1
|
Lei Y, Liu C, Shi Y, Li P, Zhang Y, Liu SY, Han X, Qu J, Guo J, Dai Z. Target-Zippable Anisotropic Near-Infrared AuNRs for Highly Reliable and Bright SERS Imaging of miRNA In Vivo. NANO LETTERS 2025; 25:7543-7552. [PMID: 40279475 DOI: 10.1021/acs.nanolett.5c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Near-infrared surface-enhanced Raman scattering (NIR-SERS) probes are promising for in vivo molecular imaging, but they face challenges in balancing plasmonic activity and signal reproducibility. We designed target-zippable anisotropic NIR gold nanorod (ani-NIR-AuNR) SERS probes, whose end and side regions are decorated with catalytic hairpin assembly (CHA) DNA hairpins and Raman reporters, respectively. These ani-NIR-AuNR monomers maintain a near-zero background until triggered by targets to form uniform side-by-side dimers with an average gap of 0.88 nm, synergistically amplifying electromagnetic enhancement and chemical enhancement. The CHA allows one target to zip numerous dimers, boosting hotspot density. These effects endow the SERS probes with good reproducibility (RSD = 8.56%), superior sensitivity (LOD = 0.15 fM), and a broad linear range (1 fM to 1 nM) for let-7d detection. Compared to fluorescence probes, they offer higher brightness, better spatial resolution, and longer signal persistence in in vivo miRNA imaging, demonstrating substantial potential in bioapplications.
Collapse
Affiliation(s)
- Yutian Lei
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Chusheng Liu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518112, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen 518112, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Ke Y, Sun Y, Liao A, Zhao F, Tan Y, Tan C. Conjugated Polyelectrolyte-Based Sensor Arrays: from Sensing Mechanisms to Artificial Sensory System Conceptualization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16396-16409. [PMID: 40048404 DOI: 10.1021/acsami.4c22848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
In the past decades, conjugated polyelectrolytes (CPEs) have become prominent in sensing applications due to their unique properties, including strong and tunable light absorption, high sensitivity, water solubility, and biocompatibility. Inspired by mammalian olfactory and gustatory systems, CPE-based sensor arrays have made significant strides in discriminating structurally similar analytes and complex mixtures for various applications. This review consolidates recent advancements in CPE-based sensor arrays, highlighting rational design, controllable fabrication, and effective data processing methods. It covers the fundamentals of CPE fluorescence sensing, emphasizing design strategies for sensor array units and data processing techniques. The broad applicability of CPE-based sensor arrays is demonstrated across diverse domains, including environmental monitoring (e.g., detecting metal ions and explosives), medical diagnostics (e.g., sensing disease markers and analyzing biological samples), and food safety (e.g., assessing the freshness, quality, and source of food products). Further, challenges and future directions in the field are discussed to inspire further research and development in this area.
Collapse
Affiliation(s)
- Yulei Ke
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuanjie Sun
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Anhui Liao
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Fangxi Zhao
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
- Open FIESTA, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Li X, Zhang R, Yang Y, Huang W. Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2025; 8:0534. [PMID: 39801503 PMCID: PMC11717998 DOI: 10.34133/research.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications. This review aims to introduce the recent progress of CSMNs for NIR imaging, therapy, and synergistic PTs with a comprehensive summary of their molecular structures, structure types, and optical properties. Moreover, the working principles of CSMNs are illustrated from photophysical and photochemical mechanisms and light-tissue interactions. In addition, molecular engineering and nanomodulation approaches of CSMs are discussed, with an emphasis on strategies for improving performances and extending absorption and emission wavelengths to the NIR range. Furthermore, the in vivo investigation of CSMNs is illustrated with solid examples from imaging in different scenarios, therapy in 2 modes, and synergistic PTs in combinational functionalities. This review concludes with a brief conclusion, current challenges, and future outlook of CSMNs.
Collapse
Affiliation(s)
- Xiaozhen Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Ruohan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Yanlong Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
5
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
6
|
Streu K, Hunsberger S, Patel J, Wan X, Daly CA. Development of a universal method for vibrational analysis of the terminal alkyne C≡C stretch. J Chem Phys 2024; 160:074106. [PMID: 38364010 DOI: 10.1063/5.0185580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/07/2024] [Indexed: 02/18/2024] Open
Abstract
The terminal alkyne C≡C stretch has a large Raman scattering cross section in the "silent" region for biomolecules. This has led to many Raman tag and probe studies using this moiety to study biomolecular systems. A computational investigation of these systems is vital to aid in the interpretation of these results. In this work, we develop a method for computing terminal alkyne vibrational frequencies and isotropic transition polarizabilities that can easily and accurately be applied to any terminal alkyne molecule. We apply the discrete variable representation method to a localized version of the C≡C stretch normal mode. The errors of (1) vibrational localization to the terminal alkyne moiety, (2) anharmonic normal mode isolation, and (3) discretization of the Born-Oppenheimer potential energy surface are quantified and found to be generally small and cancel each other. This results in a method with low error compared to other anharmonic vibrational methods like second-order vibrational perturbation theory and to experiments. Several density functionals are tested using the method, and TPSS-D3, an inexpensive nonempirical density functional with dispersion corrections, is found to perform surprisingly well. Diffuse basis functions are found to be important for the accuracy of computed frequencies. Finally, the computation of vibrational properties like isotropic transition polarizabilities and the universality of the localized normal mode for terminal alkynes are demonstrated.
