/2024] [Indexed: 09/30/2024]
Abstract
Membrane-based reverse electrodialysis is globally recognized as a promising technology for harnessing osmotic energy. However, its practical application is greatly restricted by the poor anti-fouling ability of existing membrane materials. Inspired by the structural and functional models of natural cytochrome c oxidases (CcO), the first use of atomically precise homonuclear diatomic iron composites as high-performance osmotic energy conversion membranes with excellent anti-fouling ability is demonstrated. Through rational tuning of the atomic configuration of the diatomic iron sites, the oxidase-like activity can be precisely tailored, leading to the augmentation of ion throughput and anti-fouling capacity. Composite membranes featuring direct Fe-Fe motif configurations embedded within cellulose nanofibers (CNF/Fe-DACs-P) surpass state-of-the-art CNF-based membranes with power densities of ca. 6.7 W m-2 and a 44.5-fold enhancement in antimicrobial performance. Combined, experimental characterization and density functional theory simulations reveal that homonuclear diatomic iron sites with metal-metal interactions can achieve ideally balanced adsorption and desorption of intermediates, thus realizing superior oxidase-like activity, enhanced ionic flux, and excellent antibacterial activity.
Collapse
Affiliation(s)
- Zhe Li
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Donghai Wu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Qingchen Wang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qixiang Zhang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Xu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Dongwei Ma
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Lei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
17
|
Hu Y, Wang Y, Sun Q, Qi Y, Zhang Y, Ji X, Yang G, Shi Z, Rojas OJ, He M. Interfacial modulation of Ti 3C 2T x MXene using functionalized cellulose nanofibrils for enhanced electrochemical actuation. Int J Biol Macromol 2024; 281:136299. [PMID: 39370086 DOI: 10.1016/j.ijbiomac.2024.136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Electrochemical actuators (ECAs) with low voltage actuation and large deformation ranges generally require electrode materials with high ion kinetic energy transport, high charge storage, and excellent electrochemical-mechanical properties. However, the fabrication of such actuators remains a major challenge. In the present work, hybrid electroactive films were fabricated by self-assembling one-dimensional functionalized cellulose nanofibrils (CNFs) with two-dimensional MXene (Ti3C2Tx). The obtained ECA actuators fabricated by carboxymethylated cellulose nanofibrils (consisting of -CH2COO-surface groups) with Ti3C2Tx integrate excellent curvature (0.1041 mm-1), mechanical strength (21.68 MPa), a bending strain of 0.50 %, and a good actuation displacement of 9.3 mm at a low voltage range of -0.6 to 0.3 V. This may be attributed to the enlarged layer spacing (15.34 Å), which makes the embedding and transport of H+ easier, and excellent adaptivity of mechanical properties achieved by molecular-scaled strong hydrogen bonding, leading to better actuation performance. This study provides a potential research direction for the preparation of ECAs with large actuation deformation.
Collapse
Affiliation(s)
- Yaru Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China.
| | - Qinglu Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China
| | - Yue Qi
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yahui Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China
| | - Zhengjun Shi
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Ming He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
18
|
Yang H, Bao F, Chen S, Liu S, Huang H, Wang L, Liu H, Yu J, Zhu C, Xu J. Construction of a Borophene-Based Hybrid Aerogel for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39364552 DOI: 10.1021/acsami.4c10663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
As a novel approach to pursue high-performance multifunctional materials, the structural design of cutting-edge two-dimensional (2D) materials has ignited substantial interests. Borophene, an emerging member in the realm of 2D materials, exhibits crucial attributes, including high theoretical carrier density, electrical conductivity, magnetism, and high aspect ratio, rendering it highly promising for diverse applications. Yet, the exploration of porous structural configurations of borophene remains untapped. Addressing this gap, our study focuses on the fabrication of a multifunctional borophene hybrid foam (CMB-foam). This hybridization leverages the exceptional multifunctionality of MXene alongside borophene within a three-dimensional porous framework, facilitating reflection and absorption of electromagnetic waves, thereby demonstrating remarkable electromagnetic interference (EMI) shielding capabilities. Moreover, this structural configuration exposes an enlarged surface area, thus shortening the transport pathway for electrolyte ions, leading to an excellent energy storage performance. Additionally, CMB-foam performs well in thermal management and thermal insulation. These findings underscore the potential of borophene-based materials in multifunctional applications and offer valuable insights into further performance explorations in this domain.
Collapse
Affiliation(s)
- Haiyan Yang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Feng Bao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Shengnan Chen
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Sisi Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Huihu Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Lanqing Wang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Huichao Liu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jiali Yu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
19
|
Dong Q, Liu J, Wang Y, He J, Zhai J, Fan X. Ultrathin H-MXM as An "Ion Freeway" for High-Performance Osmotic Energy Conversion. SMALL METHODS 2024; 8:e2301558. [PMID: 38308417 DOI: 10.1002/smtd.202301558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Indexed: 02/04/2024]
Abstract
Nanofluidic membranes are currently being explored as potential candidates for osmotic energy harvesting. However, the development of high-performance nanofluidic membranes remains a challenge. In this study, the ultrathin MXene membrane (H-MXM) is prepared by ultrathin slicing and realize the ion horizontal transportation. The H-MXM membrane, with a thickness of only 3 µm and straight subnanometer channels, exhibits ultrafast ion transport capabilities resembling an "ion freeway". By mixing artificial seawater and river water, a power output of 93.6 W m-2 is obtained. Just as cell membranes have an ultrathin thickness that allows for excellent penetration, this straight nanofluidic membrane also possesses an ultrathin structure. This unique feature helps to shorten the ion transport path, leading to an increased ion transport rate and improveS performance in osmotic energy conversion.
Collapse
Affiliation(s)
- Qizheng Dong
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jun Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuting Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
20
|
Chen A, Wei H, Peng Z, Wang Y, Akinlabi S, Guo Z, Gao F, Duan S, He X, Jia C, Xu BB. MXene/Nitrogen-Doped Carbon Nanosheet Scaffold Electrode toward High-Performance Solid-State Zinc Ion Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404011. [PMID: 38864206 DOI: 10.1002/smll.202404011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 06/13/2024]
Abstract
While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.
