1
|
Liu S, Li K, Zheng Y, Xue J, Wang S, Li S, Cao P, Liu F, Dai Q, Feng X, Yang R, Ping W, Wu D, Fan P, Fu Q, Chen Z. Mitogenomes of museum specimens provide new insight into species classification and recently reduced diversity of highly endangered Nomascus gibbons. Integr Zool 2025; 20:674-684. [PMID: 39075927 PMCID: PMC12046444 DOI: 10.1111/1749-4877.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Our findings reveal that the western black crested gibbon (Nomascus concolor) did not divide into different subspecies, and the relatively low level of genetic diversity emphasizes the importance of monitoring this indicator for vulnerable wildlife. Meanwhile, phylogeographic analysis of the Nomascus genus shows a north-to-south trend of ancestral geographic distribution.
Collapse
Affiliation(s)
- Siqiong Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jiayang Xue
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Song Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhong X, Huang X, Zhu C, Wang Y, Chapman CA, Garber PA, Chen Y, Fan P. Science-based suggestions to save the world's rarest primate species Nomascus hainanus. SCIENCE ADVANCES 2025; 11:eadv4828. [PMID: 40215308 PMCID: PMC11988426 DOI: 10.1126/sciadv.adv4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Conservation practices for extremely small populations must be grounded in solid science to prevent extinction. Hainan gibbon (Nomascus hainanus) is the world's rarest primate species; however, insufficient data on its habitat suitability and genetic status impede evidence-based decisions for habitat restoration. Here, we conducted a comprehensive analysis of Hainan gibbons' energy intake and expenditure, reproductive parameters, and genetic diversity based on field research (March 2021 to December 2022) and long-term historical data (2003 to 2024). By comparing our results with those of captive gibbons and other free-feeding captive primates, we found that Hainan gibbons can obtain sufficient energy for growth and reproduction in their existing habitats. Furthermore, we identified an additional D-loop haplotype indicating that the current population is more genetically diverse than previously thought. However, recently formed adult male-female pairs are increasingly related, signaling a high risk for inbreeding within this small population. Based on these findings, we highlight an urgent need to expand available habitat by building corridors.
Collapse
Affiliation(s)
- Xukai Zhong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xia Huang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Changyue Zhu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuxin Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, V9R 5S5, Canada
- Wilson Center,1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710127, China
| | - Paul A. Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Yuan Chen
- School of Ecology, Hainan University, Haikou 570228, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Li Y, Luo J, Chen M, Roos C, Hu Z, Chen Y, Tian Y, Guo R, Kuang W, Yu L. Genetic Diversity, Genetic Structure, and Demographic History of Black Snub-Nosed Monkey (Rhinopithecus strykeri) in the Gaoligong Mountains, Southwestern China. Am J Primatol 2025; 87:e70031. [PMID: 40195038 DOI: 10.1002/ajp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/20/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
The Gaoligong Mountains, located in the southeastern Tibetan Plateau, is one of the world's biodiversity hotspots and provides a refugium for many endangered endemic animals. In this study, we reported a population genetic study on black snub-nosed monkey (Rhinopithecus strykeri), a critically endangered primate endemic to the Gaoligong Mountains, yet their large-scale population genetic study remains underexplored. Here, we performed population genetic analyses from two geographical populations (Pianma and Luoma) based on targeted genomic single-nucleotide polymorphism (SNP) data (37.7 K) and mitochondrial DNA (mtDNA) control region (842 bp). Both nuclear SNP data and mtDNA revealed relatively low levels of genetic variation in both populations compared to other reported primates, which is most likely to be explained by loss of historical genetic diversity due to inbreeding and long-term small effective population size, thus potentially aggravating the effects of inbreeding and genetic depression. Phylogenetic and population structure analyses for mtDNA revealed two deep lineages (approximately 0.69 million years ago), but limited genetic differentiation in nuclear data, which might have been caused by the Late Cenozoic uplift of the Tibetan Plateau and glacial refuge, and subsequent secondary contact as a result of historically high and bidirectional gene flow between populations. Ecological niche modeling and landscape connectivity analyses also showed historical and recent connectivity between two geographical populations. The demographic history inferred from both mtDNA and nuclear data revealed at least two continuous declines in the effective population size occurring around 43 Kya and 8-10 Kya, respectively, probably due to Pleistocene glaciations and subsequent human activities. Our results provide the first detailed and comprehensive genetic insights into the genetic diversity, population structure, and demographic history of a critically endangered species, and provide essential baseline information to guide conservation efforts.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jia Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Minglin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Zhechang Hu
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Yixin Chen
- Key Laboratory of Genetic Evolution and Animal Models & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life and Environmental Sciences, Central South University of Forestry & Technology, Changsha, China
| | - Yingping Tian
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Rongxi Guo
- Lushui Bureau of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
4
|
Hending D. Cryptic species conservation: a review. Biol Rev Camb Philos Soc 2025; 100:258-274. [PMID: 39234845 PMCID: PMC11718601 DOI: 10.1111/brv.13139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Cryptic species are groups of two or more taxa that were previously classified as single nominal species. Being almost morphologically indistinguishable, cryptic species have historically been hard to detect. Only through modern morphometric, genetic, and molecular analyses has the hidden biodiversity of cryptic species complexes been revealed. Cryptic diversity is now widely acknowledged, but unlike more recognisable, charismatic species, scientists face additional challenges when studying cryptic taxa and protecting their wild populations. Demographical and ecological data are vital to facilitate and inform successful conservation actions, particularly at the individual species level, yet this information is lacking for many cryptic species due to their recent taxonomic description and lack of research attention. The first part of this article summarises cryptic speciation and diversity, and explores the numerous barriers and considerations that conservation biologists must navigate to detect, study and manage cryptic species populations effectively. The second part of the article seeks to address how we can overcome the challenges associated with efficiently and non-invasively detecting cryptic species in-situ, and filling vital knowledge gaps that are currently inhibiting applied conservation. The final section discusses future directions, and suggests that large-scale, holistic, and collaborative approaches that build upon successful existing applications will be vital for cryptic species conservation. This article also acknowledges that sufficient data to implement effective species-specific conservation will be difficult to attain for many cryptic animals, and protected area networks will be vital for their conservation in the short term.
Collapse
Affiliation(s)
- Daniel Hending
- Department of BiologyUniversity of Oxford11a Mansfield RoadOxfordOX1 3SZUK
| |
Collapse
|
5
|
Cheyne SM, Thompson C, Martin A, K Aulia AA, Birot H, Cahyaningrum E, Aragay J, Hutasoit PA, Sugardjito J. The power of gibbon songs: Going beyond the research to inform conservation actions. Am J Primatol 2024; 86:e23626. [PMID: 38566320 DOI: 10.1002/ajp.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Gibbons (Hylobatidae) are the smallest of the apes, known for their arboreal behavior and stereotyped songs. These species and sex-specific songs are often the subject of detailed studies regarding their evolution, responses to changing environments, involvement in social behavior, and used to design vocalization-based survey techniques to monitor population densities and trends. What is poorly understood is the value and impact of using the science and sound of gibbon vocalization and gibbon stories in education and outreach to complement nongovernmental organizations (NGOs) efforts. We present an example of how Borneo Nature Foundation, a NGOs based in Indonesia, is working to use the recordings of the songs of Bornean white-bearded gibbons (Hylobates albibarbis) to inform conservation actions and education efforts. Gibbons in Indonesia are often poorly known or understood by the public compared to orangutans (Pongo spp). We showcase how a field of study, namely primate acoustics, is an untapped resource to create digital content to engage with local, national and international communities and can be developed into educational tools in the form of storytelling, mobile apps and games, to highlight the plight of these threatened species and how to conserve them.
