1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
3
|
Xu X, Yin J, Yang Y, Liu H, Yu J, Luo X, Zhang Y, Song X. Advances in co-pathogenesis of the united airway diseases. Respir Med 2024; 225:107580. [PMID: 38484897 DOI: 10.1016/j.rmed.2024.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
According to the concept of "united airway diseases", the airway is a single organ in which upper and lower airway diseases are commonly comorbid. A range of inflammatory factors have been found to play an important role in the chain reaction of upper and lower airway diseases. However, the amount of research on this concept remains limited. The underlying mechanism of the relationship between typical diseases of the united airway, such as asthma, allergic rhinitis, and chronic sinusitis, also needs to be further explored. This review highlights the interaction between upper and lower respiratory diseases gathered from epidemiological, histoembryology, neural mechanistic, microbiological, and clinical studies, revealing the relationship between the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Huifang Liu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; The 2nd School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong, China
| | - Jingyi Yu
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
| | - Xianghuang Luo
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China; School of Clinical Medicine, Weifang Medical University, Weifang, 261042, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery. Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.
| |
Collapse
|
4
|
Bai J, Tan BK, Kato A. Endotypic heterogeneity and pathogenesis in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2024; 24:1-8. [PMID: 37966157 PMCID: PMC10873077 DOI: 10.1097/aci.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide updates in realms of endotypic heterogeneity, pathogenesis at the molecular level, potential of biomarkers, and cutting-edge scope of biologics in CRS. RECENT FINDINGS High-dimensional analyses, such as transcriptomes, and machine learning, have significantly enhanced CRS endotyping, uncovering diverse pathogenetic mechanisms contributing to its heterogeneity. The dynamic process of epithelial remodeling in CRS pathogenesis has gained more clarity and support as exemplified by IL-13 and oncostatin M (OSM) that are shown intricately linked to epithelial barrier dysfunction. Moreover, anti-dsDNA autoantibody, BAFF, periostin, and cystatin SN show promise as potentials biomarkers, offering diagnostic and prognostic value for CRS. SUMMARY The identification of inflammatory molecules involved in endotype specific signaling pathways provides insights into the underlying mechanisms and verifiable biomarkers for diagnosis and prediction of disease severity. More comprehensive clinical studies should be conducted to facilitate biologics from bench to bedside in treating CRS.
Collapse
Affiliation(s)
- Junqin Bai
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bruce K. Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Atsushi Kato
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Ortiz-Carpena JF, Inclan-Rico JM, Pastore CF, Hung LY, Wilkerson WB, Weiner MB, Lin C, Gentile ME, Cohen NA, Saboor IA, Vaughan AE, Rossi HL, Herbert DR. [WITHDRAWN] Neuron-dependent tuft cell expansion initiates sinonasal allergic Type 2 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547596. [PMID: 37461610 PMCID: PMC10349937 DOI: 10.1101/2023.07.04.547596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The authors have withdrawn this manuscript owing to inaccuracies in the calculation of tuft cell numbers and errors in the selection of immunofluorescence images used to support our claims. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
6
|
Sell EA, Tan LH, Lin C, Bosso JV, Palmer JN, Adappa ND, Lee RJ, Kohanski MA, Reed DR, Cohen NA. Microbial metabolite succinate activates solitary chemosensory cells in the human sinonasal epithelium. Int Forum Allergy Rhinol 2023; 13:1525-1534. [PMID: 36565436 DOI: 10.1002/alr.23104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Succinate, although most famous for its role in the Krebs cycle, can be released extracellularly as a signal of cellular distress, particularly in situations of metabolic stress and inflammation. Solitary chemosensory cells (SCCs) express SUCNR1, the succinate receptor, and modulate type 2 inflammatory responses in helminth and protozoal infections in the small intestine. SCCs are the dominant epithelial source of interleukin-25, as well as an important source of cysteinyl leukotrienes in the airway, and have been implicated as upstream agents in type 2 inflammation in chronic rhinosinusitis (CRS) and asthma. METHODS In this study, we used scRNAseq analysis, live cell imaging of intracellular calcium from primary sinonasal air-liquid interface (ALI) cultures from 1 donor, and measure antimicrobial peptide release from 5 donors to demonstrate preliminary evidence suggesting that succinate can act as a stimulant of SCCs in the human sinonasal epithelium. RESULTS Results from scRNAseq analysis show that approximately 10% of the SCC/ionocyte cluster of cells expressed SUCNR1 as well as a small population of immune cells. Using live cell imaging of intracellular calcium, we also demonstrate that clusters of cells on primary sinonasal ALI cultures initiated calcium-mediated signaling in response to succinate stimulation. Furthermore, we present evidence that primary sinonasal ALI cultures treated with succinate had increased levels of apical beta-defensin 2, an antimicrobial peptide, compared to treatment with a control solution. CONCLUSION Overall, these findings demonstrate the need for further investigation into the activation of the sinonasal epithelium by succinate in the pathogenesis of CRS.
