1
|
Zhou H, He J, Gao S, Cao X, Li C, Zhang Q, Gao J, Yao Y, Zhai C, Hu Z, Zhu H, Kang R. Critical Perspectives on the Design of Polymeric Materials for Mitigating Thermal Runaway in Lithium-Ion Batteries. Polymers (Basel) 2025; 17:1227. [PMID: 40363011 PMCID: PMC12074265 DOI: 10.3390/polym17091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
During the global energy transition, electric vehicles and electrochemical energy storage systems are rapidly gaining popularity, leading to a strong demand for lithium battery technology with high energy density and long lifespan. This technological advancement, however, hinges critically on resolving safety challenges posed by intrinsically reactive components particularly flammable polymeric separators, organic electrolyte systems, and high-capacity electrodes, which collectively elevate risks of thermal runaway (TR) under operational conditions. The strategic integration of smart polymeric materials that enable early detection of TR precursors (e.g., gas evolution, thermal spikes, voltage anomalies) and autonomously interrupt TR propagation chains has emerged as a vital paradigm for next-generation battery safety engineering. This paper begins with the development characteristics of thermal runaway in lithium batteries and analyzes recent breakthroughs in polymer-centric component design, multi-parameter sensing polymers, and TR propagation barriers. The discussion extends to intelligent material systems for emerging battery chemistries (e.g., solid-state, lithium-metal) and extreme operational environments, proposing design frameworks that leverage polymer multifunctionality for hierarchical safety mechanisms. These insights establish foundational principles for developing polymer-integrated lithium batteries that harmonize high energy density with intrinsic safety, addressing critical needs in sustainable energy infrastructure.
Collapse
Affiliation(s)
- Hangyu Zhou
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China
| | - Jianhong He
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Shang Gao
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Xuan Cao
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Chenghui Li
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
| | - Qing Zhang
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
| | - Jialiang Gao
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Yongzheng Yao
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Chuanwei Zhai
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China
| | - Zhongchun Hu
- China Academy of Safety Science and Technology, Beijing 100012, China; (S.G.); (X.C.); (Q.Z.); (Y.Y.); (Z.H.)
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China
| | - Hongqing Zhu
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
| | - Rongxue Kang
- National Academy of Safety Science and Engineering, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China; (C.L.); (J.G.); (C.Z.)
- Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management of the People’s Republic of China, Beijing 100012, China
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China; (J.H.); (H.Z.)
- National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China
| |
Collapse
|
2
|
Lin G, Meng T, Peng Y, Li P, Hu X. Janus-Architectured Lithium Replenishment Separators Boosting Longevity of Anode-Free Lithium Metal Batteries. SMALL METHODS 2025; 9:e2401133. [PMID: 39410719 DOI: 10.1002/smtd.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/05/2024] [Indexed: 03/22/2025]
Abstract
Addressing the issue of inactive dead lithium deposition on the anode side remains a significant challenge for anode-free lithium metal batteries. While lithium compensation techniques can mitigate lithium depletion, directly introducing lithium compounds into the cathode material may degrade the electrode structure. Here the design and fabrication of a novel lithium replenishment separator (LRS) using a lithium compensation agent of Li2C4O4 is reported. The electrospun LRS demonstrates excellent ionic conductivity of 1.82 mS cm-1 and a high Li+ transference number of 0.51. Such a functionalized LRS not only provides additional active lithium for anode-free lithium metal batteries but also promotes uniform deposition of lithium metal. Compared with conventional polyolefin-based separators, the LRS effectively boosts LiFePO4||Cu anode-free batteries with enhanced cyclability. These results suggest this LRS strategy can find promising applications in next-generation anode-free batteries with high energy densities.
Collapse
Affiliation(s)
- Guoru Lin
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Meng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yitong Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pingan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Tsang ACH, Wong MYL, Tsang CW, Suen DWS, Lu XY. Development of AlN-loaded PET separators from waste water bottle plastics with superior thermal characteristics for next-generation lithium-ion batteries. RSC Adv 2025; 15:5452-5461. [PMID: 40012829 PMCID: PMC11863307 DOI: 10.1039/d4ra06478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Preventing short circuit hazard due to lithium (Li) dendrite formation across a separator from the anode of a lithium-ion battery (LIB) throughout operation is important; however, conventional separator materials cannot fulfil the increasing safety standards of next-generation LIBs. Thus, developing separator materials with high Li dendrite suppression ability in order to prevent short circuit is of paramount importance for realising next-generation LIBs. In this study, aluminum nitride-loaded polyethylene terephthalate (PET/AlN) composites with micro-/nanoarchitecture were synthesized using PET that was recycled from commercial waste bottles via an electrospinning strategy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) suggested that AlN nanoparticles were encapsulated in PET micro-/nanoarchitecture fibres. Thermogravimetric analysis indicated that the AlN content in the composite materials was about 4-5 wt%. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy confirmed the PET polymer structure of PET/AlN composites. The PET/AlN 4 wt% separator exhibited a porosity of 69.23%, according to the n-butanol uptake test, and a high electrolyte uptake of 521.69%. Most importantly, electrochemical results revealed that when evaluated at a current density of 0.5C, PET/AlN 4 wt% composites could deliver a reversible specific capacity of 238.2 mA h g-1 after 100 cycles. When C-rate capability tests were conducted at high charge-discharge densities of 0.2, 0.5, 1, 2, and 4C, the PET/AlN 4 wt% composite manifested average specific capacities of about 225.3, 218.4, 191.0, 127.5, and 28.1 mA h g-1, respectively. The excellent electrochemical performance of the PET/AlN 4 wt% composite could probably be attributed to the combined benefits of AlN nanoparticles and the micro-/nanoarchitecture. These unique features of PET/AlN were advantageous for effective Li ion transport in repeated charge-discharge cycles and strong hydrothermal stability, thereby resulting in safety, high capacity and excellent C-rate performance. Overall, this study demonstrated the excellent electrochemical performance of PET/AlN composites as stable separator materials for advanced LIBs.
Collapse
Affiliation(s)
- Alpha Chi Him Tsang
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Marco Yu Lam Wong
- Department of Civil and Environmental Engineering, School of Engineering, The Hong Kong University of Science and Technology Hong Kong
| | - Chi-Wing Tsang
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Dawson Wai-Shun Suen
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| | - Xiao-Ying Lu
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong Hong Kong +852 2176 1453
| |
Collapse
|
4
|
Parvizi P, Jalilian M, Amidi AM, Zangeneh MR, Riba JR. From Present Innovations to Future Potential: The Promising Journey of Lithium-Ion Batteries. MICROMACHINES 2025; 16:194. [PMID: 40047670 PMCID: PMC11857847 DOI: 10.3390/mi16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 03/09/2025]
Abstract
Lithium-ion batteries (LIBs) have become integral to modern technology, powering portable electronics, electric vehicles, and renewable energy storage systems. This document explores the complexities and advancements in LIB technology, highlighting the fundamental components such as anodes, cathodes, electrolytes, and separators. It delves into the critical interplay of these components in determining battery performance, including energy density, cycling stability, and safety. Moreover, the document addresses the significant sustainability challenges posed by the widespread adoption of LIBs, focusing on resource depletion and environmental impact. Various recycling practices, including hydrometallurgy, pyrometallurgy, and direct recycling, are evaluated for their efficiency in metal recovery and ecological footprint. The advancements in recycling technologies aim to mitigate the adverse effects of LIB waste, emphasizing the need for sustainable and scalable solutions. The research underscores the importance of ongoing innovation in electrode materials and recycling methodologies, reminding us of our responsibility and commitment to finding and implementing these solutions, as this continuous improvement is crucial to enhance the performance, safety, and sustainability of LIBs, ensuring their continued relevance in the evolving energy storage landscape.
Collapse
Affiliation(s)
- Pooya Parvizi
- Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad 4431668151, Iran;
- Pooya Power Knowledge Enterprise, Tehran 1466993771, Iran; (A.M.A.); (M.R.Z.)
| | - Alireza Mohammadi Amidi
- Pooya Power Knowledge Enterprise, Tehran 1466993771, Iran; (A.M.A.); (M.R.Z.)
