1
|
Caballero R, de la Cruz P, Langa F, Singhal R, Sharma GD. Enhanced Charge and Energy Transfer in All-Small-Molecule Ternary Organic Solar Cells: Transient Photocurrent and Photovoltage and Transient Photoluminescence Measurements. CHEMSUSCHEM 2025; 18:e202402495. [PMID: 39907514 DOI: 10.1002/cssc.202402495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
A donor-acceptor-donor (D-A-D) molecule, denoted as RC18, consisting of two nickel-porphyrin terminal donor units (D) and a selenophene-flanked diketopyrrolopyrrole central core, connected via an ethynylene linker has been synthesized. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were measured showing values of -5.49 eV and -3.75 eV, respectively. We have utilized RC18 as donor along with two acceptors, DICTF and Y6, for OSCs and found that power conversion efficiencies were 12.10 % and 12.59 % for RC18:DICTF and RC18:Y6, respectively. The complementary absorption profiles of RC18, DICTF and Y6, along with the intermediate LUMO level of DICTF between RC18 and Y6, led to the fabrication of ternary organic solar cells. RC18:DICTF:Y6 based ternary attained power conversion efficiency of 16.06 %. The observed enhancement in the PCE is attributed to efficient exciton utilization through energy transfer from DICTF to Y6, increased donor-acceptor interfacial area, suppressed charge carrier recombination and improved molecular ordering. These all factors contribute to improvements in short-circuit current density (JSC) and fill factor (FF). Additionally, the open-circuit voltage (VOC) of the ternary OSC lies between those of the two binary OSCs indicating the formation of an alloy between the two acceptors.
Collapse
Affiliation(s)
- Rubén Caballero
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha., Campus de la Fábrica de Armas, 45071, Toledo., Spain
| | - Pilar de la Cruz
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha., Campus de la Fábrica de Armas, 45071, Toledo., Spain
| | - Fernando Langa
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha., Campus de la Fábrica de Armas, 45071, Toledo., Spain
| | - Rahul Singhal
- Department of Physics., Malviya National Institute of Technology., JLN Marg, Jaipur, 302031, Rajasthan, India
| | - Ganesh D Sharma
- Department of Physics and Electronic Communication., The LNM Institute of Information Technology. Jamdoli, Jaipur, 302031, Rajasthan, India
| |
Collapse
|
2
|
Wang J, Li W, Jiao L, Hao E. Ring-fused BODlPY derived heavy-atom-free triplet photosensitizers. Chem Commun (Camb) 2025; 61:4465-4482. [PMID: 40007239 DOI: 10.1039/d4cc06350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triplet photosensitizers are compounds that demonstrate strong absorption of the excitation light, high intersystem crossing (ISC) efficiency for efficient triplet state generation, and long triplet lifetimes to facilitate subsequent photochemical reactions. Among these, heavy-atom-free triplet photosensitizers have attracted particular attention due to their advantages of long-lived triplet states and low dark toxicity in comparison with heavy-atom-containing photosensitizers. Owing to the superior photophysical and chemical characteristics, boron dipyrromethene (BODIPY) dyes have been developed as promising heavy-atom-free triplet photosensitizers through specific molecular design strategies. However, many heavy-atom-free BODIPY-based photosensitizers exhibit relatively short excitation wavelengths in the visible-light region, and their ISC efficiencies dropped significantly with the extension of π-conjugation via the Knoevenagel condensation reaction. Recently, the ring-fused BODIPY skeleton has provided a feasible approach for the design of long-wavelength NIR photosensitizers. This review provides a comprehensive summary of the strategies utilized for the construction of ring-fused BODIPY-based photosensitizers including the installation of a twisted π-conjugation framework, the fusion of thiophene moieties and the formulation of an aggregation-induced ISC process. Meanwhile, some important spectroscopic and photophysical properties of these photosensitizers, along with their related applications, are also described.
Collapse
Affiliation(s)
- Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wanwan Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
3
|
Nikitin KS, Maltсeva OV, Mamardashvili NZ, Маrchenkova МA, Kholodkov IV, Smirnova AI, Usol'tseva NV. Tetrapyrrolic macrocycles self-organization into floating layers and sensory properties of their Langmuir-Schaefer films. J Mol Struct 2025; 1321:140244. [DOI: 10.1016/j.molstruc.2024.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
|
4
|
Gu Y, Xiang F, Liang Y, Bai P, Qiu Z, Chen Q, Narita A, Xie Y, Fasel R, Müllen K. A Poly(2,7-anthrylene) with peri-Fused Porphyrin Edges. Angew Chem Int Ed Engl 2025; 64:e202417129. [PMID: 39449108 DOI: 10.1002/anie.202417129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Anthracene has served as an important building block of conjugated polymers with the connecting positions playing a crucial role for the electronic structures. Herein, anthracene units have been coupled through their 2,7-carbons to develop an unprecedented, conjugated polymer, namely, poly(2,7-anthrylene) featuring additional peri-fused porphyrin edges. The synthesis starts from a 2,7-dibromo-9-nickel(II) porphyrinyl-anthracene as the pivotal precursor. Polymerization is achieved by an AA-type Yamamoto coupling, followed by a polymer-analogous oxidative cyclodehydrogenation to obtain a peri-fusion between porphyrin and anthracene moieties. Although further cyclodehydrogenation between the repeating units cannot be achieved in solution, the thermal treatment of the precursor polymer derived from 2,7-dibromo-9-porphyrinyl-anthracene on a metal surface realizes the full cyclodehydrogenation. The difference between solution and on-surface reactivity can be rationalized by the larger dihedral angle between repeat units in solution, which is reduced under the pronounced interaction with the metal surface. The peri-fusion in the title polymer gives rise to a narrow electronic band gap optical absorptions extending far into the near-infrared region. Oligomeric models are synthesized as well to support the analyses of the electronic and photophysical properties.
Collapse
Affiliation(s)
- Yanwei Gu
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Feifei Xiang
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Yamei Liang
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Peizhi Bai
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hongkong, Shenzhen (CUHK-Shenzhen, Guangdong, 518172, P.R. China
| | - Qiang Chen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Akimitsu Narita
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yinjun Xie
- Materials Tech Laboratory for Hydrogen & Energy Storage, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Klaus Müllen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Oleszak C, Ritterhoff CL, Schulze EJ, Hirsch A, Meyer B, Jux N. A synthetic methodology toward π-extended porphyrin-rylenediimide conjugates. RSC Adv 2025; 15:1212-1219. [PMID: 39816180 PMCID: PMC11733737 DOI: 10.1039/d4ra08045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
In this work, we present a straightforward synthetic route for the preparation of functionalized β-meso-fused porphyrins, which are subsequently connected to rylendiimides. The resulting donor-acceptor-type conjugates exhibit intriguing optical properties, such as panchromatism and profoundly bathochromically shifted absorption curves. A better understanding of the molecules' electronic structure was gained through density-functional theory calculations, which unveiled small HOMO-LUMO gaps.