Collapse
Affiliation(s)
- Anli Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhuojian Peng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Stephen Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Faming Gao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Sidi Duan
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA) Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles (UCLA) Los Angeles, CA, 90095, USA
| | - Chunjiang Jia
- Offshore Renewable Energy Catapult, Offshore House, Albert Street, Blyth, NE24 1LZ, UK
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
21
|
Cheng F, Wang Y, Cai C, Fu Y. Multiscale MXene Engineering for Enhanced Capacitive Deionization via Adaptive Surface Charge Tailoring. NANO LETTERS 2024; 24:9477-9486. [PMID: 39072447 DOI: 10.1021/acs.nanolett.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Capacitive deionization (CDI), renowned for its eco-friendly and low-energy approach to water treatment, encounters challenges in achieving optimal deionization efficiency and cycle stability despite recent advancements. In this study, the CDI electrodes were crafted with multilevel pore structures using modified cellulose (MCNF) and porous activated MXene (PAMX), aiming to the impact of surface modification on adsorption efficiency, stability, and overall performance. The experimental results demonstrated the superiority of the electrode, specifically the formulation integrating sulfonic acid-treated cellulose and PAMX (SCNF@PAMX). This configuration exhibited remarkably a higher desalination rate (3.91 mg·g-1·min-1) and enhanced desalination capacity (31.24 mg·g-1), with cycling performance exceeding 90%. Density functional theory calculations underscored the formidable adsorption energy of SCNF for Na+ (2.15 eV), surpassing that of other modified electrodes. The enhancement of deionization performance and efficiency through surface charge modification, altering Na+ electrostatic adsorption, lays a solid foundation for advancing more efficient and durable seawater desalination technologies.
Collapse
Affiliation(s)
- Fulin Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongqin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
22
|
He J, Bhargav A, Okasinski J, Manthiram A. A Class of Sodium Transition-Metal Sulfide Cathodes With Anion Redox. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403521. [PMID: 38879752 DOI: 10.1002/adma.202403521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Sodium-ion batteries (SIBs) are entering commercial relevance as a sustainable and low-cost alternative to lithium-ion batteries. Improving the energy density of SIBs is critical to enable their widespread adoption. Here, a new class of cathode materials Na6MS4 (M = Co, Mn, Fe, and Zn) that exhibit high charge-storage capacity is reported. Using Na6CoS4 as a prototypical example, a six-electron conversion reaction dominated by anion redox is observed, confirmed through various electrochemical and spectroscopic techniques. After the initial cycle, Na6CoS4 delivers a high capacity of 392 mA h g-1 with a long lifespan of over 500 cycles. The reaction involves, initially, the transformation of crystalline Na6CoS4 to a nearly amorphous structure consisting of mainly CoS and sulfur nanoparticles, which then reversibly cycles between nearly amorphous a-CoS/S and a-Na6CoS4. Such anion-redox-driven conversion-type cathodes hold the potential to enable energy-dense, stable SIBs.
Collapse
Affiliation(s)
- Jiarui He
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Amruth Bhargav
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Okasinski
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Arumugam Manthiram
- Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
23
|
Zhang D, Wang D, Feng B, Cheng J, Yan H, Chang J, Wang Z, Chu PK, Luo Y. Porous VN nanosheet arrays on MXene carbon fibers for flexible supercapacitors. Chem Commun (Camb) 2024; 60:7590-7593. [PMID: 38952151 DOI: 10.1039/d4cc02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
VN usually has poor rate performance and cycle stability. In this work, porous VN nanosheet arrays were prepared on carbon nanofibers embedded with Ti3C2Tx nanosheets by electrospinning and chemical vapor deposition. The 3D network accelerates the transfer of electrons and electrolyte ions, prevents the aggregation of VN and the self-stacking of MXene, and enhances cycle stability. The solid-state flexible device comprising Co3O4, MXCF@VN, and KOH/PVA exhibits exceptional energy densities of 83.95 W h kg-1 and robust cycling stability (82.8% retention after 20 000 cycles).
Collapse
Affiliation(s)
- Deyang Zhang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Di Wang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Binhe Feng
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Jinbing Cheng
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| | - Hailong Yan
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| | - Jin Chang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
- Pingdingshan University, Pingdingshan 467000, P. R. China
| | - Zhaorui Wang
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
| | - Paul K Chu
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Xinyang Normal University, Xinyang 464000, P. R. China.
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.
| |
Collapse
|
24
|
Dong M, Sun Y, Dunstan DJ, Young RJ, Papageorgiou DG. Mechanical reinforcement from two-dimensional nanofillers: model, bulk and hybrid polymer nanocomposites. NANOSCALE 2024; 16:13247-13299. [PMID: 38940686 DOI: 10.1039/d4nr01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Thanks to their intrinsic properties, multifunctionality and unique geometrical features, two-dimensional nanomaterials have been used widely as reinforcements in polymer nanocomposites. The effective mechanical reinforcement of polymers is, however, a multifaceted problem as it depends not only on the intrinsic properties of the fillers and the matrix, but also upon a number of other important parameters. These parameters include the processing method, the interfacial properties, the aspect ratio, defects, orientation, agglomeration and volume fraction of the fillers. In this review, we summarize recent advances in the mechanical reinforcement of polymer nanocomposites from two-dimensional nanofillers with an emphasis on the mechanisms of reinforcement. Model, bulk and hybrid polymer nanocomposites are reviewed comprehensively. The use of Raman and photoluminescence spectroscopies is examined in light of the distinctive information they can yield upon stress transfer at interfaces. It is shown that the very diverse family of 2D nanofillers includes a number of materials that can attribute distrinctive features to a polymeric matrix, and we focus on the mechanical properties of both graphene and some of the most important 2D materials beyond graphene, including boron nitride, molybdenum disulphide, other transition metal dichalcogenides, MXenes and black phosphorous. In the first part of the review we evaluate the mechanical properties of 2D nanoplatelets in "model" nanocomposites. Next we examine how the performance of these materials can be optimised in bulk nanocomposites. Finally, combinations of these 2D nanofillers with other 2D nanomaterials or with nanofillers of other dimensions are assessed thoroughly, as such combinations can lead to additive or even synergistic mechanical effects. Existing unsolved problems and future perspectives are discussed.