- Department of Electrical Engineering, Faculty of Science, Razi University, Kermanshah 6714414971, Iran
| | | | - Jordi-Roger Riba
- Department of Electrical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| |
Collapse
|
5
|
Yang P, Qiang J, Chen J, Zhang Z, Xu M, Fei L. A Versatile Metal-Organic-Framework Pillared Interlayer Design for High-Capacity and Long-Life Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2025; 64:e202414770. [PMID: 39355946 DOI: 10.1002/anie.202414770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at a lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues impeding their practical applications are the sluggish kinetics and the parasitic shuttling reactions of sulfur and polysulfides. Here, pillaring the multilayer graphene membrane with a metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling these issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides, and vastly affording the lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g-1 at 0.1 C) and longevity (average capacity decay of 0.034 % per cycle in 2000 cycles) for lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi0.91Mn0.03Co0.06O2)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of "gap-filling" materials in fabricating multi-functional separators, bringing forward the pillared interlayer structure for energy-storage applications.
Collapse
Affiliation(s)
- Peng Yang
- School of Physics and Materials Science, Nanchang University, 330031, Nanchang, Jiangxi, P. R. China
| | - Jun Qiang
- School of Mechanical Engineering, Ningxia University, 750021, Yinchuan, Ningxia, P. R. China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University, 330031, Nanchang, Jiangxi, P. R. China
| | - Zhouyang Zhang
- School of Materials and New Energy, Ningxia University, 750021, Yinchuan, Ningxia, P. R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, 710049, Xi'an, Shannxi, P. R. China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University, 330031, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
6
|
Zhang T, Yu J, Guo H, Qi J, Che M, Hou M, Jiao P, Zhang Z, Yan Z, Zhou L, Zhang K, Chen J. Sapiential battery systems: beyond traditional electrochemical energy. Chem Soc Rev 2024; 53:12043-12097. [PMID: 39526975 DOI: 10.1039/d4cs00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
As indispensable energy-storage technology in modern society, batteries play a crucial role in diverse fields of 3C products, electric vehicles, and electrochemical energy storage. However, with the growing demand for future electrochemical energy devices, lithium-ion batteries as an existing advanced battery system face a series of significant challenges, such as time-consuming manual material screening, safety concerns, performance degradation, non-access in the off-grid state, poor environmental adaptability, and pollution from waste batteries. Accordingly, incorporating the characteristics of sapiential life into batteries to construct sapiential systems is one of the most engaging tactics to tackle the above issues. In this review, we introduce the concept of sapiential battery systems and provide a comprehensive overview of their core sapiential features, including materials genomics, non-destructive testing, self-healing, self-sustaining capabilities, temperature adaptation, and degradability, which endow batteries with higher performance and more functions. Moreover, the possible future research directions on sapiential battery systems are deeply discussed. This review aims to offer insights for designing beyond traditional electrochemical energy, meeting broader application scenarios such as ultra-long-endurance electric vehicles, wide-temperature energy storage, space exploration, and wearable electronic devices.
Collapse
Affiliation(s)
- Tongrui Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Jiangtao Yu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Haoyang Guo
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Jianing Qi
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Meihong Che
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Machuan Hou
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Peixin Jiao
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Ziheng Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kai Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, 300071 Tianjin, P. R. China.
| |
Collapse
|
7
|
Wen B, Tian L, Wei D, Chen Y, Ma Y, Zhao Y, Zhang K, Li Z. The cores regulation of paraffin-chitosan phase change microcapsules for constant temperature building. J Colloid Interface Sci 2024; 672:338-349. [PMID: 38850861 DOI: 10.1016/j.jcis.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Phase change materials (PCMs) can store and release latent heat under the designed phased change temperature and have received substantial interest for energy conservation and thermal control purposes. The use of PCMs in the construction of constant temperature buildings can improve the comfortable environment and save more energy. However, the leakage of PCMs during phase change process limits the application of PCMs. In this paper, a series of PCMs microcapsules with controllable core numbers is synthesized with paraffin (37 ℃) as the core and cross-linked chitosan as the wall. The single-core phase-change microcapsules (S-PCM) and multicore phase-change microcapsules (M-PCM) were prepared by adjusting the preparation condition. The latent heat of S-PCM and M-PCM are 61.4 mJ mg-1 and 50.1 mJ mg-1, respectively. The S-PCM and M-PCM display good stability without paraffin leakage. In addition, the composite blocks of gypsum and S-PCM (GSCM) and M-PCM (GMCM) were prepared and the thermoregulatory effection was investigated, where the surface temperature of GSCM was 5-10 ℃ lower than that of pure gypsum block. PCMs may also have broad application space in electronics, cold chain, and other industries.
Collapse
Affiliation(s)
- Biao Wen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linghao Tian
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dongyun Wei
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanli Chen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yuchun Ma
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Kai Zhang
- Tangshan Research Institute of BIT, Beijing Institute of Technology, Hebei 063611, China.
| | - Zhaoqiang Li
- Suzhou Techinno New Materials Technologies Co., Ltd., Jiangsu 215500, China.
| |
Collapse
|
8
|
Song IT, Kang J, Koh J, Choi H, Yang H, Park E, Lee J, Cho W, Lee YM, Lee S, Kim N, Lee M, Kim K. Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries. Nat Commun 2024; 15:8294. [PMID: 39333098 PMCID: PMC11437208 DOI: 10.1038/s41467-024-52766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Integrating safety features to cut off excessive current during accidental internal short circuits in Li-ion batteries (LIBs) can reduce the risk of thermal runaway. However, making this concept practical requires overcoming challenges in both material development and scalable manufacturing. Here, we demonstrate the roll-to-roll production of a safety reinforced layer (SRL) on current collectors at a rate of 5 km per day. The SRL, made of molecularly engineered polythiophene (PTh) and carbon additives, interrupts current flow during voltage drops or overheating without adversely affecting battery performance. Impact testing on 3.4-Ah pouch cells shows that the SRL reduces battery explosions from 63% to 10%. This work underscores the potential of integrating material science with manufacturing technology to enhance battery safety.
Collapse
Affiliation(s)
- In Taek Song
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Joonkoo Kang
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Jongkwan Koh
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Hyunju Choi
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Heemyeong Yang
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Eunkyung Park
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Jina Lee
- Department of Battery Engineering, Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woohyung Cho
- Battery R&D Center, LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Yu-Mi Lee
- Battery R&D Center, LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Seokkyeong Lee
- Battery R&D Center, LG Energy Solution, 188 Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Noma Kim
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Minah Lee
- Department of Battery Engineering, Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Kihwan Kim
- Platform Technology Research Center, LG Chem, 30 Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea.
| |
Collapse
|
9
|
Nguyen TKL, Pham-Truong TN. Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications. Polymers (Basel) 2024; 16:2506. [PMID: 39274140 PMCID: PMC11398039 DOI: 10.3390/polym16172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors.
Collapse
Affiliation(s)
- Thi Khanh Ly Nguyen
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| | - Thuan-Nguyen Pham-Truong
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| |
Collapse
|
10
|
Gao Y, Liu QS, Long MC, Zhu GR, Wu G, Wang XL, Wang YZ. Nano-Interfacial Supramolecular Adhesion of Metal-Organic Framework-Based Separator Enables High-Safety and Wide-Temperature-Range Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400980. [PMID: 38545991 DOI: 10.1002/smll.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Indexed: 08/17/2024]
Abstract
Polyolefin separators are the most commonly used separators for lithium batteries; however, they tend to shrink when heated, and their Li+ transference number (t Li +) is low. Metal-organic frameworks (MOFs) are expected to solve the above problems due to their high thermal stability, abundant pore structure, and open metal sites. However, it is difficult to prepare high-porosity MOF-based membranes by conventional membrane preparation methods. In this study, a high-porosity free-standing MOF-based safety separator, denoted the BCM separator, is prepared through a nano-interfacial supramolecular adhesion strategy. The BCM separator has a large specific surface area (450.22 m2 g-1) and porosity (62.0%), a high electrolyte uptake (475 wt%), and can maintain its morphology at 200 °C. The ionic conductivity and t Li + of the BCM separator are 1.97 and 0.72 mS cm-1, respectively. Li//LiFePO4 cells with BCM separators have a capacity retention rate of 95.07% after 1100 cycles at 5 C, a stable high-temperature cycling performance of 300 cycles at 80 °C, and good capacity retention at -40 °C. Li//NCM811 cells with BCM separators exhibit significantly improved rate performance and cycling performance. Pouch cells with BCM separators can work at 120 °C and have good safety at high temperature.