Collapse
Affiliation(s)
- Kristina Streu
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Sara Hunsberger
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Jeanette Patel
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Xiang Wan
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, Illinois 60660, USA
| | - Clyde A Daly
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| |
Collapse
|
7
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
8
|
Liu Y, Li M, Liu H, Kang C, Yu X. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems. Int J Nanomedicine 2023; 18:6883-6900. [PMID: 38026519 PMCID: PMC10674749 DOI: 10.2147/ijn.s435087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have the potential to significantly enhance the pharmacological and therapeutic properties of drugs. These systems enhance the bioavailability and biocompatibility of pharmaceutical agents via enabling targeted delivery to specific tissues or organs. However, the efficacy and safety of these systems are largely dependent on the cellular uptake and intracellular transport of NPs. Thus, it is crucial to monitor the intracellular behavior of NPs within a single cell. Yet, it is challenging due to the complexity and size of the cell. Recently, the development of the Raman instrumentation offers a versatile tool to allow noninvasive cellular measurements. The primary objective of this review is to highlight the most recent advancements in Raman techniques (spontaneous Raman scattering, bioorthogonal Raman scattering, coherence Raman scattering, and surface-enhanced Raman scattering) when it comes to assessing the internalization of NP-based drug delivery systems and their subsequent movement within cells.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Haisha Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
9
|
Tao Y, Jia W, Fang N, Wang Y, Zhang H, Wu P, Cai C. An intelligent alkyne-tag for Raman imaging of living cells: graphdiyne-encapsulated Au nanospheres. Chem Commun (Camb) 2023; 59:13297-13300. [PMID: 37859547 DOI: 10.1039/d3cc04711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A new graphdiyne-encapsulated Au nanosphere (Au@GDY) material was fabricated, which possessed an amplified Raman signal of acetylene linkage and produced bright, stable, and distinct signals in the cellular Raman-silent region. Its signal repeatability is far superior to that of alkyne-containing molecules. This work provides promise as an alkyne-tag for Raman imaging of living cells.
Collapse
Affiliation(s)
- Yutong Tao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ningning Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
10
|
Liu X, Wang K, Ren A, Zhang T, Ren S, Yao J, Dong H, Zhao YS. Continuous-Wave Raman Lasing from Metal-Linked Organic Dimer Microcrystals. Angew Chem Int Ed Engl 2023; 62:e202309386. [PMID: 37587321 DOI: 10.1002/anie.202309386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.
Collapse
Affiliation(s)
- Xiaolong Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongjin Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Cutshaw G, Uthaman S, Hassan N, Kothadiya S, Wen X, Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev 2023; 123:8297-8346. [PMID: 37318957 PMCID: PMC10626597 DOI: 10.1021/acs.chemrev.2c00897] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omics technologies have rapidly evolved with the unprecedented potential to shape precision medicine. Novel omics approaches are imperative toallow rapid and accurate data collection and integration with clinical information and enable a new era of healthcare. In this comprehensive review, we highlight the utility of Raman spectroscopy (RS) as an emerging omics technology for clinically relevant applications using clinically significant samples and models. We discuss the use of RS both as a label-free approach for probing the intrinsic metabolites of biological materials, and as a labeled approach where signal from Raman reporters conjugated to nanoparticles (NPs) serve as an indirect measure for tracking protein biomarkers in vivo and for high throughout proteomics. We summarize the use of machine learning algorithms for processing RS data to allow accurate detection and evaluation of treatment response specifically focusing on cancer, cardiac, gastrointestinal, and neurodegenerative diseases. We also highlight the integration of RS with established omics approaches for holistic diagnostic information. Further, we elaborate on metal-free NPs that leverage the biological Raman-silent region overcoming the challenges of traditional metal NPs. We conclude the review with an outlook on future directions that will ultimately allow the adaptation of RS as a clinical approach and revolutionize precision medicine.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
12
|
Zhang X, Shi Y, Wang P, Wu D, Liu J, Huang R, Wu Y, Li G. Biomineralization-inspired artificial clickase for portable click SERS immunoassay of Salmonella enterica serovar Paratyphi B in foods. Food Chem 2023; 413:135553. [PMID: 36745944 DOI: 10.1016/j.foodchem.2023.135553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Inspired by a biomineralization behavior, we prepared a nanoflower-like artificial clickase (namely LCN clickase) for portable and sensitive click SERS immunoassay of foodborne bacterial pathogen. Encouraged by its high click catalytic activity to trigger Cu(I)-catalyzed azide-alkyne cycloaddition reaction, LCN clickase was successfully used for establishing a novel click SERS immunoassay by combining the clickase-mediated SERS signal variation at Raman-silent region. The developed method not only effectively eliminated the interferences between Raman reporter and biological species, but also reduced the complex sample matrix interference. Compared with traditional CuAAC-based immunoassays, the established method avoided the superfluous dissolution process of nanocatalysts and eliminated the requirement of reducing agent during detection, thereby shortening detection time and improving detection reliability. Impressively, the proposed method showed high selectivity and sensitivity for detection of Salmonella enterica serovar Paratyphi B with a low LOD of 20 CFU/mL, exhibiting a great potential in detection of foodborne bacterial pathogen in food samples.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panpan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Huang
- Zhongken Huashanmu Dairy Co Ltd, Weinan 714019, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
13
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
14
|
Wang T, Ji B, Cheng Z, Chen L, Luo M, Wei J, Wang Y, Zou L, Liang Y, Zhou B, Li P. Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection. Biosens Bioelectron 2023; 228:115191. [PMID: 36924690 DOI: 10.1016/j.bios.2023.115191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Researchers have struggled to develop highly reliable and sensitive surface-enhanced Raman scattering (SERS) substrates for detecting compounds in complicated systems. In this work, a strategy by constructing Au cores with incompletely wrapped Prussian blue (PB) for highly reliable and sensitive SERS substrate is proposed. The wrapped PB layers can provide the internal standard (IS) to calibrate the SERS signal floatation, whereas the exposed surface of Au cores offers the enhancement effect. The balance between the signal self-calibration and enhancement (hence the trade-off between SERS reliability and sensitivity) is obtained by the approximate semi-wrapping configuration of PB layers on Au cores (i.e., SW-Au@PB). The proposed SW-Au@PB nanoparticles (NPs) exhibit the similar enhancement factor as the pristine Au NPs and contribute to the ultralow RSD (8.55%) of calibrated SERS signals using R6G as probe molecules. The simultaneously realized reliability and sensitivity of SW-Au@PB NPs also enables the detection of hazardous pesticide residues such as paraquat and thiram in herbal plants, with the average detection accuracy up to 92%. Overall, this work mainly provides a controllable synthetic strategy for incompletely wrapped NPs, and most importantly, explores the potential with a proof-of-concept practical application in accurate and sensitive Raman detection of hazardous substances with varying solubility.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bing Ji