Collapse
Affiliation(s)
- Susan M Cheyne
- Borneo Nature Foundation International, Penryn, UK
- Oxford Brookes University, Oxford, UK
| | - Carolyn Thompson
- Borneo Nature Foundation International, Penryn, UK
- University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | | | | | - Helene Birot
- Borneo Nature Foundation International, Penryn, UK
| | | | - Joana Aragay
- Borneo Nature Foundation International, Penryn, UK
| | | | | |
Collapse
|
6
|
Sariyati NH, Abdul-Latiff MAB, Aifat NR, Mohd-Ridwan AR, Osman NA, Karuppannan KV, Chan E, Md-Zain BM. Molecular phylogeny confirms the subspecies delineation of the Malayan Siamang ( Symphalangussyndactyluscontinentis) and the Sumatran Siamang ( Symphalangussyndactylussyndactylus) based on the hypervariable region of mitochondrial DNA. Biodivers Data J 2024; 12:e120314. [PMID: 38707255 PMCID: PMC11069032 DOI: 10.3897/bdj.12.e120314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Siamangs (Symphalangussyndactylus) are native to Peninsular Malaysia, Sumatra and southern Thailand and their taxonomical classification at subspecies level remains unclear. Morphologically, two subspecies were proposed as early as 1908 by Thomas namely Symphalangus s.syndactylus and Symphalanguss.continentis. Thus, this study aims to clarify the Siamang subspecies status, based on mtDNA D-loop sequences. Faecal samples were collected from wild Siamang populations at different localities in Peninsular Malaysia. A 600-bp sequence of the mitochondrial D-loop region was amplified from faecal DNA extracts and analysed along with GenBank sequences representing Symphalangus sp., Nomascus sp., Hylobates sp., Hoolock sp. and outgroups (Pongopygmaeus, Macacafascicularis and Papiopapio). The molecular phylogenetic analysis in this study revealed two distinct clades formed by S.s.syndactylus and S.s.continentis which supports the previous morphological delineation of the existence of two subspecies. Biogeographical analysis indicated that the Sumatran population lineage was split from the Peninsular Malaysian population lineage and a diversification occurrred in the Pliocene era (~ 3.12 MYA) through southward expansion. This postulation was supported by the molecular clock, which illustrated that the Peninsular Malaysian population (~ 1.92 MYA) diverged earlier than the Sumatran population (~ 1.85 MYA). This is the first study to use a molecular approach to validate the subspecies statuses of S.s.syndactylus and S.s.continentis. This finding will be useful for conservation management, for example, during Siamang translocation and investigations into illegal pet trade and forensics involving Malayan and Sumatran Siamangs.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus)84600, Muar, JohorMalaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), 84600, Muar, Johor, MalaysiaFaculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus)84600, Muar, JohorMalaysia
| | - Nor Rahman Aifat
- Faculty of Tropical Forestry, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, MalaysiaFaculty of Tropical Forestry, Universiti Malaysia Sabah, 88400Kota Kinabalu, SabahMalaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, MalaysiaCentre for Pre-University Studies, Universiti Malaysia Sarawak, 94300Kota Samarahan, SarawakMalaysia
| | - Nur Azimah Osman
- Faculty of Applied Sciences, Universiti Teknologi Mara Negeri Sembilan, 72000, Kuala Pilah, Negeri Sembilan, MalaysiaFaculty of Applied Sciences, Universiti Teknologi Mara Negeri Sembilan, 72000Kuala Pilah, Negeri SembilanMalaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), 56100, Kuala Lumpur, MalaysiaNational Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), 56100Kuala LumpurMalaysia
| | - Eddie Chan
- Genting Nature Adventure, Resorts World Awana Hotel, 69000, Genting Highlands, Pahang, MalaysiaGenting Nature Adventure, Resorts World Awana Hotel69000, Genting Highlands, PahangMalaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, MalaysiaDepartment of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| |
Collapse
|
7
|
Ma H, Wang Z, Han P, Fan P, Chapman CA, Garber PA, Fan P. Small apes adjust rhythms to facilitate song coordination. Curr Biol 2024; 34:935-945.e3. [PMID: 38266649 DOI: 10.1016/j.cub.2023.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Song coordination is a universal characteristic of human music. Many animals also produce well-coordinated duets or choruses that resemble human music. However, the mechanism and evolution of song coordination have only recently been studied in animals. Here, we studied the mechanism of song coordination in three closely related species of wild Nomascus gibbons that live in polygynous groups. In each species, song bouts were dominated by male solo sequences (referred to hereafter as male sequence), and females contributed stereotyped great calls to coordinate with males. Considering the function of rhythm in facilitating song coordination in human music and animal vocalizations, we predicted that adult males adjust their song rhythm to facilitate song coordination with females. In support of this prediction, we found that adult males produced significantly more isochronous rhythms with a faster tempo in male sequences that were followed by successful female great calls (a complete sequence with "introductory" and "wa" notes). The difference in isochrony and tempos between successful great call sequences and male sequences was smaller in N. concolor compared with the other two species, which may make it difficult for females to predict a male's precise temporal pattern. Consequently, adult females of N. concolor produced more failed great call (an incomplete sequence with only introductory notes) sequences. We propose that the high degree of rhythm change functions as an unambiguous signal that can be easily perceived by receivers. In this regard, gibbon vocalizations offer an instructive model to understand the origins and evolution of human music.
Collapse
Affiliation(s)
- Haigang Ma
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Zidi Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Pu Han
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Penglai Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, Guangxi, China; Endangered Animal Ecology, College of Life Sciences, Guangxi Normal University, Guilin 541006, Guangxi, China
| | - Colin A Chapman
- Biology Department, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada; Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA; School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA; International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671003, Yunnan, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| |
Collapse
|
8
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
9
|
Hu W, Wang H, Li X, Jiang X. New records of the white-cheeked macaque provide range extension for the endangered primate in Gaoligong Mountains. Primates 2024; 65:15-19. [PMID: 38010457 DOI: 10.1007/s10329-023-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023]
Abstract
White-cheeked macaque Macaca leucogenys is a recently described primate species discovered by camera-trap surveys in the Medog region in 2015. The species was thought to be narrowly distributed in southeastern Tibet. However, knowledge on the distribution and conservation of the species is quite limited. Based on a systematic camera-trapping survey, we report the occurrence of the species in the Gaoligong Mountains, over 350 km southeast of the nearest known population. We recorded 3025 photographs of white-cheeked macaques representing 481 independent records from 59 camera-trap stations with total trapping efforts of 18,437 camera days. Notably, part of the newly discovered locations of the white-cheeked macaque are outside of nature reserves without any formal protection and management. Our survey also confirms the occurrence of ten primate species in the Gaoligong Mountains, accounting for 35.7% of China's primates, including the Skywalker hoolock gibbon Hoolock tianxing and the Myanmar snub-nosed monkey Rhinopithecus strykeri etc. These findings reveal a new distribution record for the white-cheeked macaque and further highlight the conservation values of Gaoligong Mountains for globally threatened primate species. We also provide a preliminary report on the daily activity patterns of this endangered species, which enriches the bio-ecological data of the poorly studied species. We believe the report has significant implications for understanding the ecology of the species and improving conservation planning.
Collapse
Affiliation(s)
- Wenqiang Hu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Longxin Road, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjiao Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Longxin Road, Kunming, 650201, Yunnan, China
| | - Xueyou Li
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Longxin Road, Kunming, 650201, Yunnan, China.
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 17 Longxin Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Li WB, Teng Y, Zhang MY, Shen Y, Liu JW, Qi JW, Wang XC, Wu RF, Li JH, Garber PA, Li M. Human activity and climate change accelerate the extinction risk to non-human primates in China. GLOBAL CHANGE BIOLOGY 2024; 30:e17114. [PMID: 38273577 DOI: 10.1111/gcb.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7-4.5 km and a core area of PAs at least 0.1-0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30-50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, Anhui, China
| | - Yang Teng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Yi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Wen Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Wei Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Chen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hua Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, Anhui, China
- School of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Paul A Garber
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, Illinois, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
12
|
Fei H, de Guinea M, Yang L, Garber PA, Zhang L, Chapman CA, Fan P. Wild gibbons plan their travel pattern according to food types of breakfast. Proc Biol Sci 2023; 290:20230430. [PMID: 37192666 PMCID: PMC10188241 DOI: 10.1098/rspb.2023.0430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Planning for the future is a complex skill that is often considered uniquely human. This cognitive ability has never been investigated in wild gibbons (Hylobatidae). Here we evaluated the movement patterns from sleeping trees to out-of-sight breakfast trees in two groups of endangered skywalker gibbons (Hoolock tianxing). These Asian apes inhabit a cold seasonal montane forest in southwestern China. After controlling for possible confounding variables including group size, sleeping pattern (sleep alone or huddle together), rainfall and temperature, we found that food type (fruits or leaves) of the breakfast tree was the most important factor affecting gibbon movement patterns. Fruit breakfast trees were more distant from sleeping trees compared with leaf trees. Gibbons left sleeping trees and arrived at breakfast trees earlier when they fed on fruits compared with leaves. They travelled fast when breakfast trees were located further away from the sleeping trees. Our study suggests that gibbons had foraging goals in mind and plan their departure times accordingly. This ability may reflect a capacity for route-planning, which would enable them to effectively exploit highly dispersed fruit resources in high-altitude montane forests.