Collapse
Affiliation(s)
- Christoph Oleszak
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Christian L Ritterhoff
- Interdisciplinary Center for Molecular Materials (ICMM), Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstr. 25 91052 Erlangen Germany
| | - Erik J Schulze
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM), Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstr. 25 91052 Erlangen Germany
| | - Norbert Jux
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
6
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2025; 18:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
7
|
Hu Y, Peng J, Liu R, Gao J, Hua G, Fan X, Wang S. Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis. Molecules 2024; 29:6063. [PMID: 39770151 PMCID: PMC11676642 DOI: 10.3390/molecules29246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
8
|
Karakurt O, Oral P, Hacioglu SO, Yılmaz EA, Haciefendioğlu T, Bicer UI, Ozcelik E, Ozsoy GH, Yildirim E, Toppare LK, Cirpan A. Design, Synthesis, and Theoretical Studies on the Benzoxadiazole and Thienopyrrole Containing Conjugated Random Copolymers for Organic Solar Cell Applications. Macromol Rapid Commun 2024; 45:e2400343. [PMID: 39031942 DOI: 10.1002/marc.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
In this study, six different donor-π-acceptor1-π-donor-acceptor2 type random co-polymers containing benzodithiophene as a donor, benzooxadiazole (BO), and thieno[3,4-c]pyrrole-4,6-dione (TPD) as acceptor, have been synthesized and characterized. In addition to the acceptor core ratio at different values, the effect of aromatic bridge structures on the optical, electronic, and photovoltaic properties of six different random co-polymers is investigated by using thiophene and selenophene structures as aromatic bridge units. To investigate how the acceptor unit ratio and replacement of aromatic bridge units impact the structural, electronic, and optical properties of the polymers, density functional theory (DFT) calculations are carried out for the tetramer models. The open-circuit voltage (VOC), which is strongly correlated with the HOMO levels of the donor material, is enhanced with the increasing ratio of the TPD moiety. On the other hand, the short-circuit current (JSC), which is associated with the absorption ability of the donor material, is improved by the increasing ratio of BO moiety with the π-bridges. BO moiety dominant selenophene π-bridged co-polymer (P4) showed the best performance with a power conversion efficiency (PCE) of 6.26%, a JSC of 11.44 mA cm2, a VOC of 0.80 V, and a fill factor (FF) of 68.81%.
Collapse
Affiliation(s)
- Oguzhan Karakurt
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Pelin Oral
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
| | - Serife Ozdemir Hacioglu
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, 31200, Turkey
| | - Eda Alemdar Yılmaz
- National Institute of Materials Physics, Laboratory of Functional Nanostructures, Atomistilor 405A, Magurele, 077125, Romania
| | - Tuğba Haciefendioğlu
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Umran Isil Bicer
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Egemen Ozcelik
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Erol Yildirim
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
| | - Levent Kamil Toppare
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Ali Cirpan
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara, 06800, Turkey
- ODTU GUNAM, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
9
|
Nikitin KS, Maltceva OV, Mamardashvili NZ, Marchenkova MA, Usol’tseva NV. Effect of the Chemical Structure of Macrocyclic Tetrapyrrole Compounds on the Formation Energy of Floating Layers and Their Hysteresis at the Air/Water Interface. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2024; 98:1770-1776. [DOI: 10.1134/s0036024424700833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 12/16/2024]
|
10
|
He Y, Yu Z, Jiang Y, Zhu J, Yao SX, Liang W, Diederich F, Saunders M, Xu H. A H 2@C 601H NMR probe for sensitively detecting the supramolecular interactions between a molecular tweezer and C 60. Chem Commun (Camb) 2024. [PMID: 39058377 DOI: 10.1039/d4cc02695k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, we firstly utilized H2@C60 to monitor the supramolecular interaction between a pH-driven resorcin[4]arene molecular tweezer and C60 with a notable 1H NMR chemical shift change (ca. 0.34 ppm). This work provides a new strategy for detecting weak or complex supramolecular interactions.
Collapse
Affiliation(s)
- Yixing He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhi Yu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yanzi Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jinjie Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Selina X Yao
- Mechanical Engineering Department, University of Vermont, Burlington, Vermont, 05401, USA
| | - Wenjie Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - François Diederich
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Martin Saunders
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT06511, USA
| | - Hai Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
11
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
12
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
13
|
Schlemmer B, Sauermoser A, Holler S, Zuccalà E, Ehmann B, Reinfelds M, Fischer RC, Amenitsch H, Marin‐Beloqui JM, Ludvíková L, Slanina T, Haas M, Rath T, Trimmel G. Silicon- and Germanium-Functionalized Perylene Diimides: Synthesis, Optoelectronic Properties, and Their Application as Non-fullerene Acceptors in Organic Solar Cells. Chemistry 2023; 29:e202301337. [PMID: 37419861 PMCID: PMC10946824 DOI: 10.1002/chem.202301337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.
Collapse
Affiliation(s)
- Bettina Schlemmer
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Aileen Sauermoser
- Institute of Inorganic Chemistry, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Sarah Holler
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Elena Zuccalà
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Birgit Ehmann
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Matiss Reinfelds
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Roland C. Fischer
- Institute of Inorganic Chemistry, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Jose M. Marin‐Beloqui
- Department of Physical ChemistryUniversity of MálagaBlvrd Louis Pasteur 3129010MálagaSpain
| | - Lucie Ludvíková
- Institute of Organic Chemistry andBiochemistry of the Czech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry andBiochemistry of the Czech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Michael Haas
- Institute of Inorganic Chemistry, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Thomas Rath
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Gregor Trimmel
- Institute for Chemistry and Technology of Materials, NAWI GrazGraz University of TechnologyStremayrgasse 98010GrazAustria
| |
Collapse
|
14
|
Li J, Chen Z, Wang J, Young Jeong S, Yang K, Feng K, Yang J, Liu B, Woo HY, Guo X. Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202307647. [PMID: 37525009 DOI: 10.1002/anie.202307647] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.03-4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V-1 s-1 . Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228, Haikou, Hainan, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Jiao B, Che Z, Quan Z, Wu W, Hu K, Li X, Liu F. Highly Efficient and Stable Perovskite Solar Cells: Competitive Crystallization Strategy and Synergistic Passivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301630. [PMID: 37118850 DOI: 10.1002/smll.202301630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Defects of perovskite (PVK) films are one of the main obstacles to achieving high-performance perovskite solar cells (PSCs). Here, the authors fabricated highly efficient and stable PSCs by introducing prolinamide (ProA) into the PbI2 precursor solution, which improves the performance of PSCs by the competitive crystallization and efficient defect passivation of perovskite. The theoretical and experimental results indicate that ProA forms an adduct with PbI2 , competes with free I- to coordinate with Pb2+ , leads to the increase of the energy barrier of crystallization, and slows down the crystallization rate. Furthermore, the dual-site synergistic passivation of ProA is revealed by density functional theory (DFT) calculations and experimental results. ProA effectively reduces non-radiative recombination in the resultant films to improve the photovoltaic performance of PSCs. Notably, ProA-assisted PSCs achieve 24.61% power conversion efficiency (PCE) for the champion device and the stability of PSCs devices under ambient and thermal environments is improved.