Collapse
Affiliation(s)
- You Gao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qing-Song Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Man-Cheng Long
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Guo-Rui Zhu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
11
|
Aftab W, Shi J, Jin Y, Usman A, Qin M, Ashraf Z, Shen Z, Zhong R, Zou R. Phase Engineered Composite Phase Change Materials for Thermal Energy Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312134. [PMID: 38618938 DOI: 10.1002/smll.202312134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 °C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications.
Collapse
Affiliation(s)
- Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jinming Shi
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yongkang Jin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Mulin Qin
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zubair Ashraf
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenghui Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Song C, Luo J, Gao C, Peng Q, Gibril ME, Fatehi P, Liu Z, Wang S, Kong F. Halloysite nanotubes enhanced polyimide/oxidized-lignin nanofiber separators for long-cycling lithium metal batteries. Int J Biol Macromol 2024; 273:132640. [PMID: 38825280 DOI: 10.1016/j.ijbiomac.2024.132640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
The high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport. This work presents the preparation of a new bio-based nanofiber separator by combining oxidized lignin (OL) and halloysite nanotubes (HNTs) with polyimide (PI) using an electrospinning technique. Analysis was conducted to examine and compare the structure, morphology, thermal characteristics, and EIS of the separator with those of commercially available polypropylene separator (PP). The results indicate that the PI@OL and PI-OL@ 10 % HNTs separators exhibit higher lithium ion transference number and ionic conductivity. Moreover, the use of HNTs successfully impeded the proliferation of lithium dendrites, hence exerting a beneficial impact on both the cycle performance and multiplier performance of the battery. Consequently, after undergoing 300 iterations, the battery capacity of LiFePO4|PI-OL@ 10 % HNTs|Li stays at 92.1 %, surpassing that of PP (86.8 %) and PI@OL (89.6 %). These findings indicate that this new bio-based battery separator (PI-OL@HNTs) has the great potential to serve as a substitute for the commonly used PP separator in lithium metal batteries.
Collapse
Affiliation(s)
- Changyong Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qinggang Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Magdi E Gibril
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pedram Fatehi
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Zhongming Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
13
|
Liu S, Fan B, Shi Z, Wan R, Sheng X, Li X, Zhu C, Chen M, Xue Z, Ding Y, Lu X, Qu J. High-Safety Lithium-Ion Battery Separator with Adjustable Temperature Function Inspired by the Sugar Gourd Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30284-30295. [PMID: 38812067 DOI: 10.1021/acsami.4c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
As the power core of an electric vehicle, the performance of lithium-ion batteries (LIBs) is directly related to the vehicle quality and driving range. However, the charge-discharge performance and cycling performance are affected by the temperature. Excessive temperature can cause internal short circuits and even lead to safety issues, such as thermal runaway. The separator plays a crucial role in protecting the battery from regular operation, preventing direct touch between the cathode and the anode while allowing the transport of lithium ions. In this study, we have designed a thermoregulating separator in the shape of calabash, which uses melamine-encapsulated paraffin phase change material (PCM) with a wide enthalpy (0-168.52 J g-1) to dissipate the heat generated inside the battery promptly. Under extra-long-use conditions, the heat emitted by the battery is absorbed by the PCM without causing a significant temperature rise that triggers thermal runaway. The PCM separator can effectively suppress the temperature increase caused by battery penetration. Due to the unique structure of the PCM, the battery is short-circuited; it can significantly delay the internal temperature rise of the battery and quickly dissipate the heat, which is consistent with the characteristics of natural calabash in nutrient absorption and water diffusion, improving the melting and heat storage efficiency of the PCM. The design of the phase change separator provides an effective reference for overheat protection and improved safety in lithium-ion batteries.
Collapse
Affiliation(s)
- Shilong Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Bin Fan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhen Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Rendian Wan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinxin Sheng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology Guangzhou 510006, P. R. China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Chuanbiao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Mengni Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yang Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Xiang Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Lin Y, Li P, Liu W, Chen J, Liu X, Jiang P, Huang X. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites. ACS NANO 2024; 18:3851-3870. [PMID: 38266182 DOI: 10.1021/acsnano.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Polymer nanocomposites combine the merits of polymer matrices and the unusual effects of nanoscale reinforcements and have been recognized as important members of the material family. Being a fundamental material property, thermal conductivity directly affects the molding and processing of materials as well as the design and performance of devices and systems. Polymer nanocomposites have been used in numerous industrial fields; thus, high demands are placed on the thermal conductivity feature of polymer nanocomposites. In this Perspective, we first provide roadmaps for the development of polymer nanocomposites with isotropic, in-plane, and through-plane high thermal conductivities, demonstrating the great effect of nanoscale reinforcements on thermal conductivity enhancement of polymer nanocomposites. Then the significance of the thermal conductivity of polymer nanocomposites in different application fields, including wearable electronics, thermal interface materials, battery thermal management, dielectric capacitors, electrical equipment, solar thermal energy storage, biomedical applications, carbon dioxide capture, and radiative cooling, are highlighted. In future research, we should continue to focus on methods that can further improve the thermal conductivity of polymer nanocomposites. On the other hand, we should pay more attention to the synergistic improvement of the thermal conductivity and other properties of polymer nanocomposites. Emerging polymer nanocomposites with high thermal conductivity should be based on application-oriented research.
Collapse
Affiliation(s)
- Ying Lin
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenjie Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jie Chen
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyu Liu
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Pingkai Jiang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
15
|
Guo H, Niu T, Yu J, Wang X, Si Y. Phase-Tailoring W x V 1-x O 2 Meta-Nanofiber Enables Temperature-Editing Energy Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306170. [PMID: 37759416 DOI: 10.1002/smll.202306170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Room-temperature phase change materials (RTPCMs) exhibit promise to address challenges in thermal energy storage and release, greatly aiding in numerous domains of human existence and productivity. The conventional RTPCMs undergo inevitable volume expansion, structural collapse, and diffusion of active ingredients while maintaining desirable phase change enthalpy and ideal phase change temperature. Here, a sol-gel 1D-induced growth approach is presented to fabricate meta nanofibers (Meta-NFs) comprised of vanadium dioxide with monoclinic crystal structure, and further achieve the editable phase change temperature from 68 to 37 °C through W-doping, which allowed for tailored length variation of the zigzag V-V bond. Subsequently, Meta-NFs are assembled into 3D aerogels with self-standing architecture, thereby enabling the independent use of the RTPCMs. The obtained metamaterials demonstrate not only the temperature-editing solid-solid phase transition, but also the stiffness of the ceramic matrix, exhibiting the thermal energy control capability at room temperature (37 °C), thermal insulation properties, temperature resistance, and flame retardancy. The effective creation of these fascinating metamaterials might offer new insights for next-generation and self-standing solid-solid RTPCMs.
Collapse
Affiliation(s)
- Hongyu Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Tianye Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xueli Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
16
|
Ling W, Nie C, Wu X, Zeng XX, Mo F, Ma Q, Lu Z, Luo G, Huang Y. Ion Sieve Interface Assisted Zinc Anode with High Zinc Utilization and Ultralong Cycle Life for 61 Wh/kg Mild Aqueous Pouch Battery. ACS NANO 2024. [PMID: 38294411 DOI: 10.1021/acsnano.3c11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed in situ on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm-2. Matched with high-load self-supported vanadium-based cathodes (18-20 mg cm-2), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm-2. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg-1, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.