Collapse
Affiliation(s)
- Ming Dong
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - Yiwei Sun
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | - David J Dunstan
- School of Physics and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Robert J Young
- National Graphene Institute, Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
25
|
Li W, Zhou T, Zhang Z, Li L, Lian W, Wang Y, Lu J, Yan J, Wang H, Wei L, Cheng Q. Ultrastrong MXene film induced by sequential bridging with liquid metal. Science 2024; 385:62-68. [PMID: 38963844 DOI: 10.1126/science.ado4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Assembling titanium carbide (Ti3C2Tx) MXene nanosheets into macroscopic films presents challenges, including voids, low orientation degree, and weak interfacial interactions, which reduce mechanical performance. We demonstrate an ultrastrong macroscopic MXene film using liquid metal (LM) and bacterial cellulose (BC) to sequentially bridge MXene nanosheets (an LBM film), achieving a tensile strength of 908.4 megapascals. A layer-by-layer approach using repeated cycles of blade coating improves the orientation degree to 0.935 in the LBM film, while a LM with good deformability reduces voids into porosity of 5.4%. The interfacial interactions are enhanced by the hydrogen bonding from BC and the coordination bonding with LM, which improves the stress-transfer efficiency. Sequential bridging provides an avenue for assembling other two-dimensional nanosheets into high-performance materials.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Tianzhu Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Li
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wangwei Lian
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Yanlei Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Junfeng Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jia Yan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Huagao Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
26
|
Qin Z, Wang Z, Li D, Lv Y, Zhao B, Pan K. Nanofiber-Reinforced MXene/rGO Composite Aerogel for a High-Performance Piezoresistive Sensor and an All-Solid-State Supercapacitor Electrode Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32554-32565. [PMID: 38865698 DOI: 10.1021/acsami.3c19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The assembly of two-dimensional (2D) nanomaterials into a three-dimensional (3D) aerogel can effectively prevent the problem of restacking. Here, nanofiber-reinforced MXene/reduced graphene oxide (rGO) conductive aerogel is prepared via the hydrothermal reduction of GO using pyrrole and in situ composite with MXene. Combined with low-content 2D conductive nanosheets (MXene and rGO) as "brick", conductive polypyrrole as "mortar", and one-dimensional (1D) nanofiber as "rebar", a strong interfacial cross-linking of MXene and rGO nanosheets is realized through covalent and noncovalent bonds to synergistically improve its mechanical performance. Based on the prepared MXene/rGO aerogel, a high-performance piezoresistive sensor with a sensitivity of up to 20.80 kPa-1 in a wide pressure range of 15.6 kPa is obtained, and it can withstand more than 5000 cyclic compressions. Besides, the sensor shows a stable output and can be applied to monitor various human motion signals. In addition, an all-solid-state supercapacitor electrode is also fabricated, which shows a high area-specific capacitance of up to 274 mF/cm2 at a current density of 1 mA/cm2.
Collapse
Affiliation(s)
- Zhen Qin
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziwen Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dan Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhuan Lv
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Shao B, Chen X, Chen X, Peng S, Song M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4092. [PMID: 39000870 PMCID: PMC11244375 DOI: 10.3390/s24134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, advancements in the Internet of Things (IoT), manufacturing processes, and material synthesis technologies have positioned flexible sensors as critical components in wearable devices. These developments are propelling wearable technologies based on flexible sensors towards higher intelligence, convenience, superior performance, and biocompatibility. Recently, two-dimensional nanomaterials known as MXenes have garnered extensive attention due to their excellent mechanical properties, outstanding electrical conductivity, large specific surface area, and abundant surface functional groups. These notable attributes confer significant potential on MXenes for applications in strain sensing, pressure measurement, gas detection, etc. Furthermore, polymer substrates such as polydimethylsiloxane (PDMS), polyurethane (PU), and thermoplastic polyurethane (TPU) are extensively utilized as support materials for MXene and its composites due to their light weight, flexibility, and ease of processing, thereby enhancing the overall performance and wearability of the sensors. This paper reviews the latest advancements in MXene and its composites within the domains of strain sensors, pressure sensors, and gas sensors. We present numerous recent case studies of MXene composite material-based wearable sensors and discuss the optimization of materials and structures for MXene composite material-based wearable sensors, offering strategies and methods to enhance the development of MXene composite material-based wearable sensors. Finally, we summarize the current progress of MXene wearable sensors and project future trends and analyses.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xiaotong Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Xingwei Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (X.C.); (X.C.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
28
|
Gupta V, Mallick Z, Choudhury A, Mandal D. On-Demand MXene-Coupled Pyroelectricity for Advanced Breathing Sensors and IR Data Receivers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8897-8910. [PMID: 38626396 DOI: 10.1021/acs.langmuir.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
MXene-inspired two-dimensional (2D) materials like Ti3C2Tx are widely known for their versatile properties, including surface plasmon, higher electrical conductivity, exceptional in-plane tensile strength, EMI shielding, and IR thermal properties. The MXene nanosheets coupled poly(vinylidene fluoride) (PVDF) nanofibers with d33 ∼-26 pm V-1 are able to capture the smaller thermal fluctuation due to a superior pyroelectric coefficient of ∼130 nC m-2 K-1 with an improved (∼7 times with respect to neat PVDF nanofibers) pyroelectric current figure of merit (FOMi). The significant enhancement of the pyroelectric response is attributed to the confinement effect of 2D MXene (Ti3C2Tx) nanosheets within PVDF nanofibers, as evidenced from polarized Fourier transform infrared (FTIR) spectroscopy and scanning probe microscopy (SPM). In subsequent studies, the practical applications of self-powered pyroelectric sensors of MXene-PVDF have been demonstrated. The fabricated flexible, hydrophobic pyroelectric sensor could be utilized as an excellent pyroelectric breathing sensor, a proximity sensor, and an IR data transmission receiver. Further, supervised machine learning algorithms are proposed to distinguish different types of breathing signals with ∼98% accuracy for healthcare monitoring purposes.