Collapse
Affiliation(s)
- Boxin Jiao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Che
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziwei Quan
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenze Wu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kun Hu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyi Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengzhen Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Chen CK, Ho JC, Hung CC, Chen WC, Satoh T, Chen WC. Sustained Flexible Photonic Transistor Memories Based on Fully Natural Floating Gate Electrets. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37428837 DOI: 10.1021/acsami.3c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Photonic transistor memory with high-speed communication and energy-saving capabilities has emerged as a new data storage technology. However, most floating-gate electrets are composed of quantum dots derived from petroleum or metals, which are either toxic or harmful to the environment. In this study, an environmentally friendly floating-gate electret made entirely from biomass-derived materials was designed for photonic memories. The results show that the photosensitive hemin and its derivative protoporphyrin IX (PPIX) were successfully embedded in a polylactic acid (PLA) matrix. Correspondingly, their disparate photochemistry and core structure strongly affected the photosensitivity and charge-trapping capacity of the prepared electrets. With an appropriate energy-level alignment, the interlayer exciton formed with the correct alignment of energy levels within the PPIX/PLA electret. In addition, the demetallized core offered a unique relaxation dynamic and additional trapping sites to consolidate the charges. Correspondingly, the as-prepared device exhibited a memory ratio of up to 2.5 × 107 with photo-writing-electrical-erasing characteristics. Conversely, hemin demonstrated self-charge transfer during relaxation, making it challenging for the device to store the charges and exhibit a photorecovery behavior. Furthermore, the effect of trapping site discreteness on memory performance was also investigated. The photoactive components were effectively distributed due to the high dipole-dipole interaction between the PLA matrix and PPIX, resulting in a sustained memory performance for at least 104 s after light removal. The photonic memory was also realized on a bio-derived dielectric flexible substrate. Accordingly, a reliable photorecording behavior was observed, wherein, even after 1000 cycles of bending under a 5 mm bending radius, the data was retained for more than 104 s. To our knowledge, it is the first time that a two-pronged approach has been used to improve the performance of photonic memories while addressing the issue of sustainability with a biodegradable electret made entirely from natural materials.
Collapse
Affiliation(s)
- Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jin-Chieh Ho
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chih-Chien Hung
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Yang Q, Chen H, Lv J, Huang P, Han D, Deng W, Sun K, Kumar M, Chung S, Cho K, Hu D, Dong H, Shao L, Zhao F, Xiao Z, Kan Z, Lu S. Balancing the Efficiency and Synthetic Accessibility of Organic Solar Cells with Isomeric Acceptor Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207678. [PMID: 37171812 PMCID: PMC10369256 DOI: 10.1002/advs.202207678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Indexed: 05/13/2023]
Abstract
With the continuous development of organic semiconductor materials and on-going improvement of device technology, the power conversion efficiencies (PCEs) of organic solar cells (OSCs) have surpassed the threshold of 19%. Now, the low production cost of organic photovoltaic materials and devices have become an imperative demand for its practical application and future commercialization. Herein, the feasibility of simplified synthesis for cost-effective small-molecule acceptors via end-cap isomeric engineering is demonstrated, and two constitutional isomers, BTP-m-4Cl and BTP-o-4Cl, are synthesized and compared in parallel. These two non-fullerene acceptors (NFAs) have very similar optoelectronic properties but nonuniform morphological and crystallographic characteristics. Consequently, the OSCs composed of PM6:BTP-m-4Cl realize PCE of 17.2%, higher than that of the OSCs with PM6:BTP-o-4Cl (≈16%). When ternary OSCs are fabricated with PM6:BTP-m-4Cl:BTP-o-4Cl, the averaged PCE value reaches 17.95%, presenting outstanding photovoltaic performance. Most excitingly, the figure of merit (FOM) values of PM6:BTP-m-4Cl, PM6:BTP-o-4Cl, and PM6:BTP-m-4Cl:BTP-o-4Cl based devices are 0.190, 0.178, and 0.202 respectively. The FOM values of these systems are all among the top ones of the current high-efficiency OSC systems, revealing high cost-effectiveness of the two NFAs. This work provides a general but accessible strategy to minimize the efficiency-cost gap and promises the economic prospects of OSCs.
Collapse
Affiliation(s)
- Qianguang Yang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haiyan Chen
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Peihao Huang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Deman Han
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou, Beijing, 510641, P. R. China
| | - Kuan Sun
- Chongqing University, Chongqing, 400044, P. R. China
| | - Manish Kumar
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, North Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Haiyan Dong
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Li Shao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
| | - Fuqing Zhao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipeng Kan
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing University, Chongqing, 400044, P. R. China
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| |
Collapse
|
18
|
Yu W, Zheng S. A computational investigation about the effect of metal substitutions on the electronic spectra of porphyrin donors in the visible and near infrared regions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121676. [PMID: 35921749 DOI: 10.1016/j.saa.2022.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Porphyrin compounds have unique advantages because of their wide absorption range (about 300-1000 nm) and good planarity. At present, the effects of metal substitutions of porphyrin compounds on their photovoltaic properties are still not clear. In this paper, we have systematically modelled a series of porphyrin donors MP-TBO (M = 2H, Mg, Cu, Fe, Co, Zn and Ni), in which ZnP-TBO has been experimentally synthesized and the power conversation efficiency of organic solar cell based on it is up to 12.08 %. The photovoltaic properties of these MP-TBO molecules have been investigated via density functional theory (DFT) and time-dependent DFT. We find that CoP-TBO and NiP-TBO both have worse planarity and smaller dipole moments than other compounds. The electronic absorption spectra of these porphyrin donors all show three main absorption peaks. However, metal substitutions blue-shift the wavelength of absorption peaks and lower total absorption strength in the visible and near-infrared regions. Finally, we find that MgP-TBO and H2P-TBO seem to be potential donors because both have more red-shifted wavelength of absorption peaks and higher absorption strength than other metal substitutions.
