1
|
Yang B, Li Z, Li P, Liu Y, Ding X, Feng E. Piezo1 in microglial cells: Implications for neuroinflammation and tumorigenesis. Channels (Austin) 2025; 19:2492161. [PMID: 40223276 PMCID: PMC12005408 DOI: 10.1080/19336950.2025.2492161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Microglia, the central nervous system (CNS) resident immune cells, are pivotal in regulating neurodevelopment, maintaining neural homeostasis, and mediating neuroinflammatory responses. Recent research has highlighted the importance of mechanotransduction, the process by which cells convert mechanical stimuli into biochemical signals, in regulating microglial activity. Among the various mechanosensitive channels, Piezo1 has emerged as a key player in microglia, influencing their behavior under both physiological and pathological conditions. This review focuses on the expression and role of Piezo1 in microglial cells, particularly in the context of neuroinflammation and tumorigenesis. We explore how Piezo1 mediates microglial responses to mechanical changes within the CNS, such as alterations in tissue stiffness and fluid shear stress, which are common in conditions like multiple sclerosis, Alzheimer's disease, cerebral ischemia, and gliomas. The review also discusses the potential of targeting Piezo1 for therapeutic intervention, given its involvement in the modulation of microglial activity and its impact on disease progression. This review integrates findings from recent studies to provide a comprehensive overview of Piezo1's mechanistic pathways in microglial function. These insights illuminate new possibilities for developing targeted therapies addressing CNS disorders with neuroinflammation and pathological tissue mechanics.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Li
- Department of Neonatology, Children’s Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuhan Liu
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinghuan Ding
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Iban-Arias R, Portela ASD, Masieri S, Radu A, Yang EJ, Chen LC, Gordon T, Pasinetti GM. Role of acute exposure to environmental stressors in the gut-brain-periphery axis in the presence of cognitive resilience. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167760. [PMID: 40037471 DOI: 10.1016/j.bbadis.2025.167760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Climate change-induced environmental stressors, including ambient particulate matter (PM2.5) and extreme heat stress (HS), pose serious health risks, particularly for neurodegenerative diseases. PM2.5 exacerbates cardiovascular and neurodegenerative conditions, while HS increases mortality and worsens air pollution. Combined exposure may amplify these effects, especially in vulnerable populations at risk for Alzheimer's disease (AD). In our experimental study using a mouse model of early-onset Alzheimer's disease (EOAD), we explored the combined effects of extreme weather conditions, particularly exposure to ambient PM2.5 and HS. Our research indicated that even short, repeated exposure to these environmental stressors disrupts brain energy metabolism and mitochondrial respiratory functions, which we found to be associated with altered hippocampal synaptic functions. Additionally, we find that key mechanisms associated with impaired intestinal permeability and gut dysbiosis are affected, supporting the hypothesis that exposure to climate change communication may also disrupt the gut-brain axis, as in part evidenced in our study by peripheral changes in immune and inflammatory signaling. Moreover, despite significant disruptions in metabolic and immune-inflammatory pathways, we observed no acceleration of cognitive decline in the young asymptomatic EOAD mice subjected to short, repeated exposure to extreme heat and environmental PM2.5. These findings highlight the potential role of climate change in promoting risk factors like neuroinflammation and gut-brain axis dysfunction due to gut microbiome dysbiosis in the onset and progression of AD, particularly in asymptomatic individuals at risk for developing the condition.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Ariana Soares Dias Portela
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Aurelian Radu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America
| | - Lung-Chi Chen
- Department of Medicine, NYU Langone School of Medicine, New York, NY, 10010, United States of America
| | - Terry Gordon
- Department of Medicine, NYU Langone School of Medicine, New York, NY, 10010, United States of America
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10019, United States of America; Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, United States of America.
| |
Collapse
|
3
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Inan S, Wilson RP, Tükel Ç. IUPHAR review: From gut to brain: The role of gut dysbiosis, bacterial amyloids, and metabolic disease in Alzheimer's disease. Pharmacol Res 2025; 215:107693. [PMID: 40086611 DOI: 10.1016/j.phrs.2025.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Gut microbial dysbiosis, or altered gut microbial communities, in Alzheimer's Disease suggests a pathogenic role for gut inflammation and microbial products in shaping a neuroinflammatory environment. Similarly, metabolic diseases, such as obesity and diabetes, are also associated with an increased risk of Alzheimer's Disease. As the metabolic landscape shifts during gut inflammation, and gut inflammation in turn impacts metabolic processes, we explore how these interconnected pathways may contribute to the progression of Alzheimer's Disease. Additionally, we discuss the role of bacterial amyloids produced by gut microbes, which may exacerbate amyloid aggregation in the brain and contribute to neurodegenerative processes. Furthermore, we highlight potential therapeutic strategies aimed at reducing gut inflammation, improving metabolic health, and decreasing amyloid content as a means to mitigate Alzheimer's Disease progression. These approaches, targeting the gut-brain-metabolic axis, could offer promising avenues for delaying or preventing cognitive decline in affected individuals.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| | - R Paul Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Hoost SS, Honig LS, Kang MS, Bahl A, Lee AJ, Sanchez D, Reyes-Dumeyer D, Lantigua RA, Dage JL, Brickman AM, Manly JJ, Mayeux R, Gu Y. Association of dietary fatty acids with longitudinal change in plasma-based biomarkers of Alzheimer's disease. J Prev Alzheimers Dis 2025; 12:100117. [PMID: 40107919 PMCID: PMC12094269 DOI: 10.1016/j.tjpad.2025.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Elevated intake of omega-3 polyunsaturated fatty acids is linked to a reduced risk of dementia in some prospective studies. However, few studies have examined the relationship between nutrient intake and plasma biomarkers of Alzheimer's disease. OBJECTIVES We explored whether omega-3, omega-6, and monounsaturated fat intakes were associated with changes in plasma biomarkers of Alzheimer's disease over time. DESIGN The Washington Heights-Inwood Columbia Aging Project is a prospective cohort study (1994-2021); the data set used here includes a mean follow-up of 7.0 years. SETTING Community-based in New York City. PARTICIPANTS 599 dementia-free individuals at baseline who completed a 61-item food frequency questionnaire and had biomarkers measured in plasma from at least two different time points. MEASUREMENTS Fatty acid intake tertiles were computed from participant-completed 61-item Willett semi-quantitative food frequency questionnaires (Channing Laboratory, Cambridge, Massachusetts) obtained once at their baseline visit. Plasma-based biomarker assays were performed, using the single molecule array technology Quanterix Simoa HD-X platform, at baseline and follow-up visits. Generalized Estimating Equations (GEE) models were used to evaluate the association between baseline nutrient intake tertile and changes in biomarkers including phospho-tau181, amyloid-beta 42/40 ratio, phospho-tau181/amyloid-beta42 ratio, glial fibrillary acidic protein, neurofilament light chain, and two biomarker patterns derived from Principal Component Analysis (PCA1 and PCA2), with higher scores indicating a high level of neurodegeneration and low level of Alzheimer's disease burden, respectively). Models were adjusted for age, sex, race/ethnicity, education, and calculated total energy intake initially, and additionally for cerebrovascular risk factors. RESULTS Higher baseline omega-3 intake tertile was associated with lesser decline in PCA2 (β = 0.221, p < 0.001) and amyloid-beta 42/40 ratio (β = 0.022, p = 0.003), and a lesser rise in phospho-tau181 (β = -0.037, p = 0.001). Higher omega-6 intake tertile was linked to a lesser rise in phospho-tau181 (β = -0.050, p < 0.001) and glial fibrillary acidic protein (β = -0.028, p = 0.002). Most associations persisted after adjusting for cardiovascular risk factors. CONCLUSIONS Higher relative baseline intake of omega-3 and omega-6 fatty acids is associated with lesser progression of blood-based biomarkers of Alzheimer's disease. Consuming healthy fatty acids may help prevent accumulation of Alzheimer's disease-related pathological changes.
Collapse
Affiliation(s)
- Serena S Hoost
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Lawrence S Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Min Suk Kang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Aanya Bahl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Danurys Sanchez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Rafael A Lantigua
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 630 West 168th Street, New York, New York, 10032, USA
| | - Jeffrey L Dage
- Stark Neurosciences Research Institute, Suite 414, Indiana University School of Medicine, 320 West 15th Street, Indianapolis, Indiana, 46202, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, New York, 10032, USA
| | - Yian Gu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA; G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York, 10032, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, 710 West 168th Street, New York, New York, 10032, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, New York, 10032, USA.
| |
Collapse
|
6
|
Escamilla-Ruiz M, Zarzoza-Medina MG, Ríos-Ramírez M, Hernández-Adame PL, Ruiz-García J. Spontaneous Formation of Micelles and Vesicles in Langmuir Monolayers of Heneicosanoic Acid. ACS OMEGA 2025; 10:4224-4232. [PMID: 39959046 PMCID: PMC11822483 DOI: 10.1021/acsomega.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/27/2024] [Accepted: 11/06/2024] [Indexed: 02/18/2025]
Abstract
In Langmuir monolayers of heneicosanoic acid (C21H42O2), at low temperature, in the L'2 and CS crystalline phases, a blinking phenomenon occurs at the same positions of the monolayer, which is called localized oscillations (LO), but its origin has not been clarified. In this study, the LO phenomenon was correlated with the ejection of material out of the monolayer which was analyzed to understand this phenomenon. The techniques used for this purpose were pressure-area isotherms on a Langmuir balance and simultaneous observation of the monolayer by Brewster angle microscopy (BAM). Subsequently, using the Langmuir-Blodgett technique, the monolayers were transferred using freshly cleaved mica substrates for analysis by atomic force microscopy (AFM). Our results showed that the origin of the LO is related to a spontaneous formation of micelles and vesicles, since in AFM images these structures were observed in a size range from 4 to 16 nm. In addition, the AFM images showed that the difference between the heights of the L'2 and CS crystalline phases ranges from 13 to 15 Å.