Collapse
Affiliation(s)
- Wei Ling
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Chenxi Nie
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xiongwei Wu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Xian-Xiang Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Qiang Ma
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, People's Republic of China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yan Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
17
|
Cheng M, Yuan Y, Jing H, Hu J, Liu Q, Wei T, Wang R, Li W, Liu B. Eco-friendly synthesis of chemically cross-linked chitosan/cellulose nanocrystal/CMK-3 aerogel based shape-stable phase change material with enhanced energy conversion and storage. Carbohydr Polym 2024; 324:121514. [PMID: 37985052 DOI: 10.1016/j.carbpol.2023.121514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Phase change materials (PCMs) have attracted numerous attention owing to their high energy storage density, cost-effective and operationally simple, however, the "solid-liquid" leakage and limited solar absorbance seriously hinder their widespread applications. Herein, an innovative chitosan/cellulose nanocrystal/CMK-3 (CS/CNC/CMK-3) aerogel based shape-stable PCM (SSPCM) was successfully synthesized, in which chemically cross-linked CS and CNC acted as three-dimensional supporting skeleton, CMK-3 endowed solar-to-thermal energy conversion ability and the impregnating polyethylene glycol (PEG) acted as the latent heat storage unit. The as-synthesized CS/CNC/CMK-3 aerogel/PEG (CCCA/PEG) showed ultrahigh melting/crystallization enthalpy of 178.5/171.1 J g-1 and excellent shape stability. The PEG was effectively embedded into the hierarchical porous architecture and the composite PCM could preserve its original shape without any leakage even compressed above the melting point of PEG. Meanwhile, the CCCA/PEG exhibited robust thermal reliability with an ultralow enthalpy fading rate of 0.030 ± 0.012 % per cycle over 100 thermal cycles. Intriguingly, the introduction of CMK-3 also significantly improved the solar-to-thermal energy conversion performance of CCCA/PEG, and a high solar-to-thermal conversion efficiency of 93.1 % could be realized. This work provided a potential strategy to design and synthesize high-performance sustainable SSPCM, which showed tremendous potential in the practical solar energy harvesting, conversion and storage applications.
Collapse
Affiliation(s)
- Miao Cheng
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China.
| | - Yifan Yuan
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Huaijia Jing
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Jing Hu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Qianqian Liu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Tao Wei
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Ruirui Wang
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Wanfei Li
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Bo Liu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China.
| |
Collapse
|
18
|
Wu J, Wu Y, Wang L, Ye H, Lu J, Li Y. Challenges and Advances in Rechargeable Batteries for Extreme-Condition Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308193. [PMID: 37847882 DOI: 10.1002/adma.202308193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Rechargeable batteries are widely used as power sources for portable electronics, electric vehicles and smart grids. Their practical performances are, however, largely undermined under extreme conditions, such as in high-altitude drones, ocean exploration and polar expedition. These extreme environmental conditions not only bring new challenges for batteries but also incur unique battery failure mechanisms. To fill in the gap, it is of great importance to understand the battery failure mechanisms under different extreme conditions and figure out the key parameters that limit battery performances. In this review, the authors start by investigating the key challenges from the viewpoints of ionic/charge transfer, material/interface evolution and electrolyte degradation under different extreme conditions. This is followed by different engineering approaches through electrode materials design, electrolyte modification and battery component optimization to enhance practical battery performances. Finally, a short perspective is provided about the future development of rechargeable batteries under extreme conditions.
Collapse
Affiliation(s)
- Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yunling Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hualin Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanguang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| |
Collapse
|
19
|
Zuo L, Ma Q, Xiao P, Guo Q, Xie W, Lu D, Yun X, Zheng C, Chen Y. Upgrading the Separators Integrated with Desolvation and Selective Deposition toward the Stable Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311529. [PMID: 38154114 DOI: 10.1002/adma.202311529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A practical and effective approach to improve the cycle stability of high-energy density lithium metal batteries (LMBs) is to selectively regulate the growth of the lithium anode. The design of desolvation and lithiophilic structure have proved to be significant means to regulate the lithium deposition process. Here, a fluorinated polymer lithiophilic separator (LS) loaded with a metal-organic framework (MOF801) is designed, which facilitates the rapid transfer of Li+ within the separator owing to the MOF801-anchored PF6 - from the electrolyte, Li deposition is confined in the plane resulting from the polymer fiber layer rich in lithiophilic groups (C─F). The numerical simulation results confirm that LS induces a uniform electric field and Li+ concentration distribution. Visualization technology records the behavior of regular Li deposition in Li||Li and Li||Cu cells equipping LS. Therefore, LS exhibits an ultrahigh Li+ transference number (tLi + = 0.80) and a large exchange current density (j0 = 1.963 mA cm-2 ). LS guarantees the stable operation of Li||Li cells for over 1000 h. In addition, the LiNi0.8 Co0.1 Mn0.1 O2 ||Li cell equipped with LS exhibits superior rate and cycle performances owing to the formation of LiF-rich robust SEI layers. This study provides a way forward for dendrite-free Li anodes from the perspective of separator engineering.
Collapse
Affiliation(s)
- Lanlan Zuo
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Qiang Ma
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Materials Engineering, Henan University of Engineering, Zhengzhou, 450000, P. R. China
| | - Peitao Xiao
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Qingpeng Guo
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Wei Xie
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Di Lu
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Xiaoru Yun
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Chunman Zheng
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| | - Yufang Chen
- Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, P. R. China
| |
Collapse
|
20
|
Wang C, Geng X, Chen J, Wang H, Wei Z, Huang B, Liu W, Wu X, Hu L, Su G, Lei J, Liu Z, He X. Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2309723. [PMID: 38091525 DOI: 10.1002/adma.202309723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Solid-solid phase change materials (SSPCMs) are considered among the most promising candidates for thermal energy storage and management. However, the application of SSPCMs is consistently hindered by the canonical trade-off between high TES capacity and mechanical robustness. In addition, they suffer from poor recyclability due to chemical cross-linking. Herein, a straightforward but effective strategy for fabricating supramolecular SSPCMs with high latent heat and mechanical strength is proposed. The supramolecular polymer employs multiple H-bonding interactions as robust physical cross-links. This enables SSPCM with a high enthalpy of phase transition (142.5 J g-1 ), strong mechanical strength (36.9 MPa), and sound shape stability (maintaining shape integrity at 120 °C) even with a high content of phase change component (97 wt%). When SSPCM is utilized to regulate the operating temperature of lithium-ion batteries, it significantly diminishes the battery working temperature by 23 °C at a discharge rate of 3 C. The robust thermal management capability enabled through solid-solid phase change provides practical opportunities for applications in fast discharging and high-power batteries. Overall, this study presents a feasible strategy for designing linear SSPCMs with high latent heat and exceptional mechanical strength for thermal management.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Geng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Chen
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hailong Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengkai Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Bingxuan Huang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Linyu Hu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhimeng Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Yang ZY, Jin XZ, Chen SY, Lei YZ, Wang Y. Designing Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate/Graphene Oxide/Graphene Nanosheet/Polyethylene Glycol Phase-Change Composites with Superior Thermal Management for Photo-thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47111-47124. [PMID: 37768923 DOI: 10.1021/acsami.3c11161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Recently, growing interest in self-powered devices has led to the invention of new energy conversion devices. Photo-thermoelectric generators (PTEGs) have rapidly developed for their ability to harvest both light and thermal energy, but these devices are overly dependent on the continuity of energy input and cannot sustain output in an emergency situation. In the current study, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/graphene oxide (GO)/graphene nanosheets (GNPs)/polyethylene glycol (PEG) phase-change composites (PCCs) were prepared with freeze-drying and vacuum-filling processes to acquire materials suitable for imparting energy storage characteristics to PTEGs. The melting and crystallization enthalpies of the PCCs fabricated based on the PEDOT:PSS/GO/GNP aerogels can reach 211.5 and 207.6 J g-1, respectively, which increase by nearly 5% compared with pure PEG, and the growth rate of thermal conductivity of the composites is as high as 262.7% (1.12 W m-1 K-1). Meanwhile, the excellent photothermal properties and high-temperature shape stability that pure PEG does not possess can also be imparted to PCCs by the aerogels. The PTEG assembled with PCCs and thermoelectric components can achieve a continuous output of over 1500 s after 300 s of light irradiation. After integrating the output of the device during the lamp on/off period, it is found that the total output of the device during the light-off period (8.4 V and 9.6 mW) can far exceed its total output during the light-on period (2.7 V and 4.4 mW). This work provides guidance for modulating the performance of PCCs and giving PTEGs the ability to operate under emergency or extremely harsh conditions and the prepared PTEGs are highly promising for practical use.