Collapse
Affiliation(s)
- Wenyang Yu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China
| | - Shaohui Zheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy, Southwest University, Chongqing, China.
| |
Collapse
|
19
|
Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Wang J, Yu C, Hao E, Jiao L. Conformationally restricted and ring-fused aza-BODIPYs as promising near infrared absorbing and emitting dyes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Jin Y, Huang Z, Jiang J, Wu Z, Li X, Gong D, Xiang C. Anti-reflection metallic anode-enhanced performance of organic solar cells via cross coupling between Fabry-Perot cavity modes and microcavity modes. OPTICS LETTERS 2022; 47:4355-4358. [PMID: 36048652 DOI: 10.1364/ol.470114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
An effective anti-reflection metallic anode with the structure of glass/dielectric2 /Ag (D1D2M) is demonstrated both in small-molecule (SM) and conjugated polymer (CP) organic solar cells (OSCs). The anti-reflection mechanism is investigated by the finite-difference time-domain numerical calculation method and the experimental method. By tuning the refractive index and the thickness of the D2 layer, the reflection light is confined in the Fabry-Perot (F-P) cavity modes, which effectively enhances the transmittance of the D1D2M anode in the wavelength range of 420 nm-800 nm. Compared with the conventional glass/Ag (D1M) anode, the experimental transmittance of the D1D2M anode is enhanced by 33.24% at a wavelength of 550 nm. By replacing the D1M anode with the D1D2M anode in the OSCs, the F-P cavity modes cross couple with the microcavity modes in the active layers. As a result, the absorption intensity is obviously increasing in a wide angle range (0≤θ≤85∘) in the wavelength ranges of 475 nm-650 nm and 540 nm-720 nm for the SM and CP OSCs, respectively. The short circuit current density and power conversion efficiency of the SM OSC is increased by 25.07% and 27.23%, respectively.
Collapse
|
22
|
Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure–Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022; 61:e202205315. [DOI: 10.1002/anie.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/07/2022]
|
23
|
Guo Q, Ding Y, Dai Z, Chen Z, Du M, Wang Z, Gao L, Duan C, Guo Q, Zhou E. Multiple-cation wide-bandgap perovskite solar cells grown using cesium formate as the Cs precursor with high efficiency under sunlight and indoor illumination. Phys Chem Chem Phys 2022; 24:17526-17534. [PMID: 35851910 DOI: 10.1039/d2cp02358j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the advantages of adjustable bandgap, low-cost fabrication and superior photovoltaic performance, wide-bandgap (WBG) perovskite solar cells (PSCs) are considered as the promising top-cell for multi-junction solar cells. At the same time, WBG PSCs have also shown great potential for indoor photovoltaic applications. To further improve the performance of WBG PSCs, in this work, we fabricated efficient WBG PSCs via introducing cesium formate (CsFa) as the Cs precursor. Due to the HCOO·Pb+ and HCOOH·Cs+ complex formation and HCOOH volatilization accompanying the crystallization process, the crystallization of the perovskite using the CsFa precursor (CsFa-perovskite) is promoted. Compared to the perovskite prepared using the CsBr precursor (CsBr-perovskite), the WBG CsFa-perovskite shows better perovskite crystallization, reduced trap-state density, and better phase stability under light illumination. Finally, the 1.63 eV WBG PSCs based on the CsFa-perovskite achieve a significant PCE of 20.01% under one sun illumination (AM 1.5G, 100 mW cm-2), which is higher than that of PSCs based on the CsBr-perovskite (18.27%). Moreover, the PCE of CsFa-perovskite PSCs also under indoor warm-white 2700 K LED light illumination (1000 lux) is as high as 38.52%. Our results demonstrate that CsFa as the Cs precursor is a promising candidate to promote the device performance of WBG PSCs.
Collapse
Affiliation(s)
- Qiang Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanjia Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zheng Dai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Mengzhen Du
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongtao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Lei Gao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Chen Duan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| |
Collapse
|
24
|
Chen Z, Li J, Wang J, Yang K, Zhang J, Wang Y, Feng K, Li B, Wei Z, Guo X. Imide‐Functionalized Fluorenone and Its Cyanated Derivative Based n‐Type Polymers: Synthesis, Structure‐Property Correlations, and Thin‐Film Transistor Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhicai Chen
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianfeng Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Junwei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kun Yang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Jianqi Zhang
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Yimei Wang
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Kui Feng
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Bolin Li
- Southern University of Science and Technology Materials science and thchnology CHINA
| | - Zhixiang Wei
- National Center for Nanoscience and Technology Cas Key Laborotary of Nanosystem and Hierarcheical Frabration CHINA
| | - Xugang Guo
- Southern University of Science and Technology Materials Science and Engineering No 1088, Xueyuan Rd. Xili, Nanshan 518055 Shenzhen CHINA
| |
Collapse
|
25
|
Ishizuka T, Kojima T. Recent Development of π-Expanded Porphyrin Derivatives by Peripheral Ring Fusion. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
26
|
Ke CX, Lai X, Wang HT, Pu MR, Rehman T, Zhu YL, He F. Subtle Effect of Alkyl Substituted π-Bridges on Dibenzo[a,c]phenazine Based Polymer Donors towards Enhanced Photovoltaic Performance. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Thambidurai M, Omer MI, Shini F, Dewi HA, Jamaludin NF, Koh TM, Tang X, Mathews N, Dang C. Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation. CHEMSUSCHEM 2022; 15:e202102189. [PMID: 35289479 DOI: 10.1002/cssc.202102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
While extensive research has driven the rapid efficiency trajectory noted to date for organic-inorganic perovskite solar cells (PSCs), their thermal stability remains one of the key issues hindering their commercialization. Herein, a significant reduction in surface defects (a precursor to perovskite instability) could be attained by introducing triphenylphosphine (TPP), an effective Lewis base passivator, to the vulnerable perovskite/spiro-OMeTAD interface. Not only did TPP passivation enable a high power conversion efficiency (PCE) of 20.22 % to be achieved, these devices also exhibited superior ambient and thermal stability. Unlike the pristine device, which exhibited a sharp descend to 16 % of its initial PCE on storing in relative humidity of 10 %, at 85 °C for more than 720 h, the TPP-passivated devices retained 71 % of its initial PCE. Hence, this study presents a facile yet excellent approach to attain high-performing yet thermally stable PSCs.
