1
|
Wadhonkar K, Singh Y, Rughetti A, Das S, Yangdol R, Sk MH, Baig MS. Role of cancer cell-derived exosomal glycoproteins in macrophage polarization. Mol Biol Rep 2025; 52:451. [PMID: 40347313 DOI: 10.1007/s11033-025-10535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025]
Abstract
Cancer is a deadly disease marked by abnormal cell growth, proliferation, and metastasis-the spread of cancer from its origin to distant sites. A key factor in tumor progression is the tumor microenvironment (TME), which significantly influences tumor behavior and response to treatment. Within the TME, interactions between cancer cells and surrounding immune cells, particularly tumor-associated macrophages (TAMs), play a critical role in shaping immune responses. This review focuses on recent findings from a systematic PubMed search regarding cancer cell-derived exosomal glycoproteins and their role in modulating macrophage phenotypes. Tumor-derived exosomes, a type of extracellular vesicle (EV), carry glycoproteins-proteins with attached sugar chains-that can influence macrophage polarization. These glycoproteins can reprogram macrophages into either the M1 phenotype (proinflammatory and anti-tumor) or the M2 phenotype (anti-inflammatory and tumor-supportive). The M1 macrophages inhibit tumor progression, while M2 macrophages support tumor growth by promoting immune suppression and tissue remodeling. Understanding how exosomal glycoproteins drive this polarization offers critical insight into cancer immunology and may pave the way for novel therapeutic strategies targeting the TME.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Yashi Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Soumalya Das
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rigzin Yangdol
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - M Hassan Sk
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
2
|
Vijayakumar V, Joshi T, Elkhadragy L, Schook LB, Gaba RC, El-Kebir M, Schachtschneider KM. Development of a whole-exome sequencing kit to facilitate porcine biomedical research. Genome Biol 2025; 26:118. [PMID: 40340757 PMCID: PMC12060350 DOI: 10.1186/s13059-025-03589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/25/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND It is important for porcine models to replicate gene mutations present in human diseases to improve the translatability of animal studies. In this study, the high efficacy of a whole exome sequencing kit was demonstrated for the improved pig reference genome (Sus scrofa 11.1) to profile biomedically relevant swine breeds and enable high-depth sequencing required for intratumor heterogeneity profiling. RESULTS We identify a total of 751,624 single nucleotide variants (SNVs) and 113,597 insertions and deletions (INDELs) across 93 samples from 12 porcine breeds. The identified mutations and affected pathways are correlated to muscle-to-fat ratios between different porcine breeds and further inform their utility as models of obesity and cardiovascular disease. Finally, 7935 SNVs and 358 INDELs are present in an Oncopig hepatocellular carcinoma (HCC) cell line and samples from a single Oncopig HCC tumor, with pathways related to hepatic fibrosis, WNT/B-catenin, ATM signaling, and p53 signaling enriched. CONCLUSIONS These results demonstrate the kit's high efficacy and utility for identifying mutations in the context of obesity, cardiovascular disease, and cancer across a range of pig models used in biomedical research.
Collapse
Affiliation(s)
- Vishwaarth Vijayakumar
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Tanvi Joshi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence B Schook
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed El-Kebir
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Sus Clinicals Inc, Chicago, IL, USA
| |
Collapse
|
3
|
Xiao G, Wang X, Xu Z, Liu Y, Jing J. Lung-specific metastasis: the coevolution of tumor cells and lung microenvironment. Mol Cancer 2025; 24:118. [PMID: 40241074 PMCID: PMC12001740 DOI: 10.1186/s12943-025-02318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The vast majority of cancer-related deaths are attributed to metastasis. The lung, being a common site for cancer metastasis, is highly prone to being a target for multiple cancer types and causes a heavy disease burden. Accumulating evidence has demonstrated that tumor metastasis necessitates continuous interactions between tumor cells and distant metastatic niches. Nevertheless, a comprehensive elucidation of the underlying mechanisms governing lung-specific metastasis still poses a formidable challenge. In this review, we depict the lung susceptibility and the molecular profiles of tumors with the potential for lung metastasis. Under the conceptual framework of "Reciprocal Tumor-Lung Metastatic Symbiosis" (RTLMS), we mechanistically delineate the bidirectional regulatory dynamics and coevolutionary adaptation between tumor cells and distal pulmonary niches during lung-specific metastasis, including the induction of pre-metastatic-niches, positive responses of the lung, tumor colonization, dormancy, and reawakening. An enhanced understanding of the latest mechanisms is essential for developing targeted strategies to counteract lung-specific metastasis.
Collapse
Affiliation(s)
- Guixiu Xiao
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinmin Wang
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
| | - Zihan Xu
- Institute of Breast Health Medicine, West China Hospital, Sichuan University Chengdu, Sichuan, 610041, China
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, Sichuan, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jing Jing
- Breast Disease Center and Institute for Breast Health Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Lee JH, Son S, Ko Y, Lim H, Lee M, Kang MG, Kim H, Lee KM, Shin I. Nidogen-1 suppresses cell proliferation, migration, and glycolysis via integrin β1-mediated HIF-1α downregulation in triple-negative breast cancer. Sci Rep 2025; 15:10633. [PMID: 40148359 PMCID: PMC11950294 DOI: 10.1038/s41598-024-84880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/27/2024] [Indexed: 03/29/2025] Open
Abstract
Nidogen-1 (NID1) is a secreted glycoprotein widely distributed in basement membranes. NID1 interacts with extracellular matrix proteins such as collagen and laminin and has been implicated in the progression of various cancers. However, study on the role of NID1 in breast cancer is scarce and inconsistent. In this work, we found that the expression of NID1 is significantly lower in breast cancer tissue than in normal tissue. In addition, NID1 expression correlated negatively with a poor prognosis for breast cancer patients. Based on those findings, we speculated that NID1 might act as a cancer suppressor in breast cancer. To investigate the role of NID1 in breast cancer, we constructed NID1-overexpressing cell lines. NID1 overexpression decreased breast cancer cell proliferation, migration, and in vivo tumor growth. Moreover, glucose metabolism, which is known to enhance cancer cell proliferation and migration, was also decreased by NID1 overexpression. Mechanistically, NID1 overexpression downregulated hypoxia-inducible factor-1α (HIF-1α) expression at the transcription level. Furthermore, we found that NID1 reduced integrin β1 stability and downregulated the transcription of HIF-1α through the FAK/Src/NF-κB p65 signaling axis, which is downstream of integrin β1. Together, the results of this study demonstrate the tumor suppressive role of NID1 in triple-negative breast cancer.
Collapse
Affiliation(s)
- Joo-Hyung Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Yunhyo Ko
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hogeun Lim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Minhyeok Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Min-Gyeong Kang
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Kyung-Min Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, 04763, Korea.