Collapse
Affiliation(s)
- Hanlan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- College of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
| | - Miguel de Guinea
- Movement Ecology Lab, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Li Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Paul A. Garber
- Department of Anthropology, Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, People's Republic of China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Colin A. Chapman
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada V9R 5S5
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC 20004, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710127, People's Republic of China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
13
|
Li Q, Fei HL, Luo ZH, Gao SM, Wang PD, Lan LY, Zhao XF, Huang LN, Fan PF. Gut microbiome responds compositionally and functionally to the seasonal diet variations in wild gibbons. NPJ Biofilms Microbiomes 2023; 9:21. [PMID: 37085482 PMCID: PMC10121652 DOI: 10.1038/s41522-023-00388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Wild animals may encounter multiple challenges especially food shortage and altered diet composition in their suboptimal ranges. Yet, how the gut microbiome responds to dietary changes remains poorly understood. Prior studies on wild animal microbiomes have typically leaned upon relatively coarse dietary records and individually unresolved fecal samples. Here, we conducted a longitudinal study integrating 514 time-series individually recognized fecal samples with parallel fine-grained dietary data from two Skywalker hoolock gibbon (Hoolock tianxing) groups populating high-altitude mountainous forests in western Yunnan Province, China. 16S rRNA gene amplicon sequencing showed a remarkable seasonal fluctuation in the gibbons' gut microbial community structure both across individuals and between the social groups, especially driven by the relative abundances of Lanchnospiraceae and Oscillospiraceae associated with fluctuating consumption of leaf. Metagenomic functional profiling revealed that diverse metabolisms associated with cellulose degradation and short-chain fatty acids (SCFAs) production were enriched in the high-leaf periods possibly to compensate for energy intake. Genome-resolved metagenomics further enabled the resolving metabolic capacities associated with carbohydrate breakdown among community members which exhibited a high degree of functional redundancy. Our results highlight a taxonomically and functionally sensitive gut microbiome actively responding to the seasonally shifting diet, facilitating the survival and reproduction of the endangered gibbon species in their suboptimal habitats.
Collapse
Affiliation(s)
- Qi Li
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
- College of Life Science, China West Normal University, 637002, Nanchong, P.R. China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Pan-Deng Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, 518107, Shenzhen, P.R. China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Xin-Feng Zhao
- School of Life Sciences, South China Normal University, 510631, Guangzhou, P.R. China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, P.R. China.
| |
Collapse
|
14
|
Lan LY, Hong QX, Gao SM, Li Q, You YY, Chen W, Fan PF. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: Implications for gibbon health. Am J Primatol 2023; 85:e23468. [PMID: 36691713 DOI: 10.1002/ajp.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Xuan Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Yan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
A review on the status and modeling of suitable habitats of the southern white-cheeked gibbon. Primates 2023; 64:227-237. [PMID: 36607444 DOI: 10.1007/s10329-022-01047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023]
Abstract
The southern white-cheeked gibbon Nomascus siki is endemic to Indochina and is classified as critically endangered on the International Union for Conservation of Nature (IUCN) Red List. The most updated information on the status of this species dates back to a decade ago. As hunting has tremendous impacts on wildlife in Southeast Asia, the population of N. siki might have changed a lot in the last decade. Updated information on the status and potential distribution of this species is critically important for conservation and prioritization, especially for N. siki because of its undefined distribution range. The goal of this study was to review the population status of N. siki in Vietnam and Lao People's Democratic Republic (PDR) and to model its potential distribution. In Vietnam, this species has been intensively surveyed in all major areas of occurrence from 2016 to 2021. The total number of N. siki groups recorded and estimated in Vietnam were 324 and 483, respectively. In Lao PDR, the occurrence of N. siki has been confirmed in Nam Kading, Nakai Nam Theun, Hin Nam No, and Phou Hinpoun national protected areas. However, population estimates are generally lacking. The suitable habitat of N. siki was predicted from about 105.00° to 106.80° E longitude and from about 16.60° to 17.90° N latitude located in Quang Binh and Quang Tri provinces (Vietnam), and Khammounan and Savannakhet provinces (Lao PDR). The area of the potential distribution range is about 9894.15 km2, both in Vietnam and Lao PDR. Particularly, the high, medium, and low suitable habitats were estimated at around 1229.58 km2, 3019.68 km2, and 5644.89 km2, respectively. The area of suitable habitat of N. siki in Vietnam was predicted to be 4151.25 km2, of which only 1257.93 km2 (30.30%) is in the protected area network. Dong Chau-Khe Nuoc Trong and Bac Huong Hoa Nature Reserves, and Phong Nha-Ke Bang National Park should receive priority for conservation of N. siki in Vietnam. Improving conservation beyond the protected areas' boundaries or transforming the forest enterprises and watershed protection forests into protected areas should also be considered as an alternative for the conservation of N. siki. In Lao PDR, surveys of the species in its entire distribution range should be the first priority.
Collapse
|
16
|
Yang L, Chen T, Shi KC, Zhang L, Lwin N, Fan PF. Effects of climate and land-cover change on the conservation status of gibbons. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14045. [PMID: 36511895 DOI: 10.1111/cobi.14045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/17/2023]
Abstract
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species' current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.
Collapse
Affiliation(s)
- Li Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai-Chong Shi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ngwe Lwin
- Myanmar Programme, Fauna and Flora International, Yangon, Myanmar
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Status and distribution of hoolock gibbon in the newly established Indawgyi Biosphere Reserve: Implication for protected area management. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Zhang A, Li Z, zhang D, Zang R, Liu S, Long W, Chen Y, Liu S, Liu H, Qi X, Feng Y, Zhang Z, Chen Y, Zhang H, Feng G. Food plant diversity in different-altitude habitats of Hainan gibbons (Nomascus hainanus): Implications for conservation. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Long-Distance Vocal Signaling in White-Handed Gibbons (Hylobates lar). INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Abstract
Clarifying the scientific identity of ancient biological names in historical archives is essential to understand traditional knowledge and literary metaphors of animals in human culture. Adopting a cross-disciplinary (Primatology, Linguistics, Historiography, Historical Sociology) analysis, we developed a theoretical framework for studies of the scientific identity of Chinese primate traditional names (e.g., Yuan 猿) throughout history, and interpret the historical evolution of the understanding of the Chinese word Yuan. Presently, the Chinese generally understand Yuan to be a gibbon (or “ape” in a broader sense), but this statement has many contradictions with the understanding of the word in relevant historical discourse. We review and comment on key evidence to support the traditional understanding of Yuan as a gibbon (Hylobatidae) and clarify the historical and current thought concerning Yuan. We find that the referent of the word Yuan has changed from “François’ langur (Trachypithecus francoisi) with long limbs” to the “long-armed ape or gibbon” known today through two major changes in the idea of Yuan. One transformation in the conceptualization of Yuan took place during the Tang-Song period, with the other beginning at the end of the nineteenth century and ending in the 1950s. An interaction between the conceptualization of animals and power (e.g., political opportunity; cultural movement toward learning western sciences in the semi-colonial era) played an important role in these two diachronic changes to the idea of Yuan. In contrast to the clear linear relation between a species and its Latin name, our study indicates that one traditional name can represent varying animal species in China. Our findings exemplify the implications of the sociocultural and linguistic basis for the species identification of primate names found in historical discourse for historical zoogeography, our understanding of the intricate cultural and religious connections between humans and primates, and efforts to decolonize primatology.
Collapse
|
21
|
Jamtsho Y, Dendup P, Wangdi L, Dorji R, Dorji R, Tshering B. First confirmed record of a woolly flying squirrel (Eupetaurus sp.) in Bhutan. JOURNAL OF VERTEBRATE BIOLOGY 2022. [DOI: 10.25225/jvb.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yonten Jamtsho
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| | - Pema Dendup
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| | - Leki Wangdi
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| | - Rinzin Dorji
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| | - Rinzin Dorji
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| | - Bep Tshering
- Jigme Dorji National Park, Department of Forests and Park Services, Ministry of Agriculture and Forests, Royal Government of Bhutan, Gasa, Bhutan; e-mail: , , , , ,
| |
Collapse
|
22
|
Yao YG. Towards the peak: the 10-year journey of the National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility) and a call for international collaboration in non-human primate research. Zool Res 2022; 43:237-240. [PMID: 35194982 PMCID: PMC8920839 DOI: 10.24272/j.issn.2095-8137.2022.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yong-Gang Yao
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| |
Collapse
|
23
|
Fei H, de Guinea M, Yang L, Chapman CA, Fan P. Where to sleep next? Evidence for spatial memory associated with sleeping sites in Skywalker gibbons (Hoolock tianxing). Anim Cogn 2022; 25:891-903. [PMID: 35099623 DOI: 10.1007/s10071-022-01600-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Finding suitable sleeping sites is highly advantageous but challenging for wild animals. While suitable sleeping sites provide protection against predators and enhance sleep quality, these sites are heterogeneously distributed in space. Thus, animals may generate memories associated with suitable sleeping sites to be able to approach them efficiently when needed. Here, we examined traveling trajectories (i.e., direction, linearity, and speed of traveling) in relation to sleeping sites to assess whether Skywalker gibbons (Hoolock tianxing) use spatial memory to locate sleeping trees. Our results show that about 30% of the sleeping trees were efficiently revisited by gibbons and the recursive use of trees was higher than a randomly simulated visiting pattern. When gibbons left the last feeding tree for the day, they traveled in a linear fashion to sleeping sites out-of-sight (> 40 m away), and linearity of travel to sleeping trees out-of-sight was higher than 0.800 for all individuals. The speed of the traveling trajectories to sleeping sites out-of-sight increased not only as sunset approached, but also when daily rainfall increased. These results suggest that gibbons likely optimized their trajectories to reach sleeping sites under increasing conditions of predatory risk (i.e., nocturnal predators) and uncomfortable weather. Our study provides novel evidence on the use of spatial memory to locate sleeping sites through analyses of movement patterns, which adds to an already extensive body of literature linking cognitive processes and sleeping patterns in human and non-human animals.