Collapse
Affiliation(s)
- M Thambidurai
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Mohamed I Omer
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Foo Shini
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Herlina Arianita Dewi
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Nur Fadilah Jamaludin
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Teck Ming Koh
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Xiaohong Tang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Nripan Mathews
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Cuong Dang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| |
Collapse
|
28
|
Ma L, Ma C, Zhang S, Li J, Gan L, Deng K, Duan W, Li X, Zeng Q. Regulation of the Assembled Structure of a Flexible Porphyrin Derivative Containing Tetra Isophthalic Acids by Coronene or Different Pyridines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4434-4441. [PMID: 35357166 DOI: 10.1021/acs.langmuir.2c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on previous research, a new coassembly formed by a porphyrin derivative (IPETPP), which contains a flexible substituent of m-phthalic acid, is observed with coronene (COR) molecules at a higher concentration. Besides, a fresh IPETPP self-assembly formed at a lower concentration and another new coassembly with COR molecules are obtained. Moreover, the addition of a series of bipyridines alters the diamond arrangement of IPETPP, which enhances the stability of the two-component structures. It is unprecedented that bipyridine derivatives break intermolecular hydrogen bonds containing m-phthalic acid substituents. All the coassemblies are investigated by scanning tunneling microscopy on a highly oriented pyrolytic graphite. Combined with density functional theory, the formation mechanism of the assembled structures is revealed. These results would contribute to understanding the interfacial crystal behaviors and probably provide an efficient pathway to regulate the binary structures.
Collapse
Affiliation(s)
- Lin Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Linlin Gan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaokang Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Morphology control of trimer particles via one-step co-precipitation and controlled phase separation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Sun Y, Ma R, Kan Y, Liu T, Zhou K, Liu P, Fang J, Chen Y, Ye L, Ma C, Yan H, Gao K. Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low-Cost Incompletely Separated Fullerenes. Macromol Rapid Commun 2022; 43:e2200139. [PMID: 35319114 DOI: 10.1002/marc.202200139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/13/2022] [Indexed: 11/08/2022]
Abstract
All-polymer solar cells (all-PSCs) are one of the most promising application-oriented organic photovoltaic technologies due to their excellent operational and mechanical stability. However, the power conversion efficiencies (PCEs) are mostly lower than 16%, restricting their core competitiveness. Furthermore, the improvement of mechanical durability is rarely paid attention to cutting-edge all-PSCs. This work deploys a low-cost "technical grade" PCBM (incompletely separated but pure mixtures containing ≥90% [70]PCBM or [60]PCBM), into the efficient PM6:PY-IT all-polymer blend, successfully yielding a high-performance ternary device with 16.16% PCE, among the highest PCE values for all-PSCs. Meanwhile, an excellent mechanical property (i.e., crack onset strain = 11.1%) promoted from 9.5% for the ternary system is also demonstrated. The "technical grade" PCBM slightly disrupts the crystallization of polymers, and disperses well into the amorphous polymer regions of the all-PSC blends, thus facilitating charge transport and improving film ductility simultaneously. All these results confirm introducing low-cost "technical grade" PCBM with high electron mobility into all-polymer blends can improve carrier mobility, reduce charge recombination, and optimize morphology of the amorphous polymer regions, thus yielding more efficient and mechanically durable all-PSCs.
Collapse
Affiliation(s)
- Yanna Sun
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuanyuan Kan
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Pengke Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Fang
- i-Lab & Printable Electronics Research Centre, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yirao Chen
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Changqi Ma
- i-Lab & Printable Electronics Research Centre, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ke Gao
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
31
|
Cuesta V, Singh MK, Gutierrez-Fernandez E, Martín J, Domínguez R, de la Cruz P, Sharma GD, Langa F. Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11708-11717. [PMID: 35195997 PMCID: PMC8915169 DOI: 10.1021/acsami.1c22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10, were studied by UV-Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500-600 and 700-920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550-780 nm complementary to that of VC10, enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.
Collapse
Affiliation(s)
- Virginia Cuesta
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Manish Kumar Singh
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | | | - Jaime Martín
- POLYMAT, University of the Basque Country, UPV/EHU Av. de Tolosa 72, San Sebastián 20018, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48013, Spain
- Universidade
da Coruña, Grupo de Polímeros, Centro de Investigacións
Tecnolóxicas (CIT), Esteiro, Ferrol 15471, Spain
| | - Rocío Domínguez
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Pilar de la Cruz
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Ganesh D. Sharma
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | - Fernando Langa
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| |
Collapse
|
32
|
Gayathri RD, Gokulnath T, Park HY, Kim J, Kim H, Kim J, Kim B, Lee Y, Yoon J, Jin SH. Impact of Aryl End Group Engineering of Donor Polymers on the Morphology and Efficiency of Halogen-Free Solvent-Processed Nonfullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10616-10626. [PMID: 35170936 DOI: 10.1021/acsami.1c22784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
End group engineering on the side chain of π-conjugated donor polymers is explored as an effective way to develop efficient photovoltaic devices. In this work, we designed and synthesized three new π-conjugated polymers (PBDT-BZ-1, PBDT-S-BZ, and PBDT-BZ-F) with terminal aryl end groups on the side chain of chlorine-substituted benzo[1,2-b:4,5b']dithiophene (BDT). End group modifications showed notable changes in energy levels, dipole moments, exciton lifetimes, energy losses, and charge transport properties. Remarkably, the three new polymers paired with IT-4F (halogen-free solvent processed/toluene:DPE) displayed high power conversion efficiencies (PCEs) compared to a polymer (PBDT-Al-5) without a terminal end group (PCE of 7.32%). Interestingly, PBDT-S-BZ:IT-4F (PCE of 13.73%) showed a higher PCE than the benchmark PM7:IT-4F. The improved performance of PBDT-S-BZ well correlates with its improved charge mobility, well-interdigitated surface morphology, and high miscibility with a low Flory-Huggins interaction parameter (1.253). Thus, we successfully established a correlation between the end group engineering and bulk properties of the new polymers for realizing the high performance of halogen-free nonfullerene organic solar cells.
Collapse
Affiliation(s)
- Rajalapati Durga Gayathri
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Thavamani Gokulnath
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Ho-Yeol Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Jongyoun Kim
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - BongSoo Kim
- Department of Chemistry, UNIST, Ulsan 44919, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
33
|
Liu X, Liang Z, Du S, Niu X, Tong J, Yang C, Lu X, Bao X, Yan L, Li J, Xia Y. Two Compatible Acceptors as an Alloy Model with a Halogen-Free Solvent for Efficient Ternary Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9386-9397. [PMID: 35148049 DOI: 10.1021/acsami.1c23332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A ternary strategy of halogen-free solvent processing can open up a promising pathway for the preparation of polymer solar cells (PSCs) on a large scale and can effectively improve the power conversion efficiency with an appropriate third component. Herein, the green solvent o-xylene (o-XY) is used as the main solvent, and the non-fullerene acceptor Y6-DT-4F as the third component is introduced into the PBB-F:IT-4F binary system to broaden the spectral absorption and optimize the morphology to achieve efficient PSCs. The third component, Y6-DT-4F, is compatible with IT-4F and can form an "alloy acceptor", which can synergistically optimize the photon capture, carrier transport, and collection capabilities of the ternary device. Meanwhile, Y6-DT-4F has strong crystallinity, so when introduced into the binary system as the third component can enhance the crystallization, which is conducive to the charge transport. Consequently, the optimal ternary system based on PBB-F:IT-4F:Y6-DT-4F achieved an efficiency of 15.24%, which is higher than that of the binary device based on PBB-F:IT-4F (13.39%).