- Natural Science Institute, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
5
|
Vanhooren J, Deneweth L, Pagliaro L, Ren Z, Giaimo M, Zamponi R, Roti G, Depreter B, Hofmans M, De Moerloose B, Lammens T. Nidogen-1, a Player in KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Int J Mol Sci 2025; 26:3011. [PMID: 40243655 PMCID: PMC11988693 DOI: 10.3390/ijms26073011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in outcome, one third of children with acute myeloid leukemia (AML) relapse, and less than half will achieve long-term survival. Relapse in AML has been shown to be driven in part by leukemic stem cells (LSCs), highlighting the unmet medical need to better characterize and target this therapy-resistant cell population. Micro-array profiling of pediatric AML subpopulations (LSCs and leukemic myeloblasts) and their healthy counterparts revealed nidogen-1 (NID1) as expressed in both leukemic subpopulations while absent in the hematopoietic stem cell. Using the TARGET dataset including pediatric AML patients (n = 1025), NID1 expression showed a correlation with worse event-free survival and KMT2A rearrangements. Drug response profiling of a NID1 knockdown model demonstrated differential sensitivity to HSP90 inhibition. RNA sequencing and gene set enrichment analysis between NID1high and NID1low phenotypes showed involvement of NID1 in mitochondrial metabolic pathways known to be enriched in LSCs. Altogether, this study highlights NID1 as a novel oncogene associated with worse EFS and metabolic LSC phenotype in AML. NID1 could serve as a biomarker and aid in further mapping LSCs to establish therapeutic strategies tackling the high relapse rates in pediatric AML.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Larissa Deneweth
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Luca Pagliaro
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Mariateresa Giaimo
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Rafaella Zamponi
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Giovanni Roti
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Barbara Depreter
- Department of Laboratory Medicine, AZ Delta General Hospital, 8800 Roeselare, Belgium
- Department of Haematology, Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium
| | - Mattias Hofmans
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
6
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
7
|
Xue T, Yeung CLS, Mao X, Tey SK, Lo KW, Tang AHN, Yun JP, Yam JWP. Development of a broadly potent neutralizing antibody targeting Nidogen 1 effectively inhibits cancer growth and metastasis in preclinical tumor models. J Transl Int Med 2025; 13:78-92. [PMID: 40115036 PMCID: PMC11921815 DOI: 10.1515/jtim-2025-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background and Objectives Nidogen 1 (NID1) is a highly conserved structural component of the extracellular matrix (ECM), which interacts with different basement membrane (BM) proteins to form a stabilized meshwork. The promoting ability of NID1 in cancer development and metastasis has been demonstrated in multiple cancer types, including ovarian cancer, breast cancer, and hepatocellular carcinoma (HCC). This suggests that NID1 holds great potential as a therapeutic target for cancer treatment. However, currently, there is a lack of commercially available neutralizing antibody for clinical testing and treatment. Methods To address this, we utilized hybridoma technology to develop a monoclonal neutralizing antibody which targets the critical G2 region of NID1. The therapeutic effect of this NID1 neutralizing antibody against a wide range of human cancer cells was evaluated. Results The results showed that NID1 neutralizing antibody effectively attenuated the growth, motility and metastasis of HCC, lung cancer, breast cancer and nasopharyngeal carcinoma cells in vitro. The proof-of-concept of targeting NID1 using neutralizing antibody was further demonstrated in various animal models. Mechanistically, our findings indicate that treatment with NID1 neutralizing antibody leads to the deregulation of hypoxia-inducible factor-1 (HIF-1α) pathway in cancer cells. Conclusions Taken together, this study offers promising prospects for a new pan-cancer monoclonal antibody-based strategy by targeting the tumor-associated membrane protein NID1.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexander Hin Ning Tang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong SAR, China
- DiagnoVEX Therapeutics Limited, Hong Kong SAR, China
| |
Collapse
|
8
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Liu W, Wu J, Lai Y, Zhang S, Yang A, Li Y, Chen C, Lu Z. NID1 promotes laryngeal cancer stemness via activating WNT pathway. Biol Direct 2024; 19:115. [PMID: 39538332 PMCID: PMC11558908 DOI: 10.1186/s13062-024-00548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Laryngeal cancer (LCA) is one of the most common head and neck squamous cell carcinoma with poor outcome. LCA stem cells are the main reason for LCA therapy resistance and relapse. Understanding the molecular mechanisms of the self-renew of LCA stem cells is critical to develop now targets and strategies for LCA therapy. METHODS Q-PCR and western blotting assays were used to determine NID1 level in LCA tissues and normal laryngeal tissues. MTT, colony formation assay, apoptosis assay and animal model were used to investigate the effect of NID1 on radiotherapy resistance. Side population assay and sphere formation assay were used to determine the role of LCA in the self-renew of LCA stem cells. RESULTS NID1 was upregulated in LCA tissues, particularly in LCA tissues derived from relapsed patients, and associated with had poor outcome. NID1 knockdown suppressed radiotherapy resistance and the self-renew of LCA stem cells, while NID1 overexpression promoted radiotherapy resistance and the self-renew of LCA stem cells. Further analysis showed that NID1 promotes radiotherapy resistance and the self-renew of LCA stem cells via activating WNT pathway. Moreover, NID1 level was positively correlated with nuclear β-Catenin level in LCA tissues. CONCLUSION Our results show that NID1 promotes radiotherapy resistance and the self-renew of LCA stem cells via activating WNT pathway, providing a novel potential target for LCA treatment.
Collapse
Affiliation(s)
- Wenlin Liu
- Department of Otorhinolaryngology, The Affiliated Qingyuan Hospital(Qingyuan People'sHospital),Guangzhou Medical University, No.35,Yinquan North Road, Qingyuan, Guangdong, 511518, P.R. China
| | - Jie Wu
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People'sHospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106, ZhongShan 2nd Road, YueXiu District, Guangzhou, Guangdong, 510080, P.R. China
| | - Yuanpu Lai
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, No.106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China
| | - Siyi Zhang
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, No.106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yixuan Li
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, No.106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China
| | - Cuifang Chen
- Department of Otorhinolaryngology, The Affiliated Qingyuan Hospital(Qingyuan People'sHospital),Guangzhou Medical University, No.35,Yinquan North Road, Qingyuan, Guangdong, 511518, P.R. China.
| | - Zhongming Lu
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, No.106, Zhongshan 2nd Road, Yuexiu District, Guangzhou, Guangdong, 510080, P.R. China.
| |
Collapse
|
10
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
11
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
12
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
13
|
Burgy O, Mayr CH, Schenesse D, Fousekis Papakonstantinou E, Ballester B, Sengupta A, She Y, Hu Q, Melo-Narvaéz MC, Jain E, Pestoni JC, Mozurak M, Estrada-Bernal A, Onwuka U, Coughlan C, Parimon T, Chen P, Heimerl T, Bange G, Schmeck BT, Lindner M, Hilgendorff A, Ruppert C, Güenther A, Mann M, Yildirim AÖ, Eickelberg O, Jung AL, Schiller HB, Lehmann M, Burgstaller G, Königshoff M. Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis. JCI Insight 2024; 9:e168889. [PMID: 39315549 PMCID: PMC11457858 DOI: 10.1172/jci.insight.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivier Burgy
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
| | - Christoph H. Mayr
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Déborah Schenesse
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
| | | | - Beatriz Ballester
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Yixin She
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Camila Melo-Narvaéz
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Jeanine C. Pestoni
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Molly Mozurak
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Estrada-Bernal
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ugochi Onwuka
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and
| | - Bernd T. Schmeck
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
- Center for Synthetic Microbiology (SYNMIKRO) and
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Andreas Güenther
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
- European IPF Registry (eurIPFreg), Center for Interstitial and Rare Lung Diseases, UGMLC, Justus-Liebig University Giessen, DZL, Giessen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Oliver Eickelberg
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Lena Jung
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Herbert B. Schiller
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- Research Unit for Precision Regenerative Medicine, Helmholtz Munich, Munich, Germany
| | - Mareike Lehmann
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Tsui YM, Tian L, Lu J, Ma H, Ng IOL. Interplay among extracellular vesicles, cancer stemness and immune regulation in driving hepatocellular carcinoma progression. Cancer Lett 2024; 597:217084. [PMID: 38925362 DOI: 10.1016/j.canlet.2024.217084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jingyi Lu
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Saini V, Do Y, Yam JWP, Wong YH. Elevated extracellular vesicular Nm23-H1 subdues the pro-migratory potential of breast cancer cell-derived extracellular vesicles. Cell Signal 2024; 120:111203. [PMID: 38723736 DOI: 10.1016/j.cellsig.2024.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Metastasis is a key determinant in cancer mortality which is often associated with decreased levels of Nm23-H1, a well-established metastasis suppressor. Despite lacking a secretion signal peptide, Nm23-H1 has been reported to be present in the extracellular space and enclosed within extracellular vesicles (EVs). While the presence of Nm23-H1 proteins in EVs released by cancer cells has been observed through proteomics profiling, the role of vesicular Nm23-H1 remains unclear. Here, we investigated the function of vesicular Nm23-H1 using MDA-MB-231 (highly metastatic, low Nm23-H1) and MCF-7 (low/non-metastatic, high Nm23-H1) breast cancer cell models. Our findings confirm that Nm23-H1 is indeed encapsulated within EVs, and its levels can be manipulated through overexpression and knockdown approaches. Functional assays revealed that EVs derived from MDA-MB-231 cells that contained high levels of Nm23-H1 exhibit impaired pro-migratory properties, suggesting that vesicular Nm23-H1 may act as a metastasis suppressor. Furthermore, EVs with increased levels of Nm23-H1 altered the transcript levels of multiple cancer-related genes in recipient cells and stimulated type I interferon signaling through STAT1 phosphorylation. These results suggest the existence of an unconventional signaling pathway mediated by the uptake of EVs enriched with Nm23-H1, which may contribute to the anti-metastatic effect of Nm23-H1 in the tumor microenvironment. Additionally, our study demonstrates that elevated Nm23-H1 levels can impact the abundance of various other proteins encapsulated within breast cancer cell-derived EVs, such as SUSD2 (Sushi Domain Containing 2) which can also modulate metastasis.