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China; School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuanzhe Liang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Bingpu Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
15
|
Roy S, Roy J, Guo B. Nanomaterials as multimodal photothermal agents (PTAs) against 'Superbugs'. J Mater Chem B 2023; 11:2287-2306. [PMID: 36857688 DOI: 10.1039/d2tb02396b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Superbugs, also known as multidrug-resistant bacteria, have become a lethal and persistent threat due to their unresponsiveness toward conventional antibiotics. The main reason for this is that superbugs can rapidly mutate and restrict any foreign drug/molecule in their vicinity. Herein, nanomaterial-mediated therapies have set their path and shown burgeoning efficiency toward the ablation of superbugs. Notably, treatment modalities like photothermal therapy (PTT) have shown prominence in killing multidrug-resistant bacteria with their ability to generate local heat shock-mediated hyperthermia in such species. However, photothermal treatment has some serious limitations, such as high cost, complexity, and even toxicity to some extent. Hence, it is important to resolve such shortcomings of PTTs as they provide substantial tissue penetration. This is why multimodal PTTs have emerged and taken over this domain of research for the past few years. In this work, we have summarized and critically reviewed such exceptional works of recent times and provided a perspective to enhance their efficiencies. Profoundly, we discuss the design rationales of some novel photothermal agents (PTAs) and shed light on their mechanisms. Finally, challenges for PTT-derived multimodal therapy are presented, and capable synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Li S, Yang Y, Wang S, Gao Y, Song Z, Chen L, Chen Z. Advances in metal graphitic nanocapsules for biomedicine. EXPLORATION (BEIJING, CHINA) 2022; 2:20210223. [PMID: 37324797 PMCID: PMC10191027 DOI: 10.1002/exp.20210223] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Metal graphitic nanocapsules have the advantages of both graphitic and metal nanomaterials, showing great promise in biomedicine. On one hand, the chemically inert graphitic shells are able to protect the metal core from external environments, quench the fluorescence signal from the biological system, offer robust platform for targeted molecules or drugs loading, and act as stable Raman labels or internal standard molecule. On the other hand, the metal cores with different compositions, sizes, and morphologies show unique physicochemical properties, and further broaden their biomedical functions. In this review, we firstly introduce the preparation, classification, and properties of metal graphitic nanocapsules, then summarize the recent progress of their applications in biodetection, bioimaging, and therapy. Challenges and their development prospects in biomedicine are eventually discussed in detail. We expect the versatile metal graphitic nanocapsules will advance the development of future clinical biomedicine.
Collapse
Affiliation(s)
- Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yang Gao
- College of Materials Science and EngineeringHunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangshaChina
| | - Zhiling Song
- Key Laboratory of Optic‐Electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Long Chen
- Faculty of Science and TechnologyUniversity of MacauMacau SARChina
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| |
Collapse
|
17
|
Chen H, Zhuang Q, Wang H, Zhai X, Zhang K, Deng H, Dong W, Xie A. Ultrafine gold nanoparticles dispersed in conjugated microporous polymers with sulfhydryl functional groups to improve the reducing activity of 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Li S, Deng X, Cheng H, Li X, Wan Y, Cao C, Yu J, Liu Y, Yuan Y, Wang K, Lee CS. Bright Near-Infrared π-Conjugated Oligomer Nanoparticles for Deep-Brain Three-Photon Microscopy Excited at the 1700 nm Window in Vivo. ACS NANO 2022; 16:12480-12487. [PMID: 35968934 DOI: 10.1021/acsnano.2c03813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of three-photon fluorophores with 1700 nm excitation is pressingly desirable for in vivo imaging of tissue resided deep inside the brain. Herein, we report a designed and synthesized fluorescent molecule (OFET) for in vivo mouse brain imaging with three-photon microscopy at a record imaging depth. The OFET molecule has a relatively high fluorescence brightness and has a near-infrared (NIR) maximum emission at 820 nm after integrating as water-dispersible nanoparticles (OEFT NPs). Under 1720 nm excitation, OFET NPs show a large three-photon action cross-section of 1.06 × 10-82 cm6 s2/photon2, which is more than twice that of the commonly used sulforhodamine 101 (SR101) dye. Benefiting from the high tissue penetration depths for both the long excitation in the second NIR window of 1720 nm and the emission wavelength in the first NIR window of 820 nm, a high brightness, and a large action cross-section of three-photon, OFET NPs have good deep-brain imaging performance. Brain vasculatures of a mouse located at a depth of 1696 μm can be clearly resolved in vivo. With no observable cytotoxicity even in a high concentration, the present OFET NPs suggest that fluorescent π-conjugated oligomers are of great potential in high-resolution 3PM imaging of in vivo deep-tissue.
Collapse
Affiliation(s)
- Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yi Yuan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
19
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
20
|
Li M, Tian S, Meng F, Yin M, Yue Q, Wang S, Bu W, Luo L. Continuously Multiplexed Ultrastrong Raman Probes by Precise Isotopic Polymer Backbone Doping for Multidimensional Information Storage and Encryption. NANO LETTERS 2022; 22:4544-4551. [PMID: 35604007 DOI: 10.1021/acs.nanolett.2c01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman-based super multiplexing has attracted great interest in imaging, biological analysis, identity security, and information storage. It still remains a great challenge to synthesize a large number of different Raman-active molecules to fulfill the Raman color palette. Here, we report a facile and systematic strategy to construct continuously multiplexed ultrastrong Raman probes. By precisely incorporating different ratios of 13C isotope into the backbone of poly(deca-4,6-diynedioic acid) (PDDA), we can obtain a library of PDDAs with tunable double-bond Raman frequencies and adjustable intensity ratios of two triple-bond (13C≡13C and 12C≡12C) Raman peaks, while retaining the ultrastrong Raman signals and physicochemical properties of the polymer. We also demonstrate the successful application of 13C-doped PDDAs as security inks to generate a novel 3D matrix barcode system for information encryption and high-density data storage. The isotopically doped PDDA series herein pave a new way to advance Raman-based super multiplexing for diverse applications.