Collapse
Affiliation(s)
- Elizabeth A Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Li Hui Tan
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA
| | - John V Bosso
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James N Palmer
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nithin D Adappa
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert J Lee
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael A Kohanski
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Noam A Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Monell Chemical Senses Center, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA
| |
Collapse
|
7
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
8
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Kotas ME, Patel NN, Cope EK, Gurrola JG, Goldberg AN, Pletcher SD, Seibold MA, Moore CM, Gordon ED. IL-13-associated epithelial remodeling correlates with clinical severity in nasal polyposis. J Allergy Clin Immunol 2023; 151:1277-1285. [PMID: 36736797 PMCID: PMC10243183 DOI: 10.1016/j.jaci.2022.12.826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Neil N Patel
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Jose G Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Andrew N Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Steven D Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif; Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, Calif
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colo
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado, Aurora, Colo.
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
10
|
Bethineedi LD, Baghsheikhi H, Soltani A, Mafi Z, Samieefar N, Sanjid Seraj S, Khazeei Tabari MA. Human T2R38 Bitter Taste Receptor Expression and COVID-19: From Immunity to Prognosis. Avicenna J Med Biotechnol 2023; 15:118-123. [PMID: 37034895 PMCID: PMC10073923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/28/2023] [Indexed: 04/11/2023] Open
Abstract
Background Bitter taste-sensing type 2 receptor (T2Rs or TAS2Rs) found on ciliated epithelial cells and solitary chemosensory cells have a role in respiratory tract immunity. T2Rs have shown protection against SARS-CoV-2 by enhancing the innate immune response. The purpose of this review is to outline the current sphere of knowledge regarding this association. Methods A narrative review of the literature was done by searching (T2R38 OR bitter taste receptor) AND (COVID-19 OR SARS-CoV-2) keywords in PubMed and google scholar. Results T2R38, an isoform of T2Rs encoded by the TAS2R38 gene, may have a potential association between phenotypic expression of T2R38 and prognosis of COVID-19. Current studies suggest that due to different genotypes and widespread distributions of T2Rs within the respiratory tract and their role in innate immunity, treatment protocols for COVID-19 and other respiratory diseases may change accordingly. Based on the phenotypic expression of T2R38, it varies in innate immunity and host response to respiratory infection, systemic symptoms and hospitalization. Conclusion This review reveals that patients' innate immune response to SARS-COV-2 could be influenced by T2R38 receptor allelic variations.
Collapse
Affiliation(s)
| | - Hediyeh Baghsheikhi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahedeh Mafi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaikh Sanjid Seraj
- Walsall Healthcare NHS Trust, Walsall Manor Hospital, Walsall, United Kingdom
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Kotas ME, O'Leary CE, Locksley RM. Tuft Cells: Context- and Tissue-Specific Programming for a Conserved Cell Lineage. ANNUAL REVIEW OF PATHOLOGY 2023; 18:311-335. [PMID: 36351364 PMCID: PMC10443898 DOI: 10.1146/annurev-pathol-042320-112212] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California, USA
- Current affiliation: Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
12
|
Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological Aspects of Chronic Rhinosinusitis. Diagnostics (Basel) 2022; 12:diagnostics12102361. [PMID: 36292050 PMCID: PMC9600442 DOI: 10.3390/diagnostics12102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional relationship between environmental agents and the host immune system. Disturbances in the functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and host-derived factors which activate multiple immunological mechanisms. The molecular bases for CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally, air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases with different clinical courses and response to treatment. Immunological pathways vary depending on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision medicine in the treatment of CRS. The purpose of this review is to summarize the current state of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more effective treatment strategies.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | | | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
13
|
Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN, Alvarez R, Yamato S, Bratcher PE, Shaughnessy CA, Zeitlin PL, Zhang IH, Li Y, Montgomery MT, Lee K, Cope EK, Locksley RM, Seibold MA, Gordon ED. IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 2022; 7:e159832. [PMID: 35608904 PMCID: PMC9310525 DOI: 10.1172/jci.insight.159832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.
Collapse
Affiliation(s)
- Maya E. Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Camille M. Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado, Aurora, Colorado, USA
| | - Jose G. Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Steven D. Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
- Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, California, USA
| | - Andrew N. Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Raquel Alvarez
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sheyla Yamato
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | | - Pamela L. Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Irene H. Zhang
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Yingchun Li
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Keehoon Lee
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard M. Locksley
- Howard Hughes Medical Institute and
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Erin D. Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J Virol 2022; 96:e0035222. [PMID: 35446142 PMCID: PMC9093116 DOI: 10.1128/jvi.00352-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Talia D. Wiggen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C. Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