Collapse
Affiliation(s)
- Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
16
|
Tian L, Sang Y, Han B, Sun Y, Li X, Feng Y, Qin C, Qi J. Gene signature developed based on programmed cell death to predict the therapeutic response and prognosis for liver hepatocellular carcinoma. Heliyon 2024; 10:e34704. [PMID: 39130419 PMCID: PMC11315169 DOI: 10.1016/j.heliyon.2024.e34704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Background The prognosis and therapeutic response of patients with liver hepatocellular carcinoma (LIHC) can be predicted based on programmed cell death (PCD) as PCD plays a crucial role during tumor progression. We developed a PCD-related gene signature to evaluate the therapeutic response and prognosis for patients with LIHC. Methods Molecular subtypes of LIHC were classified using ConsensusClusterPlus according to the gene biomarkers related to PCD. To predict the prognosis of high- and low-risk LIHC patients, a risk model was established by LASSO regression analysis based on the prognostic genes. Functional enrichment analysis was conducted using clusterProfiler package, and relative abundance of immune cells was quantified applying CIBERSORT package. Finally, to determine drug sensitivity, oncoPredict package was employed. Results PCD was correlated with the clinicopathologic features of LIHC. Then, we defined four molecular subtypes (C1-C4) of LIHC using PCD-related prognostic genes. Specifically, subtype C1 had the worst prognosis with enriched T cells regulatory (Tregs) and Macrophage_M0 and higher expression of T cell exhaustion markers, meanwhile, C1 also had a relatively higher TIDE score and metastasis potential. A risk model was established using 5 prognostic genes. High-risk patients tended to have higher expression of T cell exhaustion markers and TIDE score and unfavorable outcomes, and they were more sensitive to small molecule drug 5.Fluorouracil. Conclusion A PCD-related gene signature was developed and verified to be able to accurately predict the prognosis and drug sensitivity of LIHC patients.
Collapse
Affiliation(s)
- Lijun Tian
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yujie Sang
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Bing Han
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yujing Sun
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Xueyan Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chengyong Qin
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
17
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Benjamin ESB, Vinod E, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Bagchi A, Maity A, Mohan A, Parasuraman G, Amirtham SM, Abraham A, Velayudhan SR, Balasubramanian P. Immortalised chronic myeloid leukemia (CML) derived mesenchymal stromal cells (MSCs) line retains the immunomodulatory and chemoprotective properties of CML patient-derived MSCs. Cell Signal 2024; 116:111067. [PMID: 38281615 DOI: 10.1016/j.cellsig.2024.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Despite the success of Tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML), leukemic stem cells (LSCs) persist, contributing to relapse and resistance. CML Mesenchymal Stromal Cells (MSCs) help in LSC maintenance and protection from TKIs. However, the limited passage and self-differentiation abilities of primary CML MSCs hinder extensive research. To overcome this, we generated and characterized an immortalised CML patient-derived MSC (iCML MSC) line and assessed its role in LSC maintenance. We also compared the immunophenotype and differentiation potential between primary CML MSCs at diagnosis, post-treatment, and with normal bone marrow MSCs. Notably, CML MSCs exhibited enhanced chondrogenic differentiation potential compared to normal MSCs. The iCML MSC line retained the trilineage differentiation potential and was genetically stable, enabling long-term investigations. Functional studies demonstrated that iCML MSCs protected CML CD34+ cells from imatinib-induced apoptosis, recapitulating the bone marrow microenvironment-mediated resistance observed in patients. iCML MSC-conditioned media enabled CML CD34+ and AML blast cells to proliferate rapidly, with no impact on healthy donor CD34+ cells. Gene expression profiling revealed dysregulated genes associated with calcium metabolism in CML CD34+ cells cocultured with iCML MSCs, providing insights into potential therapeutic targets. Further, cytokine profiling revealed that the primary CML MSC lines abundantly secreted 25 cytokines involved in immune regulation, supporting the hypothesis that CML MSCs create an immune modulatory microenvironment that promotes growth and protects against TKIs. Our study establishes the utility of iCML MSCs as a valuable model to investigate leukemic-stromal interactions and study candidate genes involved in mediating TKI resistance in CML LSCs.