Collapse
Affiliation(s)
- Hanlan Fei
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,College of Life Science, China West Normal University, Nanchong, 637002, China
| | - Miguel de Guinea
- Movement Ecology Laboratory, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Li Yang
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Colin A Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC, 20004, USA.,Department of Anthropology, The George Washington University, Washington, DC, 20037, USA.,School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710127, China
| | - Pengfei Fan
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
24
|
Iwasaki SI, Yoshimura K, Asami T, Erdoğan S. Comparative morphology and physiology of the vocal production apparatus and the brain in the extant primates. Ann Anat 2022; 240:151887. [PMID: 35032565 DOI: 10.1016/j.aanat.2022.151887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/04/2023]
Abstract
Objective data mainly from the comparative anatomy of various organs related to human speech and language is considered to unearth clues about the mechanisms behind language development. The two organs of the larynx and hyoid bone are considered to have evolved towards suitable positions and forms in preparation for the occurrence of the large repertoire of vocalization necessary for human speech. However, some researchers have asserted that there is no significant difference of these organs between humans and non-human primates. Speech production is dependent on the voluntary control of the respiratory, laryngeal, and vocal tract musculature. Such control is fully present in humans but only partially so in non-human primates, which appear to be able to voluntarily control only supralaryngeal articulators. Both humans and non-human primates have direct cortical innervation of motor neurons controlling the supralaryngeal vocal tract but only human appear to have direct cortical innervation of motor neurons controlling the larynx. In this review, we investigate the comparative morphology and function of the wide range of components involved in vocal production, including the larynx, the hyoid bone, the tongue, and the vocal brain. We would like to emphasize the importance of the tongue in the primary development of human speech and language. It is now time to reconsider the possibility of the tongue playing a definitive role in the emergence of human speech.
Collapse
Affiliation(s)
- Shin-Ichi Iwasaki
- Faculty of Health Science, Gunma PAZ University, Takasaki, Japan; The Nippon Dental University, Tokyo and Niigata, Japan
| | - Ken Yoshimura
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Tomoichiro Asami
- Faculty of Rehabilitation, Gunma Paz University, Takasaki, Japan
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| |
Collapse
|
25
|
Mahmoudi A, Kryštufek B, Sludsky A, Schmid BV, DE Almeida AMP, Lei X, Ramasindrazana B, Bertherat E, Yeszhanov A, Stenseth NC, Mostafavi E. Plague reservoir species throughout the world. Integr Zool 2021; 16:820-833. [PMID: 33264458 DOI: 10.1111/1749-4877.12511] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plague has been known since ancient times as a re-emerging infectious disease, causing considerable socioeconomic burden in regional hotspots. To better understand the epidemiological cycle of the causative agent of the plague, its potential occurrence, and possible future dispersion, one must carefully consider the taxonomy, distribution, and ecological requirements of reservoir-species in relation either to natural or human-driven changes (e.g. climate change or urbanization). In recent years, the depth of knowledge on species taxonomy and species composition in different landscapes has undergone a dramatic expansion, driven by modern taxonomic methods such as synthetic surveys that take into consideration morphology, genetics, and the ecological setting of captured animals to establish their species identities. Here, we consider the recent taxonomic changes of the rodent species in known plague reservoirs and detail their distribution across the world, with a particular focus on those rodents considered to be keystone host species. A complete checklist of all known plague-infectable vertebrates living in plague foci is provided as a Supporting Information table.
Collapse
Affiliation(s)
- Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Iran
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alexander Sludsky
- Russian Research Anti-Plague Institute «Microbe», Saratov, Russian Federation
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Xu Lei
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Eric Bertherat
- Department of Infectious Hazard Management, Health Emergencies Programme, WHO, Geneva, Switzerland
| | - Aidyn Yeszhanov
- M.Aikimbaev's National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| |
Collapse
|
26
|
Markviriya D, Asensio N, Brockelman WY, Jeratthitikul E, Kongrit C. Genetic analysis of hybridization between white-handed (Hylobates lar) and pileated (Hylobates pileatus) gibbons in a contact zone in Khao Yai National Park, Thailand. Primates 2021; 63:51-63. [PMID: 34716489 DOI: 10.1007/s10329-021-00958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Natural hybridization has played various roles in the evolutionary history of primates. Its consequences range from genetic introgression between taxa, formation of hybrid zones, and formation of new lineages. Hylobates lar, the white-handed gibbon, and Hylobates pileatus, the pileated gibbon, are largely allopatric species in Southeast Asia with a narrow contact zone in Khao Yai National Park, Thailand, which contains both parental types and hybrids. Hybrid individuals in the zone are recognizable by their intermediate pelage and vocal patterns, but have not been analyzed genetically. We analyzed mitochondrial and microsatellite DNA of 52 individuals to estimate the relative genetic contributions of the parental species to each individual, and the amount of introgression into the parental species. We obtained fecal samples from 33 H. lar, 15 H. pileatus and four phenotypically intermediate individuals in the contact zone. Both mitochondrial and microsatellite markers confirmed distinct differences between these taxa. Both H. lar and H. pileatus contributed to the maternal lineages of the hybrids based on mitochondrial analysis; hybrids were viable and present in socially normal reproductive pairs. The microsatellite analysis identified ten admixed individuals, four F1 hybrids, which corresponded to phenotypic hybrids, and six H. lar-like backcrosses. All 15 H. pileatus samples were identified as originating from genetically H. pileatus individuals with no H. lar admixture; hence, backcrossing is biased toward H. lar. A relatively low number of phenotypic hybrids and backcrossed individuals along with a high number of parental types indicates a bimodal hybrid zone, which suggests relatively strong bias in mate selection between the species.
Collapse
Affiliation(s)
- Darunee Markviriya
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Norberto Asensio
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.,Department of Clinical and Health Psychology and Research Methodology, Faculty of Psychology, University of the Basque Country, 20018, Donostia, Gipuzkoa, Spain
| | - Warren Y Brockelman
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.,National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ekgachai Jeratthitikul
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Chalita Kongrit
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
27
|
Divergence and introgression in small apes, the genus Hylobates, revealed by reduced representation sequencing. Heredity (Edinb) 2021; 127:312-322. [PMID: 34188193 PMCID: PMC8405704 DOI: 10.1038/s41437-021-00452-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Gibbons of the genus Hylobates, which inhabit Southeast Asia, show great diversity and comprise seven to nine species. Natural hybridisation has been observed in several species contact zones, but the history and extent of hybridisation and introgression in possibly historical and the current contact zones remain unclear. To uncover Hylobates species phylogeny and the extent of introgression in their evolution, genotyping by random amplicon sequencing-direct (GRAS-Di) was applied to 47 gibbons, representing seven Hylobates species/subspecies and two outgroup gibbon species. Over 200,000 autosomal single-nucleotide variant sites were identified. The autosomal phylogeny supported that divergence from the mainland species began ~3.5 million years ago, and subsequently occurred among the Sundaic island species. Significant introgression signals were detected between H. lar and H. pileatus, H. lar and H. agilis and H. albibarbis and H. muelleri, which all are parapatric and form ongoing hybrid zones. Furthermore, the introgression signals were detected in every analysed individual of these species, indicating a relatively long history of hybridisation, which might have affected the entire gene pool. By contrast, signals of introgression were either not detected or doubtful in other species pairs living on different islands, indicating the rarity of hybridisation and introgression, even though the Sundaic islands were connected during the Pliocene and Pleistocene glacial events.
Collapse
|
28
|
Modelling the conservation status of the threatened hoolock gibbon (genus Hoolock) over its range. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Zhao X, Li X, Garber PA, Qi X, Xiang Z, Liu X, Lian Z, Li M. Investment in science can mitigate the negative impacts of land use on declining primate populations. Am J Primatol 2021; 83:e23302. [PMID: 34254342 DOI: 10.1002/ajp.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 01/04/2023]
Abstract
Changes in land use and the conversion of natural forests to agricultural fields and cattle pastures are threatening the survival of many species of wild animals, including nonhuman primates. Given its almost 1.4 billion people, China faces a difficult challenge in balancing economic development, human well-being, environmental protection, and animal conservation. We examined the effects of poverty, anthropogenic land use (cropland and pasture/grazing), human population growth, government investment in science and public attention to primates during the period from the 1980s to 2015 on primate population persistence in China. We analyzed these data using generalized mixed-effects models, structural equation models (SEM) and random forests (a machine learning technique). We found that 16 of 21 (76%) primate species in China, for which data are available, have experienced a population decline over the past 35 years. Factors contributing most to primate population decline included human poverty and the conversion of natural habitat to cropland. In contrast, the five species of primates that were characterized by recent population increases were the subjects of substantial government research funding and their remaining distribution occurs principally in protected areas (PAs). We argue that increased funding for research, the establishment and expansion of PAs, a national policy focused on reducing poverty, and educational programs designed to inform and encourage local people to participate in scientific investigation and wildlife protection, can mitigate the negative impacts of historical patterns of land conversion on primate population survival in China.