Collapse
Affiliation(s)
- Martha
I. Escamilla-Ruiz
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Moises G. Zarzoza-Medina
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Maricarmen Ríos-Ramírez
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Pablo L. Hernández-Adame
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| | - Jaime Ruiz-García
- Laboratorio de Física
Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí 78290, México
| |
Collapse
|
7
|
Li C, Yao J, Yang C, Yu S, Yang Z, Wang L, Li S, He N. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis. Metab Brain Dis 2025; 40:122. [PMID: 39921774 DOI: 10.1007/s11011-025-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The gut microbiota plays a crucial role in the communication between the gut, liver, and brain through the production of short chain fatty acids (SCFAs). SCFAs serve as key mediators in the Gut-Liver-Brain Axis, influencing various physiological processes and contributing to overall health. SCFAs are produced by bacterial fermentation of dietary fiber in the gut, and they exert systemic effects by signaling through various pathways. In the Gut-Liver axis, SCFAs regulate liver metabolism through peroxisome proliferator-activated receptor-γ (PPAR-γ), AMP-activated protein kinase (AMPK) and other pathways, promotes fat oxidation, modulate inflammation through mTOR pathway, and impact metabolic health. In the Gut-Brain axis, SCFAs influence brain function, behavior, and may have implications for neurological disorders, in which G-protein coupled receptors (GPCRs) play an essential role, along with other pathways such as hypothalamic-pituitary-adrenal (HPA) pathway. Understanding the mechanisms by which SCFAs mediate communication between the gut, liver, and brain is crucial for elucidating the complex interplay of the Gut-Liver-Brain Axis. This review aims to provide insight into the role of gut microbiota-derived SCFAs as mediators of the Gut-Liver-Brain Axis and their potential therapeutic implications. Further research in this area will be instrumental in developing novel strategies to target the Gut-Liver-Brain Axis for the prevention and treatment of various health conditions.
Collapse
Affiliation(s)
- Cunyin Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Chang Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Affiliated Hospital of Inner Mongolia University for Nationalities, TongLiao, 028005, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Wen B, Han X, Gong J, Wang P, Sun W, Xu C, Shan A, Wang X, Luan H, Li S, Li R, Guo J, Chen R, Li C, Sun Y, Lv S, Wei C. Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement 2025; 21:e14547. [PMID: 39868840 PMCID: PMC11863745 DOI: 10.1002/alz.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function. The advanced stage of AD tends to lead to malnutrition due to cognitive impairments, sensory dysfunctions, brain atrophy, and behavioral and psychological symptoms of dementia (BPSD). This, in turn, produces a vicious cycle between malnutrition and AD. This review discusses how nutritional factors and AD deteriorate each other from the early stage of AD to the terminal stages of AD, focusing on the potential of different levels of nutritional factors, ranging from micronutrients to diet patterns. This review provides novel insights into reducing the risk of AD, delaying its progression, and improving prognosis. HIGHLIGHTS: Two-fifths of Alzheimer's disease (AD) cases worldwide have been attributed to potentially modifiable risk factors. Up to ≈26% of community-dwelling patients with AD are malnourished, compared to 7%∼76% of institutionalized patients. Undernutrition effects the onset, progression, and prognosis of AD through multiple mechanisms. Various levels of nutritional supports were confirmed to be protective factors for AD via specific mechanisms.
Collapse
Affiliation(s)
- Boye Wen
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Jin Gong
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Wenxian Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Aidi Shan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Ruina Li
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Jinxuan Guo
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Runqi Chen
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Chuqiao Li
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Yao Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Sirong Lv
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| |
Collapse
|
9
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rosillo I, Germosen C, Agarwal S, Rawal R, Colon I, Bucovsky M, Kil N, Shane E, Walker M. Patella fractures are associated with bone fragility - a retrospective study. J Bone Miner Res 2024; 39:1752-1761. [PMID: 39385460 PMCID: PMC11638554 DOI: 10.1093/jbmr/zjae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
Patella fractures are not typically considered osteoporotic fractures. We compared bone mineral density (BMD) and microstructure in elderly women from a multiethnic population-based study in New York City with any history of a patella fracture (n = 27) to those without historical fracture (n = 384) and those with an adult fragility forearm fracture (n = 28) using dual energy x-ray absorptiometry (DXA) and high resolution peripheral quantitative computed tomography (HR-pQCT). Compared to those without fracture, women with patella fracture had 6.5% lower areal BMD (aBMD) by DXA only at the total hip (p=.007), while women with forearm fracture had lower aBMD at multiple sites and lower trabecular bone score (TBS), adjusted for age, body mass index, race and ethnicity (all p<.05). By HR-pQCT, adjusted radial total and trabecular (Tb) volumetric BMD (vBMD) and Tb number were 10%-24% lower while Tb spacing was 12-23% higher (all p<.05) in the fracture groups versus women without fracture. Women with a forearm, but not a patella, fracture also had lower adjusted radial cortical (Ct) area and vBMD and 21.8% (p<.0001) lower stiffness vs. women without fracture. At the tibia, the fracture groups had 9.3%-15.7% lower total and Tb vBMD (all p<.05) compared to the non-fracture group. Women with a forearm fracture also had 10.9, and 14.7% lower tibial Ct area and thickness versus those without fracture. Compared to women without fracture, tibial stiffness was 9.9% and 12% lower in the patella and forearm fracture groups, respectively (all p<.05). By HR-pQCT, the patella vs. forearm fracture group had 36% higher radial Tb heterogeneity (p<.05). In summary, women with patella fracture had Tb deterioration by HR-pQCT associated with lower tibial mechanical competence that was similar to those with fragility forearm fracture, a more universally accepted "osteoporotic" fracture. These data suggest patella fractures are associated with skeletal fragility and warrant skeletal evaluation.
Collapse
Affiliation(s)
- Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ragyie Rawal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
11
|
Zhang L, Zheng J, Johnson M, Mandal R, Cruz M, Martínez-Huélamo M, Andres-Lacueva C, Wishart DS. A Comprehensive LC-MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024; 14:622. [PMID: 39590858 PMCID: PMC11596266 DOI: 10.3390/metabo14110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Targeted metabolomics is often criticized for the limited metabolite coverage that it offers. Indeed, most targeted assays developed or used by researchers measure fewer than 200 metabolites. In an effort to both expand the coverage and improve the accuracy of metabolite quantification in targeted metabolomics, we decided to develop a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that could quantitatively measure more than 700 metabolites in serum or plasma. Methods: The developed assay makes use of chemical derivatization followed by reverse phase LC-MS/MS and/or direct flow injection MS (DFI-MS) in both positive and negative ionization modes to separate metabolites. Multiple reaction monitoring (MRM), in combination with isotopic standards and multi-point calibration curves, is used to detect and absolutely quantify the targeted metabolites. The assay has been adapted to a 96-well plate format to enable automated, high-throughput sample analysis. Results: The assay (called MEGA) is able to detect and quantify 721 metabolites in serum/plasma, covering 20 metabolite classes and many commonly used clinical biomarkers. The limits of detection were determined to range from 1.4 nM to 10 mM, recovery rates were from 80% to 120%, and quantitative precision was within 20%. LC-MS/MS metabolite concentrations of the NIST® SRM®1950 plasma standard were found to be within 15% of NMR quantified levels. The MEGA assay was further validated in a large dietary intervention study. Conclusions: The MEGA assay should make comprehensive quantitative metabolomics much more affordable, accessible, automatable, and applicable to large-scale clinical studies.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Mathew Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Meryl Cruz
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
| | - Miriam Martínez-Huélamo
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
12
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
13
|
Agarwal S, Germosen C, Rosillo I, Bucovsky M, Colon I, Kil N, Wang Z, Dinescu A, Guo XDE, Walker M. Fractures in women with type 2 diabetes are associated with marked deficits in cortical parameters and trabecular plates. J Bone Miner Res 2024; 39:1083-1093. [PMID: 38861455 PMCID: PMC11337576 DOI: 10.1093/jbmr/zjae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.