Collapse
Affiliation(s)
- Mengyang Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qiang Yue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wenting Bu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
21
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
22
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
23
|
Du J, Wei L. Multicolor Photoactivatable Raman Probes for Subcellular Imaging and Tracking by Cyclopropenone Caging. J Am Chem Soc 2021; 144:777-786. [PMID: 34913693 DOI: 10.1021/jacs.1c09689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photoactivatable probes, with high-precision spatial and temporal control, have largely advanced bioimaging applications, particularly for fluorescence microscopy. While emerging Raman probes have recently pushed the frontiers of Raman microscopy for noninvasive small-molecule imaging and supermultiplex optical imaging with superb sensitivity and specificity, photoactivatable Raman probes remain less explored. Here, we report the first general design of multicolor photoactivatable alkyne Raman probes based on cyclopropenone caging for live-cell imaging and tracking. The fast photochemically generated alkynes from cyclopropenones enable background-free Raman imaging with desired photocontrollable features. We first synthesized and spectroscopically characterized a series of model cyclopropenones and identified the suitable light-activating scaffold. We further engineered the scaffold for enhanced chemical stability in a live-cell environment and improved Raman sensitivity. Organelle-targeting probes were then generated to achieve targeted imaging of mitochondria, lipid droplets, endoplasmic reticulum, and lysosomes. Multiplexed photoactivated imaging and tracking at both subcellular and single-cell levels was next demonstrated to monitor the dynamic migration and interactions of the cellular contents. We envision that this general design of multicolor photoactivatable Raman probes would open up new ways for spatial-temporal controlled profiling and interrogations in complex biological systems with high information throughput.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Su X, Liu R, Li Y, Han T, Zhang Z, Niu N, Kang M, Fu S, Wang D, Wang D, Tang BZ. Aggregation-Induced Emission-Active Poly(phenyleneethynylene)s for Fluorescence and Raman Dual-Modal Imaging and Drug-Resistant Bacteria Killing. Adv Healthc Mater 2021; 10:e2101167. [PMID: 34606177 DOI: 10.1002/adhm.202101167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, a series of PPE derivatives with typical aggregation-induced emission (AIE) properties is designed and synthesized. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor resection surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing functional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences Nankai University Tianjin 300071 China
| | - Ying Li
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ting Han
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Zhijun Zhang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Niu Niu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Miaomiao Kang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Shuang Fu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Deliang Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
25
|
Li LK, Leung SYL, Chu A, Yim KC, Cheung WL, Chan MY, Yam VWW. Synthesis of luminescent phosphine-containing rigid-rod dinuclear alkynylgold(I) complexes and their X-Ray structural, photophysical, self-assembly and electroluminescence studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Wei J, Liu Y, Yu J, Chen L, Luo M, Yang L, Li P, Li S, Zhang XH. Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103127. [PMID: 34510742 DOI: 10.1002/smll.202103127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) are capable of coordinating the electron coupling phenomenon to bestow powerful optoelectronic features. The light-harvesting and light-amplifying properties of CPs are extensively used in figuring out the biomedical issues with special emphasis on accurate diagnosis, effective treatment, and precise theranostics. This review summarizes the recent progress of CP materials in bioimaging, cancer therapeutics, and introduces the design strategies by rationally tuning the optical properties. The recent advances of CPs in bioimaging applications are first summarized and the challenges to clear the future directions of CPs in the respective area are discussed. In the following sections, the focus is on the burgeoning applications of CPs in phototherapy of the tumor, and illustrates the underlying photo-transforming mechanism for further molecular designing. Besides, the recent progress in the CPs-assistant drug therapy, mainly including drug delivery, gene therapeutic, the optical-activated reversion of tumor resistance, and synergistic therapy has also been discussed elaborately. In the end, the potential challenges and future developments of CPs on cancer diagnosis and therapy are also illuminated for the improvement of optical functionalization and the promotion of clinical translation.
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
27
|
Zhu W, Cai E, Li H, Wang P, Shen A, Popp J, Hu J. Precise Encoding of Triple‐Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Zhu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Er‐Li Cai
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Hao‐Zheng Li
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430079 P. R. China
| | - Ai‐Guo Shen
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
- School of Printing and Packaging Wuhan University Wuhan 430072 P. R. China
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute for Photonic Technology Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Ji‐Ming Hu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
- Center of Analysis and Testing Wuhan University Wuhan 430074 P. R. China
| |
Collapse
|
28
|
Qiu C, Cheng Z, Lv C, Wang R, Yu F. Development of bioorthogonal SERS imaging probe in biological and biomedical applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhu W, Cai EL, Li HZ, Wang P, Shen AG, Popp J, Hu JM. Precise Encoding of Triple-Bond Raman Scattering of Single Polymer Nanoparticles for Multiplexed Imaging Application. Angew Chem Int Ed Engl 2021; 60:21846-21852. [PMID: 34227191 DOI: 10.1002/anie.202106136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Indexed: 11/08/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy in combination with innovative tagging strategies offers great potential as a universal high-throughput biomedical imaging tool. Here, we report rationally tailored small molecular monomers containing triple-bond units with large Raman scattering cross-sections, which can be polymerized at the nanoscale for enhancement of SRS contrast with smaller but brighter optical nanotags with artificial fingerprint output. From this, a class of triple-bond rich polymer nanoparticles (NPs) was engineered by regulating the relative dosages of three chemically different triple-bond monomers in co-polymerization. The bonding strategy allowed for 15 spectrally distinguishable triple-bond combinations. These accurately structured nano molecular aggregates, rather than long-chain macromolecules, could establish a universal method for generating small-sized biological SRS imaging tags with high sensitivity for high-throughput multi-color biomedical imaging.
Collapse
Affiliation(s)
- Wei Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Er-Li Cai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Hao-Zheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430079, P. R. China
| | - Ai-Guo Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,School of Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute for Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,Center of Analysis and Testing, Wuhan University, Wuhan, 430074, P. R. China
| |
Collapse
|
30
|
Zhang C, Jaculbia RB, Tanaka Y, Kazuma E, Imada H, Hayazawa N, Muranaka A, Uchiyama M, Kim Y. Chemical Identification and Bond Control of π-Skeletons in a Coupling Reaction. J Am Chem Soc 2021; 143:9461-9467. [PMID: 34143618 DOI: 10.1021/jacs.1c02624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly unsaturated π-rich carbon skeletons afford versatile tuning of structural and optoelectronic properties of low-dimensional carbon nanostructures. However, methods allowing more precise chemical identification and controllable integration of target sp-/sp2-carbon skeletons during synthesis are required. Here, using the coupling of terminal alkynes as a model system, we demonstrate a methodology to visualize and identify the generated π-skeletons at the single-chemical-bond level on the surface, thus enabling further precise bond control. The characteristic electronic features together with localized vibrational modes of the carbon skeletons are resolved in real space by a combination of scanning tunneling microscopy/spectroscopy (STM/STS) and tip-enhanced Raman spectroscopy (TERS). Our approach allows single-chemical-bond understanding of unsaturated carbon skeletons, which is crucial for generating low-dimensional carbon nanostructures and nanomaterials with atomic precision.