Collapse
Affiliation(s)
- Xumao Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovati on Ecology, Lanzhou University, Lanzhou, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chaoyang District, Beijing, China
| | - Xinrui Li
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovati on Ecology, Lanzhou University, Lanzhou, China
| | - Paul A Garber
- Department of Anthropology and Program in Ecology and Evolutionary Biology, University of Illinois, Urbana, Illinois, USA.,International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Xinzhang Qi
- Xining Wildlife Park, Xining, Qinghai, China
| | - Zuofu Xiang
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovati on Ecology, Lanzhou University, Lanzhou, China
| | - Zhongmin Lian
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovati on Ecology, Lanzhou University, Lanzhou, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chaoyang District, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
30
|
Jackson SM, Li Q, Wan T, Li XY, Yu FH, Gao G, He LK, Helgen KM, Jiang XL. Across the great divide: revision of the genus Eupetaurus (Sciuridae: Pteromyini), the woolly flying squirrels of the Himalayan region, with the description of two new species. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The woolly flying squirrel, Eupetaurus cinereus, is among the rarest and least studied mammals in the world. For much of the 20th century it was thought to be extinct, until it was rediscovered in 1994 in northern Pakistan. This study outlines the first taxonomic and biogeographical review of the genus Eupetaurus, which until now has contained only a single species. Careful review of museum specimens and published records of Eupetaurus demonstrates that the genus occurs in three widely disjunct areas situated on the western (northern Pakistan and north-western India), north-central (south-central Tibet, northern Sikkim and western Bhutan) and south-eastern margins (north-western Yunnan, China) of the Himalayas. Taxonomic differentiation between these apparently allopatric populations of Eupetaurus was assessed with an integrative approach involving both morphological examinations and molecular phylogenetic analyses. Phylogenetic reconstruction was implemented using sequences of three mitochondrial [cytochrome b (Cytb), mitochondrially encoded 12S and 16S ribosomal RNA (12S, 16S)] and one nuclear [interphotoreceptor retinoid-binding protein (IRBP)] gene fragment. Morphological assessments involved qualitative examinations of features preserved on museum skins and skulls, supplemented with principal components analysis of craniometric data. Based on genetic and morphological comparisons, we suggest that the three widely disjunct populations of Eupetaurus are each sufficiently differentiated genetically and morphologically to be recognized as distinct species, two of which are described here as new.
Collapse
Affiliation(s)
- Stephen M Jackson
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road,Orange, NSW 2800, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Quan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Tao Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| | - Xue-You Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fa-Hong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Ge Gao
- Baoshan Management Bureau of Gaoligongshan National Nature Reserve, Baoshan, Yunnan 678000, China
| | - Li-Kun He
- Gongshan Management Bureau of Gaoligongshan National Nature Reserve, Gongshan, Yunnan 673500, China
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
31
|
Understanding the Phylogenetics of Indian Hoolock Gibbons: Hoolock hoolock and H. leuconedys. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00212-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Roos C, Helgen KM, Miguez RP, Thant NML, Lwin N, Lin AK, Lin A, Yi KM, Soe P, Hein ZM, Myint MNN, Ahmed T, Chetry D, Urh M, Veatch EG, Duncan N, Kamminga P, Chua MAH, Yao L, Matauschek C, Meyer D, Liu ZJ, Li M, Nadler T, Fan PF, Quyet LK, Hofreiter M, Zinner D, Momberg F. Mitogenomic phylogeny of the Asian colobine genus Trachypithecus with special focus on Trachypithecus phayrei (Blyth, 1847) and description of a new species. Zool Res 2021; 41:656-669. [PMID: 33171548 PMCID: PMC7671912 DOI: 10.24272/j.issn.2095-8137.2020.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Trachypithecus, which currently contains 20 species divided into four groups, is the most speciose and geographically dispersed genus among Asian colobines. Despite several morphological and molecular studies, however, its evolutionary history and phylogeography remain poorly understood. Phayre’s langur (Trachypithecus phayrei) is one of the most widespread members of the genus, but details on its actual distribution and intraspecific taxonomy are limited and controversial. Thus, to elucidate the evolutionary history of Trachypithecus and to clarify the intraspecific taxonomy and distribution of T. phayrei, we sequenced 41 mitochondrial genomes from georeferenced fecal samples and museum specimens, including two holotypes. Phylogenetic analyses revealed a robustly supported phylogeny of Trachypithecus, suggesting that the T. pileatus group branched first, followed by the T. francoisi group, and the T. cristatus and T. obscurus groups most recently. The four species groups diverged from each other 4.5–3.1 million years ago (Ma), while speciation events within these groups occurred much more recently (1.6–0.3 Ma). Within T. phayrei, we found three clades that diverged 1.0–0.9 Ma, indicating the existence of three rather than two taxa. Following the phylogenetic species concept and based on genetic, morphological, and ecological differences, we elevate the T. phayrei subspecies to species level, describe a new species from central Myanmar, and refine the distribution of the three taxa. Overall, our study highlights the importance of museum specimens and provides new insights not only into the evolutionary history of T. phayrei but the entire Trachypithecus genus as well.
Collapse
Affiliation(s)
- Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen 37077, Germany.,Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Goettingen 37077, Germany.,Chances for Nature (CfN), Goettingen 37073, Germany. E-mail:
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia.,Natural History Museum, London SW7 BD, UK
| | | | - Naw May Lay Thant
- Wildlife Conservation Society (WCS) - Myanmar Program, Yangon 11041, Myanmar
| | - Ngwe Lwin
- Fauna & Flora International (FFI) - Myanmar Programme, Yangon 11201, Myanmar
| | - Aung Ko Lin
- Fauna & Flora International (FFI) - Myanmar Programme, Yangon 11201, Myanmar
| | - Aung Lin
- Fauna & Flora International (FFI) - Myanmar Programme, Yangon 11201, Myanmar
| | - Khin Mar Yi
- Popa Mountain Park, Nature and Wildlife Conservation Division, Forest Department, Popa 05242, Myanmar
| | - Paing Soe
- World Wide Fund for Nature (WWF) - Myanmar, Yangon 11191, Myanmar
| | - Zin Mar Hein
- World Wide Fund for Nature (WWF) - Myanmar, Yangon 11191, Myanmar
| | | | - Tanvir Ahmed
- Department of Zoology, Jagannath University, Dhaka 1100, Bangladesh
| | - Dilip Chetry
- Primate Research and Conservation Division, Aaranyak, Guwahati, Assam 781028, India
| | - Melina Urh
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen 37077, Germany
| | - E Grace Veatch
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA.,Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Neil Duncan
- Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA
| | - Pepijn Kamminga
- Naturalis Biodiversity Center, Leiden 2333 CR, The Netherlands
| | - Marcus A H Chua
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore.,Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Lu Yao
- Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA
| | | | - Dirk Meyer
- Chances for Nature (CfN), Goettingen 37073, Germany
| | - Zhi-Jin Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Le Khac Quyet
- Center for Biodiversity Conservation and Endangered Species, Ho-Chi-Minh City, Vietnam
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen 37077, Germany.,Leibniz Science Campus Primate Cognition, Goettingen 37077, Germany.,Department of Primate Cognition, Georg-August-University, Goettingen 37083, Germany
| | - Frank Momberg
- Fauna & Flora International (FFI) - Asia-Pacific Programme, Yangon 11201, Myanmar
| |
Collapse
|
33
|
Fan P, He X, Yang Y, Liu X, Zhang H, Yuan L, Chen W, Liu D, Fan P. Reproductive Parameters of Captive Female Northern White-Cheeked (Nomascus leucogenys) and Yellow-Cheeked (Nomascus gabriellae) Gibbons. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-020-00187-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Yang JH, Huang XY, Jin SH, Chan BPL. Filling a longstanding knowledge gap: Population size and conservation status of the Endangered Gaoligong hoolock Gibbon (Hoolock tianxing) in Houqiao Town, Yunnan. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
35
|
The Lisu people's traditional natural philosophy and its potential impact on conservation planning in the Laojun Mountain region, Yunnan Province, China. Primates 2020; 62:153-164. [PMID: 32720107 DOI: 10.1007/s10329-020-00841-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
In this study, we explored a conservation process from an ethnoprimatological perspective for the management of national parks and nature reserves. We accumulated attitude and knowledge data on the traditional culture, religion, and current attitudes to conservation of rural and urban groups of ethnic Lisu people, who live in the village of Liju or have migrated to urban areas, respectively. The data clearly indicated that most of the interviewees had similar feelings and attitudes toward the conservation of Yunnan snub-nosed monkeys (Rhinopithecus bieti) and Laojun Mountain National Park (LMNP), irrespective of whether they live in or have moved away from their home village, or if their educational background differs. Both the rural (96.6%) and urban (100%) interviewees expressed their deep affection for Yunnan snub-nosed monkeys and supported (90.3% and 89.0%, respectively) the seasonal closure of mountainous areas for conservation purposes. The Lisu peoples culture, history, and traditions were evaluated with regards to the developing trend for environmentalism, and their advanced attitudes toward environmental protection and resource utilization exceeded our expectations. The results of this study show huge potential for the optimal mitigation of human-animal conflict in the context of conservation planning not only for LMNP but also for other national parks and nature reserves.