Collapse
Affiliation(s)
- Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Carmen Germosen
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Isabella Rosillo
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mariana Bucovsky
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ivelisse Colon
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nayoung Kil
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Zexi Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Andreea Dinescu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Xiang-Dong Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Marcella Walker
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
14
|
Gomes TM, Sousa P, Campos C, Perestrelo R, Câmara JS. Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders. Foods 2024; 13:2289. [PMID: 39063373 PMCID: PMC11275480 DOI: 10.3390/foods13142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer's (AD) and Parkinson's (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer's, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Patrícia Sousa
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Catarina Campos
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
15
|
Pszczołowska M, Walczak K, Miśków W, Mroziak M, Chojdak-Łukasiewicz J, Leszek J. Mitochondrial disorders leading to Alzheimer's disease-perspectives of diagnosis and treatment. GeroScience 2024; 46:2977-2988. [PMID: 38457008 PMCID: PMC11009177 DOI: 10.1007/s11357-024-01118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia globally. The pathogenesis of AD remains still unclear. The three main features of AD are extracellular deposits of amyloid beta (Aβ) plaque, accumulation of abnormal formation hyper-phosphorylated tau protein, and neuronal loss. Mitochondrial impairment plays an important role in the pathogenesis of AD. There are problems with decreased activity of multiple complexes, disturbed mitochondrial fusion, and fission or formation of reactive oxygen species (ROS). Moreover, mitochondrial transport is impaired in AD. Mouse models in many research show disruptions in anterograde and retrograde transport. Both mitochondrial transportation and network impairment have a huge impact on synapse loss and, as a result, cognitive impairment. One of the very serious problems in AD is also disruption of insulin signaling which impairs mitochondrial Aβ removal.Discovering precise mechanisms leading to AD enables us to find new treatment possibilities. Recent studies indicate the positive influence of metformin or antioxidants such as MitoQ, SS-31, SkQ, MitoApo, MitoTEMPO, and MitoVitE on mitochondrial functioning and hence prevent cognitive decline. Impairments in mitochondrial fission may be treated with mitochondrial division inhibitor-1 or ceramide.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Miśków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | | | | | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
16
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Lei C, Wu G, Cui Y, Xia H, Chen J, Zhan X, Lv Y, Li M, Zhang R, Zhu X. Development and validation of a cognitive dysfunction risk prediction model for the abdominal obesity population. Front Endocrinol (Lausanne) 2024; 15:1290286. [PMID: 38481441 PMCID: PMC10932956 DOI: 10.3389/fendo.2024.1290286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
Objectives This study was aimed to develop a nomogram that can accurately predict the likelihood of cognitive dysfunction in individuals with abdominal obesity by utilizing various predictor factors. Methods A total of 1490 cases of abdominal obesity were randomly selected from the National Health and Nutrition Examination Survey (NHANES) database for the years 2011-2014. The diagnostic criteria for abdominal obesity were as follows: waist size ≥ 102 cm for men and waist size ≥ 88 cm for women, and cognitive function was assessed by Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Word Learning subtest, Delayed Word Recall Test, Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). The cases were divided into two sets: a training set consisting of 1043 cases (70%) and a validation set consisting of 447 cases (30%). To create the model nomogram, multifactor logistic regression models were constructed based on the selected predictors identified through LASSO regression analysis. The model's performance was assessed using several metrics, including the consistency index (C-index), the area under the receiver operating characteristic (ROC) curve (AUC), calibration curves, and decision curve analysis (DCA) to assess the clinical benefit of the model. Results The multivariate logistic regression analysis revealed that age, sex, education level, 24-hour total fat intake, red blood cell folate concentration, depression, and moderate work activity were significant predictors of cognitive dysfunction in individuals with abdominal obesity (p < 0.05). These predictors were incorporated into the nomogram. The C-indices for the training and validation sets were 0.814 (95% CI: 0.875-0.842) and 0.805 (95% CI: 0.758-0.851), respectively. The corresponding AUC values were 0.814 (95% CI: 0.875-0.842) and 0.795 (95% CI: 0.753-0.847). The calibration curves demonstrated a satisfactory level of agreement between the nomogram model and the observed data. The DCA indicated that early intervention for at-risk populations would provide a net benefit, as indicated by the line graph. Conclusion Age, sex, education level, 24-hour total fat intake, red blood cell folate concentration, depression, and moderate work activity were identified as predictive factors for cognitive dysfunction in individuals with abdominal obesity. In conclusion, the nomogram model developed in this study can effectively predict the clinical risk of cognitive dysfunction in individuals with abdominal obesity.
Collapse
Affiliation(s)
- Chun Lei
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Gangjie Wu
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yan Cui
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hui Xia
- General Practice, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jianbing Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyao Zhan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yanlan Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Meng Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
- Cancer Research Institution, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Alhattab M, Moorthy LS, Patel D, Franco CMM, Puri M. Oleaginous Microbial Lipids' Potential in the Prevention and Treatment of Neurological Disorders. Mar Drugs 2024; 22:80. [PMID: 38393051 PMCID: PMC10890163 DOI: 10.3390/md22020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The products of oleaginous microbes, primarily lipids, have gained tremendous attention for their health benefits in food-based applications as supplements. However, this emerging biotechnology also offers a neuroprotective treatment/management potential for various diseases that are seldom discussed. Essential fatty acids, such as DHA, are known to make up the majority of brain phospholipid membranes and are integral to cognitive function, which forms an important defense against Alzheimer's disease. Omega-3 polyunsaturated fatty acids have also been shown to reduce recurrent epilepsy seizures and have been used in brain cancer therapies. The ratio of omega-3 to omega-6 PUFAs is essential in maintaining physiological function. Furthermore, lipids have also been employed as an effective vehicle to deliver drugs for the treatment of diseases. Lipid nanoparticle technology, used in pharmaceuticals and cosmeceuticals, has recently emerged as a biocompatible, biodegradable, low-toxicity, and high-stability means for drug delivery to address the drawbacks associated with traditional medicine delivery methods. This review aims to highlight the dual benefit that lipids offer in maintaining good health for disease prevention and in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mariam Alhattab
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Lakshana S Moorthy
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Durva Patel
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Christopher M M Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
19
|
Mugundhan V, Arthanari A, Parthasarathy PR. Protective Effect of Ferulic Acid on Acetylcholinesterase and Amyloid Beta Peptide Plaque Formation in Alzheimer's Disease: An In Vitro Study. Cureus 2024; 16:e54103. [PMID: 38487137 PMCID: PMC10938272 DOI: 10.7759/cureus.54103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Aim This study aims to comprehensively evaluate the effects of ferulic acid (FA) on acetylcholinesterase (AChE) enzyme activity and amyloid beta (Aβ) peptide plaque formation in an in vitro model of Alzheimer's disease (AD). Background AD is a progressive neurological condition marked by disrupted cholinergic signaling, accumulation of Aβ peptide, and tau protein hyperphosphorylation. Currently, no direct anti-Alzheimer drug that effectively prevents the cognitive decline from AD has been reported. To combat this, a multi-target drug addressing several molecular aspects would be ideal for AD. Natural compounds are preferred over synthetic drugs due to their accessibility, cost-efficiency, and lower toxicity The proven association between polyphenol consumption and the prevention of AD has led to the investigation of the effect of FA, a polyphenolic compound, on acetylcholinesterase enzyme activity and Aβ peptide formation, the key targets of AD. Materials and method The free radical scavenging ability of FA was assessed by xanthine oxidase inhibitory activity. Furthermore, FA was also evaluated for its inhibitory activity against AChE enzyme and amyloid beta peptide formation to evaluate the neuroprotective potential of FA. Results The results showed that FA has the potential to be an AChE inhibitor, thus helping in blocking the activity of AChE and also reducing the incidence of amyloid beta plaque formation. Furthermore, the compound also exhibited a significant antioxidant property which was demonstrated by the xanthine oxidase enzyme inhibitory effect. Conclusion From the observed results, FA has significant antioxidant and neuroprotective effects which are compared with those of their respective standards. More research is required to determine the efficacy and safety of this compound as a treatment for neurodegenerative diseases like AD because the precise mechanism and degree of its AChE inhibitory effects in the brain are still elusive. A potent, selective, and effective drug is desperately needed to treat patients with AD and those at risk of developing the disease.
Collapse
Affiliation(s)
- Varsha Mugundhan
- Department of Forensic Odontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Abirami Arthanari
- Department of Forensic Odontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Parameswari R Parthasarathy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
20
|
Dobrzyńska M, Kaczmarek K, Przysławski J, Drzymała-Czyż S. Selenium in Infants and Preschool Children Nutrition: A Literature Review. Nutrients 2023; 15:4668. [PMID: 37960322 PMCID: PMC10648445 DOI: 10.3390/nu15214668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se), an essential trace element, is fundamental to human health, playing an important role in the formation of thyroid hormones, DNA synthesis, the immune response, and fertility. There is a lack of comprehensive epidemiological research, particularly the serum Se concetration in healthy infants and preschool children compared to the estimated dietary Se intake. However, Se deficiencies and exceeding the UL have been observed in infants and preschool children. Despite the observed irregularities in Se intake, there is a lack of nutritional recommendations for infants and preschool children. Therefore, the main objective of this literature review was to summarize what is known to date about Se levels and the risk of deficiency related to regular consumption in infants and preschool children.