Collapse
Affiliation(s)
- Varun Gupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Zinnia Mallick
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Amitava Choudhury
- Department of Computer Science and Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, Gujarat, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| |
Collapse
|
29
|
Fan L, Jiang Y, Deng R, Zhu H, Dai X, Liang H, Li N, Qian Z. Mechanical Robustness Enhanced Flexible Antennas Using Ti 3C 2 MXene and Nanocellulose Composites for Noninvasive Glucose Sensing. ACS Sens 2024; 9:1866-1876. [PMID: 38499997 DOI: 10.1021/acssensors.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Electromagnetic sensors with flexible antennas as sensing elements have attracted increasing attention in noninvasive continuous glucose monitoring for diabetic patients. The significant radiation performance loss of flexible antennas during mechanical deformation impairs the reliability of glucose monitoring. Here, we present flexible ultrawideband monopole antennas composed of Ti3C2 MXene and cellulose nanofibril (CNF) composite films for continuous glucose monitoring. The flexible MXene/CNF antenna with 20% CNF content can obtain a gain of up to 3.33 dBi and a radiation efficiency of up to 65.40% at a frequency range from 2.3 to 6.0 GHz. Compared with the pure MXene antenna, this antenna offers a comparable radiation performance and a lower performance loss in mechanical bending deformation. Moreover, the MXene/CNF antenna shows a stable response to fetal bovine serum/glucose, with a correlation of >0.9 at the reference glucose levels, and responds sensitively to the variations in blood glucose levels during human trials. The proposed strategy enhancing the mechanical robustness of MXene-based flexible antennas makes metallic two-dimensional nanomaterials more promising in wearable electromagnetic sensors.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yue Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruihua Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hua Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangyu Dai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Li
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen University, Shenzhen 518132, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
31
|
Yu Z, Mao J, Li Q, Hu Y, Tan Z, Xue F, Zhang Y, Zhu H, Wang C, He H. A Transpiration-Driven Electrokinetic Power Generator with a Salt Pathway for Extended Service Life in Saltwater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5183-5194. [PMID: 38436245 DOI: 10.1021/acs.langmuir.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
To ensure prolonged functionality of transpiration-driven electrokinetic power generators (TEPGs) in saltwater environments, it is imperative to mitigate salt accumulation. This study presents a salt pathway transpiration-driven electrokinetic power generator (SPTEPG), incorporating MXene, graphene oxide (GO), and carbon nanotubes (CNTs) as active materials, along with cellulose nanofibers (CNF) and poly(vinyl alcohol) (PVA) as aqueous binders and nonwoven fabrics. This unique combination confers exceptional hydrophilicity and enhances the energy generation performance. When tested with deionized water, the SPTEPG achieved a maximum voltage of 0.6 V and a current of 4.2 μA. In simulated seawater conditions, the presence of conductive ions in the solution boosted these values to 0.64 V and 42 μA. The incorporation of the salt pathway mechanism facilitates the return of excess salt deposits to the bulk solution, thus extending the SPTEPG's service life in saltwater environments. This research offers a straightforward yet effective strategy for designing transpiration-driven power generators suitable for saline water applications.
Collapse
Affiliation(s)
- Zihan Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jun Mao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhanlong Tan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fei Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yonglian Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chunfang Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
Xu W, Zhao A, He H, Liu ZH. Boron Quantum Dots Pillared Ti 3 C 2 T x Membrane Electrode with High Rate Performance for Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306562. [PMID: 37922534 DOI: 10.1002/smll.202306562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/07/2023]
Abstract
A sonication-assisted liquid-phase preparation technique is developed to prepare boron quantum dots (BQDs) with a lateral size of 3 nm in a solution of NMP and NBA; it shows a direct bandgap semiconductor with a bandgap of 3 eV and a specific capacitance of 41 F g-1 . A BQDs(10)-Ti3 C2 Tx membrane electrode with excellent capacitance and high flexibility is prepared by using Ti3 C2 Tx nanosheets (NSs) as assembled units and BQDs as pillar; it gives a specific capacitance of 524 F g-1 at 1 A g-1 in 6 m H2 SO4 electrolyte, a high capacity retention of 75%, and a minimum relaxation time of 0.51 s. An all-solid-state BQDs(10)-Ti3 C2 Tx flexibility supercapacitor is assembled by using a BQDs(10)-Ti3 C2 Tx membrane as electrodes and PVA/H2 SO4 hydrogel as electrolyte; it not only shows an area specific capacitance of 552 mF cm-2 at 1.25 mA cm-2 , a retention rate of 75%, a capacity retention of 93% after 5000 cycles, and an energy density of 40.4 Wh cm-3 at a volume power density of 416 W cm-3 , but also provides superior flexibility and can be bent to different degrees, showing that the assembled BQDs(10)-Ti3 C2 Tx membrane electrode and BQDs(10)-Ti3 C2 Tx flexible supercapacitor display broad application prospects in field of portable/wearable electronic devices.
Collapse
Affiliation(s)
- Wenpu Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Anran Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an, 710119, P. R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
33
|
Yang J, Li M, Fang S, Wang Y, He H, Wang C, Zhang Z, Yuan B, Jiang L, Baughman RH, Cheng Q. Water-induced strong isotropic MXene-bridged graphene sheets for electrochemical energy storage. Science 2024; 383:771-777. [PMID: 38359121 DOI: 10.1126/science.adj3549] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Graphene and two-dimensional transition metal carbides and/or nitrides (MXenes) are important materials for making flexible energy storage devices because of their electrical and mechanical properties. It remains a challenge to assemble nanoplatelets of these materials at room temperature into in-plane isotropic, free-standing sheets. Using nanoconfined water-induced basal-plane alignment and covalent and π-π interplatelet bridging, we fabricated Ti3C2Tx MXene-bridged graphene sheets at room temperature with isotropic in-plane tensile strength of 1.87 gigapascals and moduli of 98.7 gigapascals. The in-plane room temperature electrical conductivity reached 1423 siemens per centimeter, and volumetric specific capacity reached 828 coulombs per cubic centimeter. This nanoconfined water-induced alignment likely provides an important approach for making other aligned macroscopic assemblies of two-dimensional nanoplatelets.