Collapse
|
36
|
Li G, Lwin YH, Yang B, Qin T, Phothisath P, Maung KW, Quan RC, Li S. Taxonomic revision and phylogenetic position of the flying squirrel genus Biswamoyopterus (Mammalia, Rodentia, Sciuridae, Pteromyini) on the northern Indo-China peninsula. Zookeys 2020; 939:65-85. [PMID: 32699522 PMCID: PMC7341418 DOI: 10.3897/zookeys.939.31764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/03/2019] [Indexed: 01/10/2023] Open
Abstract
The flying squirrel genus Biswamoyopterus (Rodentia: Sciuridae: Pteromyini) was once considered to contain three species, Biswamoyopterusbiswasi from northeastern India, B.laoensis from central Laos and B.gaoligongensis from southwest China, all identified from morphological characteristics of one or two specimens. However, based on similar morphological characteristics of two samples of the genus Biswamoyopterus collected recently from northern Laos and northern Myanmar, and the small genetic distances on mitochondrial DNA and nuclear DNA between them, the results strongly support these two samples as representatives of the same species. The phylogenetic analyses strongly support Biswamoyopterus as an independent genus of Pteromyini, as a sister group to Aeromys. Biswamoyopterusbiswasi is distributed in the northern Indo-China peninsula, where it is exposed to a series of threats, such as intense hunting activity, illegal trade, and rapid habitat loss; this should warrant its classification as critically endangered according to the International Union for Conservation of Nature (IUCN) Red List criteria. Here, the molecular data for genus Biswamoyopterus and two new specimen records from northern Laos and northern Myanmar are presented.
Collapse
Affiliation(s)
- Guogang Li
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Ye Htet Lwin
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Bin Yang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Tao Qin
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.,Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| | - Phouthong Phothisath
- Biotechnology and Ecology Institute, Ministry of Science and Technology of Laos, P. O. Box 2279, Vientiane Capital, Lao People's Democratic Republic
| | - Kyaw-Win Maung
- Forest Research Institute, Forest Department, Ministry of Environmental Conservation and Forestry, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Rui-Chang Quan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Song Li
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| |
Collapse
|
37
|
Munyandamutsa P, Jere WL, Kassam D, Mtethiwa A. Species specificity and sexual dimorphism in tooth shape among the three sympatric haplochromine species in Lake Kivu cichlids. Ecol Evol 2020; 10:5694-5711. [PMID: 32607184 PMCID: PMC7319136 DOI: 10.1002/ece3.6309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023] Open
Abstract
Tooth shape is used to differentiate between morphologically similar species of vertebrates, including fish. This study aimed to quantify tooth shape of three sympatric species: Haplochromis kamiranzovu, H. insidiae, and H. astatodon endemic to Lake Kivu, whose existing identification criteria are currently only qualitative. A quantitative tooth shape analysis was performed based on digitized tooth outline data with a subsequent elliptic Fourier analysis to test for differences among the three species. We looked at crown shape and size differences within H. kamiranzovu and H. insidiae at geographical, habitat, and gender levels. No comparison at habitat level was done for H. astatodon because it is found only in littoral zone. The analysis revealed significant tooth shape differences among the three species. Haplochromis astatodon had a significantly longer major cusp height and a longer and larger minor cusp than that of H. insidiae. It had also a longer major cusp height and a longer and larger minor cusp than that of H. kamiranzovu. Tooth shape differences of H. kamiranzovu and H. insidiae species were not significantly different between littoral and pelagic fish (p > .05) while differences were significant between southern and northern Lake Kivu populations (p < .05). Tooth sizes in H. kamiranzovu and H. insidiae were significantly different, both in height and width as well as in their ratios, and this was true at sex and geographic levels (p < .05), but not at habitat level (p > .05). Tooth shape was also significantly different with sharp teeth for males compared with females of southern populations versus northern ones. These shape- and size-related differences between sexes suggest differences in the foraging strategies toward available food resources in the lake habitat. Further research should explain the genetic basis of the observed pattern.
Collapse
Affiliation(s)
- Philippe Munyandamutsa
- Africa Centre of Excellence in Aquaculture and FisheriesDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
- Department of Animal ProductionCollege of Agriculture, Animal Sciences and Veterinary MedicineUniversity of Rwanda (UR)MusanzeRwanda
| | - Wilson Lazaro Jere
- Africa Centre of Excellence in Aquaculture and FisheriesDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
| | - Daud Kassam
- Africa Centre of Excellence in Aquaculture and FisheriesDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
| | - Austin Mtethiwa
- Africa Centre of Excellence in Aquaculture and FisheriesDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural Resources (LUANAR)LilongweMalawi
| |
Collapse
|
38
|
Male gibbon loud morning calls conform to Zipf's law of brevity and Menzerath's law: insights into the origin of human language. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Esselstyn JA, Achmadi AS, Handika H, Giarla TC, Rowe KC. A new climbing shrew from Sulawesi highlights the tangled taxonomy of an endemic radiation. J Mammal 2019. [DOI: 10.1093/jmammal/gyz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
We describe a new species of Crocidura (Soricidae) from Sulawesi Island, Indonesia, documenting its novelty with both genetic and morphological characters. The new species is widespread on the island, with vouchered records from nine general localities distributed among five of the island’s areas of endemism. Morphologically, the new species is readily distinguished from all other described Sulawesi Crocidura by its intermediate body size, gray pelage, and long, hairy tail. The new species was mainly captured in pitfalls placed in the ground, but we also obtained evidence that it readily climbs trees and may be scansorial in its locomotor habits. Populations of the new species sampled from across the island are closely related, separated by < 0.02 uncorrected mitochondrial p-distances. The new species is one member of an endemic radiation of shrews on Sulawesi now known to contain six valid species and several undescribed species, all within the genus Crocidura. Resolution of species limits and phylogenetic relationships in this radiation is hindered by habitat loss at type localities, historical designation of new species using very small sample sizes, and a lack of genetic data from type specimens.
Kami mendeskripsikan spesies baru Crocidura (Soricidae) dari Pulau Sulawesi, Indonesia, sekaligus mendokumentasikan keunikan karakter secara genetik maupun morfologi dari spesies tersebut. Spesies baru ini tersebar luas di Pulau Sulawesi, diketahui berdasarkan spesimen yang berasal dari sembilan lokasi umum yang tersebar di lima kawasan endemik di pulau tersebut. Secara morfologi, spesies baru ini dapat dibedakan dari spesies Crocidura lainnya dari Sulawesi berdasarkan ukuran tubuh yang sedang, rambut tubuh berwarna abu-abu, dan ekor yang panjang dan berambut. Spesies baru ini sebagian besar diperoleh dari perangkap sumuran yang ditanam didalam tanah, selain itu kami juga mendapatkan bukti bahwa spesies ini mampu memanjat pohon dan kemungkinan memiliki perilaku sebagai pemanjat. Beberapa populasi spesies yang dikoleksi dari Sulawesi ini mempunyai kekerabatan yang dekat, hanya dipisahkan oleh jarak proporsi DNA mitokondria (tidak terkoreksi) sebesar < 0.02. Spesies baru ini merupakan salah satu anggota dari suatu kelompok radiasi endemik cecurut di Sulawesi yang sampai saat ini diketahui terdiri atas enam spesies yang valid, dan beberapa spesies yang belum dideskripsikan, semuanya termasuk didalam genus Crocidura. Kepastian dalam menetapkan batasan jarak antar spesies dan hubungan kekerabatan genetik dari radiasi kelompok cecurut di Sulawesi terkendala oleh kerusakan habitat pada lokasi spesimen tipe, sejarah penamaan spesies yang hanya berdasarkan sampel yang sedikit, dan keterbatasan data molekuler dari spesimen tipe.