Collapse
Affiliation(s)
| | | | | | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland; (M.D.); (K.K.); (J.P.)
| |
Collapse
|
21
|
Vered S, Beiser AS, Sulimani L, Sznitman S, Gonzales MM, Aparicio HJ, DeCarli C, Scott MR, Ghosh S, Lewitus GM, Meiri D, Seshadri S, Weinstein G. The association of circulating endocannabinoids with neuroimaging and blood biomarkers of neuro-injury. Alzheimers Res Ther 2023; 15:154. [PMID: 37700370 PMCID: PMC10496329 DOI: 10.1186/s13195-023-01301-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011-2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer's disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (β ± SE = - 0.12 ± 0.06, p = 0.034 and β ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer's disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.
Collapse
Affiliation(s)
- Shiraz Vered
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Alexa S Beiser
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sharon Sznitman
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel
| | - Mitzi M Gonzales
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Hugo J Aparicio
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, CA, 95816, USA
| | - Matthew R Scott
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Saptaparni Ghosh
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
| | - Gil M Lewitus
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Sudha Seshadri
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- The Framingham Study, Framingham, MA, 01702, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Haifa, 3498838, Israel.
| |
Collapse
|
22
|
Kim JP, Nho K, Wang T, Huynh K, Arnold M, Risacher SL, Bice PJ, Han X, Kristal BS, Blach C, Baillie R, Kastenmüller G, Meikle PJ, Saykin AJ, Kaddurah-Daouk R. Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291054. [PMID: 37398438 PMCID: PMC10312871 DOI: 10.1101/2023.06.12.23291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Wei BZ, Li L, Dong CW, Tan CC, Xu W. The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. Am J Clin Nutr 2023; 117:1096-1109. [PMID: 37028557 PMCID: PMC10447496 DOI: 10.1016/j.ajcnut.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Previous data have linked omega-3 fatty acids with risk of dementia. We aimed to assess the longitudinal relationships of omega-3 polyunsaturated fatty acid intake as well as blood biomarkers with risk of Alzheimer's disease (AD), dementia, or cognitive decline. Longitudinal data were derived from 1135 participants without dementia (mean age = 73 y) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to evaluate the associations of omega-3 fatty acid supplementation and blood biomarkers with incident AD during the 6-y follow-up. A meta-analysis of published cohort studies was further conducted to test the longitudinal relationships of dietary intake of omega-3 and its peripheral markers with all-cause dementia or cognitive decline. Causal dose-response analyses were conducted using the robust error meta-regression model. In the ADNI cohort, long-term users of omega-3 fatty acid supplements exhibited a 64% reduced risk of AD (hazard ratio: 0.36, 95% confidence interval: 0.18, 0.72; P = 0.004). After incorporating 48 longitudinal studies involving 103,651 participants, a moderate-to-high level of evidence suggested that dietary intake of omega-3 fatty acids could lower risk of all-cause dementia or cognitive decline by ∼20%, especially for docosahexaenoic acid (DHA) intake (relative risk [RR]: 0.82, I2 = 63.6%, P = 0.001) and for studies that were adjusted for apolipoprotein APOE ε4 status (RR: 0.83, I2 = 65%, P = 0.006). Each increment of 0.1 g/d of DHA or eicosapentaenoic acid (EPA) intake was associated with an 8% ∼ 9.9% (Plinear < 0.0005) lower risk of cognitive decline. Moderate-to-high levels of evidence indicated that elevated levels of plasma EPA (RR: 0.88, I2 = 38.1%) and erythrocyte membrane DHA (RR: 0.94, I2 = 0.4%) were associated with a lower risk of cognitive decline. Dietary intake or long-term supplementation of omega-3 fatty acids may help reduce risk of AD or cognitive decline.
Collapse
Affiliation(s)
- Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Xu Lou I, Ali K, Chen Q. Effect of nutrition in Alzheimer's disease: A systematic review. Front Neurosci 2023; 17:1147177. [PMID: 37214392 PMCID: PMC10194838 DOI: 10.3389/fnins.2023.1147177] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Background and objective Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by declining cognitive ability. Currently, there are no effective treatments for this condition. However, certain measures, such as nutritional interventions, can slow disease progression. Therefore, the objective of this systematic review was to identify and map the updates of the last 5 years regarding the nutritional status and nutritional interventions associated with AD patients. Study design A systematic review. Methods A search was conducted for randomized clinical trials, systematic reviews, and meta-analyses investigating the association between nutritional interventions and AD published between 2018 and 2022 in the PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 38 studies were identified, of which 17 were randomized clinical trials, and 21 were systematic reviews and/or meta-analyses. Results The results show that the western diet pattern is a risk factor for developing AD. In contrast, the Mediterranean diet, ketogenic diet, and supplementation with omega-3 fatty acids and probiotics are protective factors. This effect is significant only in cases of mild-to-moderate AD. Conclusion Certain nutritional interventions may slow the progression of AD and improve cognitive function and quality of life. Further research is required to draw more definitive conclusions.
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Jang S, Chorna N, Rodríguez-Graciani KM, Inyushin M, Fossati S, Javadov S. The Effects of Amyloid-β on Metabolomic Profiles of Cardiomyocytes and Coronary Endothelial Cells. J Alzheimers Dis 2023; 93:307-319. [PMID: 36970904 DOI: 10.3233/jad-221199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND An increasing number of experimental and clinical studies show a link between Alzheimer's disease and heart diseases such as heart failure, ischemic heart disease, and atrial fibrillation. However, the mechanisms underlying the potential role of amyloid-β (Aβ) in the pathogenesis of cardiac dysfunction in Alzheimer's disease remain unknown. We have recently shown the effects of Aβ 1 - 40 and Aβ 1 - 42 on cell viability and mitochondrial function in cardiomyocytes and coronary artery endothelial cells. OBJECTIVE In this study, we investigated the effects of Aβ 1 - 40 and Aβ 1 - 42 on the metabolism of cardiomyocytes and coronary artery endothelial cells. METHODS Gas chromatography-mass spectrometry was used to analyze metabolomic profiles of cardiomyocytes and coronary artery endothelial cells treated with Aβ 1 - 40 and Aβ 1 - 42. In addition, we determined mitochondrial respiration and lipid peroxidation in these cells. RESULTS We found that the metabolism of different amino acids was affected by Aβ 1 - 42 in each cell type, whereas the fatty acid metabolism is consistently disrupted in both types of cells. Lipid peroxidation was significantly increased, whereas mitochondrial respiration was reduced in both cell types in response to Aβ 1 - 42. CONCLUSION This study revealed the disruptive effects of Aβ on lipid metabolism and mitochondria function in cardiac cells.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | | | - Mikhail Inyushin
- Department of Physiology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, USA
| | - Silvia Fossati
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
| |
Collapse
|
26
|
Satizabal CL, Himali JJ, Beiser AS, Ramachandran V, Melo van Lent D, Himali D, Aparicio HJ, Maillard P, DeCarli CS, Harris WS, Seshadri S. Association of Red Blood Cell Omega-3 Fatty Acids With MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study. Neurology 2022; 99:e2572-e2582. [PMID: 36198518 PMCID: PMC9754651 DOI: 10.1212/wnl.0000000000201296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diet may be a key contributor to brain health in midlife. In particular, omega-3 fatty acids have been related to better neurologic outcomes in older adults. However, studies focusing on midlife are lacking. We investigated the cross-sectional association of red blood cell (RBC) omega-3 fatty acid concentrations with MRI and cognitive markers of brain aging in a community-based sample of predominantly middle-aged adults and further explore effect modification by APOE genotype. METHODS We included participants from the Third-Generation and Omni 2 cohorts of the Framingham Heart Study attending their second examination. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) concentrations were measured from RBC using gas chromatography, and the Omega-3 index was calculated as EPA + DHA. We used linear regression models to relate omega-3 fatty acid concentrations to brain MRI measures (i.e., total brain, total gray matter, hippocampal, and white matter hyperintensity volumes) and cognitive function (i.e., episodic memory, processing speed, executive function, and abstract reasoning) adjusting for potential confounders. We further tested for interactions between omega-3 fatty acid levels and APOE genotype (e4 carrier vs noncarrier) on MRI and cognitive outcomes. RESULTS We included 2,183 dementia-free and stroke-free participants (mean age of 46 years, 53% women, 22% APOE-e4 carriers). In multivariable models, higher Omega-3 index was associated with larger hippocampal volumes (standard deviation unit beta ±standard error; 0.003 ± 0.001, p = 0.013) and better abstract reasoning (0.17 ± 0.07, p = 0.013). Similar results were obtained for DHA or EPA concentrations individually. Stratification by APOE-e4 status showed associations between higher DHA concentrations or Omega-3 index and larger hippocampal volumes in APOE-e4 noncarriers, whereas higher EPA concentrations were related to better abstract reasoning in APOE-e4 carriers. Finally, higher levels of all omega-3 predictors were related to lower white matter hyperintensity burden but only in APOE-e4 carriers. DISCUSSION Our results, albeit exploratory, suggest that higher omega-3 fatty acid concentrations are related to better brain structure and cognitive function in a predominantly middle-aged cohort free of clinical dementia. These associations differed by APOE genotype, suggesting potentially different metabolic patterns by APOE status. Additional studies in middle-aged populations are warranted to confirm these findings.