Collapse
Affiliation(s)
- Esther Sathya Bama Benjamin
- Department of Haematology, Christian Medical College, Ranipet campus, India; Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, India
| | - Elizabeth Vinod
- Department of Physiology, Christain Medical College, Vellore, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | | | | | | - Abhirup Bagchi
- Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | - Arnab Maity
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Ajith Mohan
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | | | | | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet campus, India
| | - Shaji R Velayudhan
- Department of Haematology, Christian Medical College, Ranipet campus, India; Centre for Stem Cell Research (A Unit of inStem, Bengaluru), CMC Campus, Vellore, India
| | | |
Collapse
|
19
|
Li Y, Zheng Y, Tan X, Du Y, Wei Y, Liu S. Extracellular vesicle-mediated pre-metastatic niche formation via altering host microenvironments. Front Immunol 2024; 15:1367373. [PMID: 38495881 PMCID: PMC10940351 DOI: 10.3389/fimmu.2024.1367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
The disordered growth, invasion and metastasis of cancer are mainly attributed to bidirectional cell-cell interactions. Extracellular vesicles (EVs) secreted by cancer cells are involved in orchestrating the formation of pre-metastatic niches (PMNs). Tumor-derived EVs mediate bidirectional communication between tumor and stromal cells in local and distant microenvironments. EVs carrying mRNAs, small RNAs, microRNAs, DNA fragments, proteins and metabolites determine metastatic organotropism, enhance angiogenesis, modulate stroma cell phenotypes, restructure the extracellular matrix, induce immunosuppression and modify the metabolic environment of organs. Evidence indicates that EVs educate stromal cells in secondary sites to establish metastasis-supportive microenvironments for seeding tumor cells. In this review, we provide a comprehensive overview of PMN formation and the underlying mechanisms mediated by EVs. Potential approaches to inhibit cancer metastasis by inhibiting the formation of PMNs are also presented.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Yao Y, Xu Y, Yu L, Xue T, Xiao Z, Tin P, Fung H, Ma H, Yun J, Yam JWP. NHE7 upregulation potentiates the uptake of small extracellular vesicles by enhancing maturation of macropinosomes in hepatocellular carcinoma. Cancer Commun (Lond) 2024; 44:251-272. [PMID: 38152992 PMCID: PMC10876205 DOI: 10.1002/cac2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) mediate intercellular communication that contributes to hepatocellular carcinoma (HCC) progression via multifaceted pathways. The success of cell entry determines the effect of sEV on recipient cells. Here, we aimed to delineate the mechanisms underlying the uptake of sEV in HCC. METHODS Macropinocytosis was examined by the ability of cells to internalize dextran and sEV. Macropinocytosis was analyzed in Na(+)/H(+) exchanger 7 (NHE7)-knockdown and -overexpressing cells. The properties of cells were studied using functional assays. pH biosensor was used to evaluate the intracellular and endosomal pH. The expression of NHE7 in patients' liver tissues was examined by immunofluorescent staining. Inducible silencing of NHE7 in established tumors was performed to reveal the therapeutic potential of targeting NHE7. RESULTS The data revealed that macropinocytosis controlled the internalization of sEVs and their oncogenic effect on recipient cells. It was found that metastatic HCC cells exhibited the highest efficiency of sEV uptake relative to normal liver cells and non-metastatic HCC cells. Attenuation of macropinocytic activity by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) limited the entry of sEVs and compromised cell aggressiveness. Mechanistically, we delineated that high level of NHE7, a sodium-hydrogen exchanger, alkalized intracellular pH and acidized endosomal pH, leading to the maturation of macropinosomes. Inducible inhibition of NHE7 in established tumors developed in mice delayed tumor development and suppressed lung metastasis. Clinically, NHE7 expression was upregulated and linked to dismal prognosis of HCC. CONCLUSIONS This study advances the understanding that NHE7 enhances sEV uptake by macropinocytosis to promote the malignant properties of HCC cells. Inhibition of sEV uptake via macropinocytosis can be exploited as a treatment alone or in combination with conventional therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Yue Yao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
| | - Yi Xu
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
- State Key Laboratory of Oncology in South ChinaCancer Center of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Liang Yu
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjingP. R. China
| | - Ting‐Mao Xue
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Department of Hepatobiliary Surgery IIZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhi‐Jie Xiao
- Scientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongP. R. China
| | - Pui‐Chi Tin
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Hiu‐Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Hoi‐Tang Ma
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongP. R. China
| | - Jing‐Ping Yun
- Department of PathologyCancer Center of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongP. R. China
| |
Collapse
|
21
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
22
|
Han H, Qian C, Song M, Zhong C, Zhao Y, Lu Y. Fibroblasts: invigorated targets in pre-metastatic niche formation. Int J Biol Sci 2024; 20:1110-1124. [PMID: 38322116 PMCID: PMC10845297 DOI: 10.7150/ijbs.87680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
At present, tumor metastasis still remains the leading contributor to high recurrence and mortality in cancer patients. There have been no clinically effective therapeutic strategies for treating patients with metastatic cancer. In recent years, a growing body of evidence has shown that the pre-metastatic niche (PMN) plays a crucial role in driving tumor metastasis. Nevertheless, a clear and detailed understanding of the formation of PMN is still lacking given the fact that PMN formation involves in a wealth of complicated communications and underlying mechanisms between primary tumors and metastatic target organs. Despite that the roles of numerous components including tumor exosomes and extracellular vesicles in influencing the evolution of PMN have been well documented, the involvement of cancer-associated fibroblasts (CAFs) in the tumor microenvironment for controlling PMN formation is frequently overlooked. It has been increasingly recognized that fibroblasts trigger the formation of PMN by virtue of modulating exosomes, metabolism and so on. In this review, we mainly summarize the underlying mechanisms of fibroblasts from diverse origins in exerting impacts on PMN evolution, and further highlight the prospective strategies for targeting fibroblasts to prevent PMN formation.
Collapse
Affiliation(s)
- Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chongjin Zhong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
23
|
Obata T, Mizoguchi S, Greaney AM, Adams T, Yuan Y, Edelstein S, Leiby KL, Rivero R, Wang N, Kim H, Yang J, Schupp JC, Stitelman D, Tsuchiya T, Levchenko A, Kaminski N, Niklason LE, Brickman Raredon MS. Organ Boundary Circuits Regulate Sox9+ Alveolar Tuft Cells During Post-Pneumonectomy Lung Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574469. [PMID: 38260691 PMCID: PMC10802449 DOI: 10.1101/2024.01.07.574469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.
Collapse
Affiliation(s)
- Tomohiro Obata
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Allison M. Greaney
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of technology, Cambridge, MA, 02139
| | - Taylor Adams
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sophie Edelstein
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Rachel Rivero
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Nuoya Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Haram Kim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Junchen Yang
- Computational Biology and Biomedical Informatics, Yale University, New Haven, CT, 06511, USA
| | - Jonas C. Schupp
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hanover, Germany
| | - David Stitelman
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, University of Toyama, Toyama, 9300194, Japan
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Humacyte, Inc., Durham, North Carolina
| | - Micha Sam Brickman Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| |
Collapse
|
24
|
Guarnerio S, Tempest R, Maani R, Hunt S, Cole LM, Le Maitre CL, Chapple K, Peake N. Cellular Responses to Extracellular Vesicles as Potential Markers of Colorectal Cancer Progression. Int J Mol Sci 2023; 24:16755. [PMID: 38069076 PMCID: PMC10706375 DOI: 10.3390/ijms242316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.
Collapse
Affiliation(s)
- Sonia Guarnerio
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK;
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Keith Chapple
- Colorectal Surgical Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| |
Collapse
|
25
|
Liu H, Zhang G, Gao R. Cellular and molecular characteristics of the premetastatic niches. Animal Model Exp Med 2023; 6:399-408. [PMID: 37902101 PMCID: PMC10614130 DOI: 10.1002/ame2.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
The premetastatic niches (PMN) formed by primary tumor-derived molecules regulate distant organs and tissues to further favor tumor colonization. Targeted PMN therapy may prevent tumor metastasis in the early stages, which is becoming increasingly important. At present, there is a lack of in-depth understanding of the cellular and molecular characteristics of the PMN. Here, we summarize current research advances on the cellular and molecular characteristics of the PMN. We emphasize that PMN intervention is a potential therapeutic strategy for early prevention of tumor metastasis, which provides a promising basis for future research and clinical application.
Collapse
Affiliation(s)
- Hongfei Liu
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
26
|
Wong SWK, Tey SK, Mao X, Fung HL, Xiao Z, Wong DKH, Mak L, Yuen M, Ng IO, Yun JP, Gao Y, Yam JWP. Small Extracellular Vesicle-Derived vWF Induces a Positive Feedback Loop between Tumor and Endothelial Cells to Promote Angiogenesis and Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302677. [PMID: 37387563 PMCID: PMC10502836 DOI: 10.1002/advs.202302677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular malignancy by which its growth and dissemination are largely driven by the modulation of tumor-derived small extracellular vesicles (sEVs). Proteomic profiling of circulating sEVs of control individuals and HCC patients identifies von Willibrand factor (vWF) to be upregulated progressively along HCC stages. Elevated sEV-vWF levels are found in a larger cohort of HCC-sEV samples and metastatic HCC cell lines compared to their respective normal counterparts. Circulating sEVs of late-stage HCC patients markedly augment angiogenesis, tumor-endothelial adhesion, pulmonary vascular leakiness, and metastasis, which are significantly compromised by anti-vWF antibody. The role of vWF is further corroborated by the enhanced promoting effect of sEVs collected from vWF-overexpressing cells. sEV-vWF modulates endothelial cells through an elevated level of vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 2 (FGF2). Mechanistically, secreted FGF2 elicits a positive feedback response in HCC via the FGFR4/ERK1 signaling pathway. The co-administration of anti-vWF antibody or FGFR inhibitor significantly improves the treatment outcome of sorafenib in a patient-derived xenograft mouse model. This study reveals mutual stimulation between HCC and endothelial cells by tumor-derived sEVs and endothelial angiogenic factors, facilitating angiogenesis and metastasis. It also provides insights into a new therapeutic strategy involving blocking tumor-endothelial intercellular communication.