Collapse
Affiliation(s)
- Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Indonesian Institute of Sciences, Km. 46 Jl. Raya Jakarta–Bogor, Cibinong, Indonesia
| | - Heru Handika
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
- Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Melbourne, Victoria, Australia
| | | | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
The effective use of camera traps to document the northernmost distribution of the western black crested gibbon in China. Primates 2019; 61:151-158. [PMID: 31802294 DOI: 10.1007/s10329-019-00774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 11/06/2019] [Indexed: 01/04/2023]
Abstract
Gibbons represent a highly successful radiation of four genera and 20 species of Asian apes that, in response to recent habitat fragmentation and deforestation, are threatened with extinction. China has six species of gibbons, each of which is critically endangered. We present new biogeographical information on the distribution of the black crested gibbon (Nomascus concolor). Four subspecies of N. concolor have been described: three of them are present east of the Mekong River (Nomascus concolor jingdongensis, N. c. concolor and N. c. lu); and another is found west of the Mekong River (N. c. furvogaster). In addition, there has been speculation that gibbons exist in the Biluo Snow Mountains, between the Mekong and Salween basins. To clarify the biogeography of this species, from April 2011 to January 2012 and from January 2016 to September 2018, we conducted interviews with local villagers, completed line transect surveys, monitored gibbon calls, and placed 30 camera traps in the forest canopy. On October 30, 2016, we recorded gibbon's calls. On July 5, 2016, our camera traps obtained one image of a male gibbon, and on February 1 and 8, 2017, we captured two independent images of an adult female gibbon on Zhiben Mountains. Based on the black crest on the head, clearly visible in the photographs, the gibbons are N. c. furvogaster. Evidence from interviews and survey records indicate that N. c. furvogaster once was present in the Zhiben Mountains, at an altitude of between 2000 and 2700 m. Between 1990 and 2000, some 6-7 groups still existed in Caojian, Laowo and adjacent areas. Unfortunately, in the absence of an effective conservation strategy, the population was extirpated by hunters. The remaining forest in the Zhiben Mountains is highly fragmented, and most of the suitable habitat for gibbons has been lost. Therefore, we expect that this newly found gibbon population is under extreme anthropogenic pressure. It is imperative that further investigations of this gibbon population be conducted immediately, and that the local and national governments implement effective conservation plans, including educating the local communities to protect this critically endangered primate population.
Collapse
|
41
|
Yao YG, Shen H. From our roots, we grow. Zool Res 2019; 40:471-475. [PMID: 31631589 PMCID: PMC6822935 DOI: 10.24272/j.issn.2095-8137.2019.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 11/07/2022] Open
Abstract
Located at the head of the Indo-Burma biodiversity hotspot, the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences (CAS), serves as China's main center for research into the diverse animal and ecological resources of southwestern China, Eastern Himalayas, and Southeast Asia. As of October 2019, it has been 60 years since the inception of KIZ. Since 1959, strong roots have been laid down by generations of researchers, allowing KIZ to grow and evolve into a comprehensive research institution renowned for its remarkable achievements in evolutionary mechanisms of animal biodiversity, animal resources protection, and sustainable utilization. It is now recognized as "a major powerhouse in evolutionary biology research in China" and is"establishing itself in the world stage" (Overseas Experts Review Committee, organized by the Bureau of Development Planning, CAS, during international evaluation in 2014).To celebrate the 60th anniversary of KIZ and the 70th anniversary of CAS, Zoological Research presents this commemorative issue, composed primarily of contributions from KIZ researchers. In addition, it is our great honor to provide here a brief retrospective of the pioneering work undertaken by the earlier scientists at KIZ and recent achievements, which will hopefully serve to motivate and inspire present and future successors.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Hua Shen
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
42
|
Chaves PB, Magnus T, Jerusalinsky L, Talebi M, Strier KB, Breves P, Tabacow F, Teixeira RHF, Moreira L, Hack ROE, Milagres A, Pissinatti A, de Melo FR, Pessutti C, Mendes SL, Margarido TC, Fagundes V, Di Fiore A, Bonatto SL. Phylogeographic evidence for two species of muriqui (genus Brachyteles). Am J Primatol 2019; 81:e23066. [PMID: 31736121 DOI: 10.1002/ajp.23066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022]
Abstract
The taxonomy of muriquis, the largest extant primates in the New World, is controversial. While some specialists argue for a monotypic genus (Brachyteles arachnoides), others favor a two-species classification, splitting northern muriquis (Brachyteles hypoxanthus) from southern muriquis (B. arachnoides). This uncertainty affects how we study the differences between these highly endangered and charismatic primates, as well as the design of more effective conservation programs. To address this issue, between 2003 and 2017 we collected over 230 muriqui fecal samples across the genus' distribution in the Brazilian Atlantic Forest, extracted DNA from these samples, and sequenced 423 base pairs of the mitochondrial DNA (mtDNA) control region. Phylogenetic and species delimitation analyses of our sequence dataset robustly support two reciprocally monophyletic groups corresponding to northern and southern muriquis separated by an average 12.7% genetic distance. The phylogeographic break between these lineages seems to be associated with the Paraíba do Sul River and coincides with the transition between the north and south Atlantic Forest biogeographic zones. Published divergence estimates from whole mitochondrial genomes and nuclear loci date the split between northern and southern muriquis to the Early Pleistocene (ca. 2.0 mya), and our new mtDNA dataset places the coalescence time for each of these two clades near the last interglacial (ca. 120-80 kya). Our results, together with both phenotypic and ecological differences, support recognizing northern and southern muriquis as sister species that should be managed as distinct evolutionarily significant units. Given that only a few thousand muriquis remain in nature, it is imperative that conservation strategies are tailored to protect both species from extinction.
Collapse
Affiliation(s)
- Paulo B Chaves
- Department of Anthropology, New York University, New York, New York.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York
| | - Tielli Magnus
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leandro Jerusalinsky
- Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros, Instituto Chico Mendes de Conservação da Biodiversidade, João Pessoa, Paraíba, Brazil
| | - Maurício Talebi
- Laboratório de Ecologia Aplicada e Conservação (LECON), Departamento de Ciências Ambientais, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.,Instituto Pró-Muriqui, São Paulo, São Paulo, Brazil
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paula Breves
- Diretoria de Biodiversidade, Sociedade Ecoatlântica, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Tabacow
- Muriqui Instituto de Biodiversidade, Caratinga, Minas Gerais, Brazil
| | - Rodrigo H F Teixeira
- Programa de Pós-graduação em Animais Selvagens, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Leandro Moreira
- Muriqui Instituto de Biodiversidade, Caratinga, Minas Gerais, Brazil
| | - Robson O E Hack
- Divisão de Meio Ambiente, Departamento de Recursos Ambientais, Instituto de Tecnologia para o Desenvolvimento (Lactec), Curitiba, Paraná, Brazil.,Programa de Pós-Graduação em Desenvolvimento de Tecnologia, Instituto de Tecnologia para o Desenvolvimento e Instituto de Engenharia do Paraná, Curitiba, Paraná, Brazil
| | - Adriana Milagres
- Programa de Pós-graduação em Ecologia Aplicada, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Instituto Estadual do Ambiente, Guapimirim, Rio de Janeiro, Brazil
| | - Fabiano R de Melo
- Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.,Departamento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cecília Pessutti
- Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, São Paulo, Brazil
| | - Sérgio L Mendes
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Tereza C Margarido
- Departamento de Pesquisa e Conservação da Fauna, Prefeitura Municipal de Curitiba, Curitiba, Paraná, Brazil
| | - Valéria Fagundes
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Anthony Di Fiore
- Department of Anthropology, Primate Molecular Ecology and Evolution Laboratory, The University of Texas at Austin, Austin, Texas
| | - Sandro L Bonatto
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
43
|
Identifying transboundary conservation priorities in a biodiversity hotspot of China and Myanmar: Implications for data poor mountainous regions. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Fei HL, Thompson C, Fan PF. Effects of cold weather on the sleeping behavior of Skywalker hoolock gibbons (Hoolock tianxing) in seasonal montane forest. Am J Primatol 2019; 81:e23049. [PMID: 31502292 DOI: 10.1002/ajp.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
Considering the high energetic costs of maintaining constant body temperature, mammals must adjust their thermoregulatory behaviors in response to cold temperatures. Although primate daytime thermoregulation is relatively well studied, there is limited research in relation to nighttime strategies. To investigate how Skywalker hoolock gibbons (Hoolock tianxing) cope with the low temperatures found in montane forests, we collected sleep-related behavior data from one group (NA) and a single female (NB) at Nankang (characterized by extensive tsaoko plantations) between July 2010 and September 2011, and one group (BB) at Banchang (relatively well-managed reserve forest) between May 2013 and May 2015 in Mt. Gaoligong, Yunnan, China. The annual mean temperature was 13.3°C at Nankang (October 2010 to September 2011) and 13.0°C at Banchang (June 2013 to May 2015) with temperatures dropping below -2.0°C at both sites, making them the coldest known gibbon habitats. The lowest temperatures at both sites remained below 5.0°C from November to March, which we, therefore, defined as the "cold season". The hoolock gibbons remained in their sleeping trees for longer periods during the cold season compared to the warm season. Sleeping trees found at lower elevations and closer to potential feeding trees were favored during cold seasons at both sites. In addition, the gibbons were more likely to huddle together during cold seasons. Our results suggest that cold temperatures have a significant effect on the sleeping behavior of the Skywalker hoolock gibbon, highlighting the adaptability of this threatened species in response to cold climates.