Collapse
Affiliation(s)
- Claudia L Satizabal
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD.
| | - Jayandra Jung Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Alexa S Beiser
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Vasan Ramachandran
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Debora Melo van Lent
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Dibya Himali
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Hugo J Aparicio
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Pauline Maillard
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Charles S DeCarli
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - William S Harris
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| | - Sudha Seshadri
- From the Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases (C.L.S., J.J.H., D.M.L., S.S.), UT Health San Antonio, San Antonio, TX; Department of Population Health Sciences (C.L.S., J.J.H.), UT Health San Antonio, San Antonio, TX; Department of Neurology (C.L.S., J.J.H., A.S.B., D.M.L., H.J.A., S.S.), Boston University School of Medicine, Boston, MA; The Framingham Heart Study (C.L.S., J.J.H., A.S.B., V.R., D.M.L., D.H., H.J.A., S.S.), Framingham, MA; Department of Biostatistics (J.J.H., A.S.B.), Boston University School of Public Health, Boston, MA; Department of Medicine (V.R.), Boston University School of Medicine, Boston, MA; Department of Epidemiology (V.R.), Boston University School of Public Health, Boston, MA; Center for Computing and Data Sciences (V.R.), Boston University, Boston, MA; Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., C.S.D.), Davis, CA; Department of Neurology (C.S.D.), UC Davis School of Medicine, Sacramento, CA; Sanford School of Medicine (W.S.H.), University of South Dakota, Sioux Falls, SD; and Fatty Acid Research Institute (W.S.H.), Sioux Falls, SD
| |
Collapse
|
27
|
Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective Effect of Stearidonic Acid on Amyloid β-Induced Neurotoxicity in Rat Hippocampal Cells. Antioxidants (Basel) 2022; 11:2357. [PMID: 36552565 PMCID: PMC9774633 DOI: 10.3390/antiox11122357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dietary intake of omega-3 fatty acids found in fish has been reported to reduce the risk of Alzheimer's Disease (AD). Stearidonic acid (SDA), a plant-based omega-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids. However, its role in neuronal degeneration is unknown. This study was designed to evaluate effects of SDA on Amyloid-β(A-β)-induced neurotoxicity in rat hippocampal cells. Results showed that SDA effectively converted to eicosapentaenoic acid (EPA) in hippocampal cells. Aβ-induced apoptosis in H19-7 cells was protected by SDA pretreatment as evidenced by its regulation on the expression of relevant pro- and anti-apoptotic genes, as well as the inhibition on caspase activation. SDA also protected H19-7 cells from Aβ-induced oxidative stress by regulating the expression of relevant pro- and anti-oxidative genes, as well as the improvement in activity of catalase. As for Aβ/LPS-induced neuronal inflammation, SDA pretreatment reduced the release of IL-1β and TNFα. Further, we found that the anti-Aβ effect of SDA involves its inhibition on the expression of amyloid precursor protein and the regulation on MAPK signaling. These results demonstrated that SDAs have neuroprotective effect in Aβ-induced H19-7 hippocampal cells. This beneficial effect of SDA was attributed to its antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
28
|
Fish consumption and the risk of dementia: Systematic review and meta-analysis of prospective studies. Psychiatry Res 2022; 317:114889. [PMID: 36257206 DOI: 10.1016/j.psychres.2022.114889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/05/2023]
Abstract
Accumulating evidence supports some health benefits of nutrients in fish, but evidence from comprehensive investigation of fish consumption and the risk of dementia is limited. We performed a systematic review and meta-analysis of prospective cohort studies to investigate this association. Papers relevant to our study published by 2021 were searched using PubMed, Embase, Cochrane library, and Web of Science databases. Pooled relative risks (RRs) of the association between fish consumption and dementia risk were calculated using a random-effects model. Seven prospective cohort studies with a total of 30,638 subjects were included in the meta-analysis. Overall, people with high fish consumption had a significantly lower risk of dementia compared to those with low fish consumption. In addition, the dose-response meta-analysis also supported the inverse association. The inverse association tended to be stronger in studies conducted in Asia. The findings of the meta-analysis of prospective cohort studies provide quantitative evidence for an inverse association between fish consumption and the risk of dementia. Further research on consumption of specific types of fish with respect to the risk of dementia are needed to provide more informative recommendations to the public.
Collapse
|
29
|
Stefaniak O, Dobrzyńska M, Drzymała-Czyż S, Przysławski J. Diet in the Prevention of Alzheimer's Disease: Current Knowledge and Future Research Requirements. Nutrients 2022; 14:4564. [PMID: 36364826 PMCID: PMC9656789 DOI: 10.3390/nu14214564] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease is a progressive brain disease that is becoming a major health problem in today's world due to the aging population. Despite it being widely known that diet has a significant impact on the prevention and progression of Alzheimer's disease, the literature data are still scarce and controversial. The application of the principles of rational nutrition for the elderly is suggested for Alzheimer's disease. The diet should be rich in neuroprotective nutrients, i.e., antioxidants, B vitamins, and polyunsaturated fatty acids. Some studies suggest that diets such as the Mediterranean diet, the DASH (Dietary Approaches to Stop Hypertension) diet, and the MIND (Mediterranean-DASH Intervention for Neurodegenerative Delay) diet have a beneficial effect on the risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Małgorzata Dobrzyńska
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland
| | | | | |
Collapse
|
30
|
Huang Y, Deng Y, Zhang P, Lin J, Guo D, Yang L, Liu D, Xu B, Huang C, Zhang H. Associations of fish oil supplementation with incident dementia: Evidence from the UK Biobank cohort study. Front Neurosci 2022; 16:910977. [PMID: 36161159 PMCID: PMC9489907 DOI: 10.3389/fnins.2022.910977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although numerous studies have investigated the association of dietary intake of omega-3 fatty acids with cognitive function and the risks of dementia, the relationship between fish oil supplementation and incident dementia in a large population-based cohort study has not yet well studied. Materials and methods A total of 211,094 community-dwelling older persons over 60 years from the UK Biobank cohorts enrolled between 2006 and 2010 that reported regularly taking fish oil and had no dementia at baseline, was included in the present study. All participants completed an electronic questionnaire regarding habitual use of supplements including fish oil. Results Overall, 83,283 (39.5%) participants reported regularly taking fish oil at baseline. Of 211,094 participants with the median age was 64.1 years, 5,274 participants developed dementia events during a median follow-up of 11.7 years, with 3,290 individuals derived from fish oil non-users. In the multivariable adjusted models, the adjusted hazard ratios (HRs) associated with fish oil supplementation for all-cause dementia, vascular dementia, frontotemporal dementia, and other dementia were 0.91 [CI = 0.84-0.97], 0.83 [CI = 0.71-0.97], 0.43 [CI = 0.26-0.72], 0.90 [CI = 0.82-0.98], respectively (all P < 0.05). However, no significant association between fish oil supplementation and Alzheimer's disease was found (HR = 1.00 [CI = 0.89-1.12], P = 0.977). In the subgroup analyses, the associations between use of fish oil and the risk of all-cause dementia (P for interaction = 0.007) and vascular dementia were stronger among men (P for interaction = 0.026). Conclusion Among older adults, regular fish oil supplementation was significantly associated with a lower risks of incident all-cause dementia, as well as vascular dementia, frontotemporal dementia and other dementia but not Alzheimer's disease. These findings support that habitual use of fish oils may be beneficial for the prevention of dementia in clinical practice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyan Xu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chensihan Huang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
- Department of Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Nwaru BI, Dierkes J, Ramel A, Arnesen EK, Thorisdottir B, Lamberg-Allardt C, Söderlund F, Bärebring L, Åkesson A. Quality of dietary fat and risk of Alzheimer’s disease and dementia in adults aged ≥50 years: a systematic review. Food Nutr Res 2022; 66:8629. [PMID: 35950105 PMCID: PMC9338447 DOI: 10.29219/fnr.v66.8629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To identify, critically appraise, and synthesize evidence on the effect of quality of dietary fat intake and different classes of fatty acids on the risk of Alzheimer’s disease (AD) and dementia in adults aged ≥50 years. Methods We searched MEDLINE, EMBASE, Cochrane Central of Controlled Trials, and Scopus for clinical trials and prospective cohort studies published until May 2021. Two reviewers independently screened retrieved literature, extracted relevant data, and performed risk of bias assessment. Classes of fatty acids included were saturated fatty acids (SFAs), trans fatty acids (TFAs), monounsaturated fatty acids (MUFAs), poly-unsaturated fatty acids (PUFAs), and their subtypes and sources. Given between-study heterogeneity, we did not perform meta-analyses but narratively described findings from the studies. Results From 4,491 identified records, five articles (based on four prospective cohort studies) met the inclusion criteria. Three studies had an overall serious risk of bias, while one study had a moderate risk. Overall, we found no robust association between intake of any fatty acids type and the development of AD and dementia. For example, for SFA and TFA, there was contradictory associations reported on AD: one study found that each unit increase in energy-adjusted intake of SFA (risk ratio [RR] 0.83, 95%CI 0.70–0.98) and TFA (RR 0.80, 95%CI 0.65–0.97) was associated with a decreased risk of AD, but not dementia. For PUFA, one study found that higher quintile intake of marine-based n-3 PUFA was associated with a decreased risk of AD. The intake of other fatty acids was not associated with the outcomes. The certainty of the overall evidence was inconclusive. Conclusion We found no clear association between the intake of various classes of fatty acids and the risk of AD and dementia in adults. More well-designed prospective studies are required to clarify these findings.