Although tuft cells were discovered over 60 years ago, their functions have long been enigmatic, especially in human health. Nonetheless, tuft cells have recently emerged as key orchestrators of the host response to diverse microbial infections in the gut and airway. While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and mediate important interkingdom interactions between the host and helminths, protists, viruses, and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection, driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the primary physiologic target of persistent murine norovirus (MNV) and promote immune evasion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections, such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coinfection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in humans and their resulting effector responses are poorly characterized. Herein, we aim to provide a comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell heterogeneity and differences between mouse and human tuft cell biology as it pertains to human health and disease.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
17
|
Ualiyeva S, Bankova LG. Isolation, Ex Vivo Culture, and Stimulation of Tracheal and Nasal Chemosensory Cells. Methods Mol Biol 2022; 2506:151-165. [PMID: 35771470 DOI: 10.1007/978-1-0716-2364-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brush cells are chemosensory epithelial cells present at most mucosal surfaces.Brush cells are a dominant source of cysteinyl leukotrienes and IL-25 in the airway epithelium and are equipped with the machinery to generate prostaglandins and acetylcholine. Activation of innate type 2 lymphoid cells and dendritic cells triggered by brush cell-derived mediators skew the immune response in the airway to type 2 inflammation that underlies atopic disease such as asthma. This chapter describes an effective method of brush cell isolation from the mouse trachea for transcriptional analysis and from the nasal cavity for transcriptional analysis and ex vivo stimulation.The nasal or tracheal mucosa is first incubated in a dispase solution for easy mechanical separation of the epithelial layer from the underlying submucosa. The detached epithelium is then digested with a papain solution. This method provides high yields of viable brush cells in a single-cell suspension, which can be used for flow cytometric analysis, single-cell sorting, cell culture, and functional assays.In the nose, where brush cells are more abundant, we present two methods of isolation of brush cells: (1) using fluorescent reporter mice that mark brush cells or (2) using a combination of high expression of EpCAM and low expression of CD45 to obtain a population of cells that is enriched for nasal chemosensory brush cells.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2021; 20:1-8. [PMID: 31567293 DOI: 10.1097/aci.0000000000000588] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Pathogenesis of nasal polyp has been largely studied based on innate and adaptive immunity of sinonasal mucosa. So far, various factors have been identified that trigger an inflammatory response in the pathogenesis of nasal polyps. In this review, we summarized recently updated information in the understanding of mechanisms in the development of chronic rhinosinusitis with nasal polyp (CRSwNP) focusing on Th2 inflammation. RECENT FINDINGS Endotype of CRSwNP presented mainly Th2-skewed inflammation, and it has been associated with refractoriness and comorbidities. Staphylococcus aureus can drive Th2 inflammation by producing enterotoxins and serine protease-like protein. Moreover, S. aureus directly affected mucosal barrier function and enhanced Th2 cytokine production by fast induction of epithelial-derived innate cytokines. Epithelial-derived innate cytokines, including TSLP, IL-25, and IL-33, promote Th2 responses via the development of innate lymphoid cells. Mast cell expresses IL-5, IL-13, and periostin, and it plays a role in the pathogenesis of nasal polyps through orchestrating eosinophil infiltration. Formation of eosinophil extracellular traps and Charcot-Leyden crystals is strongly associated with disease severity and viscous mucus plug production. Therefore, it needs to be investigated mechanistically. The role of neutrophils in Th2 inflammation has been poorly understood but appears to enhance Th2 inflammation and make it more resistant to steroid therapy. SUMMARY There is growing evidence of the role of S. aureus in innate and adaptive immunity, which contribute to Th2 inflammation in CRSwNP. Innate immunity, including epithelial-derived cytokines, plays a crucial role in the development of CRSwNP by inducing various pathways and need to be investigated more as Th2-targeted biomarkers. Recently, the role of neutrophilic inflammation in Th2 inflammation has started to be studied but still remains unclear.
Collapse
|
19
|
Barham HP, Taha MA, Broyles ST, Stevenson MM, Zito BA, Hall CA. Association Between Bitter Taste Receptor Phenotype and Clinical Outcomes Among Patients With COVID-19. JAMA Netw Open 2021; 4:e2111410. [PMID: 34032852 PMCID: PMC8150696 DOI: 10.1001/jamanetworkopen.2021.11410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPORTANCE Bitter taste receptors (T2Rs) have been implicated in sinonasal innate immunity, and genetic variation conferred by allelic variants in T2R genes is associated with variation in upper respiratory tract pathogen susceptibility, symptoms, and outcomes. Bitter taste receptor phenotype appears to be associated with the clinical course and symptom duration of SARS-CoV-2 infection. OBJECTIVE To evaluate the association between T2R phenotype and patient clinical course after infection with SARS-CoV-2. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study was performed from July 1 through September 30, 2020, at a tertiary outpatient clinical practice and inpatient hospital in the United States among 1935 participants (patients and health care workers) with occupational exposure to SARS-CoV-2. EXPOSURE Exposure to SARS-CoV-2. MAIN OUTCOMES AND MEASURES Participants underwent T2R38 phenotype taste testing to determine whether they were supertasters (those who experienced greater intensity of bitter tastes), tasters, or nontasters (those who experienced low intensity of bitter tastes or no bitter tastes) and underwent evaluation for lack of infection with SARS-CoV-2 via polymerase chain reaction (PCR) testing and IgM and IgG testing. A group of participants was randomly selected for genotype analysis to correlate phenotype. Participants were followed up until confirmation of infection with SARS-CoV-2 via PCR testing. Phenotype of T2R38 was retested after infection with SARS-CoV-2. The results were compared with clinical course. RESULTS A total of 1935 individuals (1101 women [56.9%]; mean [SD] age, 45.5 [13.9] years) participated in the study. Results of phenotype taste testing showed that 508 (26.3%) were supertasters, 917 (47.4%) were tasters, and 510 (26.4%) were nontasters. A total of 266 participants (13.7%) had positive PCR test results for SARS-CoV-2. Of these, 55 (20.7%) required hospitalization. Symptom duration among patients with positive results ranged from 0 to 48 days. Nontasters were significantly more likely than tasters and supertasters to test positive for SARS-CoV-2 (odds ratio, 10.1 [95% CI, 5.8-17.8]; P < .001), to be hospitalized once infected (odds ratio, 3.9 [1.5-10.2]; P = .006), and to be symptomatic for a longer duration (mean [SE] duration, 23.7 [0.5] days vs 13.5 [0.4] days vs 5.0 [0.6] days; P < .001). A total of 47 of 55 patients (85.5%) with COVID-19 who required inpatient admission were nontasters. Conversely, 15 of 266 patients (5.6%) with positive PCR test results were supertasters. CONCLUSIONS AND RELEVANCE This cohort study suggests that T2R38 receptor allelic variants were associated with participants' innate immune response toward SARS-CoV-2. The T2R phenotype was associated with patients' clinical course after SARS-CoV-2 infection. Nontasters were more likely to be infected with SARS-CoV-2 than the other 2 groups, suggesting enhanced innate immune protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Henry P. Barham
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, Baton Rouge, Louisiana
- Sinus and Nasal Specialists of Louisiana, Baton Rouge
| | - Mohamed A. Taha
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, Baton Rouge, Louisiana
- Department of Otorhinolaryngology, Cairo University, Cairo, Egypt
| | | | - Megan M. Stevenson
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, Baton Rouge, Louisiana
- Sinus and Nasal Specialists of Louisiana, Baton Rouge
| | - Brittany A. Zito
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, Baton Rouge, Louisiana
- Sinus and Nasal Specialists of Louisiana, Baton Rouge
| | - Christian A. Hall
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, Baton Rouge, Louisiana
- Sinus and Nasal Specialists of Louisiana, Baton Rouge
| |
Collapse
|
20
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
21
|
Sharma P, McAlinden KD, Ghavami S, Deshpande DA. Chloroquine: Autophagy inhibitor, antimalarial, bitter taste receptor agonist in fight against COVID-19, a reality check? Eur J Pharmacol 2021; 897:173928. [PMID: 33545161 PMCID: PMC7857018 DOI: 10.1016/j.ejphar.2021.173928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
The recent SARS-CoV-2 pandemic poses one of the greatest challenges to modern medicine. Therefore, identification of new therapeutic strategies seems essential either based on novel vaccines or drugs or simply repurposing existing drugs. Notably, due to their known safety profile, repurposing of existing drugs is the fastest and highly efficient approach to bring a therapeutic to a clinic for any new indication. One such drug that has been used extensively for decades is chloroquine (CQ, with its derivatives) either for malaria, lupus and rheumatoid arthritis. Accumulating body of evidence from experimental pharmacology suggests that CQ and related analogues also activate certain pathways that can potentially be exploited for therapeutic gain. For example, in the airways, this has opened an attractive avenue for developing novel bitter taste ligands as a new class of bronchodilators for asthma. While CQ and its derivatives have been proposed as a therapy in COVID-19, it remains to be seen whether it really work in the clinic? To this end, our perspective aims to provide a timely yet brief insights on the existing literature on CQ and the controversies surrounding its use in COVID-19. Further, we also highlight some of cell-based mechanism(s) that CQ and its derivatives affect in mediating variety of physiological responses in the cell. We believe, data emanating from the clinical studies and continual understanding of the fundamental mechanisms may potentially help in designing effective therapeutic strategies that meets both efficacy and safety criteria for COVID-19.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Kielan D McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Deepak A Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
22
|
Taha MA, Hall CA, Shortess CJ, Rathbone RF, Barham HP. Treatment Protocol for COVID-19 Based on T2R Phenotype. Viruses 2021; 13:v13030503. [PMID: 33803811 PMCID: PMC8003114 DOI: 10.3390/v13030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
COVID-19 has become a global pandemic of the highest priority. Multiple treatment protocols have been proposed worldwide with no definitive answer for acure. A prior retrospective study showed association between bitter taste receptor 38 (T2R38) phenotypes and the severity of COVID-19. Based on this, we proposed assessing the different T2R38 phenotypes response towards a targeted treatment protocol. Starting July 2020 till December 2020, we tested subjects for T2R38 phenotypic expression (supertasters, tasters, and nontasters). Subjects who were subsequently infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (diagnosed via PCR) were included. Based on their taster status, supertasters were given dexamethasone for 4 days; tasters were given azithromycin and dexamethasone +/− hydroxychloroquine for 7 days; and nontasters were given azithromycin and dexamethasone for 12 days. Subjects were followed prospectively and their outcomes were documented. Seven hundred forty-seven COVID-19 patients were included, with 184 (24.7%) supertasters, 371 (49.6%) tasters, and192 (25.7%) nontasters. The average duration of symptoms with the treatment protocol was 5 days for supertasters, 8.1 days for tasters, and 16.2 days for nontasters. Only three subjects (0.4%) required hospitalization (3/3 nontasters). Targeted treatment protocol showed significant correlation (p < 0.05) based on patients’ T2R38 phenotypic expression. Assessing treatment protocols for COVID-19 patients according to their T2R38 phenotype could provide insight into the inconsistent results obtained from the different studies worldwide. Further study is warranted on the categorization of patients based on their T2R38 phenotype.