Collapse
Affiliation(s)
- Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of SurgerySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Hiu Ling Fung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Zhi‐Jie Xiao
- Research CentreThe Seventh Affiliated HospitalSun Yat‐sen University518107ShenzhenP. R. China
| | - Danny Ka Ho Wong
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of MedicineSchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang HospitalSouthern Medical UniversityGuangzhouGuangdong510280P. R. China
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research, The University of Hong KongHong Kong
| |
Collapse
|
27
|
Hu M, Kenific CM, Boudreau N, Lyden D. Tumor-derived nanoseeds condition the soil for metastatic organotropism. Semin Cancer Biol 2023; 93:70-82. [PMID: 37178822 PMCID: PMC10362948 DOI: 10.1016/j.semcancer.2023.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.
Collapse
Affiliation(s)
- Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Roefs MT, Bauzá-Martinez J, van de Wakker SI, Qin J, Olijve WT, Tuinte R, Rozeboom M, Snijders Blok C, Mol EA, Wu W, Vader P, Sluijter JPG. Cardiac progenitor cell-derived extracellular vesicles promote angiogenesis through both associated- and co-isolated proteins. Commun Biol 2023; 6:800. [PMID: 37528162 PMCID: PMC10393955 DOI: 10.1038/s42003-023-05165-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived lipid bilayer-enclosed particles that play a role in intercellular communication. Cardiac progenitor cell (CPC)-derived EVs have been shown to protect the myocardium against ischemia-reperfusion injury via pro-angiogenic effects. However, the mechanisms underlying CPC-EV-induced angiogenesis remain elusive. Here, we discovered that the ability of CPC-EVs to induce in vitro angiogenesis and to stimulate pro-survival pathways was lost upon EV donor cell exposure to calcium ionophore. Proteomic comparison of active and non-active EV preparations together with phosphoproteomic analysis of activated endothelial cells identified the contribution of candidate protein PAPP-A and the IGF-R signaling pathway in EV-mediated cell activation, which was further validated using in vitro angiogenesis assays. Upon further purification using iodixanol gradient ultracentrifugation, EVs partly lost their activity, suggesting a co-stimulatory role of co-isolated proteins in recipient cell activation. Our increased understanding of the mechanisms of CPC-EV-mediated cell activation will pave the way to more efficient EV-based therapeutics.
Collapse
Affiliation(s)
- Marieke Theodora Roefs
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Julia Bauzá-Martinez
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Jiabin Qin
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Willem Theodoor Olijve
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Robin Tuinte
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein Rozeboom
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian Snijders Blok
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emma Alise Mol
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Singapore, Singapore.
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
29
|
Xu Y, Yao Y, Yu L, Zhang X, Mao X, Tey SK, Wong SWK, Yeung CLS, Ng TH, Wong MYM, Che C, Lee TKW, Gao Y, Cui Y, Yam JWP. Clathrin light chain A-enriched small extracellular vesicles remodel microvascular niche to induce hepatocellular carcinoma metastasis. J Extracell Vesicles 2023; 12:e12359. [PMID: 37606345 PMCID: PMC10443339 DOI: 10.1002/jev2.12359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Small extracellular vesicles (sEVs) play a key role in exchanging cargoes between cells in tumour microenvironment. This study aimed to elucidate the functions and mechanisms of hepatocellular carcinoma (HCC) derived sEV-clathrin light chain A (CLTA) in remodelling microvascular niche. CLTA level in the circulating sEVs of HCC patients was analysed by enzyme-linked immunosorbent assay (ELISA). The functions of sEV-CLTA in affecting HCC cancerous properties were examined by multiple functional assays. Mass spectrometry was used to identify downstream effectors of sEV-CLTA in human umbilical vein endothelial cells (HUVECs). Tube formation, sprouting, trans-endothelial invasion and vascular leakiness assays were performed to determine the functions of sEV-CLTA and its effector, basigin (BSG) in HUVECs. BSG inhibitor, SP-8356, was tested in a mouse model of patient-derived xenografts (PDXs). Circulating sEVs of HCC patients had markedly enhanced CLTA levels than control individuals and were reduced in patients after surgery. HCC derived sEV-CLTA enhanced HCC cancerous properties, disrupted endothelial integrity and induced angiogenesis. Mechanistically, CLTA remodels microvascular niche by stabilizing and upregulating BSG. Last, SP-8356 alone or in combination with sorafenib attenuated PDXs growth. The study reveals the role of HCC derived sEV-CLTA in microvascular niche formation. Inhibition of CLTA and its mediated pathway may illuminate a new therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Yue Yao
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Liang Yu
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Xiaoxin Zhang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of MedicineJiangsu UniversityZhenjiangJiangsuP. R. China
| | - Xiaowen Mao
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Tung Him Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Melody YM Wong
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong
| | - Chi‐Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedHong Kong
- State Key Laboratory of Synthetic Chemistry, and Department of ChemistryThe University of Hong KongHong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong
| | - Yi Gao
- Department of Hepatobiliary Surgery IIZhuJiang Hospital, Southern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| |
Collapse
|
30
|
Dong G, Chen P, Xu Y, Liu T, Yin R. Cancer-associated fibroblasts: Key criminals of tumor pre-metastatic niche. Cancer Lett 2023; 566:216234. [PMID: 37236390 DOI: 10.1016/j.canlet.2023.216234] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant and important components of the tumour mesenchyme, and have been extensively studied for their role in primary tumours. CAFs provide biomechanical support for tumour cells and play key roles in immunosuppression and tumour metastasis. CAFs can promote epithelial-mesenchymal transition (EMT) of the primary tumour by secreting extracellular vesicles (EVs), increasing adhesion to tumour cells, remodelling the extracellular matrix (ECM) of the primary tumour, and changing its mechanical stiffness, which provides a pathway for tumour metastasis. Moreover, CAFs can form cell clusters with circulating tumour cells (CTCs) to help them resist blood shear forces and achieve colonisation of distant host organs. Recent studies have revealed their roles in pre-metastatic niche (PMN) formation and prevention. In this review, we discuss the role of CAFs in PMN formation and therapeutic interventions targeting PMN and CAFs to prevent metastasis.
Collapse
Affiliation(s)
- Guozhang Dong
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Peng Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; The Fourth Clinical College of Nanjing Medical University, 21009, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China.
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, 21009, Nanjing, China; Department of Scientific Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China; Jiangsu Biobank of Clinical Resources, Nanjing, 210009, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211116, Nanjing, China
| |
Collapse
|
31
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
32
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
33
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
34
|
Ma YB, Qiao JW, Hu X. Transmembrane serine protease 2 cleaves nidogen 1 and inhibits extrahepatic liver cancer cell migration and invasion. Exp Biol Med (Maywood) 2023; 248:91-105. [PMID: 36408877 PMCID: PMC10041054 DOI: 10.1177/15353702221134111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to confirm whether transmembrane serine protease 2 (TMPRSS2) regulates nidogen 1 (NID1) expression in extracellular vesicles (EVs) and metastatic hepatocellular carcinoma (HCC) cells. HCC cells, HUVEC cells, MRC-5 cells, HLE cells, MHCCLM3 cells, MHCC97L cells, H2P cells, H2M cells, as well as LO2 cells were cultured according to providers' instruction and EV models were established by using BALB/cAnN-nu mice to facilitate the verifications. We found that TMPRSS2 expression was inversely correlated with the metastatic potential of HCC cell lines. The expression of TMPRSS2 decreased in a time-dependent manner in tumor-bearing model mice implanted with MHCCLM3 cells compared with uninoculated mice. TMPRSS2 overexpression in MHCCLM3 and MHCC97L cells led to the significant downregulation of NID1 expression in total cell lysates and isolated EVs. In contrast, TMPRSS2 silencing resulted in the elevation of NID1 expression in cells and EVs. Administration of EVs from MHCCLM3 and MHCC97L cells with overexpressed or silenced TMPRSS2 inhibited or strengthened, respectively, the invasion, proliferation, and migration of LO2 tumor cells. EVs derived from MHCCLM3 and MHCC97L cells with overexpressed or depleted TMPRSS2 also deactivated or activated fibroblasts, respectively. These EVs secrete inflammatory cytokines and phosphorylated p65, facilitate the colonization of fibroblasts, and augment fibroblast growth and motility. These findings provide evidence for a new candidate drug targeting tumorigenic EV-NID1 to treat HCC.