Collapse
Affiliation(s)
- Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Alfons Ramel
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Erik Kristoffer Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Birna Thorisdottir
- Faculty of Sociology, Anthropology and Folkloristics & Health Science Institute, University of Iceland, Reykjavik, Iceland
| | | | - Fredrik Söderlund
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Amelianchik A, Sweetland-Martin L, Norris EH. The effect of dietary fat consumption on Alzheimer's disease pathogenesis in mouse models. Transl Psychiatry 2022; 12:293. [PMID: 35869065 PMCID: PMC9307654 DOI: 10.1038/s41398-022-02067-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a fatal cognitive disorder with proteinaceous brain deposits, neuroinflammation, cerebrovascular dysfunction, and extensive neuronal loss over time. AD is a multifactorial disease, and lifestyle factors, including diet, are likely associated with the development of AD pathology. Since obesity and diabetes are recognized as risk factors for AD, it might be predicted that a high-fat diet (HFD) would worsen AD pathology. However, modeling HFD-induced obesity in AD animal models has yielded inconclusive results. Some studies report a deleterious effect of HFD on Aβ accumulation, neuroinflammation, and cognitive function, while others report that HFD worsens memory without affecting AD brain pathology. Moreover, several studies report no major effect of HFD on AD-related phenotypes in mice, while other studies show that HFD might, in fact, be protective. The lack of a clear association between dietary fat consumption and AD-related pathology and cognitive function in AD mouse models might be explained by experimental variations, including AD mouse model, sex and age of the animals, composition of the HFD, and timeline of HFD consumption. In this review, we summarize recent studies that aimed at elucidating the effect of HFD-induced obesity on AD-related pathology in mice and provide an overview of the factors that may have contributed to the results reported in these studies. Based on the heterogeneity of these animal model studies and given that the human population itself is quite disparate, it is likely that people will benefit most from individualized nutritional plans based on their medical history and clinical profiles.
Collapse
Affiliation(s)
- Anna Amelianchik
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - Lauren Sweetland-Martin
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, USA.
| |
Collapse
|
33
|
Drouka A, Mamalaki E, Karavasilis E, Scarmeas N, Yannakoulia M. Dietary and Nutrient Patterns and Brain MRI Biomarkers in Dementia-Free Adults. Nutrients 2022; 14:nu14112345. [PMID: 35684145 PMCID: PMC9183163 DOI: 10.3390/nu14112345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Cognitive impairment is a rapidly growing public health problem. As there is no curative treatment for dementia, the proactive management of modifiable risk factors and the identification of early biomarkers indicative of the cognitive decline are of great importance. Although nutrition is one of the most extensively studied lifestyle factor in relation to cognitive health, its association with brain magnetic resonance imaging (MRI) biomarkers is not well established. In the present work, we review available studies relating dietary or nutrient patterns with brain MRI biomarkers in dementia-free adults. Greater adherence to the Mediterranean diet has been associated with the preservation of structural connectivity and less brain atrophy in adults without dementia. In addition, specific nutrient patterns, characterized by a high intake of antioxidant vitamins, polyphenols and unsaturated fatty acids, have been related to larger brain volume. Although the results are encouraging regarding the role of dietary and nutrient patterns on imaging biomarkers, more well-designed observational longitudinal studies and clinical trials are needed in order to confirm potentially causal relationships and better understand underlying mechanisms.
Collapse
Affiliation(s)
- Archontoula Drouka
- Department of Nutrition and Dietetics, Harokopio University, 176 71 Athens, Greece; (A.D.); (E.M.); (M.Y.)
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University, 176 71 Athens, Greece; (A.D.); (E.M.); (M.Y.)
| | | | - Nikolaos Scarmeas
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Aeginition University Hospital, 115 28 Athens, Greece
- The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer’s, Disease and the Aging Brain, Columbia University, New York, NY 10027, USA
- Correspondence:
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 176 71 Athens, Greece; (A.D.); (E.M.); (M.Y.)
| |
Collapse
|
34
|
Conway J, Certo M, Lord JM, Mauro C, Duggal NA. Understanding the role of host metabolites in the induction of immune senescence: Future strategies for keeping the ageing population healthy. Br J Pharmacol 2022; 179:1808-1824. [PMID: 34435354 DOI: 10.1111/bph.15671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Advancing age is accompanied by significant remodelling of the immune system, termed immune senescence, and increased systemic inflammation, termed inflammageing, both of which contribute towards an increased risk of developing chronic diseases in old age. Age-associated alterations in metabolic homeostasis have been linked with changes in a range of physiological functions, but their effects on immune senescence remains poorly understood. In this article, we review the recent literature to formulate hypotheses as to how an age-associated dysfunctional metabolism, driven by an accumulation of key host metabolites (saturated fatty acids, cholesterol, ceramides and lactate) and loss of other metabolites (glutamine, tryptophan and short-chain fatty acids), might play a role in driving immune senescence and inflammageing, ultimately leading to diseases of old age. We also highlight the potential use of metabolic immunotherapeutic strategies targeting these processes in counteracting immune senescence and restoring immune homeostasis in older adults. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.
Collapse
Affiliation(s)
- Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham and University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Wang X, Sun H, Pan S, Bai X, Zhu Z, Zhang R, Li C, Chen Y, Bao M, Zhang K, Feng R. Causal Relationships Between Relative Intake from the Macronutrients and Alzheimer's Disease: A Two-Sample Mendelian Randomization Study. J Alzheimers Dis 2022; 87:665-673. [PMID: 35342086 DOI: 10.3233/jad-215535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Some observational studies indicated the associations of relative carbohydrate, sugar, fat, and protein intake and Alzheimer's disease (AD). But it remains unclear whether the associations are causal. OBJECTIVE This study aimed to identify the effects of relative carbohydrate, sugar, fat, and protein intake in the diet on AD. METHODS A two-sample Mendelian randomization was employed. Finally, 14 independent lead SNPs remained in the Social Science Genetic Association Consortium. These SNPs of relative carbohydrate, sugar, fat, and protein intake at the level of genome-wide significance (p < 5×10-8) were used as instrumental variables. The summary data for AD were acquired from the International Genomics of Alzheimer's Project with a total of 54,162 individuals (17,008 AD patients and 37,154 control participants). RESULTS This two-sample Mendelian randomization indicated that increased relative protein intake (per 1 standard deviation) causally decreased the AD risk (OR = 0.48, 95% CI: 0.24-0.95, p = 0.036), and increased relative fat intake may decrease the risk of AD (OR = 0.22, 95% CI: 0.06-0.86, p = 0.029). No statistical significance with AD risk was seen for relative carbohydrate or relative sugar intake. CONCLUSION A higher relative intake of protein can causally reduce the risk of AD in the elderly. Additionally, a higher relative intake of fat may be protective against AD. No evidence showed that AD was associated with relative carbohydrate and sugar intake.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Hongru Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiao Bai
- Haxi New Area Community Health Service Center, Nangang District, Harbin, Heilongjiang Province, China
| | - Zhuolin Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Runan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Chunlong Li
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Meitong Bao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Kewei Zhang
- Department of Mathematics, Heilongjiang Institute of Technology, Harbin, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Bukhari SNA. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants (Basel) 2022; 11:antiox11030554. [PMID: 35326204 PMCID: PMC8945272 DOI: 10.3390/antiox11030554] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 2014, Saudi Arabia
| |
Collapse
|
37
|
Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer's disease. Life Sci 2022; 297:120470. [DOI: 10.1016/j.lfs.2022.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022]
|
38
|
Subjective cognitive decline and total energy intake: Talk too much? Eur J Epidemiol 2022; 37:129-131. [PMID: 35211870 DOI: 10.1007/s10654-022-00849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The increasing longevity of the population has resulted in dementia becoming a leading cause of both death and disability. Dementia is not a single disease. Studies of rare Mendelian disorders have documented that Alzheimer's disease, the most common cause of dementia, is associated with a long incubation period from amyloid deposition to neurodegeneration to mild cognitive impairment and dementia. There are three broad hypotheses related to the causes of Alzheimer's dementia: (1) an aging process; (2) brain vascular disease; and (3) metabolic abnormalities associated with either increased production of amyloid-β or decreased clearance from the brain. Therefore, research on the early stages of the dementia process are of high priority. This paper reports that higher energy intake in both the Nurses' Health Study and Health Professionals Follow-up Study is associated with very early symptoms that lead to mild cognitive impairment and dementia. The results are very interesting but hard to interpret because they also show that higher energy intake is not related to body mass index, a very unusual observation. A likely hypothesis is that there is an association between reporting of dietary intake and subjective symptoms, i.e. reporting bias, accounting for their results.