Collapse
Affiliation(s)
- Jiao Yang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Mingzhu Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zejun Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Bicheng Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
| | - Lei Jiang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of the Ministry of Education, Beihang University, Beijing 100191, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
34
|
Yang J, Liu L, Zhang D, Zhang H, Ma J, Zheng J, Wang C. Dual-Stage Surficial Microstructure to Enhance the Sensitivity of MXene Pressure Sensors for Human Physiological Signal Acquisition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1096-1106. [PMID: 38118186 DOI: 10.1021/acsami.3c14780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Accompanying the rapid growth of wearable electronics, flexible pressure sensors have received great interest due to their promising application in health monitoring, human-machine interfaces, and intelligent robotics. The high sensitivity over a wide responsive range, integrated with excellent repeatability, is a crucial requirement for the fabrication of reliable pressure sensors for various wearable scenes. In this work, we developed a highly sensitive and long-life flexible pressure sensor by constructing surficial microarrayed architecture polydimethylsiloxane (PDMS) film as a substrate and Ti3C2TX MXene/bacterial cellulose (BC) hybrid as an active sensing layer. The specific surficial morphology of PDMS couples with nanointercalated structure of Ti3C2Tx MXene/BC can effectively improve the sensitivity through controlling the stress distribution and layer spacing under different levels of pressure loading. In addition, abundant spontaneous hydrogen bonds between BC and Ti3C2Tx MXene nanosheets endow the MXene coating with highly adhesive strength on the PDMS surface; hence, the cyclic stability of the pressure sensor is greatly boosted. As a result, the obtained MXene/BC/PDMS (MBP) pressure sensor delivers high sensitivity (528.87 kPa-1), fast response/recovery time (45 ms/29 ms), low detection limit (0.6 Pa), and outstanding repeatability of up to 8000 cycles. Those excellent sensing properties of the MBP sensor allow it to serve as a reliable wearable device to monitor full-range human physiological motions, and it is expected to be applied in next-generation portable electronics, such as E-skins, smart healthcare, and the Internet of Things technology.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| | - Liyuan Liu
- School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| | - Di Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, People's Republic of China
| | - Jianhua Ma
- School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| | - Jiaojiao Zheng
- School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| | - Chen Wang
- School of Materials Science and Engineering, Xi'an Key Laboratory of Textile Composites, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
| |
Collapse
|
35
|
Liang Q, Liu K, Xu T, Wang Y, Zhang M, Zhao Q, Zhong W, Cai XM, Zhao Z, Si C. Interfacial Modulation of Ti 3 C 2 T x MXene by Cellulose Nanofibrils to Construct Hybrid Fibers with High Volumetric Specific Capacitance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307344. [PMID: 38133516 DOI: 10.1002/smll.202307344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The intrinsic poor rheological properties of MXene inks result in the MXene nanosheets in dried MXene microfibers prone to self-stacking, which is not conducive to ion transport and diffusion, thus affecting the electrochemical performance of fiber-based supercapacitors. Herein, robust cellulose nanofibrils (CNF)/MXene hybrid fibers with high electrical conductivity (916.0 S cm-1 ) and narrowly distributed mesopores are developed by wet spinning. The interfacial interaction between CNF and MXene can be enhanced by hydrogen bonding and electrostatic interaction due to their rich surface functional groups. The interfacial modulation of MXene by CNF can not only regulate the rheology of MXene spinning dispersion, but also enhance the mechanical strength. Furthermore, the interlayer distance and self-stacking effect of MXene nanosheets are also regulated. Thus, the ion transport path within the fiber material is optimized and ion transport is accelerated. In H2 SO4 electrolyte, a volumetric specific capacitance of up to 1457.0 F cm-3 (1.5 A cm-3 ) and reversible charge/discharge stability are demonstrated. Intriguingly, the assembled supercapacitors exhibit a high-volume energy density of 30.1 mWh cm-3 at 40.0 mW cm-3 . Moreover, the device shows excellent flexibility and cycling stability, maintaining 83% of its initial capacitance after 10 000 charge/discharge cycles. Practical energy supply applications (Power for LED and electronic watch) can be realized.
Collapse
Affiliation(s)
- Qidi Liang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaxuan Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meng Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qingshuang Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Weiren Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
36
|
Barrulas RV, Corvo MC. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels 2023; 9:986. [PMID: 38131974 PMCID: PMC10742728 DOI: 10.3390/gels9120986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Rheological characterisation plays a crucial role in developing and optimising advanced materials in the form of hydrogels and aerogels, especially if 3D printing technologies are involved. Applications ranging from tissue engineering to environmental remediation require the fine-tuning of such properties. Nonetheless, their complex rheological behaviour presents unique challenges in additive manufacturing. This review outlines the vital rheological parameters that influence the printability of hydrogel and aerogel inks, emphasising the importance of viscosity, yield stress, and viscoelasticity. Furthermore, the article discusses the latest developments in rheological modifiers and printing techniques that enable precise control over material deposition and resolution in 3D printing. By understanding and manipulating the rheological properties of these materials, researchers can explore new possibilities for applications such as biomedicine or nanotechnology. An optimal 3D printing ink requires strong shear-thinning behaviour for smooth extrusion, forming continuous filaments. Favourable thixotropic properties aid viscosity recovery post-printing, and adequate yield stress and G' are crucial for structural integrity, preventing deformation or collapse in printed objects, and ensuring high-fidelity preservation of shapes. This insight into rheology provides tools for the future of material design and manufacturing in the rapidly evolving field of 3D printing of hydrogels and aerogels.