Collapse
Affiliation(s)
- Mohamed A. Taha
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Department of Otorhinolaryngology, Cairo University, Cairo 11451, Egypt
- Correspondence: ; Tel.: +1-225-819-1181; Fax: +1-225-246-8333
| | - Christian A. Hall
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Sinus and Nasal Specialists of Louisiana, Baton Rouge, LA 70809, USA
| | - Colin J. Shortess
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
| | - Richard F. Rathbone
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
| | - Henry P. Barham
- Rhinology and Skull Base Research Group, Baton Rouge General Medical Center, 8585 Picardy Ave., Suite 210, Baton Rouge, LA 70809, USA; (C.A.H.); (C.J.S.); (R.F.R.); (H.P.B.)
- Sinus and Nasal Specialists of Louisiana, Baton Rouge, LA 70809, USA
| |
Collapse
|
23
|
Sell EA, Ortiz-Carpena JF, Herbert DR, Cohen NA. Tuft cells in the pathogenesis of chronic rhinosinusitis with nasal polyps and asthma. Ann Allergy Asthma Immunol 2021; 126:143-151. [PMID: 33122124 PMCID: PMC8674819 DOI: 10.1016/j.anai.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review the latest discoveries regarding the role of tuft cells in the pathogenesis of chronic rhinosinusitis (CRS) with nasal polyposis and asthma. DATA SOURCES Reviews and primary research manuscripts were identified from PubMed, Google, and bioRxiv using the search words airway epithelium, nasal polyposis, CRS or asthma and chemoreceptor cell, solitary chemosensory cell, brush cell, microvillus cell, and tuft cell. STUDY SELECTIONS Studies were selected on the basis of novelty and likely relevance to the functions of tuft cells in chronic inflammatory diseases in the upper and lower airways. RESULTS Tuft cells coordinate a variety of immune responses throughout the body. After the activation of bitter-taste receptors, tuft cells coordinate the secretion of antimicrobial products by adjacent epithelial cells and initiate the calcium-dependent release of acetylcholine resulting in neurogenic inflammation, including mast cell degranulation and plasma extravasation. Tuft cells are also the dominant source of interleukin-25 and a significant source of cysteinyl leukotrienes that play a role in initiating inflammatory processes in the airway. Tuft cells have also been found to seem de novo in the distal airway after a viral infection, implicating these cells in dysplastic remodeling in the distal lung in the pathogenesis of asthma. CONCLUSION Tuft cells bridge innate and adaptive immunes responses and play an upstream role in initiating type 2 inflammation in the upper and possibly the lower airway. The role of tuft cells in respiratory pathophysiology must be further investigated, because tuft cells are putative high-value therapeutic targets for novel therapeutics in CRS with nasal polyps and asthma.
Collapse
Affiliation(s)
- Elizabeth A Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Jorge F Ortiz-Carpena
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Noam A Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Corporal Michael J. Crescenz Veterans Administration Medical Center, Veterans Health Administration, United States Department of Veteran Affairs, Philadelphia, Pennsylvania; Monell Chemical Senses Center, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Immune Regulatory Roles of Cells Expressing Taste Signaling Elements in Nongustatory Tissues. Handb Exp Pharmacol 2021; 275:271-293. [PMID: 33945029 DOI: 10.1007/164_2021_468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled taste receptors and their downstream signaling elements, including Gnat3 (also known as α-gustducin) and TrpM5, were first identified in taste bud cells. Subsequent studies, however, revealed that some cells in nongustatory tissues also express taste receptors and/or their signaling elements. These nongustatory-tissue-expressed taste receptors and signaling elements play important roles in a number of physiological processes, including metabolism and immune responses. Special populations of cells expressing taste signaling elements in nongustatory tissues have been described as solitary chemosensory cells (SCCs) and tuft cells, mainly based on their morphological features and their expression of taste signaling elements as a critical molecular signature. These cells are typically scattered in barrier epithelial tissues, and their functions were largely unknown until recently. Emerging evidence shows that SCCs and tuft cells play important roles in immune responses to microbes and parasites. Additionally, certain immune cells also express taste receptors or taste signaling elements, suggesting a direct link between chemosensation and immune function. In this chapter, we highlight our current understanding of the functional roles of these "taste-like" cells and taste signaling pathways in different tissues, focusing on their activities in immune regulation.
Collapse
|
26
|
Li Y, Wang W, Ying S, Lan F, Zhang L. A Potential Role of Group 2 Innate Lymphoid Cells in Eosinophilic Chronic Rhinosinusitis With Nasal Polyps. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:363-374. [PMID: 33733633 PMCID: PMC7984954 DOI: 10.4168/aair.2021.13.3.363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP), a type 2-based upper airway disease, is mainly characterized by high asthma comorbidity and recurrence after surgery. It has been shown that type 2 cytokines, including interleukin (IL)-4, IL-5, and IL-13 released from T helper 2 (Th2) cells as well as group 2 innate lymphoid cells (ILC2s), contribute to chronic inflammation of CRSwNP. This review summarizes recent progresses made in our understanding of ILC2 activity, particularly ILC2 accumulation at airway inflammation sites, cooperation with Th2 cells in aggravating the CRSwNP inflammatory process and interactions with regulatory T cells (Tregs) in resisting Tregs-mediated suppressive function in allergic inflammation. A better understanding of the biology of ILC2s should lay a good foundation in elucidating the pathogenesis of CRSwNP, and subsequently may lead to the development of new therapeutic strategies for the management of CRSwNP.