Collapse
Affiliation(s)
- Yong-Biao Ma
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang 261041, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Jian-Wen Qiao
- Department of Hepatobiliary Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
35
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
36
|
Xue T, Yam JWP. Role of Small Extracellular Vesicles in Liver Diseases: Pathogenesis, Diagnosis, and Treatment. J Clin Transl Hepatol 2022; 10:1176-1185. [PMID: 36381103 PMCID: PMC9634776 DOI: 10.14218/jcth.2022.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/08/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicular bodies that bud off from the cell membrane or are secreted virtually by all cell types. Small EVs (sEVs or exosomes) are key mediators of cell-cell communication by delivering their cargo, including proteins, lipids, or RNAs, to the recipient cells where they induce changes in signaling pathways and phenotypic properties. Tangible findings have revealed the pivotal involvement of sEVs in the pathogenesis of various diseases. On the bright side, they are rich sources of biomarkers for diagnosis, prognosis, treatment response, and disease monitoring. sEVs have high stability, biocompatibility, targetability, low toxicity, and are immunogenic in nature. Their intrinsic properties make sEVs an ideal delivery vehicle to be loaded with cargo for therapeutic interventions. Liver diseases are a major global health problem. This review aims to focus on the roles and mechanisms of sEVs in the pathogenesis of liver diseases, liver injury, liver failure, and liver cancer. sEVs are released not only by hepatocytes but also by stromal and immune cells in the microenvironment. Early detection of liver disease determines the chance for curative treatment and high survival of patients. This review focuses on the potential of circulating sEV cargo as specific and sensitive noninvasive biomarkers for the early detection and prognosis of liver diseases. In addition, the therapeutic use of sEVs derived from various cell types is discussed. Although sEVs hold promise for clinical applications, there are still challenges to be overcome by further research to bring utilization of sEVs into clinical practice.
Collapse
Affiliation(s)
- Tingmao Xue
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence to: Judy Wai Ping Yam, Department of Pathology, 7/F Block T, Queen Mary Hospital, Pokfulam, Hong Kong, China. ORCID: https://orcid.org/0000-0002-5637-121X. Tel: +852-22552681, Fax: +852-22185212, E-mail:
| |
Collapse
|
37
|
Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:1088-1101. [PMID: 35158067 DOI: 10.1016/j.semcancer.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
Despite rapid development of anti-tumorigenic treatments, the clinical outcome for hepatocellular carcinoma (HCC) is still far from satisfactory. With a deeper understanding about tumor microenvironment (TME), the critical role of extracellular vesicles (EVs) as intercellular liaison has come into spotlight. The dynamic functionality of these nanoparticles revealed cancer cells can employ both tumor and non-tumorous components for their own benefit, so as to mediate cell-to-cell communication and interchange of oncogenic biomolecules. Increasing studies on HCC-derived EVs have identified various irregulated biomolecules, that may serve as biomarkers or therapeutic targets. In this review, we first introduce the current knowledge about EVs and how they operate to maintain a healthy liver microenvironment. We then summarize some of the aberrant observations reported on HCC-derived EVs and how they contribute to HCC pathogenesis. Finally, we describe how current treatments for HCC alter behavior of EVs, which may shed light for potential prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
38
|
Wong TLM, Wong TL, Zhou L, Man K, Purcell J, Lee TK, Yun JP, Ma S. Protein Tyrosine Kinase 7 (PTK7) Promotes Metastasis in Hepatocellular Carcinoma via SOX9 Regulation and TGF-β Signaling. Cell Mol Gastroenterol Hepatol 2022; 15:13-37. [PMID: 36202326 PMCID: PMC9672488 DOI: 10.1016/j.jcmgh.2022.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Metastasis is found in most advanced hepatocellular carcinoma (HCC) patients, and it drives tumor recurrence and systemic failure. There is no effective treatment owing to its complex biological features. Many of the molecular drivers of metastasis are crucial players in normal physiology but behave unconventionally during cancer progression. Targeting these molecular drivers for therapy and differentiating them from a physiological background require a detailed examination of the novel mechanisms involved in their activation during metastasis. METHODS Publicly available transcriptomic data such as that of TCGA-LIHC and Gene Expression Omnibus were utilized to identify novel targets upregulated in advanced and metastatic HCC. Validation of candidates was assisted by immunohistochemistry performed on tissue microarrays derived from more than 100 HCC patients. Expression of protein tyrosine kinase 7 (PTK7) was studied under the treatment of transforming growth factor-β1 and knockdown of SRY-Box Transcription Factor 9 (SOX9) to delineate upstream regulation, while CRISPR-mediated knockout and lentiviral overexpression of PTK7 in HCC cells were performed to study their functional and signaling consequences. Manipulated HCC cells were injected into mice models either by orthotopic or tail-vein injection to observe for any in vivo pro-metastatic effects. RESULTS PTK7 was discovered to be the kinase most significantly upregulated in advanced and metastatic HCC, at both transcriptomic and proteomic level. Bioinformatic analyses and functional assays performed in HCC cell lines revealed transforming growth factor-β signaling and SOX9 to be important activators of PTK7 expression. Functionally, enrichment of PTK7 expression could positively regulate metastatic potential of HCC cells in vitro and in lung metastasis models performed in immunodeficient mice. The up-regulation of PTK7 recruited the epithelial-mesenchymal transition components, zinc finger protein SNAI2 (SLUG) and zinc finger E-box-binding homeobox 1 (ZEB1). CONCLUSIONS Our study proposes PTK7 as a novel molecular driver in metastatic HCC, particularly in a transforming growth factor-β-activated microenvironment. The preferential expression of PTK7 resulted in a previously unobserved regulatory effect on the recruitment of epithelial-mesenchymal transition components, which established PTK7 as a potential determinant of specific epithelial-mesenchymal transition status. Therefore, our data support the continual development of PTK7-targeted agents as antimetastatic therapies.
Collapse
Affiliation(s)
- Tsz Lam Matthew Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | - Terence K. Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
39
|
Lee Y, Kim JH. The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin Mol Hepatol 2022; 28:706-724. [PMID: 35232008 PMCID: PMC9597227 DOI: 10.3350/cmh.2021.0390] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles released from almost all cell types. EVs mediate intercellular communication by delivering their surface and luminal cargoes, including nucleic acids, proteins, and lipids, which reflect the pathophysiological conditions of their cellular origins. Hepatocytes and hepatic non-parenchymal cells utilize EVs to regulate a wide spectrum of biological events inside the liver and transfer them to distant organs through systemic circulation. The liver also receives EVs from multiple organs and integrates these extrahepatic signals that participate in pathophysiological processes. EVs have recently attracted growing attention for their crucial roles in maintaining and regulating hepatic homeostasis. This review summarizes the roles of EVs in intrahepatic and interorgan communications under different pathophysiological conditions of the liver, with a focus on chronic liver diseases including nonalcoholic steatohepatitis, alcoholic hepatitis, viral hepatitis, liver fibrosis, and hepatocellular carcinoma. This review also discusses recent progress for potential therapeutic applications of EVs by targeting or enhancing EV-mediated cellular communication for the treatment of liver diseases.