Collapse
Affiliation(s)
| | - Marta C. Corvo
- i3N|Cenimat, Department of Materials Science (DCM), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
37
|
Arslanoglu M, Yuan B, Panat R, Ozdoganlar OB. 3D Assembly of MXene Networks using a Ceramic Backbone with Controlled Porosity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304757. [PMID: 37660292 DOI: 10.1002/adma.202304757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Transition metal carbides (MXenes) are novel 2D nanomaterials with exceptional properties, promising significant impact in applications such as energy storage, catalysis, and energy conversion. A major barrier preventing the widespread use of MXenes is the lack of methods for assembling MXene in 3D space without significant restacking, which degrades their performance. Here, this challenge is successfully overcome by introducing a novel material system: a 3D network of MXene formed on a porous ceramic backbone. The backbone dictates the network's 3D architecture while providing mechanical strength, gas/liquid permeability, and other beneficial properties. Freeze casting is used to fabricate a silica backbone with open pores and controlled porosity. Next, capilary flow is used to infiltrate MXene into the backbone from a dispersion. The system is then dried to conformally coat the pore walls with MXene, creating an interconnected 3D-MXene network. The fabrication approach is reproducible, and the MXene-infiltrated porous silica (MX-PS) system is highly conductive (e.g., 340 S m-1 ). The electrical conductivity of MX-PS is controlled by the porosity distribution, MXene concentration, and the number of infiltration cycles. Sandwich-type supercapacitors with MX-PS electrodes are shown to produce excellent areal capacitance (7.24 F cm-2 ) and energy density (0.32 mWh cm-2 ) with only 6% added MXene mass. This approach of creating 3D architectures of 2D nanomaterials will significantly impact many engineering applications.
Collapse
Affiliation(s)
- Mert Arslanoglu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bin Yuan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - O Burak Ozdoganlar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
38
|
Li L, Tian W, VahidMohammadi A, Rostami J, Chen B, Matthews K, Ram F, Pettersson T, Wågberg L, Benselfelt T, Gogotsi Y, Berglund LA, Hamedi MM. Ultrastrong Ionotronic Films Showing Electrochemical Osmotic Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301163. [PMID: 37491007 DOI: 10.1002/adma.202301163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/07/2023] [Indexed: 07/27/2023]
Abstract
A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.
Collapse
Affiliation(s)
- Lengwan Li
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Armin VahidMohammadi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jowan Rostami
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Bin Chen
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Kyle Matthews
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Farsa Ram
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Lars A Berglund
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
39
|
Talipova AB, Buranych VV, Savitskaya IS, Bondar OV, Turlybekuly A, Pogrebnjak AD. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers (Basel) 2023; 15:4067. [PMID: 37896311 PMCID: PMC10610809 DOI: 10.3390/polym15204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
MXene exhibits impressive characteristics, including flexibility, mechanical robustness, the capacity to cleanse liquids like water through MXene membranes, water-attracting nature, and effectiveness against bacteria. Additionally, bacterial cellulose (BC) exhibits remarkable qualities, including mechanical strength, water absorption, porosity, and biodegradability. The central hypothesis posits that the incorporation of both MXene and bacterial cellulose into the material will result in a remarkable synthesis of the attributes inherent to MXene and BC. In layered MXene/BC coatings, the presence of BC serves to separate the MXene layers and enhance the material's integrity through hydrogen bond interactions. This interaction contributes to achieving a high mechanical strength of this film. Introducing cellulose into one layer of multilayer MXene can increase the interlayer space and more efficient use of MXene. Composite materials utilizing MXene and BC have gained significant traction in sensor electronics due to the heightened sensitivity exhibited by these sensors compared to usual ones. Hydrogel wound healing bandages are also fabricated using composite materials based on MXene/BC. It is worth mentioning that MXene/BC composites are used to store energy in supercapacitors. And finally, MXene/BC-based composites have demonstrated high electromagnetic interference (EMI) shielding efficiency.
Collapse
Affiliation(s)
- Aizhan B Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Volodymyr V Buranych
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
| | - Irina S Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oleksandr V Bondar
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
| | - Amanzhol Turlybekuly
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Aman Technologies, LLP, Astana 010000, Kazakhstan
| | - Alexander D Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
40
|
Liu Y, Zou W, Zhao N, Xu J. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy. Nat Commun 2023; 14:5342. [PMID: 37660170 PMCID: PMC10475028 DOI: 10.1038/s41467-023-40707-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023] Open
Abstract
Constructing flexible and robust thermally conductive but electrically insulating composite films for efficient and safe thermal management has always been a sought-after research topic. Herein, a nacre-inspired high-performance poly(p-phenylene-2,6-benzobisoxazole) (PBO)/MXene nanocomposite film was prepared by a sol-gel-film conversion method with a homogeneous gelation process. Because of the as-formed optimized brick and mortar structure, and the strong bridging and caging effects of the fine PBO nanofibre network on the MXene nanosheets, the resulting nanocomposite film is electrically insulating (2.5 × 109 Ω cm), and exhibits excellent mechanical properties (tensile strength of 416.7 MPa, Young's modulus of 9.1 GPa and toughness of 97.3 MJ m-3). More importantly, the synergistic orientation of PBO nanofibres and MXene nanosheets endows the film with an in-plane thermal conductivity of 42.2 W m-1 K-1. The film also exhibits excellent thermal stability and flame retardancy. This work broadens the ideas for preparing high-performance thermally conductive but electrically insulating composites.
Collapse
Affiliation(s)
- Yong Liu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
41
|
Wang T, Qiu Z, Li H, Lu H, Gu Y, Zhu S, Liu GS, Yang BR. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304033. [PMID: 37649175 DOI: 10.1002/smll.202304033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiguang Qiu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haichuan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
42
|
Zhang Y, Yuan Z, Zhao L, Li Y, Qin X, Li J, Han W, Wang L. Review of Design Routines of MXene Materials for Magnesium-Ion Energy Storage Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301815. [PMID: 37183303 DOI: 10.1002/smll.202301815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Zeyu Yuan
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Lianjia Zhao
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Yilin Li
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiaokun Qin
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junzhi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wei Han
- Sino-Russian International Joint Laboratory for Clean Energy Conversion Technology, College of Physics, Jilin University, Changchun, 130012, China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
43
|
Zhang CJ, Schneider R, Jafarpour M, Nüesch F, Abdolhosseinzadeh S, Heier J. Micro-Cup Architecture for Printing and Coating Asymmetric 2d-Material-Based Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300357. [PMID: 37078837 DOI: 10.1002/smll.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
High energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced. The bottom electrode is either produced by laser ablation of a blade-coated graphene layer or directly screen-printed with graphene inks to create grids with high aspect ratio walls forming an array of "micro-cups". A quasi-solid-state ionic liquid electrolyte is spray-deposited on the walls; the top electrode material -MXene inks- is then spray-coated to fill the cup structure. The architecture combines the advantages of interdigitated electrodes for facilitated ion-diffusion, which is critical for 2D-material-based energy storage systems by providing vertical interfaces with the layer-by-layer processing of the sandwich geometry. Compared to flat reference devices, volumetric capacitance of printed "micro-cups" MSC increased considerably, while the time constant decreased (by 58%). Importantly, the high energy density (3.99 µWh cm-2 ) of the "micro-cups" MSC is also superior to other reported MXene and graphene-based MSCs.