Collapse
|
39
|
Janitschke D, Lauer AA, Bachmann CM, Winkler J, Griebsch LV, Pilz SM, Theiss EL, Grimm HS, Hartmann T, Grimm MOW. Methylxanthines Induce a Change in the AD/Neurodegeneration-Linked Lipid Profile in Neuroblastoma Cells. Int J Mol Sci 2022; 23:2295. [PMID: 35216410 PMCID: PMC8875332 DOI: 10.3390/ijms23042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an increased plaque burden and tangle accumulation in the brain accompanied by extensive lipid alterations. Methylxanthines (MTXs) are alkaloids frequently consumed by dietary intake known to interfere with the molecular mechanisms leading to AD. Besides the fact that MTX consumption is associated with changes in triglycerides and cholesterol in serum and liver, little is known about the effect of MTXs on other lipid classes, which raises the question of whether MTX can alter lipids in a way that may be relevant in AD. Here we have analyzed naturally occurring MTXs caffeine, theobromine, theophylline, and the synthetic MTXs pentoxifylline and propentofylline also used as drugs in different neuroblastoma cell lines. Our results show that lipid alterations are not limited to triglycerides and cholesterol in the liver and serum, but also include changes in sphingomyelins, ceramides, phosphatidylcholine, and plasmalogens in neuroblastoma cells. These changes comprise alterations known to be beneficial, but also adverse effects regarding AD were observed. Our results give an additional perspective of the complex link between MTX and AD, and suggest combining MTX with a lipid-altering diet compensating the adverse effects of MTX rather than using MTX alone to prevent or treat AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Cornel Manuel Bachmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (D.J.); (A.A.L.); (C.M.B.); (J.W.); (L.V.G.); (S.M.P.); (E.L.T.); (H.S.G.); (T.H.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
40
|
Tatulian SA. Challenges and hopes for Alzheimer's disease. Drug Discov Today 2022; 27:1027-1043. [PMID: 35121174 DOI: 10.1016/j.drudis.2022.01.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Recent drug development efforts targeting Alzheimer's disease (AD) have failed to produce effective disease-modifying agents for many reasons, including the substantial presymptomatic neuronal damage that is caused by the accumulation of the amyloid β (Aβ) peptide and tau protein abnormalities, deleterious adverse effects of drug candidates, and inadequate design of clinical trials. New molecular targets, biomarkers, and diagnostic techniques, as well as alternative nonpharmacological approaches, are sorely needed to detect and treat early pathological events. This article analyzes the successes and debacles of pharmaceutical endeavors to date, and highlights new technologies that may lead to the more effective diagnosis and treatment of the pathologies that underlie AD. The use of focused ultrasound, deep brain stimulation, stem cell therapy, and gene therapy, in parallel with pharmaceuticals and judicious lifestyle adjustments, holds promise for the deceleration, prevention, or cure of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, College of Sciences, and Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
41
|
Li L, Xu W, Tan CC, Cao XP, Wei BZ, Dong CW, Tan L. A gene-environment interplay between omega-3 supplementation and APOE ε4 provides insights for Alzheimer's disease precise prevention amongst high-genetic-risk population. Eur J Neurol 2021; 29:422-431. [PMID: 34710256 DOI: 10.1111/ene.15160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE The present study aimed to explore whether and how omega-3 (ω-3) supplementation could interact with genetic factors to modulate cognitive functions, amyloid pathologies, and Alzheimer's disease (AD) risk. METHODS A total of 1,670 non-demented participants (mean age 73 years, 47% females, 41% APOE ε4 carriers) were followed up for 10 years. Hierarchical regressions, linear mixed-effects models, and Cox proportional hazards models were used to examine the interaction effects of ω-3 supplementation with APOE ε4 and polygenic hazard scores, after adjusting for age, gender, education, cognitive diagnosis, insomnia, depression, anxiety, and cardiovascular risk score. RESULTS Individuals who progress to AD during the follow-up tend to take a shorter duration of ω-3 at baseline than those stable, for whom the difference remained significant only amongst APOE ε4 carriers (p < 0.01). The interaction term (APOE ε4 × ω-3) accounted for a significant amount of variance in cognition and cerebral amyloid burden. Long-term ω-3 use protected cognition (especially memory function) and lowered amyloid burden and AD risk only amongst APOE ε4 carriers. Mediation analysis suggested that amyloid pathologies, brain reserve capacities, and brain metabolism mediated the relationships of ω-3 use with memory and global cognition for APOE ε4 (+) carriers. Similar interaction and mediation effects were also indicated amongst high-risk subjects defined by polygenic hazard scores. CONCLUSIONS Long-term ω-3 intake may have a role in AD prevention in genetically at-risk populations.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Neurology, Linyi People's Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bao-Zhen Wei
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Cheng-Wen Dong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
42
|
Disentangling Mitochondria in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111520. [PMID: 34768950 PMCID: PMC8583788 DOI: 10.3390/ijms222111520] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia in older adults and is fast becoming a major societal and economic burden due to an increase in life expectancy. Age seems to be the major factor driving AD, and currently, only symptomatic treatments are available. AD has a complex etiology, although mitochondrial dysfunction, oxidative stress, inflammation, and metabolic abnormalities have been widely and deeply investigated as plausible mechanisms for its neuropathology. Aβ plaques and hyperphosphorylated tau aggregates, along with cognitive deficits and behavioral problems, are the hallmarks of the disease. Restoration of mitochondrial bioenergetics, prevention of oxidative stress, and diet and exercise seem to be effective in reducing Aβ and in ameliorating learning and memory problems. Many mitochondria-targeted antioxidants have been tested in AD and are currently in development. However, larger streamlined clinical studies are needed to provide hard evidence of benefits in AD. This review discusses the causative factors, as well as potential therapeutics employed in the treatment of AD.
Collapse
|
43
|
Gao J, Wang L, Zhao C, Wu Y, Lu Z, Gu Y, Ba Z, Wang X, Wang J, Xu Y. Peony seed oil ameliorates neuroinflammation-mediated cognitive deficits by suppressing microglial activation through inhibition of NF-κB pathway in presenilin 1/2 conditional double knockout mice. J Leukoc Biol 2021; 110:1005-1022. [PMID: 34494312 DOI: 10.1002/jlb.3ma0821-639rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic neuroinflammation has been shown to exert adverse influences on the pathology of Alzheimer's disease (AD), associated with the release of abundant proinflammatory mediators by excessively activated microglia, causing synaptic dysfunction, neuronal degeneration, and memory deficits. Thus, the prevention of microglial activation-associated neuroinflammation is important target for deterring neurodegenerative disorders. Peony seed oil (PSO) is a new food resource, rich in α-linolenic acid, the precursor of long chain omega-3 polyunsaturated fatty acids, including docosahexaenoic acid and eicosapentaenoic acid, which exhibit anti-inflammatory properties by altering cell membrane phospholipid fatty acid compositions, disrupting lipid rafts, and inhibiting the activation of the proinflammatory transcription factor NF-κB. However, few studies have examined the anti-neuroinflammatory effects of PSO in AD, and the relevant molecular mechanisms remain unclear. Presenilin1/2 conditional double knockout (PS cDKO) mice display obvious AD-like phenotypes, such as neuroinflammatory responses, synaptic dysfunction, and cognitive deficits. Here, we assessed the potential neuroprotective effects of PSO against neuroinflammation-mediated cognitive deficits in PS cDKO using behavioral tests and molecular biologic analyses. Our study demonstrated that PSO suppressed microglial activation and neuroinflammation through the down-regulation of proinflammatory mediators, such as inducible NOS, COX-2, IL-1β, and TNF-α, in the prefrontal cortex and hippocampus of PS cDKO mice. Further, PSO significantly lessened memory impairment by reversing hyperphosphorylated tau and synaptic proteins deficits in PS cDKO mice. Importantly, PSO's therapeutic effects on cognitive deficits were due to inhibiting neuroinflammatory responses mediated by NF-κB signaling pathway. Taken together, PSO may represent an effective dietary supplementation to restrain the neurodegenerative processes of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lijun Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyuan Lu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yining Gu
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Zongtao Ba
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyu Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
44
|
Mišković J, Rašeta M, Čapelja E, Krsmanović N, Novaković A, Karaman M. Mushroom Species Stereum hirsutum as Natural Source of Phenolics and Fatty Acids as Antioxidants and Acetylcholinesterase Inhibitors. Chem Biodivers 2021; 18:e2100409. [PMID: 34467660 DOI: 10.1002/cbdv.202100409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023]
Abstract
Many lignicolous mushroom species are used as a food supplement and may represent an alternative treatment of Alzheimer's disease (AD). This study aimed to evaluate acetylcholinesterase inhibition (AChEI) of Stereum hirsutum together with antioxidant activity (AO) and cytotoxic activity against HepG2 cells. Different extracts (water, ethanol, methanol, polysaccharide) were analyzed, with respect to their mineral composition and chemical content. Ethanol extract was the most potent in AChEI (98.44 %) and demonstrated cytotoxic activity (91.96 % at 900.00 μg/mL), while the highest AO was demonstrated for polar extracts (methanol and water) as well. These activities may be attributed to determined phenolics (hydroxybenzoic and quinic acid) and fatty acids (FA), while biflavonoid amentoflavone may be responsible for cytotoxic activity. The most prevalent FA was linoleic (40.00 %) and the domination of unsaturated FA (UFA) (71.91 %) over saturated (26.96 %) was observed. This is the first report of AChEI of S. hirsutum extracts and first detection of amentoflavone. Due to high amount of UFA and well-expressed AChEI, this species can be considered as a potent food supplement in the palliative therapy of AD.