Collapse
Affiliation(s)
- Xingpeng Liu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sanshan Du
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xixi Niu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chunyan Yang
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xubin Lu
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianfeng Li
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yangjun Xia
- Gansu Province Organic Semiconductor Materials and Technology Research Center, School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
34
|
Yao J, Kong J, Shi W, Lu C. The Insolubility Problem of Organic Hole-Transport Materials Solved by Solvothermal Technology: Toward Solution-Processable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7493-7503. [PMID: 35080369 DOI: 10.1021/acsami.1c24035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Generally, the high efficiency of solution-processable perovskite solar cells (PSCs) comes at the expense of using expensive organic matters as a hole-transport material (HTM). Although intense efforts have tried to use commercially available and low-cost macrocyclic molecules as HTM candidates, they still face two enormous challenges: poor solubility and inherent instability. Here, solvothermal treatment for old and insoluble HTMs (phthalocyanine (Pc) and its derivatives) has been proposed, which is unusual due to the occurrence of solubilization for insoluble precursors induced by the carbonization of the dissolved part. Since the macrocyclic structure still exists, the as-prepared new-type carbon dots not only retain the capacity of hole transfer but serve as an effective passivation additive. Synergy makes the all-air-processed carbon-based PSCs (CH3NH3PbI3) fabricated with carbon dots achieve a decent power conversion efficiency of 13.7%. Importantly, organics have undergone solvothermal treatment, completely breaking through the instability bottleneck, which exists in the long-term operation of PSCs. The universality of this methodology will usher exploration into other low-cost insoluble organics and drastically enhance the high-performance cost ratio of PSC equipment.
Collapse
Affiliation(s)
- Jian Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
35
|
Li F, Fan XH, Gao CY, Yang LM. Terminal Groups Plays an Important Role in Enhancing the Performance of Organic Solar Cells Based on Non-Fused Electron Acceptors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01108e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-fused-ring electron acceptors (NFRAs) have made great progress resulting in their property of cheap and efficient in organic solar cells (OSCs). In order to solve the disadvantage of low device...
Collapse
|
36
|
|
37
|
Zheng XL, Lin HS, Zhang BW, Maruyama S, Matsuo Y. Synthesis of Conjugated Donor-Acceptor Antiaromatic Porphyrins and Their Application to Perovskite Solar Cells. J Org Chem 2021; 87:5457-5463. [PMID: 34931835 DOI: 10.1021/acs.joc.1c01947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A conjugated donor-acceptor antiaromatic porphyrin, composed of an antiaromatic thieno-fused porphyrin structure and a diketopyrrolopyrrole mioety, was synthesized and applied in a perovskite solar cell for the first time. Enhanced light absorption in the device by the antiaromatic porphyrin resulted in a significantly increased power conversion efficiency of 19.3%.
Collapse
Affiliation(s)
- Xue-Lin Zheng
- Department of Chemistry, School of Chemistry and Materials Science, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao-Sheng Lin
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Bo-Wen Zhang
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yutaka Matsuo
- Department of Chemistry, School of Chemistry and Materials Science, and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.,Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
Kadam SA, Phan GT, Pham DV, Patil RA, Lai CC, Chen YR, Liou Y, Ma YR. Doping-free bandgap tunability in Fe 2O 3 nanostructured films. NANOSCALE ADVANCES 2021; 3:5581-5588. [PMID: 36133276 PMCID: PMC9418971 DOI: 10.1039/d1na00442e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/29/2021] [Indexed: 06/16/2023]
Abstract
A tunable bandgap without doping is highly desirable for applications in optoelectronic devices. Herein, we develop a new method which can tune the bandgap without any doping. In the present research, the bandgap of Fe2O3 nanostructured films is simply tuned by changing the synthesis temperature. The Fe2O3 nanostructured films are synthesized on ITO/glass substrates at temperatures of 1100, 1150, 1200, and 1250 °C using the hot filament metal oxide vapor deposition (HFMOVD) and thermal oxidation techniques. The Fe2O3 nanostructured films contain two mixtures of Fe2+ and Fe3+ cations and two trigonal (α) and cubic (γ) phases. The increase of the Fe2+ cations and cubic (γ) phase with the elevated synthesis temperatures lifted the valence band edge, indicating a reduction in the bandgap. The linear bandgap reduction of 0.55 eV without any doping makes the Fe2O3 nanostructured films promising materials for applications in bandgap engineering, optoelectronic devices, and energy storage devices.
Collapse
Affiliation(s)
- Sujit A Kadam
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
| | - Giang Thi Phan
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
| | - Duy Van Pham
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
- Center for Condensed Matter Sciences, National Taiwan University Taipei 10617 Taiwan
| | - Ranjit A Patil
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
| | - Chien-Chih Lai
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
| | - Yan-Ruei Chen
- Institute of Physics, Academia Sinica Taipei 11529 Taiwan
| | - Yung Liou
- Institute of Physics, Academia Sinica Taipei 11529 Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University Hualien 97401 Taiwan
| |
Collapse
|
39
|
Cuesta V, Singhal R, de la Cruz P, Sharma GD, Langa F. Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. CHEMSUSCHEM 2021; 14:3494-3501. [PMID: 33274829 DOI: 10.1002/cssc.202002664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The effect of central donor core on the properties of A-π-D-π-A donors, where D is a porphyrin macrocycle, cyclopenta[2,1-b:3,4-b']dithiophene is the π bridge, and A is a dicyanorhodanine terminal unit, was investigated for the fabrication of the organic solar cells (OSCs), along [6,6]-phenyl-C71-butyric acid methyl ester (PC71 BM) as electron acceptor. A new molecule consisting of Ni-porphyrin central donor core (VC9) showed deep HOMO energy level and OSCs based on optimized VC9:PC71 BM realized overall power conversion efficiency (PCE) of 10.66 % [short-circuit current density (JSC )=15.48 mA/cm2 , fill factor (FF)=0.65] with high open circuit voltage (VOC ) of 1.06 V and very low energy loss of 0.49 eV, whereas the Zn-porphyrin analogue VC8:PC71 BM showed PCE of 9.69 % with VOC of 0.89 V, JSC of 16.25 mA/cm2 and FF of 0.67. Although the OSCs based on VC8 showed higher JSC in comparison to VC9, originating from the broader absorption profile of VC8 that led to more exciton generation, the higher value of PCE of VC9 is owing to the higher VOC and reduced energy loss.