Collapse
Affiliation(s)
- Chuanfang John Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - René Schneider
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Mohammad Jafarpour
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Fedérale de Lausanne (EPFL), Station 12, Lausanne, CH-1015, Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
44
|
Yao L, Zheng K, Koripally N, Eedugurala N, Azoulay JD, Zhang X, Ng TN. Structural pseudocapacitors with reinforced interfaces to increase multifunctional efficiency. SCIENCE ADVANCES 2023; 9:eadh0069. [PMID: 37352340 DOI: 10.1126/sciadv.adh0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023]
Abstract
Structural supercapacitors hold promise to expand the energy capacity of a system by integrating load-bearing and energy-storage functions in a multifunctional structure, resulting in weight savings and safety improvements. Here, we develop strategies based on interfacial engineering to advance multifunctional efficiency. The structural electrodes were reinforced by coating carbon-fiber weaves with a uniquely stable conjugated redox polymer and reduced graphene oxide that raised pseudocapacitive capacitance and tensile strength. The solid polymer electrolyte was tuned to a gradient configuration, where it facilitated high ionic conductivity at the electrode-electrolyte interfaces and transitioned to a composition with high mechanical strength in the bulk for load support. The gradient design enabled the multilayer structural supercapacitors to reach state-of-the-art performance matching the level of monofunctional supercapacitors. In situ electrochemical-mechanical measurements established the device durability under mechanical loads. The structural supercapacitor was made into the hull of a model boat to demonstrate its multifunctionality.
Collapse
Affiliation(s)
- Lulu Yao
- Materials Science Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Zheng
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nandu Koripally
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Naresh Eedugurala
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS 39406, USA
| | - Jason D Azoulay
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS 39406, USA
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xinyu Zhang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tse Nga Ng
- Materials Science Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Wang H, Wang Y, Chang J, Yang J, Dai H, Xia Z, Hui Z, Wang R, Huang W, Sun G. Nacre-Inspired Strong MXene/Cellulose Fiber with Superior Supercapacitive Performance via Synergizing the Interfacial Bonding and Interlayer Spacing. NANO LETTERS 2023. [PMID: 37310991 DOI: 10.1021/acs.nanolett.3c01307] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MXene fibers are promising candidates for weaveable and wearable energy storage devices because of their good electrical conductivity and high theoretical capacitance. Herein, we propose a nacre-inspired strategy for simultaneously improving the mechanical strength, volumetric capacitance, and rate performance of MXene-based fibers through synergizing the interfacial interaction and interlayer spacing between Ti3C2TX nanosheets. The optimized hybrid fibers (M-CMC-1.0%) with 99 wt % MXene loading exhibit an improved tensile strength of ∼81 MPa and a high specific capacitance of 885.0 F cm-3 at 1 A cm-3 together with an outstanding rate performance of 83.6% retention at 10 A cm-3 (740.0 F cm-3). As a consequence, the fiber supercapacitor (FSC) based on the M-CMC-1.0% hybrid delivers an output capacitance of 199.5 F cm-3, a power density of 1186.9 mW cm-3, and an energy density of 17.7 mWh cm-3, respectively, implying its promising applications as portable energy storage devices for future wearable electronics.
Collapse
Affiliation(s)
- Huifang Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yurong Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jin Chang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China
| | - Henghan Dai
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhongming Xia
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Rui Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Gengzhi Sun
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
46
|
Yang Z, Wang Y, Hu Y, Zhuang Y, Ji X, Yang G, He M. A morphology control engineered strategy of Ti 3C 2T x/sulfated cellulose nanofibril composite film towards high-performance flexible supercapacitor electrode. Int J Biol Macromol 2023:124828. [PMID: 37217052 DOI: 10.1016/j.ijbiomac.2023.124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
2D Ti3C2Tx MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance Ti3C2Tx/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes. Compared with other composite films, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a looser interlayer structure with more space which was conducive to charge storage and ion transport in the electrolyte. Therefore, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a higher specific capacitance (220 F/g) compared to the vacuum-dried Ti3C2Tx/SCNF composite film (191 F/g) and the spin-dried Ti3C2Tx/SCNF composite film (211 F/g). After 5000 cycles, the capacitance retention rate of the freeze-dried Ti3C2Tx/SCNF film electrode was close to 100 %, showing excellent cycle performance. Meanwhile, the tensile strength of freeze-dried Ti3C2Tx/SCNF composite film (13.7 MPa) was much greater than that of the pure film (7.4 MPa). This work demonstrated a facile strategy for control of Ti3C2Tx/SCNF composite film interlayer structure by drying for fabricating well-designed structured flexible and free-standing supercapacitor electrodes.