Collapse
Affiliation(s)
- Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China.
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, Beijing, China.
| |
Collapse
|
27
|
Billipp TE, Nadjsombati MS, von Moltke J. Tuning tuft cells: new ligands and effector functions reveal tissue-specific function. Curr Opin Immunol 2020; 68:98-106. [PMID: 33166855 DOI: 10.1016/j.coi.2020.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Tuft cells are rare chemosensory epithelial cells that monitor their environment and relay messages to the surrounding tissue via secretion of neuromodulatory and immunomodulatory molecules. In the small intestine tuft cells detect helminth infection, protist colonization, and bacterial dysbiosis, and initiate a type 2 immune response characterized by tissue remodeling. In the airways, tuft cells sense bacteria, allergens, and noxious stimuli and drive evasive behavior, neuroinflammation, and anti-bacterial responses. Here we summarize the most recent tuft cell research and discuss how these findings have provided insight into tuft cell diversity. Built around a core program of chemosensing, tuft cell receptors and effector functions are tuned to the unique environmental exposure and physiology of their surrounding tissue.
Collapse
Affiliation(s)
- Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Marija S Nadjsombati
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
28
|
Civantos AM, Maina IW, Arnold M, Lin C, Stevens EM, Tan LH, Gleeson PK, Colquitt LR, Cowart BJ, Bosso JV, Palmer JN, Adappa ND, Kohanski MA, Reed DR, Cohen NA. Denatonium benzoate bitter taste perception in chronic rhinosinusitis subgroups. Int Forum Allergy Rhinol 2020; 11:967-975. [DOI: 10.1002/alr.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Alyssa M. Civantos
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - Ivy W. Maina
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - Monique Arnold
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - Cailu Lin
- Monell Chemical Senses Center Philadelphia PA
| | | | - Li Hui Tan
- Michael J. Crescenz VA Medical Center Philadelphia PA
| | - Patrick K. Gleeson
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | | | | | - John V. Bosso
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - James N. Palmer
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | - Michael A. Kohanski
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
| | | | - Noam A. Cohen
- Department of Otorhinolaryngology University of Pennsylvania Philadelphia PA
- Monell Chemical Senses Center Philadelphia PA
- Michael J. Crescenz VA Medical Center Philadelphia PA
| |
Collapse
|
29
|
Ting HA, von Moltke J. The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. THE JOURNAL OF IMMUNOLOGY 2019; 202:1321-1329. [PMID: 30782851 DOI: 10.4049/jimmunol.1801069] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Tuft cells were first discovered in epithelial barriers decades ago, but their function remained unclear until recently. In the last 2 years, a series of studies has provided important advances that link tuft cells to infectious diseases and the host immune responses. Broadly, a model has emerged in which tuft cells use chemosensing to monitor their surroundings and translate environmental signals into effector functions that regulate immune responses in the underlying tissue. In this article, we review the current understanding of tuft cell immune function in the intestines, airways, and thymus. In particular, we discuss the role of tuft cells in type 2 immunity, norovirus infection, and thymocyte development. Despite recent advances, many fundamental questions about the function of tuft cells in immunity remain to be answered.
Collapse
Affiliation(s)
- Hung-An Ting
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| |
Collapse
|
30
|
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol 2019; 17:87. [PMID: 31699101 PMCID: PMC6836414 DOI: 10.1186/s12915-019-0703-z] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.
Collapse
Affiliation(s)
- Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kaisa Koskinen
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Present address: Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
31
|
Ualiyeva S, Yoshimoto E, Barrett NA, Bankova LG. Isolation and Quantitative Evaluation of Brush Cells from Mouse Tracheas. J Vis Exp 2019. [PMID: 31259891 DOI: 10.3791/59496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tracheal brush cells are cholinergic chemosensory epithelial cells poised to transmit signals from the airway lumen to the immune and nervous systems. They are part of a family of chemosensory epithelial cells which include tuft cells in the intestinal mucosa, brush cells in the trachea, and solitary chemosensory and microvillous cells in the nasal mucosa. Chemosensory cells in different epithelial compartments share key intracellular markers and a core transcriptional signature, but also display significant transcriptional heterogeneity, likely reflective of the local tissue environment. Isolation of tracheal brush cells from single cell suspensions is required to define the function of these rare epithelial cells in detail, but their isolation is challenging, potentially due to the close interaction between tracheal brush cells and nerve endings or due to airway-specific composition of tight and adherens junctions. Here, we describe a procedure for isolation of brush cells from mouse tracheal epithelium. The method is based on an initial separation of tracheal epithelium from the submucosa, allowing for a subsequent shorter incubation of the epithelial sheet with papain. This procedure offers a rapid and convenient solution for flow cytometric sorting and functional analysis of viable tracheal brush cells.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School
| | - Eri Yoshimoto
- Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School
| | - Nora A Barrett
- Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School
| | - Lora G Bankova
- Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School;
| |
Collapse
|
32
|
Rane CK, Jackson SR, Pastore CF, Zhao G, Weiner AI, Patel NN, Herbert DR, Cohen NA, Vaughan AE. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1141-L1149. [PMID: 30908939 PMCID: PMC6620670 DOI: 10.1152/ajplung.00032.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
H1N1 influenza virus infection induces dramatic and permanent alveolar remodeling mediated by p63+ progenitor cell expansion in both mice and some patients with acute respiratory distress syndrome. This persistent lung epithelial dysplasia is accompanied by chronic inflammation, but the driver(s) of this pathology are unknown. This work identified de novo appearance of solitary chemosensory cells (SCCs), as defined by the tuft cell marker doublecortin-like kinase 1, in post-influenza lungs, arising in close proximity with the dysplastic epithelium, whereas uninjured lungs are devoid of SCCs. Interestingly, fate mapping demonstrated that these cells are derived from p63-expressing lineage-negative progenitors, the same cell of origin as the dysplastic epithelium. Direct activation of SCCs with denatonium + succinate increased plasma extravasation specifically in post-influenza virus-injured lungs. Thus we demonstrate the previously unrecognized development and activity of SCCs in the lung following influenza virus infection, implicating SCCs as a central feature of dysplastic remodeling.