Collapse
Affiliation(s)
- Zhen-Yu Yang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xin-Zheng Jin
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
22
|
Patel D, Wei W, Singh H, Xu K, Beck C, Wildy M, Schossig J, Hu X, Hyun DC, Chen W, Lu P. Efficient and Secure Encapsulation of a Natural Phase Change Material in Nanofibers Using Coaxial Electrospinning for Sustainable Thermal Energy Storage. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11570-11579. [PMID: 37564956 PMCID: PMC10411507 DOI: 10.1021/acssuschemeng.3c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Indexed: 08/12/2023]
Abstract
In this study, we present an ecofriendly technique for encapsulating lauric acid (LA), a natural phase change material, within polystyrene (PS) nanofibers through coaxial electrospinning. The resulting LAPS core-sheath nanofibers exhibited a melting enthalpy of up to 136.6 J/g, representing 75.8% of the heat storage capacity of pristine LA (180.2 J/g), a value surpassing all previously reported core-sheath fibers. Scanning electron microscopy revealed uniform LAPS nanofibers free of surface LA until the core LA feed rate reached 1.3 mL/h. As the core LA feed rate increased, the fiber diameter shrank from 2.24 ± 0.31 to 0.58 ± 0.45 μm. Infrared spectra demonstrated a proportional increase in the LA content with rising core LA injection rates. Thermogravimetric analysis found the maximum core LA content in core-sheath nanofibers to be 75.0%. Differential scanning calorimetry thermograms displayed a trend line shift upon LA leakage for LA1.3PS nanofibers. LAPS fibers containing 75.0% LA effectively maintained consistent cycling stability and reusability across 100 heating-cooling cycles (20-60 °C) without heat storage deterioration. The core LA remained securely within the PS sheath after 100 cycles, and the LAPS nanofibers retained an excellent structural integrity without rupture. The energy-dense and form-stable LAPS core-sheath nanofibers have great potential for various thermal energy storage applications, such as building insulation, smart textiles, and electronic cooling systems, providing efficient temperature regulation and energy conservation.
Collapse
Affiliation(s)
- Dev Patel
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Wanying Wei
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Harmann Singh
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kai Xu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christopher Beck
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Michael Wildy
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - John Schossig
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Xiao Hu
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Dong Choon Hyun
- Department
of Polymer Science and Engineering, Kyungpook
National University, Daegu 41566, South Korea
| | - Wenshuai Chen
- Key
Laboratory of Bio-based Material Science and Technology, Ministry
of Education, Northeast Forestry University, Harbin 150040, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
23
|
Zhang Y, Feng J, Qin J, Zhong YL, Zhang S, Wang H, Bell J, Guo Z, Song P. Pathways to Next-Generation Fire-Safe Alkali-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301056. [PMID: 37334882 PMCID: PMC10460903 DOI: 10.1002/advs.202301056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Indexed: 06/21/2023]
Abstract
High energy and power density alkali-ion (i.e., Li+ , Na+ , and K+ ) batteries (AIBs), especially lithium-ion batteries (LIBs), are being ubiquitously used for both large- and small-scale energy storage, and powering electric vehicles and electronics. However, the increasing LIB-triggered fires due to thermal runaways have continued to cause significant injuries and casualties as well as enormous economic losses. For this reason, to date, great efforts have been made to create reliable fire-safe AIBs through advanced materials design, thermal management, and fire safety characterization. In this review, the recent progress is highlighted in the battery design for better thermal stability and electrochemical performance, and state-of-the-art fire safety evaluation methods. The key challenges are also presented associated with the existing materials design, thermal management, and fire safety evaluation of AIBs. Future research opportunities are also proposed for the creation of next-generation fire-safe batteries to ensure their reliability in practical applications.
Collapse
Affiliation(s)
- Yubai Zhang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300QLDAustralia
| | - Jiabing Feng
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300QLDAustralia
| | - Jiadong Qin
- Queensland Micro Nanotechnology CentreSchool of Environment and ScienceGriffith UniversityNathan Campus4111QLDAustralia
| | - Yu Lin Zhong
- Queensland Micro Nanotechnology CentreSchool of Environment and ScienceGriffith UniversityNathan Campus4111QLDAustralia
| | - Shanqing Zhang
- Centre for Catalysis and Clean EnergySchool of Environment and ScienceGriffith UniversityGold Coast Campus4222QLDAustralia
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300QLDAustralia
| | - John Bell
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300QLDAustralia
| | - Zaiping Guo
- School of Chemical Engineering & Advanced MaterialsThe University of AdelaideAdelaide5005SAAustralia
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300QLDAustralia
- School of Agriculture and Environmental ScienceUniversity of Southern QueenslandSpringfield4300QLDAustralia
| |
Collapse
|
24
|
Yang Y, Chen Z, Lv T, Dong K, Liu Y, Qi Y, Cao S, Chen T. Ultrafast self-assembly of supramolecular hydrogels toward novel flame-retardant separator for safe lithium ion battery. J Colloid Interface Sci 2023; 649:591-600. [PMID: 37364459 DOI: 10.1016/j.jcis.2023.06.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/21/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Traditional polyolefin separators for lithium-ion batteries (LIBs) often experience limited thermal stability and intrinsic flammability, resulting in great safety risks during their usage. Therefore, it is highly important to develop novel flame-retardant separators for safe LIBs with high performance. In this work, we report a flame-retardant separator derived from boron nitride (BN) aerogel with a high BET surface area of 1127.3 m2 g-1. The aerogel was pyrolyzed from a melamine-boric acid (MBA) supramolecular hydrogel, which was self-assembled at an ultrafast speed. The in-situ evolution details of the nucleation-growth process of the supramolecules could be observed in real-time using a polarizing microscope under ambient conditions. The BN aerogel was further composited with bacterial cellulose (BC) to form a BN/BC composite aerogel with excellent flame-retardant performance, electrolyte-wetting ability and high mechanical property. By using the BN/BC composite aerogel as the separator, the developed LIBs exhibited high specific discharge capacity of 146.5 mAh g-1 and excellent cyclic performance, maintaining 500 cycles with a capacity degradation of only 0.012% per cycle. The high-performance flame-retardant BN/BC composite aerogel represents a promising candidate for separators not only in LIBs but also in other flexible electronics.
Collapse
Affiliation(s)
- Yunlong Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tian Lv
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Keyi Dong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunlong Qi
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
25
|
Atinafu DG, Yun BY, Kim YU, Kim S. Nanopolyhybrids: Materials, Engineering Designs, and Advances in Thermal Management. SMALL METHODS 2023; 7:e2201515. [PMID: 36855164 DOI: 10.1002/smtd.202201515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/10/2023] [Indexed: 06/09/2023]
Abstract
The fundamental requirements for thermal comfort along with the unbalanced growth in the energy demand and consumption worldwide have triggered the development and innovation of advanced materials for high thermal-management capabilities. However, continuous development remains a significant challenge in designing thermally robust materials for the efficient thermal management of industrial devices and manufacturing technologies. The notable achievements thus far in nanopolyhybrid design technologies include multiresponsive energy harvesting/conversion (e.g., light, magnetic, and electric), thermoregulation (including microclimate), energy saving in construction, as well as the miniaturization, integration, and intelligentization of electronic systems. These are achieved by integrating nanomaterials and polymers with desired engineering strategies. Herein, fundamental design approaches that consider diverse nanomaterials and the properties of nanopolyhybrids are introduced, and the emerging applications of hybrid composites such as personal and electronic thermal management and advanced medical applications are highlighted. Finally, current challenges and outlook for future trends and prospects are summarized to develop nanopolyhybrid materials.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
26
|
Lee H, Lee D. Composite Membrane Containing Titania Nanofibers for Battery Separators Used in Lithium-Ion Batteries. MEMBRANES 2023; 13:membranes13050499. [PMID: 37233560 DOI: 10.3390/membranes13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
In order to improve the electrochemical performance of lithium-ion batteries, a new kind of composite membrane made using inorganic nanofibers has been developed via electrospinning and the solvent-nonsolvent exchange process. The resultant membranes present free-standing and flexible properties and have a continuous network structure of inorganic nanofibers within polymer coatings. Results show that polymer-coated inorganic nanofiber membranes have better wettability and thermal stability than those of a commercial membrane separator. The presence of inorganic nanofibers in the polymer matrix enhances the electrochemical properties of battery separators. This results in lower interfacial resistance and higher ionic conductivity, leading to the good discharge capacity and cycling performance of battery cells assembled using polymer-coated inorganic nanofiber membranes. This provides a promising solution via which to improve conventional battery separators for the high performance of lithium-ion batteries.