Collapse
Affiliation(s)
- Chi Zhang
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Rafael B Jaculbia
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Norihiko Hayazawa
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Chen C, Zhao Z, Qian N, Wei S, Hu F, Min W. Multiplexed live-cell profiling with Raman probes. Nat Commun 2021; 12:3405. [PMID: 34099708 PMCID: PMC8184955 DOI: 10.1038/s41467-021-23700-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Single-cell multiparameter measurement has been increasingly recognized as a key technology toward systematic understandings of complex molecular and cellular functions in biological systems. Despite extensive efforts in analytical techniques, it is still generally challenging for existing methods to decipher a large number of phenotypes in a single living cell. Herein we devise a multiplexed Raman probe panel with sharp and mutually resolvable Raman peaks to simultaneously quantify cell surface proteins, endocytosis activities, and metabolic dynamics of an individual live cell. When coupling it to whole-cell spontaneous Raman micro-spectroscopy, we demonstrate the utility of this technique in 14-plexed live-cell profiling and phenotyping under various drug perturbations. In particular, single-cell multiparameter measurement enables powerful clustering, correlation, and network analysis with biological insights. This profiling platform is compatible with live-cell cytometry, of low instrument complexity and capable of highly multiplexed measurement in a robust and straightforward manner, thereby contributing a valuable tool for both basic single-cell biology and translation applications such as high-content cell sorting and drug discovery.
Collapse
Affiliation(s)
- Chen Chen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Tang Y, Zhuang Y, Zhang S, Smith ZJ, Li Y, Mu X, Li M, He C, Zheng X, Pan F, Gao T, Zhang L. Azo-Enhanced Raman Scattering for Enhancing the Sensitivity and Tuning the Frequency of Molecular Vibrations. ACS CENTRAL SCIENCE 2021; 7:768-780. [PMID: 34079895 PMCID: PMC8161494 DOI: 10.1021/acscentsci.1c00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 05/14/2023]
Abstract
Raman scattering provides stable narrow-banded signals that potentially allow for multicolor microscopic imaging. The major obstacle for the applications of Raman spectroscopy and microscopy is the small cross section of Raman scattering that results in low sensitivity. Here, we report a new concept of azo-enhanced Raman scattering (AERS) by designing the intrinsic molecular structures using resonance Raman and concomitant fluorescence quenching strategies. Based on the selection of vibrational modes and the enhancing unit of azobenzenes, we obtained a library of AERS molecules with specific Raman signals in the fingerprint and silent frequency regions. The spectral characterization and molecular simulation revealed that the azobenzene unit conjugated to the vibrational modes significantly enhanced Raman signals due to the mechanism of extending the conjugation system, coupling the electronic-vibrational transitions, and improving the symmetry of vibrational modes. The nonradiative decay of azobenzene from the excited state quenched the commitment fluorescence, thus providing a clean background for identifying Raman scattering. The most sensitive AERS molecules produced Raman signals of more than 4 orders of magnitude compared to 5-ethynyl-2'-deoxyuridine (EdU). In addition, a frequency tunability of 10 distinct Raman bands was achieved by selecting different types of vibrational modes. This methodology of AERS allows for designing small-molecule Raman probes to visualize various entities in complex systems by multicolor spontaneous Raman imaging. It will open new prospects to explore innovative applications of AERS in interdisciplinary research fields.
Collapse
Affiliation(s)
- Yuchen Tang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yongpeng Zhuang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J. Smith
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuee Li
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xijiao Mu
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mengna Li
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Caili He
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xingxing Zheng
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Fangfang Pan
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
33
|
Wu P, Tan C. Biological Sensing and Imaging Using Conjugated Polymers and Peptide Substrates. Protein Pept Lett 2021; 28:2-10. [PMID: 32586238 DOI: 10.2174/0929866527666200625162308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Peptides have been widely applied as targeting elements or enzyme-substrates in biological sensing and imaging. Conjugated Polymers (CPs) have emerged as a novel biosensing material and received considerable attention due to their excellent light absorption, strong fluorescence emission, as well as amplified quenching properties. In this review, we summarize the recent advances of using CPs and peptide substrates in biosensing and bioimaging. After a brief introduction of the advantages of CPs and peptide substrates, different sensing designs and mechanisms are discussed based on peptides' structures and functions, including targeting recognition elements, enzyme-substrates, and cell-penetrating elements. Applications of CPs and peptides in fluorescent imaging and Raman imaging in living cells are subsequently reviewed.
Collapse
Affiliation(s)
- Pan Wu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
34
|
Emerging trends in aggregation induced emissive luminogens as bacterial theranostics. J Drug Target 2021; 29:793-807. [PMID: 33583291 DOI: 10.1080/1061186x.2021.1888111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emergence and spread of pathogenic bacteria, particularly antibiotic-resistant strains pose grave global concerns worldwide, which demand for the rapid development of highly selective and sensitive strategies for specific bacterial detection, identification, imaging and therapy. The fascinating feature of aggregation-induced emissive molecules (AIEgens) to display fluorescence in aggregate form can be suitably coupled with nanotechnology for developing theranostic AIE dots that can offer convenient and customised functions such as sensing, imaging, detection, discrimination and cell kill of different bacterial types. The initial section of the article reveals the necessity for incorporating diagnostic imaging with antibacterial therapy, while the latter part delivers mechanistic insights on the benefits of AIE fluorophores in theranostic applications. Further, the review illustrates the recent advancements of AIEgens as theranostic nanolights in bacterial detection, identification and eradication. The review is organised according to the different classes of AIE-active bacterial theranostics such as carrier-free nanoprodrugs, nanomachines for synergistic imaging-guided cancer treatment and bacterial kill, AIE polymers, bioconjugates and nanoparticle carriers. By elucidating their design principles and applications, as well as highlighting the recent trends and perspectives that can be further explored, we hope to instill more research interest in AIE bacterial theranostics for future translational research.HighlightsCombination of aggregation induced emissive fluorophores and nanotechnology for developing bacterial theranostics.AIE theranostics with customised functions for bacterial imaging, detection, discrimination and cell kill.