Collapse
Affiliation(s)
- Zhengbang Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaru Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yuntang Zhuang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ming He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
47
|
Wang G, Zhang R, Zhang H, Cheng K. Aqueous MXene inks for inkjet-printing microsupercapacitors with ultrahigh energy densities. J Colloid Interface Sci 2023; 645:359-370. [PMID: 37156144 DOI: 10.1016/j.jcis.2023.04.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Although inkjet-printing technology has achieved significant development in preparing scalable and adaptable energy storage devices for portable and micro devices, searching for additive-free and environmentally friendly aqueous inks is a significant challenge. Hence, an aqueous MXene/sodium alginate-Fe2+ hybrid ink (denoted as MXene/SA-Fe) with solution processability and suitable viscosity is prepared for direct inkjet printing microsupercapacitors (MSCs). The SA molecules are adsorbed on the surface of MXene nanosheets to construct three-dimensional (3D) structures, thus effectively alleviating the two notorious problems of oxidation and self-restacking of MXene. Concurrently, Fe2+ ions can compress the ineffective macropore volume and make the 3D structure more compact. Moreover, the hydrogen and covalent bonding formed between the MXene nanosheet, SA, and Fe2+ effectively protects the oxidation of MXene and thus increases its stability. Thus, the MXene/SA-Fe ink endows the inkjet-printed MSC electrode with abundant active sites for ion storage and a highly conductive network for electron transfer. As a demonstration, the MXene/SA-Fe ink is used to direct inkjet-printed MSCs with an electrode spacing of 310 μm, which exhibit remarkable capacitances of 123.8 mF cm-2 (@5 mV s-1), good rate capability, an extraordinary energy density of 8.44 μWh cm-2 at a power density of 33.70 μW cm-2, long-term cycling stability of 91.4 % capacitance retention after 10,000 cycles, and surprising mechanical durability with 90.0 % of its initial capacitance retained after 10,000 bending cycles. Therefore, MXene/SA-Fe inks are expected to create various opportunities for printable electronics.
Collapse
Affiliation(s)
- Guixin Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; Heilongjiang International Joint Laboratory of Smart Soil between Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
48
|
Xu T, Song Q, Liu K, Liu H, Pan J, Liu W, Dai L, Zhang M, Wang Y, Si C, Du H, Zhang K. Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode. NANO-MICRO LETTERS 2023; 15:98. [PMID: 37038023 PMCID: PMC10086089 DOI: 10.1007/s40820-023-01073-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/10/2023] [Indexed: 05/24/2023]
Abstract
Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices. Cellulose nanofiber (CNF) is employed for assisting in building conductive, hyperelastic, and ultralight Ti3C2Tx MXene hybrid aerogels with oriented tracheid-like texture. The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF, carbon nanotube (CNT), and MXene based on synergistic electrostatic interaction and hydrogen bonding. Entangled CNF and CNT "mortars" bonded with MXene "bricks" of the tracheid structure produce good interfacial binding, and superior mechanical strength (up to 80% compressibility and extraordinary fatigue resistance of 1000 cycles at 50% strain). Benefiting from the biomimetic texture, CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm-3 and excellent electrical conductivity (~ 2400 S m-1). Used as pressure sensors, such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa-1, which affords their application in monitoring body surface information and detecting human motion. Furthermore, the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance (849.2 mF cm-2 at 0.8 mA cm-2) and superior long cycle compression performance (88% after 10,000 cycles at a compressive strain of 30%).
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qun Song
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Huayu Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Junjie Pan
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Wei Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yaxuan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Bio-Based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan, 250353, People's Republic of China.
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
49
|
Yang W, Xiao P, Li S, Deng F, Ni F, Zhang C, Gu J, Yang J, Kuo SW, Geng F, Chen T. Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302509. [PMID: 37026662 DOI: 10.1002/smll.202302509] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Aerogels have provided a significant platform for passive radiation-enabled thermal regulation, arousing extensive interest due to their capabilities of radiative cooling or heating. However, there still remains challenge of developing functionally integrated aerogels for sustainable thermal regulation in both hot and cold environment. Here, Janus structured MXene-nanofibrils aerogel (JMNA) is rationally designed via a facile and efficient way. The achieved aerogel presents the characteristic of high porosity (≈98.2%), good mechanical strength (tensile stress of ≈2 MPa, compressive stress of ≈115 kPa), and macroscopic shaping property. Based on the asymmetric structure, the JMNA with switchable functional layers can alternatively enable passive radiative heating and cooling in winter and summer, respectively. As a proof of concept, JMNA can function as a switchable thermal-regulated roof to effectively enable the inner house model to maintain >25 °C in winter and <30 °C in hot summer. This design of Janus structured aerogels with compatible and expandable capabilities is promising to widely benefit the low-energy thermal regulation in changeable climate.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Shan Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Feng Deng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Feng Ni
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jinlin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Shiao-Wei Kuo
- Department of Material and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Fengxia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhongguan West Road 1219, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
50
|
Xu W, Tan C, Wang A, Hu S, Deng L, Boles S, Sun K, Li B, Hu H. Interlayer Structure and Chemistry Engineering of MXene-Based Anode for Effective Capture of Chloride Anions in Asymmetric Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16266-16276. [PMID: 36918536 DOI: 10.1021/acsami.2c23260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Negatively charged surfaces and readily oxidizabile characteristics fundamentally restrict the use of MXene building blocks as anodes for anion intercalation. Herein, by embedding bacterial cellulose nanofibers with conformal polypyrrole coating (BC@PPy) and populating them between MXene (Ti3C2Tx) interlayers, we enable the fabricated MXene/BC@PPy (MBP) composite films to be highly efficient anodes for Cl--capturing in asymmetric capacitive deionization (CDI) systems. Performance gains are realized due to the surface electronegativity of MXene nanosheets becoming compensated by positively charged BC@PPy nanofibers, alleviating electrostatic repulsion, thus realizing reversible Cl- intercalation. More crucially, the anodization voltage of MBP is effectively enhanced as a result of the increase of the Ti valence state in MXene nanosheets with the addition of the BC@PPy spacer. Furthermore, BC@PPy nanopillars effectively enlarge the interlayer space for facile Cl- de-/intercalation, improve the vertical electron transfer between loosely deposited MXene nanosheets, and perform as additional active materials for Cl--capturing. Consequently, the MBP anode exhibits a promising desalination capacity of up to 17.56 mg g-1 at 1.2 V with a high capacity retention of 94.6% after 30 cycles in an asymmetric CDI system. This work offers a simple and effective strategy to unlock the application potential of MXene building blocks as anodes for Cl--capturing in electrochemical desalination.
Collapse
Affiliation(s)
- Wenyu Xu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Chang Tan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Ao Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Shengchun Hu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Steven Boles
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Bei Li
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|