Collapse
Affiliation(s)
- Jovana Mišković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Eleonora Čapelja
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Nenad Krsmanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Aleksandra Novaković
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
45
|
Kotlęga D, Peda B, Palma J, Zembroń-Łacny A, Gołąb-Janowska M, Masztalewicz M, Nowacki P, Szczuko M. Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126500. [PMID: 34208689 PMCID: PMC8296333 DOI: 10.3390/ijerph18126500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022]
Abstract
Ischemic stroke is a leading cause of motor impairment and psychosocial disability. Although free fatty acids (FFA) have been proven to affect the risk of stroke and potentially dementia, the evidence of their impact on cognitive functions in stroke patients is lacking. We aimed to establish such potential relationships. Seventy-two ischemic stroke patients were prospectively analysed. Their cognitive functions were assessed seven days post-stroke and six months later as follow-up (n = 41). Seven days post-stroke analysis of serum FFAs levels showed direct correlations between Cognitive Verbal Learning Test (CVLT) and the following FFAs: C20:4n6 arachidonic acid and C20:5n3 eicosapentaenoic acid, while negative correlations were observed for C18:3n3 linolenic acid (ALA), C18:4 n3 stearidonic acid and C23:0 tricosanoic acid. Follow-up examination with CVLT revealed positive correlations with C15:0 pentadecanoid acid, C18:3n6 gamma linoleic acid, SDA, C23:0 tricosanoic acid and negative correlations with C14:0 myristic acid and C14:1 myristolenic acids. Several tests (Trail Making Test, Stroop Dots Trail, Digit Span Test and Verbal Fluency Test) were directly correlated mainly with C14:0 myristic acid and C14:1 myristolenic acid, while corresponding negatively with C18:1 vaccinic acid, C20:3n3 cis-11-eicosatrienoic acid, C22:1/C20:1 cis11- eicosanic acid and C20:2 cis-11-eicodienoic acid. No correlations between Montreal Cognitive Assessment (MOCA) test performed on seventh day, and FFAs levels were found. Saturated fatty acids play a negative role in long-term cognitive outcomes in stroke patients. The metabolic cascade of polyunsaturated fatty acids (n3 PUFA) and the synthesis of (AA) can be involved in pathogenesis of stroke-related cognitive impairment.
Collapse
Affiliation(s)
- Dariusz Kotlęga
- Department of Neurology, District Hospital, 67-200 Glogow, Poland;
- Correspondence:
| | - Barbara Peda
- Department of Neurology, District Hospital, 67-200 Glogow, Poland;
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (J.P.); (M.S.)
| | - Agnieszka Zembroń-Łacny
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-001 Zielona Góra, Poland;
| | - Monika Gołąb-Janowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (M.M.); (P.N.)
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (M.M.); (P.N.)
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (M.G.-J.); (M.M.); (P.N.)
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (J.P.); (M.S.)
| |
Collapse
|
46
|
Galvin JE, Tolea MI, Chrisphonte S. The Cognitive & Leisure Activity Scale (CLAS): A new measure to quantify cognitive activities in older adults with and without cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12134. [PMID: 33816759 PMCID: PMC8012243 DOI: 10.1002/trc2.12134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Potentially modifiable dementia risk factors include diet and physical and cognitive activity. However, there is a paucity of scales to quantify cognitive activities. To address this, we developed the Cognitive & Leisure Activity Scale (CLAS). METHODS The CLAS was validated in 318 consecutive individuals with and without cognitive impairment. Psychometric properties were compared with sample characteristics, disease stage, and etiology. RESULTS The CLAS has very good data quality (Cronbach alpha: 0.731; 95% confidence interval: 0.67-0.78). CLAS scores correlated with gold standard measures of cognition, function, physical functionality, behavior, and caregiver burden. CLAS scores were positively correlated with other resilience factors (eg, diet, physical activity) and negatively correlated with vulnerability factors (eg, older age, frailty). DISCUSSION The CLAS is a brief inventory to estimate dosage of participation in cognitive activities. The CLAS could be used in clinical care to enhance cognitive activity or in research to estimate dosage of activities prior to an intervention.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| | - Magdalena I. Tolea
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| | - Stephanie Chrisphonte
- Comprehensive Center for Brain HealthDepartment of NeurologyUniversity of Miami Miller School of Medicine
| |
Collapse
|
47
|
Innis AD, Tolea MI, Galvin JE. The Effect of Baseline Patient and Caregiver Mindfulness on Dementia Outcomes. J Alzheimers Dis 2021; 79:1345-1367. [PMID: 33427746 PMCID: PMC8324319 DOI: 10.3233/jad-201292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mindfulness is the practice of awareness and living in the present moment without judgment. Mindfulness-based interventions may improve dementia-related outcomes. Before initiating interventions, it would be beneficial to measure baseline mindfulness to understand targets for therapy and its influence on dementia outcomes. OBJECTIVE This cross-sectional study examined patient and caregiver mindfulness with patient and caregiver rating scales and patient cognitive performance and determined whether dyadic pairing of mindfulness influences patient outcomes. METHODS Individuals (N = 291) underwent comprehensive evaluations, with baseline mindfulness assessed using the 15-item Applied Mindfulness Process Scale (AMPS). Correlation, regression, and mediation models tested relationships between patient and caregiver mindfulness and outcomes. RESULTS Patients had a mean AMPS score of 38.0±11.9 and caregivers had a mean AMPS score of 38.9±11.5. Patient mindfulness correlated with activities of daily living, behavior and mood, health-related quality of life, subjective cognitive complaints, and performance on episodic memory and attention tasks. Caregiver mindfulness correlated with preparedness, care confidence, depression, and better patient cognitive performance. Patients in dyads with higher mindfulness had better cognitive performance, less subjective complaints, and higher health-related quality of life (all p-values<0.001). Mindfulness effects on cognition were mediated by physical activity, social engagement, frailty, and vascular risk factors. CONCLUSION Higher baseline mindfulness was associated with better patient and caregiver outcomes, particularly when both patients and caregivers had high baseline mindfulness. Understanding the baseline influence of mindfulness on the completion of rating scales and neuropsychological test performance can help develop targeted interventions to improve well-being in patients and their caregivers.
Collapse
Affiliation(s)
- Ashley D. Innis
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Magdalena I. Tolea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
48
|
Galvin JE, Kleiman MJ, Chrisphonte S, Cohen I, Disla S, Galvin CB, Greenfield KK, Moore C, Rawn S, Riccio ML, Rosenfeld A, Simon J, Walker M, Tolea MI. The Resilience Index: A Quantifiable Measure of Brain Health and Risk of Cognitive Impairment and Dementia. J Alzheimers Dis 2021; 84:1729-1746. [PMID: 34744081 PMCID: PMC10731582 DOI: 10.3233/jad-215077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND There is increasing interest in lifestyle modification and integrative medicine approaches to treat and/or prevent mild cognitive impairment (MCI) and Alzheimer's disease and related dementias (ADRD). OBJECTIVE To address the need for a quantifiable measure of brain health, we created the Resilience Index (RI). METHODS This cross-sectional study analyzed 241 participants undergoing a comprehensive evaluation including the Clinical Dementia Rating and neuropsychological testing. Six lifestyle factors including physical activity, cognitive activity, social engagements, dietary patterns, mindfulness, and cognitive reserve were combined to derive the RI (possible range of scores: 1-378). Psychometric properties were determined. RESULTS The participants (39 controls, 75 MCI, 127 ADRD) had a mean age of 74.6±9.5 years and a mean education of 15.8±2.6 years. The mean RI score was 138.2±35.6. The RI provided estimates of resilience across participant characteristics, cognitive staging, and ADRD etiologies. The RI showed moderate-to-strong correlations with clinical and cognitive measures and very good discrimination (AUC: 0.836; 95% CI: 0.774-0.897) between individuals with and without cognitive impairment (diagnostic odds ratio = 8.9). Individuals with high RI scores (> 143) had better cognitive, functional, and behavioral ratings than individuals with low RI scores. Within group analyses supported that controls, MCI, and mild ADRD cases with high RI had better cognitive, functional, and global outcomes than those with low RI. CONCLUSION The RI is a brief, easy to administer, score and interpret assessment of brain health that incorporates six modifiable protective factors. Results from the RI could provide clinicians and researchers with a guide to develop personalized prevention plans to support brain health.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael J. Kleiman
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie Chrisphonte
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iris Cohen
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shanell Disla
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Conor B. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Keri K. Greenfield
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claudia Moore
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan Rawn
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Lou Riccio
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amie Rosenfeld
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Simon
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcia Walker
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Magdalena I. Tolea
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|