Collapse
Affiliation(s)
- Han-Lan Fei
- Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Carolyn Thompson
- Department of Genetics, Evolution and Environment, School of Life and Medical Sciences, University College London, London, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Peng-Fei Fan
- Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| |
Collapse
|
45
|
Li GG, Lwin YH, Yang B, Qin T, Quan RC, Li S. Taxonomic revision and phylogenetic position of the flying squirrel genus Biswamoyopterus (Mammalia, Rodentia, Sciuridae, Pteromyini) on the northern Indo-China peninsula. Zookeys 2019. [DOI: 10.3897/zookeys.872.31764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flying squirrel genus Biswamoyopterus (Rodentia: Sciuridae: Pteromyini) was once considered to contain two species, Biswamoyopterus biswasi from northeastern India and B. laoensis from central Laos, identified from morphological characteristics of single specimen. However, based on similar morphological characteristics of two samples of the genus Biswamoyopterus collected recently from northern Laos and northern Myanmar, these can now be regarded as one species, B. biswasi being the correct name with B. laoensis the synonym. Small genetic distances among mitochondrial DNA and nuclear DNA strongly support these two samples as representatives of the same species. Thus, Biswamoyopterus is a monotypic genus, and the phylogenetic analyses strongly supported Biswamoyopterus as an independent genus of Pteromyini, acting as a sister group to Aeromys. Biswamoyopterus biswasi is distributed in the northern Indo-China peninsula, where it is exposed to a series of threats, such as intense hunting activity, illegal trade, and rapid habitat loss; this should warrant its classification as critically endangered according to the International Union for Conservation of Nature (IUCN) Red List criteria. Here, new specimen records for B. biswasi from northern Laos and northern Myanmar are presented.
Collapse
|
46
|
Ge D, Feijó A, Cheng J, Lu L, Liu R, Abramov AV, Xia L, Wen Z, Zhang W, Shi L, Yang Q. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractMice of the genus Apodemus are widely distributed across Eurasia. Several species of this genus are hosts of important zoonotic diseases and parasites. The evolutionary history and dispersal routes of these mice remain unclear and the distribution of these species in China was poorly explored in previous studies. We here investigate the divergence times and historical geographical evolution of Apodemus and study the taxonomy of species in China by integrating molecular and morphological data. The crown age of this genus is dated to the Late Miocene, approximately 9.84 Mya. Western and Central Asia were inferred as the most likely ancestral area of this genus. Moreover, we recognize nine living species of Apodemus in China: Apodemus uralensis, A. agrarius, A. chevrieri, A. latronum, A. peninsulae, A. draco, A. ilex, A. semotus and A. nigrus sp. nov., the last from the highlands (elevation > 1984 m) of Fanjing Mountain in Guizhou Province and Jinfo Mountain in Chongqing Province. This new species diverged from A. draco, A. semotus and A. ilex approximately 4.53 Mya. The discovery of A. nigrus highlights the importance of high mountains as refugia and ‘isolated ecological islands’ for temperate species in south-eastern China.
Collapse
Affiliation(s)
- Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rongrong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Alexei V Abramov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Joint Russian–Vietnamese Tropical Research and Technological Centre, Hanoi, Vietnam
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | - Lei Shi
- Fanjingshan National Nature Reserve, Tongren, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
47
|
Shi CM, Yang Z. Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons. Mol Biol Evol 2019; 35:159-179. [PMID: 29087487 PMCID: PMC5850733 DOI: 10.1093/molbev/msx277] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morphological, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two genomic-scale data sets, with ∼10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the major groups of gibbons. We used the Bayesian full-likelihood method bpp under the multispecies coalescent model, which naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included three heuristic coalescent-based methods (mp-est, SVDQuartets, and astral) as well as concatenation. From both data sets, we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We used simulation guided by the real data to evaluate the accuracy of the methods used. Astral, while not as efficient as bpp, performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation, mp-est and SVDQuartets were unreliable when the species tree contains very short internal branches. Likelihood ratio test of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree problems characterized by short internal branches and rampant gene tree-species tree discordance.
Collapse
Affiliation(s)
- Cheng-Min Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
ORTIZ ALEJANDRA, ZHANG YINGQI, JIN CHANGZHU, WANG YUAN, ZHU MIN, YAN YALING, KIMOCK CLARE, VILLAMIL CATALINAI, HE KAI, HARRISON TERRY. Morphometric analysis of fossil hylobatid molars from the Pleistocene of southern China. ANTHROPOL SCI 2019. [DOI: 10.1537/ase.190331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- ALEJANDRA ORTIZ
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe
| | - YINGQI ZHANG
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, Beijing
- CAS Center for Excellence in Life and Paleoenvironment, Beijing
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing
| | - CHANGZHU JIN
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, Beijing
- CAS Center for Excellence in Life and Paleoenvironment, Beijing
| | - YUAN WANG
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, Beijing
- CAS Center for Excellence in Life and Paleoenvironment, Beijing
| | - MIN ZHU
- School of History, Beijing Normal University, Beijing
| | - YALING YAN
- The Geoscience Museum, Hebei GEO University, Shijiazhuang
| | - CLARE KIMOCK
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York
- New York Consortium in Evolutionary Primatology, New York
| | | | - KAI HE
- School of Basic Medical Sciences, Southern Medical University, Guangzhou
| | - TERRY HARRISON
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York
- New York Consortium in Evolutionary Primatology, New York
| |
Collapse
|
49
|
Ni Q, Wang Y, Weldon A, Xie M, Xu H, Yao Y, Zhang M, Li Y, Li Y, Zeng B, Nekaris K. Conservation implications of primate trade in China over 18 years based on web news reports of confiscations. PeerJ 2018; 6:e6069. [PMID: 30564524 PMCID: PMC6286804 DOI: 10.7717/peerj.6069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
Primate species have been increasingly threatened by legal and illegal trade in China, mainly for biomedical research or as pets and traditional medicine, yet most reports on trade from China regard international trade. To assess a proxy for amount of national primate trades, we quantified the number of reports of native primate species featuring in unique web news reports from 2000 to 2017, including accuracy of their identification, location where they were confiscated or rescued, and their condition upon rescue. To measure temporal trends across these categories, the time span was divided into three sections: 2000-2005, 2006-2011 and 2012-2017. A total of 735 individuals of 14 species were reported in 372 news reports, mostly rhesus macaques (n = 165, 22.5%, Macaca mulatta) and two species of slow lorises (n = 487, 66.3%, Nycticebus spp.). During the same period, live individuals of rhesus macaques were recorded 206 times (70,949 individuals) in the Convention on International Trade in Endangered Species of Wild Fauna and Flora Trade Database, whereas slow lorises were only recorded four times (nine individuals), indicating that the species originated illegally from China or were illegally imported into China. Due to their rescued locations in residential areas (n = 211, 56.7%), most primates appeared to be housed privately as pets. A higher proportion of 'market' rescues during 2006-2011 (χ2 = 8.485, df = 2, p = 0.014), could be partly attributed to an intensive management on wildlife markets since the outbreak of severe acute respiratory syndrome (SARS) in 2003. More than half (68.3%, 502 individuals) of the primate individuals were unhealthy, injured or dead when rescued. Thus, identification and welfare training and capacity-building should be provided to husbandry and veterinary professionals, as well as education to the public through awareness initiatives. The increase in presence of some species, especially slow lorises, with a declining population in restricted areas, also suggests the urgent need for public awareness about the illegal nature of keeping these taxa as pets.
Collapse
Affiliation(s)
- Qingyong Ni
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| | - Yu Wang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ariana Weldon
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| | - Meng Xie
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Huailiang Xu
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Yongfang Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Mingwang Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - K.A.I. Nekaris
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| |
Collapse
|
50
|
Jacobs RL, Baker BW. The species dilemma and its potential impact on enforcing wildlife trade laws. Evol Anthropol 2018; 27:261-266. [PMID: 30485588 DOI: 10.1002/evan.21751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 09/21/2018] [Indexed: 11/07/2022]
Abstract
The varied answers to the question "What is a species?" provoke more than lively debates in academic circles. They pose practical problems for law enforcement. Commercial wildlife trade threatens many primate species and is regulated through such laws and international agreements as the U.S. Endangered Species Act and the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Enforcing legislation relies on the ability to identify when violations occur. Species-defining characters may not be preserved in wildlife trade items. For example, pelage patterns and behavioral characters (e.g., vocalizations) are absent from skulls. Accordingly, identifying victims of illegal trade can be difficult, which hinders enforcement. Moreover, identifying new species and "splitting" of currently recognized species can result in enforcement lags and regulatory loopholes. Although such negative consequences should not hinder scientific advancement, we suggest that they be considered by primate taxonomists and provide recommendations to prevent unintended conservation consequences.
Collapse
Affiliation(s)
- Rachel L Jacobs
- U.S. Fish & Wildlife Service, National Fish & Wildlife Forensics Laboratory, Ashland, Oregon
| | - Barry W Baker
- U.S. Fish & Wildlife Service, National Fish & Wildlife Forensics Laboratory, Ashland, Oregon
| |
Collapse
|