Collapse
Affiliation(s)
- Virginia Cuesta
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Rahul Singhal
- Department of Physics, Malviya National Institute of Technology, JLN Marg, Jaipur (Raj.), 302017, India
| | - Pilar de la Cruz
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University, Rupa ki Nangal, Jamdoli, Jaipur (Raj.), 302031, India
| | - Fernando Langa
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| |
Collapse
|
40
|
Pan X, Wu J, Xiao L, Yap B, Xia R, Peng X. Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. CHEMSUSCHEM 2021; 14:3614-3621. [PMID: 34107177 DOI: 10.1002/cssc.202100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Three small-molecule acceptors (Por-PDI, TEHPor-PDI, and BBOPor-PDI) with different side chains were synthesized by using a porphyrin core as the electron-donating unit and connecting electron-withdrawing perylene diimide dimers via acetylene bridges. The bulk heterojunction organic solar cells based on the three acceptors and a polymer donor provided power conversion efficiencies (PCEs) of 3.68-5.21 % when the active layers were fabricated with pyridine additives. Though the synthesis of Por-PDI is easier with fewer reaction steps and higher yields, the devices based on Por-PDI showed the best performance with a PCE of 5.21 %. The more ordered intermolecular packing due to the reduced steric hindrance at the porphyrin core of Por-PDI could contribute to the more balanced hole/electron mobilities, higher maximum charge generation rate, and less bimolecular recombination in Por-PDI devices, which are beneficial for the higher PCE.
Collapse
Affiliation(s)
- Xiaojie Pan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Boonkar Yap
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
| | - Ruidong Xia
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
41
|
Almodôvar VAS, Tomé AC. A Convenient Synthesis of Diketopyrrolopyrrole Dyes. Molecules 2021; 26:4758. [PMID: 34443350 PMCID: PMC8401603 DOI: 10.3390/molecules26164758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Diketopyrrolo[3,4-c]pyrroles (DPP) are high-performance organic optoelectronic materials. They have applications in solar cells, fluorescent probes, bioimaging, photodynamic/photothermal therapy, and in many other areas. This article reports a convenient two-step synthesis of various DPP dyes from Pigment Red 254, an inexpensive commercial pigment. The synthesis includes a Suzuki-Miyaura cross-coupling reaction of a bis(4-chlorophenyl)DPP derivative with aryl and hetaryl boronic acids under mild reaction conditions. The new dyes show large Stokes shifts and high fluorescence quantum yields, important features for their potential use in technical and biological applications.
Collapse
Affiliation(s)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
42
|
Yang J, Jing J, Zhu Y. A Full-Spectrum Porphyrin-Fullerene D-A Supramolecular Photocatalyst with Giant Built-In Electric Field for Efficient Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101026. [PMID: 34240482 DOI: 10.1002/adma.202101026] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/13/2023]
Abstract
A full-spectrum (300-850 nm) responsive donor-acceptor (D-A) supramolecular photocatalyst tetraphenylporphinesulfonate/fullerene (TPPS/C60 ) is successfully constructed. The theoretical spectral efficiency of TPPS/C60 is as high as 70%, offering the possibility of full-solar-spectrum light harvesting. The TPPS/C60 performs a highly efficient photocatalytic H2 evolution rate of 276.55 µmol h-1 (34.57 mmol g-1 h-1 ), surpassing many reported organic photocatalysts. The D-A structure effectively promotes electron transfer from TPPS to C60 , which is beneficial to the photocatalytic reaction. Specifically, a giant internal electric field in the D-A structure is built via the enhanced molecular dipole, which dramatically promotes the charge separation (CS) efficiency by 2.35 times. Transient absorption spectra results show a long-lived CS state TPPS•+ -C60 •- in the D-A structure, which effectively promotes participation of photogenerated electrons in the reduction reaction. Briefly, this work provides a novel approach for designing high-performance photocatalytic materials via enhancing the interfacial electric field.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianfang Jing
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
43
|
Im C, Kang SW, Choi JY, An J. Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems. Polymers (Basel) 2021; 13:1770. [PMID: 34071335 PMCID: PMC8199303 DOI: 10.3390/polym13111770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Non-fullerene type acceptors (NFA) have gained attention owing to their spectral extension that enables efficient solar energy capturing. For instance, the solely NFA-mediated absorbing region contributes to the photovoltaic power conversion efficiency (PCE) as high as ~30%, in the case of the solar cells comprised of fluorinated materials, PBDB-T-2F and ITIC-4F. This implies that NFAs must be able to serve as electron donors, even though they are conventionally assigned as electron acceptors. Therefore, the pathways of NFA-originated excitons need to be explored by the spectrally resolved photovoltaic characters. Additionally, excitation wavelength dependent transient absorption spectroscopy (TAS) was performed to trace the nature of the NFA-originated excitons and polymeric donor-originated excitons separately. Unique origin-dependent decay behaviors of the blend system were found by successive comparing of those solutions and pristine films which showed a dramatic change upon film formation. With the obtained experimental results, including TAS, a possible model describing origin-dependent decay pathways was suggested in the framework of reaction kinetics. Finally, numerical simulations based on the suggested model were performed to verify the feasibility, achieving reasonable correlation with experimental observables. The results should provide deeper insights in to renewable energy strategies by using novel material classes that are compatible with flexible electronics.
Collapse
Affiliation(s)
- Chan Im
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (S.-W.K.); (J.-Y.C.); (J.A.)
| | | | | | | |
Collapse
|
44
|
Xu Y, Ji Q, Yin L, Zhang N, Liu T, Li N, He X, Wen G, Zhang W, Yu L, Murto P, Xu X. Synergistic Engineering of Substituents and Backbones on Donor Polymers: Toward Terpolymer Design of High-Performance Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23993-24004. [PMID: 33974390 DOI: 10.1021/acsami.1c03794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Design of terpolymers via copolymerization has emerged as a potential strategy for expanding the family of high-performing donor polymers and boosting the photovoltaic performance of non-fullerene polymer solar cells (PSCs). Herein, double-ester-substituted thiophenes and thienothiophenes are incorporated as third building blocks into the donor polymer PBDB-TF, developing two groups of terpolymers with donor-acceptor 1-donor-acceptor 2 (D-A1-D-A2)-type backbones. An optimum 10% concentration of double-ester-substituted thiophene units in PBDB-TF-T10 downshifts the molecular energy and increases the dielectric constant, and delivers proper miscibility and nanostructure in blends with the high-performing acceptor Y6. These characteristics are designed to synergistically enhance the photovoltage, photocurrent, and efficiency of PSCs. The resulting power conversion efficiency (PCE) of 16.4% surpasses the conventional PBDB-TF/Y6 PSCs, and it is among the best-performing PSCs based on PBDB-TF-derived terpolymers. Gratifyingly, PBDB-TF-T10 does not show significant batch-to-batch variation and it retains high PCEs above 16% in a broad range of molecular weights. This work introduces a facile strategy to easily synthesize terpolymers in combination with Y6 for the attainment of high-performing and reproducible non-fullerene PSCs.