Collapse
Affiliation(s)
- Hun Lee
- Applied Chemistry, Division of Energy & Optical Technology Convergence, College of Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Deokwoo Lee
- Department of Computer Engineering, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
27
|
Zhou J, Meng Y, Shen D, Zhou Y, Liu J, Cao Y, Yan C, Qian T. Empowering Quasi-solid Electrolyte with Smart Thermoresistance and Damage Repairability to Realize Safer Lithium Metal Batteries. J Phys Chem Lett 2023; 14:4482-4489. [PMID: 37155225 DOI: 10.1021/acs.jpclett.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Thermal runaway, a complex chemical/electrochemical heat breakout process caused by complex abuse conditions, remains a big issue to significantly hinder further practical application of lithium batteries. Here we design and fabricate a smart thermoregulatory and self-healing gel electrolyte (TRSHGE) by cross-linking phase-transition chains to polymer networks through reversibly dynamic interactions while maintaining the desirable electrochemical performance. Impressively, on the one hand, the phase-transition chains with endothermic effects can efficiently accommodate the heat accumulation, enabling lithium batteries to work safely and normally even up to 80 °C. On the other hand, the dynamic covalent boronic eater bonds and hydrogen bonds endow the TRSHGE damage repairability upon mechanical shock even at the nail penetration test. Such smart electrolyte with thermoresistance and damage repairability indicates significant technological advancement toward the safe commercial application of lithium batteries, even great potential to develop other functional batteries beyond the lithium-based systems discussed herein.
Collapse
Affiliation(s)
- Jinqiu Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Danni Shen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Yang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yufeng Cao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, China
| |
Collapse
|
28
|
Senthilkumar SH, Ramasubramanian B, Rao RP, Chellappan V, Ramakrishna S. Advances in Electrospun Materials and Methods for Li-Ion Batteries. Polymers (Basel) 2023; 15:polym15071622. [PMID: 37050236 PMCID: PMC10096578 DOI: 10.3390/polym15071622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Electronic devices commonly use rechargeable Li-ion batteries due to their potency, manufacturing effectiveness, and affordability. Electrospinning technology offers nanofibers with improved mechanical strength, quick ion transport, and ease of production, which makes it an attractive alternative to traditional methods. This review covers recent morphology-varied nanofibers and examines emerging nanofiber manufacturing methods and materials for battery tech advancement. The electrospinning technique can be used to generate nanofibers for battery separators, the electrodes with the advent of flame-resistant core-shell nanofibers. This review also identifies potential applications for recycled waste and biomass materials to increase the sustainability of the electrospinning process. Overall, this review provides insights into current developments in electrospinning for batteries and highlights the commercialization potential of the field.
Collapse
Affiliation(s)
- Sri Harini Senthilkumar
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Brindha Ramasubramanian
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Rayavarapu Prasada Rao
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
29
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Wu Y, Zeng Z, Lei S, Liu M, Zhong W, Qin M, Cheng S, Xie J. Passivating Lithiated Graphite via Targeted Repair of SEI to Inhibit Exothermic Reactions in Early-Stage of Thermal Runaway for Safer Lithium-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202217774. [PMID: 36646635 DOI: 10.1002/anie.202217774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The self-exothermic in early stage of thermal runaway (TR) is blasting-fuse for Li-ion battery safety issues. The exothermic reaction between lithiated graphite (LiCx ) and electrolyte accounts for onset of this behavior. However, preventing the deleterious reaction still encounters hurdles. Here, we manage to inhibit this reaction by passivating LiCx in real time via targeted repair of SEI. It is shown that 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane (D3 F) can be triggered by LiCx to undergo ring-opening polymerization at elevated temperature, so as to targeted repair of fractured SEI. Due to the high thermal stability of polymerized D3 F, exothermic reaction between LiCx and electrolyte is inhibited. As a result, the self-exothermic and TR trigger temperatures of pouch cell are increased from 159.6 and 194.2 °C to 300.5 and 329.7 °C. This work opens up a new avenue for designing functional additives to block initial exothermal reaction and inhibit TR in early stage.
Collapse
Affiliation(s)
- Yuanke Wu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziqi Zeng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sheng Lei
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengchuang Liu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Zhong
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingsheng Qin
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shijie Cheng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
31
|
Xia Y, Li X, Zhuang J, Yuan Y, Wang W. Cellulose microspheres enhanced polyvinyl alcohol separator for high-performance lithium-ion batteries. Carbohydr Polym 2023; 300:120231. [DOI: 10.1016/j.carbpol.2022.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
32
|
Yang SJ, Yao N, Jiang FN, Xie J, Sun SY, Chen X, Yuan H, Cheng XB, Huang JQ, Zhang Q. Thermally Stable Polymer-Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angew Chem Int Ed Engl 2022; 61:e202214545. [PMID: 36278974 DOI: 10.1002/anie.202214545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Serious safety risks caused by the high reactivity of lithium metal against electrolytes severely hamper the practicability of lithium metal batteries. By introducing unique polymerization site and more fluoride substitution, we built an in situ formed polymer-rich solid electrolyte interphase upon lithium anode to improve battery safety. The fluorine-rich and hydrogen-free polymer exhibits high thermal stability, which effectively reduces the continuous exothermic reaction between electrolyte and anode/cathode. As a result, the critical temperature for thermal safety of 1.0 Ah lithium-LiNi0.5 Co0.2 Mn0.3 O2 pouch cell can be increased from 143.2 °C to 174.2 °C. The more dangerous "ignition" point of lithium metal batteries, the starting temperature of battery thermal runaway, has been dramatically raised from 240.0 °C to 338.0 °C. This work affords novel strategies upon electrolyte design, aiming to pave the way for high-energy-density and thermally safe lithium metal batteries.
Collapse
Affiliation(s)
- Shi-Jie Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng-Ni Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.,College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | - Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shu-Yu Sun
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hong Yuan
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Jia-Qi Huang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Pilot Scale Hybrid Organic/Inorganic Coatings on a Polyolefin Separator to Enhance Dimensional Stability for Thermally Stable Long-Life Rechargeable Batteries. Polymers (Basel) 2022; 14:polym14214474. [PMID: 36365469 PMCID: PMC9659200 DOI: 10.3390/polym14214474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 03/09/2023] Open
Abstract
The electric vehicle and energy storage markets have grown rapidly in recent years. Thermal runaway caused by malfunctioning Li-ion batteries is an urgent issue with many causes (e.g., mechanical, electrical, and thermal abuse). The most common cause of thermal runaway is the formation of an internal short circuit because of damage to the separator. There has been significant effort to improve the design of separators, but to our knowledge, only inorganic nanoparticle coatings are used in commercial Li-ion batteries. Here, hybrid organic/inorganic coating layers are synthesized in a pilot-scale process that was developed from a crosslinkable polyamide-imide synthesis technique. The fabrication process is optimized to achieve reproducible hybrid organic/inorganic coating layers that are thin (≤4 μm), permeable (≤250 s/100 cc), and thermally stable beyond 150 °C. The hybrid coating layer is applied to mini-18650 Li-ion cells to show that the discharge capacity did not change at low discharge rates, and the retention capacity after 500 cycles was better than that of the reference cells used for comparison. This work demonstrates that a novel hybrid coating layer has the potential to improve the stability of commercial Li-ion batteries.
Collapse
|
34
|
Wu J, Wang M, Dong L, Shi J, Ohyama M, Kohsaka Y, Zhu C, Morikawa H. A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core-Sheath Fiber Structure for Wearable Personal Thermal Management. ACS NANO 2022; 16:12801-12812. [PMID: 35947793 DOI: 10.1021/acsnano.2c04971] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced textiles designed for personal thermal management contribute to thermoregulation in an individual and energy-saving manner. Textiles incorporated with phase changing materials (PCMs) are capable of bridging the supply and demand for energy by absorbing and releasing latent heat. The integration of solar heating and the Joule heating function supplies multidriving resources, facilitates energy charging and storage, and expands the service time and application scenarios. Herein, we report a fibrous membrane-based textile that was developed by designing the hierarchical core-sheath fiber structure for trimode thermal management. Especially, coaxial electrospinning allows an effective encapsulation of PCMs, with high heat enthalpy density (106.9 J/g), enabling the membrane to buffer drastic temperature changes in the clothing microclimate. The favorable photothermal conversion performance renders the membrane with the high saturated temperature of 70.5 °C (1 sun), benefiting from the synergistic effect of multiple light harvesters. Moreover, a conductive coating endows the composite membrane with an admirable electrothermal conversion performance, reaching a saturated temperature of 73.8 °C (4.2 V). The flexible fibrous membranes with the integrated performance of reversible phase change, multi-source-driven heating, and energy storage present great advantages for all-day, energy-saving, and wearable individual thermal management applications.