Collapse
|
35
|
Li Y, Huang G, Chen C, Wei XW, Dong X, Zhao W, Ye HM. Poly(butylene succinate- co-butylene acetylenedicarboxylate): Copolyester with Novel Nucleation Behavior. Polymers (Basel) 2021; 13:365. [PMID: 33498848 PMCID: PMC7865284 DOI: 10.3390/polym13030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
Big spherulite structure and high crystallinity are the two main drawbacks of poly(butylene succinate) (PBS) and hinder its application. In this work, a new type of copolyester poly(butylene succinate-co-butylene acetylenedicarboxylate) (PBSAD) is synthesized. With the incorporation of acetylenedicarboxylate (AD) units into PBS chains, the crystallization temperature and crystallinity are depressed by excluding AD units to the amorphous region. In contrast, the primary nucleation capability is significantly strengthened, without changing the crystal modification or crystallization kinetics, leading to the recovery of total crystallization rate of PBSAD under the same supercooling condition. The existence of specific interaction among AD units is found to be crucial. Although it is too weak to contribute to the melt memory effect at elevated temperature, the interaction continuously strengthens as the temperature falls down, and the heterogeneous aggregation of AD units keeps growing. When the aggregating process reaches a certain extent, it will induce the formation of a significant amount of crystal nuclei. The unveiled nucleation mechanism helps to design PBS copolymer with good performance.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
| | - Guoyong Huang
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| | - Cong Chen
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
| | - Xue-Wei Wei
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
| | - Xi Dong
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Hai-Mu Ye
- Department of Materials Science and Engineering, China University of Petroleum, Beijing 102249, China; (Y.L.); (G.H.); (C.C.); (X.-W.W.); (X.D.)
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
36
|
Salzillo T, D'Amico F, Montes N, Pfattner R, Mas-Torrent M. Influence of polymer binder on the performance of diF-TES-ADT based organic field effect transistor. CrystEngComm 2021. [DOI: 10.1039/d0ce01467b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presented work concerns the study of solution sheared organic thin film transistors based on a 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) polymer blend.
Collapse
Affiliation(s)
- Tommaso Salzillo
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
- Department of Materials and Interfaces
| | | | - Nieves Montes
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| | - Raphael Pfattner
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- 08193 Bellaterra
- Spain
| |
Collapse
|
37
|
Rong R, Zhang Y, Tan W, Hu T, Wang X, Gui Z, Gong J, Xu X. Evidence of Translocation of Oral Zn 2+ Doped Magnetite Nanoparticles Across the Small Intestinal Wall of Mice and Deposition in Spleen: Unique Advantage in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:7919-7929. [DOI: 10.1021/acsabm.0c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Rong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weihang Tan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Tingting Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoqin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zongxiang Gui
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Jiachun Gong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
38
|
Huang Q, Wu W, Ai K, Liu J. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. Front Chem 2020; 8:565782. [PMID: 33282824 PMCID: PMC7691385 DOI: 10.3389/fchem.2020.565782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Polydiacetylenes are prepared from amphiphilic diacetylenes first through self-assembly and then polymerization. Different from common supramolecular assemblies, polydiacetylenes have stable structure and very special optical properties such as absorption, fluorescence, and Raman. The hydrophilic head of PDAs is easy to be chemically modified with functional groups for detection and imaging applications. PDAs will undergo a specific color change from blue to red, fluorescence enhancement and Raman spectrum changes in the presence of receptor ligands. These properties allow PDA-based sensors to have high sensitivity and specificity during analysis. Therefore, the PDAs have been widely used for detection of viruses, bacteria, proteins, antibiotics, hormones, sialic acid, metal ions and as probes for bioimaging in recent years. In this review, the preparation, polymerization, and detection mechanisms of PDAs are discussed, and some representative research advances in the field of bio-detection and bioimaging are highlighted.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Li S, Chen H, Liu H, Liu L, Yuan Y, Mao C, Zhang W, Zhang X, Guo W, Lee CS, Liang XJ. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS NANO 2020; 14:13681-13690. [PMID: 32926626 DOI: 10.1021/acsnano.0c05885] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pharmaceutical evaluations of nanomedicines are of great significance for their further launch into industry and clinic. Near-infrared (NIR) fluorescence imaging plays essential roles in preclinical drug development by providing important insights into the biodistributions of drugs in vivo with deep tissue penetration and high spatiotemporal resolution. However, NIR-II fluorescence imaging has rarely been exploited for in vivo real-time pharmaceutical evaluations of nanomedicine. Herein, we developed a highly emissive NIR-II luminophore to establish a versatile nanoplatform to noninvasively monitor the in vivo metabolism of nanomedicines bound various polyethylene glycol (PEG) ligands in a real-time manner. An alternative D-A-D conjugated oligomer (DTTB) was synthesized to achieve NIR-II emission peaked at ∼1050 nm with high fluorescence QYs of 13.4% and a large absorption coefficient. By anchoring with the DTTB molecule, intrinsically fluorescent micelles were fabricated and bound with PEG ligands at various chain lengths. In vivo NIR-II fluorescence and photoacoustic imaging results revealed that an appropriate PEG chain length could effectively contribute to the longer blood circulation and better tumor targeting. In vivo therapeutic experiments also confirmed the optimized nanomedicines have efficient photothermal elimination of tumors and good biosafety. This work offered an alternative highly fluorescent NIR-II material and demonstrated a promising approach for real-time pharmaceutical evaluation of nanomedicine in vivo.