Collapse
Affiliation(s)
- Chetan K Rane
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sergio R Jackson
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Christopher F Pastore
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gan Zhao
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Aaron I Weiner
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
- Monell Chemical Senses Center , Philadelphia, Pennsylvania
- Philadelphia Veterans Affairs Medical Center Surgical Service , Philadelphia, Pennsylvania
| | - Andrew E Vaughan
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Patel NN, Triantafillou V, Maina IW, Workman AD, Tong CCL, Kuan EC, Papagiannopoulos P, Bosso JV, Adappa ND, Palmer JN, Kohanski MA, Herbert DR, Cohen NA. Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. Int Forum Allergy Rhinol 2019; 9:730-737. [PMID: 30892837 DOI: 10.1002/alr.22334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/24/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Solitary chemosensory cells (SCCs) are rare epithelial cells enriched in nasal polyps and are the primary source of interleukin-25 (IL-25), an innate cytokine eliciting T-helper 2 (Th2) immune response. Although it is proposed that SCCs are stimulated by antigens released by upper airway pathogens, the exogenous triggers of human SCCs remain elusive. We studied patients with noninvasive fungal rhinosinusitis to determine whether extracts of Aspergillus fumigatus and Alternaria alternata stimulate SCC proliferation as an early event in type 2 inflammation. METHODS Multicolor flow cytometry, immunofluorescence, and enzyme-linked immunoassay were used to interrogate mucosa from patients with mycetomas and allergic fungal rhinosinusitis (AFRS) for SCCs and IL-25. Primary sinonasal epithelial cells from AFRS patients and noninflamed inferior turbinates were stimulated with fungal extracts for 72 hours, and SCC population frequency as well as mitotic activity were quantified using flow cytometry. RESULTS SCCs producing IL-25 are enriched in inflamed mucosa compared with intrapatient noninflamed control tissue (38.6% vs 6.5%, p = 0.029). In cultured sinonasal epithelial cells from AFRS nasal polyps, Aspergillus fumigatus and Alternaria alternata stimulated higher SCC frequency compared with controls (27.4% vs 10.6%, p = 0.002; 18.1% vs 10.6%, p = 0.046), which led to increased IL-25 secretion in culture media (75.5 vs 3.3 pg/mL, p < 0.001; 32.3 vs 3.3 pg/mL, p = 0.007). Ki-67 expression was higher in SCCs grown in fungal stimulation conditions compared with controls. CONCLUSION Although fungal antigens are known to potentiate immune response through innate cytokines, including IL-25, the early expansion of SCCs in the presence of fungus has not been described. This early event in the pathogenesis of noninvasive fungal rhinosinusitis may represent a target for intervention.
Collapse
Affiliation(s)
- Neil N Patel
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vasiliki Triantafillou
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivy W Maina
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alan D Workman
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles C L Tong
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward C Kuan
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Papagiannopoulos
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John V Bosso
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nithin D Adappa
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James N Palmer
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael A Kohanski
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Noam A Cohen
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA.,Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
34
|
van der Ploeg EK, Carreras Mascaro A, Huylebroeck D, Hendriks RW, Stadhouders R. Group 2 Innate Lymphoid Cells in Human Respiratory Disorders. J Innate Immun 2019; 12:47-62. [PMID: 30726833 DOI: 10.1159/000496212] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies using animal models have generated profound insight into the functions of various subsets of innate lymphoid cells (ILCs). The group 2 ILC subset (ILC2) has been implicated in tissue homeostasis, defense responses against parasites, tissue repair, and immunopathology associated with type-2 immunity. In addition, progress has also been made in translating these findings from animal studies into a context of human immunity. Importantly, recent observations strongly support a role for ILC2s in several diseases of the human respiratory system. However, many aspects of human ILC2 biology are still unclear, including how these cells develop and which signals control their activity. As a result, the exact role played by ILCs in human health and disease remains poorly understood. Here, we summarize our current understanding of human ILC2 biology and focus on their potential involvement in various human respiratory disorders.