Collapse
Affiliation(s)
- Jiajia Wu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Mingxu Wang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Li Dong
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Jian Shi
- Faculty of Systems Science and Technology, Akita Prefectural University, 84-4 Aza Ebinokuchi Tsuchiya, Yurihonjo, Akita 015-0055, Japan
| | - Masatoshi Ohyama
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 4-17-1 Wakasato, Nagano City, Nagano 380-8553, Japan
| | - Chunhong Zhu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Hideaki Morikawa
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
35
|
Liu Q, Liu R, Cui Y, Zhou M, Zeng J, Zheng B, Liu S, Zhu Y, Wu D. Dendrite-Free and Long-Cycling Lithium Metal Battery Enabled by Ultrathin, 2D Shield-Defensive, and Single Lithium-Ion Conducting Polymeric Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108437. [PMID: 35680119 DOI: 10.1002/adma.202108437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Polymeric membranes are considered as promising materials to realize safe and long-life lithium metal batteries (LMBs). However, they are usually based on soft 1D linear polymers and thus cannot effectively inhibit piercing of lithium dendrites at high current density. Herein, single lithium-ion conducting molecular brushes (GO-g-PSSLi) are successfully designed and fabricated with a new 2D "soft-hard-soft" hierarchical structure by grafting hairy lithium polystyrenesulfonate (PSSLi) chains on both sides of graphene oxide (GO) sheets. The ultrathin GO-g-PSSLi membrane is further constructed by evaporation-induced layer-by-layer self-assembly of GO-g-PSSLi molecular brushes. Unlike conventional soft 1D linear polymeric structure, the rigid 2D extended aromatic structure of intralayer GO backbones can bear the shield effect of preventing the dendrites possibly generated at high current density from piercing. More importantly, such a shield effect can be significantly strengthened by layer-by-layer stacking of 2D molecular brushes. On the other hand, the 3D interconnected interlayer channels and the soft single lithium-ion conducting PSSLi side-chains on the surface of channels provide rapid lithium-ion transportation pathways and homogenize lithium-ion flux. As a result, LMBs with GO-g-PSSLi membrane possess long-term reversible lithium plating/striping (6 months) at high current density.
Collapse
Affiliation(s)
- Qiantong Liu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Ruliang Liu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yin Cui
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Minghong Zhou
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Junkui Zeng
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shaohong Liu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Youlong Zhu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Cheon J, Park SH, Kim Y, Yim T. Aluminum oxide and ethylene bis(diphenylphosphine)‐incorporated poly(imide) separators for lithium‐ion batteries. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaemun Cheon
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| | - Sang Heon Park
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Youngkwon Kim
- Advanced Batteries Research Center Korea Electronics Technology Institute Seongnam South Korea
| | - Taeeun Yim
- Advanced Batteries Laboratory, Department of Chemistry Incheon National University Incheon South Korea
- Research Institute of Basic Sciences, College of Natural Science Incheon National University Incheon South Korea
| |
Collapse
|
37
|
Abstract
Liquid phase leakage, intrinsic rigidity, and easy brittle failure are the longstanding bottlenecks of phase change materials (PCMs) for thermal energy storage, which seriously hinder their widespread applications in advanced energy-efficient systems. Emerging flexible composite PCMs that are capable of enduring certain deformation and guaranteeing superior mutual contact with integrated devices are considered as a cutting-edge effective solution. Flexible PCMs-based thermal regulation technology can reallocate thermal energy and regulate the temperature within an optimal range. Currently, tireless efforts are devoted to the development of versatile flexible PCMs-based thermal regulation devices, and a big step forward has been taken. Herein, we systematically outline fabrication techniques, flexibility evaluation strategies, advanced functions and advances of flexible composite PCMs. Furthermore, existing challenges and future perspectives are provided in terms of flexible PCMs-based thermal regulation techniques. This insightful review aims to provide an in-depth understanding and constructive guidance of engineering advanced flexible multifunctional PCMs.
Collapse
Affiliation(s)
- Piao Cheng
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, PR China
| | - Zhaodi Tang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yan Gao
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
| | - Changhui Liu
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
38
|
NIR-induced self-healing and recyclable polyurethane composites based on thermally reversible cross-linking for efficient solar-to-thermal energy storage. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Du X, Wang J, Jin L, Deng S, Dong Y, Lin S. Dopamine-Decorated Ti 3C 2T x MXene/Cellulose Nanofiber Aerogels Supported Form-Stable Phase Change Composites with Superior Solar-Thermal Conversion Efficiency and Extremely High Thermal Storage Density. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15225-15234. [PMID: 35321540 DOI: 10.1021/acsami.2c00117] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The exploitation of from-stable phase change materials (PCMs) with superior energy storage capacity and excellent solar-thermal conversion performance is crucial for the efficient exploitation of solar energy. Herein, 2D-layered polymerized dopamine-decorated Ti3C2Tx MXene nanosheets (P-MXene) with superior photothermal effects and excellent oxidation stability were synthesized from Ti3AlC2 particles by the selective etching and self-polymerization of dopamine. Then, novel biomass-derived PCM composites, eMPCMs, were fabricated by impregnating erythritol into P-MXene/cellulose nanofiber (CNF) hybrid aerogels. The porous and interconnected 3D aerogels adequately support erythritol and resist liquid leakage during thermal storage. Differential scanning calorimetry (DSC) results showed that the eMPCMs based on P-MXene/CNF aerogels exhibited an extremely high thermal storage density (325.4-330.6 J/g) and excellent PCM loading capacity (up to 1929%). The introduction of P-MXene nanosheets into eMPCMs significantly increased the solar-thermal conversion and storage efficiency, solar-thermal-electricity conversion capacity, and thermal conductivity of the synthesized PCM composites. Moreover, the P-MXene/CNF hybrid aerogel-based PCM composites possessed excellent long-term thermal reliability and thermostability. Hence, the synthesized eMPCMs reveal tremendous potential for efficient solar-thermal storage fields.
Collapse
Affiliation(s)
- Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jiuao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Linzhao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Gao Z, Rao S, Zhang T, Gao F, Xiao Y, Shali L, Wang X, Zheng Y, Chen Y, Zong Y, Li W, Chen Y. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103796. [PMID: 34923778 PMCID: PMC8844567 DOI: 10.1002/advs.202103796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Vigorous development of electric vehicles is one way to achieve global carbon reduction goals. However, fires caused by thermal runaway of the power battery has seriously hindered large-scale development. Adding thermal runaway retardants (TRRs) to electrolytes is an effective way to improve battery safety, but it often reduces electrochemical performance. Therefore, it is difficult to apply in practice. TRR encapsulation is inspired by the core-shell structures such as cells, seeds, eggs, and fruits in nature. In these natural products, the shell isolates the core from the outside, and has to break as needed to expose the core, such as in seed germination, chicken hatching, etc. Similarly, TRR encapsulation avoids direct contact between the TRR and the electrolyte, so it does not affect the electrochemical performance of the battery during normal operation. When lithium-ion battery (LIB) thermal runaway occurs, the capsules release TRRs to slow down and even prevent further thermal runaway. This review aims to summarize the fundamentals of bioinspired TRR capsules and highlight recent key progress in LIBs with TRR capsules to improve LIB safety. It is anticipated that this review will inspire further improvement in battery safety, especially for emerging LIBs with high-electrochemical performance.