Collapse
Affiliation(s)
- Shengliang Li
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Yuan Yuan
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xing-Jie Liang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
40
|
Li S, Deng Q, Zhang Y, Li X, Wen G, Cui X, Wan Y, Huang Y, Chen J, Liu Z, Wang L, Lee CS. Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001146. [PMID: 32627868 DOI: 10.1002/adma.202001146] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Indexed: 05/05/2023]
Abstract
Extensive recent progress has been made on the design and applications of organic photothermal agents for biomedical applications because of their excellent biocompatibility comparing with inorganic materials. One major hurdle for the further development and applications of organic photothermal agents is the rarity of high-performance materials in the second near-infrared (NIR-II) window, which allows deep tissue penetration and causes minimized side effects. Up till now, there have been few reported NIR-II-active photothermal agents and their photothermal conversion efficiencies are relatively low. Herein, optical absorption of π-conjugated small molecules from the first NIR window to the NIR-II window is precisely regulated by molecular surgery of substituting an individual atom. With this technique, the first demonstration of a conjugated oligomer (IR-SS) with an absorption peak beyond 1000 nm is presented, and its nanoparticle achieves a record-high photothermal conversion efficiency of 77% under 1064 nm excitation. The nanoparticles show a good photoacoustic response, photothermal therapeutic efficacy, and biocompatibility in vitro and in vivo. This work develops a strategy to boost the light-harvesting efficiency in the NIR-II window for cancer theranostics, offering an important step forward in advancing the design and application of NIR-II photothermal agents.
Collapse
Affiliation(s)
- Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Qingyuan Deng
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Jiaxiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
41
|
Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang BZ. An AIE-Active Conjugated Polymer with High ROS-Generation Ability and Biocompatibility for Efficient Photodynamic Therapy of Bacterial Infections. Angew Chem Int Ed Engl 2020; 59:9952-9956. [PMID: 32017333 DOI: 10.1002/anie.201916704] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 01/16/2023]
Abstract
New, biocompatible materials with favorable antibacterial activity are highly desirable. In this work, we develop a unique conjugated polymer featuring aggregation-induced emission (AIE) for reliable bacterial eradication. Thanks to the AIE and donor-π-acceptor structure, this polymer shows a high reactive oxygen species (ROS)-generation ability compared to a low-mass model compound and the common photosensitizer Chlorin E6. Moreover, the selective binding of pathogenic microorganisms over mammalian cells was found, demonstrating its biocompatibility. The effective growth inhibition of bacteria upon polymer treatment under light irradiation was validated in vitro and in vivo. Notably, the recovery from infection after treatment with our polymer is faster than that with cefalotin. Thus, this polymer holds great promise in fighting against bacteria-related infections in practical applications.
Collapse
Affiliation(s)
- Taotao Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Yanping Qiu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Qiyun Deng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Haiyan Zhang
- Department of Medical Research, General Hospital of Southern Theater Command, PLA, Guangzhou, 510010, China
| | - Pingan Yin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlie Zhan
- Animal Experiment Centery, General Hospital of Southern Theater Command, PLA, Guangzhou, 510010, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
42
|
Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang BZ. An AIE‐Active Conjugated Polymer with High ROS‐Generation Ability and Biocompatibility for Efficient Photodynamic Therapy of Bacterial Infections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Taotao Zhou
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Yanping Qiu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Qiyun Deng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Haiyan Zhang
- Department of Medical ResearchGeneral Hospital of Southern Theater Command, PLA Guangzhou 510010 China
| | - Pingan Yin
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 China
| | - Chunlie Zhan
- Animal Experiment CenteryGeneral Hospital of Southern Theater Command, PLA Guangzhou 510010 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCenter for Aggregation-Induced EmissionSouth China University of Technology Guangzhou 510640 China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced StudyDepartment of Chemical and Biological EngineeringThe Hong Kong University of Science & Technology Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
43
|
Wang H, Guo L, Wang Y, Feng L. Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomater Sci 2020; 7:3788-3794. [PMID: 31218306 DOI: 10.1039/c9bm00695h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has been reported to be an effective alternative to combat bacterial infections even those triggered by drug-resistant strains as there is little chance to develop resistance to this therapy. Therefore, it is imperative to design and synthesize a superior photo-active bactericide for the treatment of bacterial infections. Herein, we synthesized three bactericidal activity-tunable conjugated polymers (P1-P3) with various photoactive capabilities and employed them for the treatment of wound infections with little damage to cells; by altering the construction unit of π-conjugated backbone structures with electron-rich and electron-deficient aromatic heterocycles, the optical properties and ability of reactive oxygen species (ROS) generation could be regulated; this resulted in a tunable killing ability. The cationic quaternary ammonium (QA) groups on the side chains endowed the CPs with not only good dispersibility but also a better interaction with the negatively charged membrane of bacteria. The antibacterial experiments towards ampicillin-resistant Escherichia coli TOP10 (E. coli) and the treatment of wound infections in mice indicate that the P1-P3 have varied bactericidal activities; moreover, P3 has been demonstrated to be a human-friendly bactericide with excellent antibacterial capability. It not only acts as a potential bactericide for the practical treatment of infectious wounds, but also offers guidance for the design and structure control of photo-active bactericides.
Collapse
Affiliation(s)
- Haoping Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China.
| | | | | | | |
Collapse
|
44
|
Wang J, Liu K, Jin S, Jiang L, Liang P. A Review of Chinese Raman Spectroscopy Research Over the Past Twenty Years. APPLIED SPECTROSCOPY 2020; 74:130-159. [PMID: 30646745 DOI: 10.1177/0003702819828360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper introduces the major Chinese research groups in the fields of biomedicine, food safety, environmental testing, material research, archaeological and cultural relics, gem identification, forensic science, and other research areas of Raman spectroscopy and combined methods spanning the two decades from 1997 to 2017. Briefly summarized are the research directions and contents of the major Chinese Raman spectroscopy research groups, giving researchers engaged in Raman spectroscopy research a more comprehensive understanding of the state of Chinese Raman spectroscopy research and future development trends to further develop Raman spectroscopy and its applications.