Collapse
Affiliation(s)
- Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea,Corresponding author : Jong-Hoon Kim Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-3290-3007, Fax: +82-2-3290-3040, E-mail:
| |
Collapse
|
40
|
Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022; 11:54. [PMID: 36109501 PMCID: PMC9477829 DOI: 10.1038/s41389-022-00431-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExosomes belong to a subpopulation of extracellular vesicles secreted by the dynamic multistep endocytosis process and carry diverse functional molecular cargoes, including proteins, lipids, nucleic acids (DNA, messenger and noncoding RNA), and metabolites to promote intercellular communication. Proteins and noncoding RNA are among the most abundant contents in exosomes; they have biological functions and are selectively packaged into exosomes. Exosomes derived from tumor, stromal and immune cells contribute to the multiple stages of cancer progression as well as resistance to therapy. In this review, we will discuss the biogenesis of exosomes and their roles in cancer development. Since specific contents within exosomes originate from their cells of origin, this property allows exosomes to function as valuable biomarkers. We will also discuss the potential use of exosomes as diagnostic and prognostic biomarkers or predictors for different therapeutic strategies for multiple cancers. Furthermore, the applications of exosomes as direct therapeutic targets or engineered vehicles for drugs are an important field of exosome study. Better understanding of exosome biology may pave the way to promising exosome-based clinical applications.
Collapse
|
41
|
Kobayashi M, Fujiwara K, Takahashi K, Yoshioka Y, Ochiya T, Podyma-Inoue KA, Watabe T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm Regen 2022; 42:38. [PMID: 36057626 PMCID: PMC9441046 DOI: 10.1186/s41232-022-00225-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background During metastasis, cancer cells undergo epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β), which is abundant in the tumor microenvironment, and acquire invasive and metastatic potentials. Metastasis to distant organs requires intravascular invasion and extravasation of cancer cells, which is accompanied by the disruption of the adhesion between vascular endothelial cells. Cancer cell-derived extracellular vesicles (EVs) have been suggested to induce the destabilization of normal blood vessels at the metastatic sites. However, the roles of EVs secreted from cancer cells that have undergone EMT in the destabilization of blood vessels remain to be elucidated. In the present study, we characterized EVs secreted by oral cancer cells undergoing TGF-β-induced EMT and elucidated their effects on the characteristics of vascular endothelial cells. Methods Induction of EMT by TGF-β in human oral cancer cells was assessed using quantitative RT-PCR (qRT-PCR) and immunocytochemistry. Oral cancer cell-derived EVs were isolated from the conditioned media of oral cancer cells that were treated with or without TGF-β using ultracentrifugation, and characterized using nanoparticle tracking analysis and immunoblotting. The effects of EVs on human umbilical artery endothelial cells were examined by qRT-PCR, cellular staining, and permeability assay. The significant differences between means were determined using a t-test or one-way analysis of variance with Tukey’s multiple comparisons test. Results Oral cancer cells underwent EMT in response to TGF-β as revealed by changes in the expression of epithelial and mesenchymal cell markers at both the RNA and protein levels. Oral cancer cells treated with TGF-β showed increased EV production and altered EV composition when compared with untreated cells. The EVs that originated from cells that underwent EMT by TGF-β induced endothelial-mesenchymal transition, which was characterized by the decreased and increased expression of endothelial and mesenchymal cell markers, respectively. EVs derived from oral cancer cells also induced intercellular gap formation which led to the loss of endothelial cell barrier stability. Conclusions EVs released from oral cancer cells that underwent TGF-β-induced EMT target endothelial cells to induce vascular destabilization. Detailed characterization of oral cancer-derived EVs and factors responsible for EV-mediated vascular instability will lead to the development of agents targeting metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00225-7.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
42
|
Abstract
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
Collapse
Affiliation(s)
- Oliver Cucanic
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Rae H Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
43
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
44
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
45
|
Cheng P, Cao T, Zhao X, Lu W, Miao S, Ning F, Wang D, Gao Y, Wang L, Pei G, Yang L. Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioact Mater 2022; 12:185-197. [PMID: 35310379 PMCID: PMC8897190 DOI: 10.1016/j.bioactmat.2021.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
The technique bottleneck of repairing large bone defects with tissue engineered bone is the vascularization of tissue engineered grafts. Although some studies have shown that extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) promote bone healing and repair by accelerating angiogenesis, the effector molecules and the mechanism remain unclear, which fail to provide ideas for the future research and development of cell-free interventions. Here, we found that Nidogen1-enriched EV (EV-NID1) derived from BMSCs interferes with the formation and assembly of focal adhesions (FAs) by targeting myosin-10, thereby reducing the adhesion strength of rat arterial endothelial cells (RAECs) to the extracellular matrix (ECM), and enhancing the migration and angiogenesis potential of RAECs. Moreover, by delivery with composite hydrogel, EV-NID1 is demonstrated to promote angiogenesis and bone regeneration in rat femoral defects. This study identifies the intracellular binding target of EV-NID1 and further elucidates a novel approach and mechanism, thereby providing a cell-free construction strategy with precise targets for the development of vascularized tissue engineering products. Nidogen1 is enriched in extracellular vesicles (EV-NID1) derived from BMSCs. EV-NID1 interferes with the formation and assembly of focal adhesions (FAs). Myosin-10 was identified as the intracellular binding target of EV-NID1. The composite hydrogel loaded with EV-NID1 promotes the repair of bone defects by accelerating angiogenesis.
Collapse
Affiliation(s)
- Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tianqing Cao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xueyi Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fenru Ning
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Gao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Long Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Corresponding author.
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Corresponding author.
| |
Collapse
|
46
|
Mei P, Tey SK, Wong SWK, Ng TH, Mao X, Yeung CLS, Xu Y, Yu L, Huang Q, Cao P, Yam JWP, Gao Y. Actin-related protein 2/3 complex subunit 2-enriched extracellular vesicles drive liver cancer metastasis. Hepatol Int 2022; 16:603-613. [PMID: 35556226 DOI: 10.1007/s12072-022-10338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) play pivotal roles in tumor growth, cancer metastasis and angiogenesis. Here, we aimed to identify proteins that contribute to the functionality of EVs derived from metastatic hepatocellular carcinoma (HCC) cells. METHODS Proteins of EVs derived from metastatic HCC cells and normal liver cells were analyzed by mass spectrometry. Proteomic profiling identified actin-related protein 2/3 complex subunit 2 (ARPC2) to be highly expressed in EVs of metastatic HCC cells. The expression of ARPC2 in EVs and HCC tissues was examined using immunoblotting and TCGA database, respectively. The functional roles of EV-ARPC2 were investigated by knockout approach and various in vitro and in vivo assays. RESULTS ARPC2 was highly expressed in EVs of metastatic cells but barely detected in non-metastatic HCC cells and normal liver cells. Immunogold labeling showed the presence of APRC2 on the surface of EVs. Analysis of TCGA database of liver cancer revealed ARPC2 overexpression was correlated with poor prognosis of patients. ARPC2 was knockout in metastatic HCC cells. EVs derived from knockout cells displayed compromised activity in enhancing cell growth, motility and metastasis compared to EVs of control cells. Pimozide, an inhibitor of APRC2, also inhibited the promoting effect of EVs of metastatic cells in lung colonization of tumor cells in mice. CONCLUSION This study reveals previously unreported expression and function of ARPC2 in EVs. EVs with highly expressed ARPC2 enhance cancer cell growth and metastasis. ARPC2 may provide a prospective target for the novel treatment of HCC patients.