Collapse
Affiliation(s)
- Zhenhai Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Shun Rao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Tianyao Zhang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Fei Gao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yang Xiao
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Longfei Shali
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Xiaoxu Wang
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yadan Zheng
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yiyuan Chen
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yuan Zong
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Weifeng Li
- State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchun130025China
| | - Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
41
|
Ma J, Ma T, Cheng J, Zhang J. Polymer Encapsulation Strategy toward 3D Printable, Sustainable, and Reliable Form-Stable Phase Change Materials for Advanced Thermal Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4251-4264. [PMID: 35029103 DOI: 10.1021/acsami.1c23972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Form-stable phase change materials (PCMs) have garnered tremendous attention in thermal energy storage (TES) owing to their remarkable latent heat. However, the integration of intelligent manufacturing, recycling, and optimized multifunction is considered not feasible for form-stable PCMs due to the restriction of encapsulation technology. Here, an excellent polymer encapsulation strategy is proposed to prepare 3D printable, sustainable, and reliable form-stable PCMs (SiPCM-x), which are universal for petroleum-based and biobased long alkyl compounds. SiPCM-x have top-class latent heat, and the phase-change temperatures are tunable from body temperature to high temperature. The in situ formative bottlebrush phase-change polysiloxane networks are used as supporting materials, and the encapsulation mechanism is clarified. Sirbw-250 can be degraded and re-encapsulated to achieve recycling. Besides, Sirbw-250 is fabricated as the customer-designed objects with shape-changing behavior via 3D printing. By introducing the metal foams and nano-coatings, the resulting phase-change composites simultaneously exhibit excellent superhydrophobicity, mechanical properties, thermal conductivity, electromagnetic interference shielding behavior, and solar-, electric-, and magnetic-to-thermal energy conversion ability. Besides, S-Ni-SiPCM-250 can be applied in the wearable functional devices and movable solar-thermal charging. This strategy will lead to huge renovation in the TES field and provide an efficient guideline for designing advanced form-stable PCMs.
Collapse
Affiliation(s)
- Jiahao Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tian Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
42
|
Song Y, Liu X, Ren D, Liang H, Wang L, Hu Q, Cui H, Xu H, Wang J, Zhao C, Zuo X, Xu GL, Amine K, He X. Simultaneously Blocking Chemical Crosstalk and Internal Short Circuit via Gel-Stretching Derived Nanoporous Non-Shrinkage Separator for Safe Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106335. [PMID: 34617339 DOI: 10.1002/adma.202106335] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The separator, an ionic permeable and electronic insulating membrane between cathode and anode, plays a crucial role in the electrochemical and safety performance of batteries. However, commercial polyolefin separators not only suffer from inevitable thermal shrinkage at elevated temperature, but also fail to inhibit the hidden chemical crosstalk of reactive gases such as O2 , leading to often reported thermal runaway (TR) and hence preventing large-scale implementation of high-energy-density lithium-ion batteries. Herein, a nanoporous non-shrinkage separator (GS-PI) is fabricated via a novel gel-stretching orientation approach to eliminate TR. In situ synchrotron small angle X-ray scattering during heating clearly shows that the as-prepared thin GS-PI separator exhibits superior mechanical tolerance at high temperature, thus effectively preventing internal short circuit. Meanwhile, the unique nanoporous structure design further blocks chemical crosstalk and the associated exothermic reactions. Accelerating rate calorimetry tests reveal that the practical 1 Ah LiNi0.6 Co0.2 Mn0.2 O2 (NCM622)/graphite pouch cell using GS-PI nanoporous separator show a maximum temperature rise (dT/dtmax ) of only 3.7 °C s-1 compared to 131.6 °C s-1 in the case of Al2 O3 @PE macroporous separator. Moreover, despite the reduced pore size, the GS-PI separator demonstrates better cycling stability than conventional Al2 O3 @PE separator at high temperature without sacrificing specific capacity and rate capability.
Collapse
Affiliation(s)
- Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiang Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dongsheng Ren
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Hongmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Qiao Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Hao Cui
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Chen Zhao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiaobing Zuo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University (IAU), Dammam, 31441, Saudi Arabia
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
43
|
Zhang L, Li X, Tai L, Shen C, Yang J, Sun C, Geng H, Zuo X. Constructing electronic interconnected bimetallic selenide-filled porous carbon nanosheets for stable and highly efficient sodium-ion half/full batteries. NANOSCALE 2021; 13:18578-18585. [PMID: 34730602 DOI: 10.1039/d1nr05521f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their large theoretical capacity and relatively high electronic conductivity, transition metal selenides have been investigated as potential anodes for energy storage applications. On the other hand, the quick capacity decline induced by volume expansion during cycling and unconnected conducting network of the transition metal selenide-based electrode severely limit their employment in sodium-ion batteries (SIBs). Herein, a simple solvent ultrasonic technique and pyrolysis selenation process were used to make a porous N-doped carbon nanosheet-supported FeSe2/CoSe2 electrode. The electrochemical kinetics could be improved, and the stress generated by volume expansion could be efficiently adjusted by exquisitely constructed boundary of the FeSe2/CoSe2-CN electrode. As expected, the FeSe2/CoSe2-CN porous nanosheets exhibited a high Na+ storage capacity of 350 mA h g-1 (10 A g-1, 1000 cycles). Kinetic studies were conducted to explore the Na+ storage mechanism of FeSe2/CoSe2-CN. The as-constructed full sodium-ion batteries, when combined with Na3V2(PO4)2O2F, have a phenomenal energy density (109 W h kg-1), encouraging the exploration of energy-related components with the high-energy density properties.
Collapse
Affiliation(s)
- Lei Zhang
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, China.
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Xiao Li
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Linlin Tai
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Chunping Shen
- Jiangsu Tenpower Lithium Co., Ltd., Zhangjiagang, Jiangsu, China
| | - Jun Yang
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Chencheng Sun
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, China.
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Xiaobing Zuo
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| |
Collapse
|
44
|
Lou P, Zhang W, Han Q, Tang S, Tian J, Li Y, Wu H, Zhong Y, Cao Y, Cheng S. Fabrication of fire‐response functional separators with microcapsule fire extinguishing agent for lithium‐ion battery safety. NANO SELECT 2021. [DOI: 10.1002/nano.202100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ping Lou
- State Grid Huzhou Electric Power Supply Company Huzhou 313000 PR China
| | - Weixin Zhang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Qigao Han
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Shun Tang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Jie Tian
- Shenzhen Power Supply Co. Ltd. Shenzhen 518001 China
| | - Yan Li
- Shenzhen Power Supply Co. Ltd. Shenzhen 518001 China
| | - Hao Wu
- Zhejiang Landun Electronic New Material Technology Co. Ltd. Hangzhou 311418 China
| | - Yunhui Zhong
- Zhejiang Landun Electronic New Material Technology Co. Ltd. Hangzhou 311418 China
| | - Yuan‐Cheng Cao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Shijie Cheng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
45
|
Li J, Yu J, Sun Z, Liu H, Wang X. Innovative Integration of Phase-Change Microcapsules with Metal-Organic Frameworks into an Intelligent Biosensing System for Enhancing Dopamine Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41753-41772. [PMID: 34459189 DOI: 10.1021/acsami.1c13446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work focuses on an interdisciplinary issue in energy management and biosensing techniques. Aiming at enhancing the biosensing detection of dopamine at high ambient temperatures, we developed an innovative integration of phase-change microcapsules with a metal-organic framework (MOF) based on zeolitic imidazolate framework-8 to develop an intelligent electrochemical biosensing system with a thermal self-regulation function. We first fabricated a type of electroactive microcapsules containing a MOF-anchored polypyrrole/SiO2 double-layered shell and a phase-change material (PCM) core. The resultant microcapsules not only exhibit a regular spherical morphology with a layer-by-layer core-shell microstructure but also display an effective temperature-regulation capability to enhance enzymatic bioactivity under phase-change enthalpies of around 124.0 J·g-1 along with good thermal impact resistance and excellent thermal cycling stability for long-term use in thermal energy management. These electroactive microcapsules were then used to modify a working electrode together with laccase as a biocatalyst to construct a thermal self-regulatory biosensor. With a high sensitivity of 3.541 μA·L·μmol-1·cm-2 and a low detection limit of 0.0069 μmol·L-1 at 50 °C, this biosensor exhibits much better determination effectiveness toward dopamine at higher temperatures than conventional biosensors thanks to in situ thermal management derived from its PCM core in the electroactive microcapsules. This study offers a promising approach for development of intelligent thermal self-regulatory biosensors with an enhanced detection capability to identify various chemicals accurately in a wide range of applicable temperatures.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jinghua Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhao Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
46
|
Yan J, Hu D, Wang Z, Ma W. Construction strategies and thermal energy storage applications of shape‐stabilized phase change materials. J Appl Polym Sci 2021. [DOI: 10.1002/app.51550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jiahui Yan
- School of Materials Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Zhiqiang Wang
- School of Materials Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou People's Republic of China
| |
Collapse
|