Collapse
Affiliation(s)
- Yunxiang Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qing Ji
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Luqi Yin
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Zhang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Liu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaochuan He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liyang Yu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Petri Murto
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
45
|
Han YW, Lee HS, Moon DK. Printable and Semitransparent Nonfullerene Organic Solar Modules over 30 cm 2 Introducing an Energy-Level Controllable Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19085-19098. [PMID: 33784450 DOI: 10.1021/acsami.1c01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the commercialization of organic solar cells (OSCs), the fabrication of large-area modules via a solution process is important. The fabrication of OSCs via a solution process using a nonfullerene acceptor (NFA)-based photoactive layer is limited by the energetic mismatch and carrier recombination, reducing built-in potential and effective carriers. Herein, for the fabrication of high-performance NFA-based large-area OSCs and modules via a solution process, hybrid hole transport layers (h-HTLs) incorporating WO3 and MoO3 are developed. The high bond energies and electronegativities of W and Mo atoms afford changes in the electronic properties of the h-HTLs, which can allow easy control of the energy levels. The h-HTLs show matching energy levels that are suitable for both deep and low-lying highest occupied molecular orbital energy level systems with a stoichiometrically small amount of oxygen vacancies (forming W6+ and Mo6+ from the W5+ and Mo5+), affording high conductivity and good film forming properties. With the NFA-based photoactive layer, a large-area module fabricated via the all-printing process with an active area over 30 cm2 and a high power conversion efficiency (PCE) of 8.1% is obtained. Furthermore, with the h-HTL, the fabricated semitransparent module exhibits 7.2% of PCE and 22.3% of average visible transmittance with high transparency, indicating applicable various industrial potentials.
Collapse
Affiliation(s)
- Yong Woon Han
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- The Academy of Applied Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyoung Seok Lee
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials Lab. (NIMs Lab.), Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
46
|
Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11117-11124. [PMID: 33635064 DOI: 10.1021/acsami.0c22014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.
Collapse
Affiliation(s)
- Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yufei Wang
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanshan Du
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yangjun Xia
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
47
|
Keshtov ML, Kuklin SA, Khokhlov AR, Peregudov AS, Chen FC, Xie Z, Sharma GD. Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two non‐fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. NANO SELECT 2021. [DOI: 10.1002/nano.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mukhamed L. Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Sergei. A. Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Alexei R. Khokhlov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Aleksander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Fang C. Chen
- Department of Photonics College of Electrical and Computer Engineering National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Hsinchu Taiwan
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P.R. China
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute of Information Technology Jamdoli Jaipur Rajasthan 302031 India
| |
Collapse
|
48
|
Bibi S, Khan M, ur‐Rehman S, Yaseen M, Muhammad S, Nadeem R, Jahan N, Noreen S, Misbah. Investigation analysis of optoelectronic and structural properties of cis‐ and trans‐structures of azo dyes: density functional theory study. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shamsa Bibi
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Mehwish Khan
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Shafiq ur‐Rehman
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Muhammad Yaseen
- Department of Physics University of Agriculture Faisalabad Faisalabad Pakistan
| | - Shabbir Muhammad
- Department of Physics, College of Science King Khalid University Abha 61413 Saudi Arabia
| | - Raziya Nadeem
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Nazish Jahan
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Saima Noreen
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| | - Misbah
- Department of Chemistry University of Agriculture Faisalabad Faisalabad Pakistan
| |
Collapse
|
49
|
Meng T, Lei P, Zeng Q. Progress in the self-assembly of porphyrin derivatives on surfaces: STM reveals. NEW J CHEM 2021. [DOI: 10.1039/d1nj03111b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The latest progress in the assembly of porphyrin derivatives on solid surfaces.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Ko D, Gu B, Ma Y, Jo S, Hyun DC, Kim CS, Oh HJ, Kim J. Characterization of optical manipulation using microlens arrays depending on the materials and sizes in organic photovoltaics. RSC Adv 2021; 11:9766-9774. [PMID: 35423478 PMCID: PMC8695480 DOI: 10.1039/d0ra09262b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Various physical structures have improved light-harvesting and power-conversion efficiency in organic photovoltaic devices, and optical simulations have supported the improvement of device characteristics. Herein, we experimentally investigated how microlens arrays manipulate light propagation in microlens films and material stacks for organic photovoltaics to understand the influence of the constituent materials and sizes of the microlens. As materials to fabricate a microlens array, poly(dimethylsiloxane) and Norland Optical Adhesive 63 were adopted. The poly(dimethylsiloxane) microlens array exhibited higher total transmittance and higher diffuse transmittance, further enhancing the effective optical path and light extinction in material stacks for organic photovoltaics. This resulted in more current generation in an organic photovoltaic device with a poly(dimethylsiloxane) microlens array than in a Norland Optical Adhesive 63 microlens array. The sizes of the microlenses were controlled from 0.5 to 10 μm. The optical characteristics of microlens array films and material stacks with microlenses generally increased with size of the microlens, leading to a 10.6% and 16.0% improvement in the light extinction and power-conversion efficiency, respectively. In addition, electron and current generation in material stacks for organic photovoltaics were calculated from light extinction. The theoretical current generation matched well with experimental values derived from organic photovoltaic devices. Thus, the optical characterization of physical structures helps to predict how much more current can be generated in organic photovoltaic cells with a certain physical structure; it can also be used for screening the physical structures of organic photovoltaic cells. The influence of constituent materials and sizes of a microlens was experimentally and theoretically explored.![]()
Collapse
Affiliation(s)
- Dongwook Ko
- Department of Materials Science and Engineering
- Kumoh National Institute of Technology
- Gumi 39177
- Republic of Korea
| | - Bongjun Gu
- Department of Materials Science and Engineering
- Kumoh National Institute of Technology
- Gumi 39177
- Republic of Korea
| | - Yoohan Ma
- Department of Materials Science and Engineering
- Kumoh National Institute of Technology
- Gumi 39177
- Republic of Korea
- Department of Energy Engineering Convergence
| | - Sungjin Jo
- School of Architectural, Civil, Environmental, and Energy Engineering
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Dong Choon Hyun
- Department of Polymer Science and Engineering
- Kyungpook National University
- Daegu 41566
- Republic of Korea
| | - Chang Su Kim
- Department of Advanced Functional Thin Films
- Korea Institute of Materials Science (KIMS)
- Changwon 51508
- Republic of Korea
| | - Hyeon-Ju Oh
- Advanced Materials Research Center
- Kumoh National Institute of Technology
- Gumi 39177
- Republic of Korea
| | - Jongbok Kim
- Department of Materials Science and Engineering
- Kumoh National Institute of Technology
- Gumi 39177
- Republic of Korea
- Department of Energy Engineering Convergence
| |
Collapse
|