Collapse
Affiliation(s)
- Piaorong Mei
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Samuel Wan Ki Wong
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianhua Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peihua Cao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Tey SK, Lam H, Wong SWK, Zhao H, To KKW, Yam JWP. ACE2-enriched extracellular vesicles enhance infectivity of live SARS-CoV-2 virus. J Extracell Vesicles 2022; 11:e12231. [PMID: 35582880 PMCID: PMC9115585 DOI: 10.1002/jev2.12231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sze Keong Tey
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, People's Republic of China.,School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Hoiyan Lam
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, People's Republic of China
| | - Samuel Wan Ki Wong
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, People's Republic of China
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, People's Republic of China
| | - Kelvin Kai-Wang To
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Pokfulam, People's Republic of China
| |
Collapse
|
48
|
Tey SK, Wong SWK, Yeung CLS, Li JYK, Mao X, Chung CYS, Yam JWP. Liver cancer cells with nuclear MET overexpression release translation regulatory protein-enriched extracellular vesicles exhibit metastasis promoting activity. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e39. [PMID: 38939527 PMCID: PMC11080920 DOI: 10.1002/jex2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/29/2024]
Abstract
MET receptor tyrosine kinase is a cell surface receptor that plays important role in embryonic development and tissue regeneration. Aberrant MET activation has been widely reported in different human cancers, making MET an attractive therapeutic target. The presence of truncated MET within the nucleus (nMET) with potential novel functions poses a great challenge to the current therapeutic strategies against MET surface receptor. Previous work has demonstrated the promoting effect of nMET in aggressive properties of hepatocellular carcinoma (HCC) cells by activating TAK1/NF-κB signalling pathway. Herein, we report the role of nMET in modulating tumour microenvironment and tumour metastasis mediated by extracellular vesicles (EVs). EVs released by nMET overexpressing cells enhanced cell motility and provoked metastasis. Proteomic profiling revealed the enrichment of translational regulatory proteins in EVs derived from nMET overexpressing cells. These proteins include eukaryotic initiation factor (EIF), ribosomal protein small subunit (RPS) and ribosomal protein larger subunit (RPL) gene families. Knockdown of EIF3I, RPS3A and RPL10 diminished the promoting effect of EVs in cell migration invasiveness and metastasis. In conclusion, the findings reveal an unrecognized capacity of nMET to augment HCC through the release of EVs with oncogenic effect. Targeting these translation-related proteins may serve as an alternative treatment for patients with nMET overexpression.
Collapse
Affiliation(s)
- Sze Keong Tey
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- School of Biological SciencesCollege of ScienceNanyang Technological UniversitySingapore
| | - Samuel Wan Ki Wong
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Jason Ying Ki Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Xiaowen Mao
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Clive Yik Sham Chung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Judy Wai Ping Yam
- Department of PathologySchool of Clinical MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong Kong
| |
Collapse
|
49
|
Tey SK, Wong SWK, Chan JYT, Mao X, Ng TH, Yeung CLS, Leung Z, Fung HL, Tang AHN, Wong DKH, Mak LY, Yuen MF, Sin CF, Ng IOL, Ma SKY, Lee TKW, Cao P, Zhong K, Gao Y, Yun JP, Yam JWP. Patient pIgR-enriched extracellular vesicles drive cancer stemness, tumorigenesis and metastasis in hepatocellular carcinoma. J Hepatol 2022; 76:883-895. [PMID: 34922977 DOI: 10.1016/j.jhep.2021.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Extracellular vesicles (EVs) play a pivotal role in connecting tumor cells with their local and distant microenvironments. Herein, we aimed to understand the role (on a molecular basis) patient-derived EVs play in modulating cancer stemness and tumorigenesis in the context of hepatocellular carcinoma (HCC). METHODS EVs from patient sera were isolated, quantified and characterized. The EVs were vigorously tested, both in vitro and in vivo, through various functional assays. Proteomic analysis was performed to identify the functional components of EVs. The presence and level of polymeric immunoglobulin receptor (pIgR) in circulating EVs and tumor and non-tumorous tissues of patients with HCC were determined by ELISA, immunoblotting, immunohistochemistry and quantitative PCR. The functional role and underlying mechanism of EVs with enhanced pIgR expression were elucidated. Blockade of EV-pIgR with neutralizing antibody was performed in nude mice implanted with patient-derived tumor xenografts (PDTXs). RESULTS Circulating EVs from patients with late-stage HCC (L-HCC) had significantly elevated pIgR expression compared to the EVs released by control individuals. The augmenting effect of L-HCC-EVs on cancer stemness and tumorigenesis was hindered by an anti-pIgR antibody. EVs enriched with pIgR consistently promoted cancer stemness and cancerous phenotypes in recipient cells. Mechanistically, EV-pIgR-induced cancer aggressiveness was abrogated by Akt and β-catenin inhibitors, confirming that the role of EV-pIgR depends on the activation of the PDK1/Akt/GSK3β/β-catenin signaling axis. Furthermore, an anti-pIgR neutralizing antibody attenuated tumor growth in mice implanted with PDTXs. CONCLUSIONS This study illustrates a previously unknown role of EV-pIgR in regulating cancer stemness and aggressiveness: EV-pIgR activates PDK1/Akt/GSK3β/β-catenin signaling cascades. The blockade of the intercellular communication mediated by EV-pIgR in the tumor microenvironment may provide a new therapeutic strategy for patients with cancer. LAY SUMMARY The World Health Organization estimates that more than 1 million patients will die from liver cancer, mostly hepatocellular carcinoma (HCC), in 2030. Understanding the underlying mechanism by which HCC acquires aggressive attributes is crucial to improving the diagnosis and treatment of patients. Herein, we demonstrated that nanometer-sized extracellular vesicles released by tumors promote cancer stemness and tumorigenesis. Within these oncogenic vesicles, we identified a key component that functions as a potent modulator of cancer aggressiveness. By inhibiting this functional component of EVs using a neutralizing antibody, tumor growth was profoundly attenuated in mice. This hints at a potentially effective therapeutic alternative for patients with cancer.
Collapse
Affiliation(s)
- Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Janice Yuen Tung Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zoe Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hui Ling Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alexander Hin Ning Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Danny Ka Ho Wong
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Chun-Fung Sin
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Stephanie Kwai Yee Ma
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kebo Zhong
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
50
|
Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer. Hum Cell 2022; 35:649-664. [PMID: 35044630 DOI: 10.1007/s13577-022-00673-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
As one of important components of tumor microenvironment, CAFs (cancer-associated fibroblasts) play a vital role in the development and metastasis of bladder cancer. The present study aimed to develop a CAFs-related gene signature to predict the prognosis of patients and the response to chemotherapy and immunotherapy based on research of multidatabase. Expression data and clinical information were obtained from TCGA and GEO databases. Different bioinformatic and statistical methods were combined to construct the robust CAFs-related gene signature for prognosis. The model was explored from four aspects: single-cell source, immune infiltration, correlation with cancer-related genes and pathways, and prediction of drug response. After screening, five genes (BNC2, LAMA2, MFAP5, NID1, and OLFML1) related to CAFs were used for constructing the signature to divide patients into high- and low-risk groups. Patients in low-risk group had better prognosis and multidatabase analysis confirmed the predictive value. The five genes were mainly expressed by fibroblasts and involved in regulation of pathways related with glycolysis, hypoxia, and epithelial-mesenchymal transition (EMT). BNC2, LAMA2, and NID1 were strongly associated with drug sensitivity. Moreover, the immunological status was different between high- and low-risk groups. High-risk patients had poor response to chemotherapy or immunotherapy. The CAFs-related gene signature might help to optimize risk stratification and provide a new insight in individual treatment for bladder cancer.
Collapse
|