Collapse
Affiliation(s)
- Esmee K van der Ploeg
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ralph Stadhouders
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands, .,Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands,
| |
Collapse
|
35
|
Abstract
Many odors activate the intranasal chemosensory trigeminal system where they produce cooling and other somatic sensations such as tingling, burning, or stinging. Specific trigeminal receptors are involved in the mediation of these sensations. Importantly, the trigeminal system also mediates sensitivity to airflow. The intranasal trigeminal and the olfactory system are closely connected. With regard to central nervous processing, it is most interesting that trigeminal stimuli can activate the piriform cortex, which is typically viewed as the primary olfactory cortex. This suggests that interactions between the two systems may form at a relatively early stage of processing. For example, there is evidence showing that acquired olfactory loss leads to reduced trigeminal sensitivity, probably on account of the lack of interaction in the central nervous system. Decreased trigeminal sensitivity may also be responsible for changes in airflow perception, leading to the impression of congested nasal airways.
Collapse
Affiliation(s)
- Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany.
| | - Johannes Frasnelli
- Université du Québec à Trois-Rivières, Department of Anatomy, Trois-Rivières, QC, Canada
| |
Collapse
|
36
|
Airway innate lymphoid cells in the induction and regulation of allergy. Allergol Int 2019; 68:9-16. [PMID: 30473412 PMCID: PMC6614863 DOI: 10.1016/j.alit.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of innate lymphoid cells has revolutionized our understanding of the pathogenesis of immune diseases including allergy and asthma. Innate lymphoid cells (ILCs) are a heterogeneous collection of lymphocytes that lack antigen-specificity (non-T, non-B cells) and potently produce characteristic cytokines of T cell subsets (Th1, Th2, Th17). ILCs are divided into group 1 (ILC1s), group 2 (ILC2s), or group 3 (ILC3s). Similar to Th2 cells, ILC2s produce IL-4, IL-5, and IL-13, among others, and are present in increased numbers in samples from patients with many allergic disorders including asthma and chronic rhinosinusitis (CRS). Animal models have identified that ILC2s contribute to eosinophilic tissue infiltration, airway hyperresponsiveness, mucus production, as well as coordinate adaptive immune responses. Finally, recent studies support regulation of ILC2s by neuro-immune mechanisms as well as demonstrate a significant degree of plasticity between ILC subsets that may impact the immune responses in asthma and allergic airway diseases. Here, we review the current literature on ILC2s in human asthma and allergic airway diseases, as well as highlight some recent mechanistic insights into ILC2 function from in vitro studies and in vivo animal models.
Collapse
|
37
|
Role of Taste Receptors as Sentinels of Innate Immunity in the Upper Airway. J Pathog 2018; 2018:9541987. [PMID: 30363975 PMCID: PMC6188595 DOI: 10.1155/2018/9541987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Evidence is emerging that shows taste receptors serve functions outside of taste sensation of the tongue. Taste receptors have been found in tissue across the human body, including the gastrointestinal tract, bladder, brain, and airway. These extraoral taste receptors appear to be important in modulating the innate immune response through detection of pathogens. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter and sweet compounds in the upper airway epithelium. Emphasis is given to recent studies which link the physiology of sinonasal taste receptors to clinical manifestation of upper airway disease.
Collapse
|
38
|
Patel NN, Kohanski MA, Maina IW, Workman AD, Herbert DR, Cohen NA. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol 2018; 9:93-99. [PMID: 30260580 DOI: 10.1002/alr.22206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022]
Abstract
Recent evidence has demonstrated an expanding role of respiratory epithelial cells in immune surveillance and modulation. Studies have been focusing on the earliest events that link epithelial injury to downstream inflammatory responses. Cytokines produced by and released from respiratory epithelial cells are among these early trigger signals. Epithelial-derived cytokines, namely thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, have come to the forefront of recent investigations. Each of these 3 cytokines has been implicated in chronic rhinosinusitis (CRS), asthma, and atopy. Herein we review studies elucidating the roles of epithelial-derived cytokines in the pathobiology of upper airway disease, with particular emphasis on type 2 inflammatory conditions.
Collapse
Affiliation(s)
- Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA.,Monell Chemical Senses Center, Philadelphia, PA
| |
Collapse
|
39
|
Maina IW, Workman AD, Cohen NA. The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World J Otorhinolaryngol Head Neck Surg 2018; 4:200-208. [PMID: 30506052 PMCID: PMC6251955 DOI: 10.1016/j.wjorl.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Bitter (T2R) and sweet (T1R) taste receptors have been implicated in sinonasal innate immunity and in the pathophysiology of chronic rhinosinusitis (CRS). Taste receptors are expressed on several sinonasal cell types including ciliated epithelial cells and solitary chemosensory cells. Bitter agonists released by pathogenic microbes elicit a T2R dependent signaling cascade which induces the release of bactericidal nitric oxide, increases mucociliary clearance, and promotes secretion of antimicrobial peptides. Genetic variation conferred by polymorphisms in T2R related genes is associated with differential CRS susceptibility, symptomatology and post-treatment outcomes. More recently, based on our understanding of T1R and T2R function, investigators have discovered novel potential therapeutics in T2R agonists and T1R antagonists. This review will discuss bitter and sweet taste receptor function in sinonasal immunity, explore the emerging diagnostic and therapeutic implications stemming from the most recent findings, and suggest directions for future research.
Collapse
Affiliation(s)
- Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA, 19104, USA.,Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
40
|
Kennedy DW. Additional options in chronic rhinosinusitis management. Int Forum Allergy Rhinol 2018; 8:867-868. [PMID: 30028090 DOI: 10.1002/alr.22188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|