Collapse
Affiliation(s)
- Jie Wang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Kaiyuan Liu
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Shangzhong Jin
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Li Jiang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Pei Liang
- Department of Optical and Electronic Technology, China Jiliang University, China
| |
Collapse
|
45
|
Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L. Gold Nanorod Array-Bridged Internal-Standard SERS Tags: From Ultrasensitivity to Multifunctionality. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2059-2066. [PMID: 31867956 DOI: 10.1021/acsami.9b18292] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bimetallic gold core-silver shell (Au@Ag) surface-enhanced Raman scattering (SERS) tags draw broad interest in the fields of biological and environmental analysis. In reported tags, silver coating tended to smooth the surface and merge the original hotspot of Au cores, which was disadvantageous to signal enhancement from the aspect of surface topography. Herein, we developed gold nanorod (AuNR)-bridged Au@Ag SERS tags with uniform three-dimensional (3D) topography for the first time. This unique structure was achieved by selecting waxberry-like Au nanoparticles (NPs) as cores, which were capped by vertically oriented AuNR arrays. Upon selective surface blocking with thiol-ligands, Ag NPs were controlled to anisotropically grow on the tips of the AuNRs, producing high-density homo- (Ag-Ag) and hetero- (Au-Ag) hotspots in a single NP. The 3D hotspots rendered this NP extraordinary SERS enhancement ability (an analytical enhancement factor of 3.4 × 106) 30 times higher than the counterpart with a smooth surface, realizing signal detection from a single NP. More importantly, multiplexing signals ("blank" or multiplex "internal standard") can be achieved by simply changing thiol-ligands, as exemplified in the synthesis of NPs with 8 signatures. Furthermore, the multifunctionality has been demonstrated in living cell/in vivo imaging, photothermal therapy, and SERS substrates for ratiometric quantitative analysis, relying on the inherent internal standard signal. The prepared Au@Ag NPs have great potential as standard tools in many SERS-related fields.
Collapse
Affiliation(s)
- Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yingchao Yin
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai 264005 , China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
- College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| |
Collapse
|
46
|
Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging. Nat Commun 2020; 11:81. [PMID: 31900403 PMCID: PMC6941979 DOI: 10.1038/s41467-019-13784-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Live-cell Raman imaging based on bioorthogonal Raman probes with distinct signals in the cellular Raman-silent region (1800-2800 cm-1) has attracted great interest in recent years. We report here a class of water-soluble and biocompatible polydiacetylenes with intrinsic ultrastrong alkyne Raman signals that locate in this region for organelle-targeting live-cell Raman imaging. Using a host-guest topochemical polymerization strategy, we have synthesized a water-soluble and functionalizable master polydiacetylene, namely poly(deca-4,6-diynedioic acid) (PDDA), which possesses significantly enhanced (up to ~104 fold) alkyne vibration compared to conventional alkyne Raman probes. In addition, PDDA can be used as a general platform for multi-functional ultrastrong Raman probes. We achieve high quality live-cell stimulated Raman scattering imaging on the basis of modified PDDA. The polydiacetylene-based Raman probes represent ultrastrong intrinsic Raman imaging agents in the Raman-silent region (without any Raman enhancer), and the flexible functionalization of this material holds great promise for its potential diverse applications.
Collapse
Affiliation(s)
- Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haozheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhong Li
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Huajun Tang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yage Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Joseph W Lauher
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Ping Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
47
|
Zhou L, Lv F, Liu L, Wang S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc Chem Res 2019; 52:3211-3222. [PMID: 31609571 DOI: 10.1021/acs.accounts.9b00427] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apart from the wide applications in the field of electronic and optoelectronic devices, conjugated molecules have been established as useful functional materials for biological applications. By introducing hydrophilic side chains to conjugated backbones, water-soluble conjugated polymers or oligomers (CPs or COs) inherit the attractive optical and electronic properties from conjugated molecules, while their water solubility ensures interaction with biological substrates such as biomacromolecules, microorganisms, and living cells for further biological applications. Benefiting from high brightness, large extinction coefficients, excellent photostability, low cytotoxicity, stability in bodily fluids, and versatile structural modifications, water-soluble conjugated polymers and oligomers have offered powerful alternatives in a variety of biological applications including biological and chemical sensors, fluorescence imaging, disease diagnostics, and therapy. This Account will focus on our recent advances in design, synthesis, and interdisciplinary biological applications of a series of new water-soluble CP and CO materials, starting with a brief introduction to water-soluble CPs and COs and various methods and strategies developed for the preparation of advanced water-soluble CPs and COs. Since their properties can be tuned by rational design and synthesis at the level of the conjugated repeat unit and versatile pendant groups, CPs and COs provide a diverse toolbox for satisfying interdisciplinary biological applications. The application of water-soluble CPs and COs in the past five years can be broadly categorized into four areas. Specifically, integrating the unique optoelectronic properties of water-soluble CPs and COs with self-assembly and supramolecular strategies, efficacy regulation of antibiotic and anticancer drugs has been achieved, meanwhile drug resistance could be overcome and drug resistant "superbacteria" can be inhibited. For applications regulating cellular functions and biological processes, we introduce CPs and COs with the ability to regulate intracellular oxidative stress, cell-cell communication, cellular proliferation, cell membrane permeability, and quorum sensing of bacteria cells. By covalent linkage of reactive groups upon CPs and COs, these molecules are endowed with abilities like disassembly of amyloid polypeptides, biased distribution in cells, selective imaging of organelles, and distinguished interactions with biomolecules. For photothermal therapy (PTT) applications, photothermal-responsive conjugated polymer materials have been utilized for remote control of gene expression in living cells and in vivo photothermal therapy of cancer. Beyond these applications, we have achieved new interdisciplinary applications of water-soluble CP and CO materials for biological optoelectronic devices including photosynthesis, photocatalysis, and bioenergy. Specific features or properties of water-soluble CPs and COs are leveraged to bring opportunities for each of these applications. These studies open a new frontier for development of new functional conjugated molecule materials and provide better understanding of their interactions with biological systems as well as structure/property relationships. Current limitations confronted by CPs and COs are raised, and developmental direction for the future is proposed.
Collapse
Affiliation(s)
- Lingyun Zhou
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | - Shu Wang
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
48
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
49
|
|
50
|
Vanden-Hehir S, Cairns SA, Lee M, Zoupi L, Shaver MP, Brunton VG, Williams A, Hulme AN. Alkyne-Tagged PLGA Allows Direct Visualization of Nanoparticles In Vitro and Ex Vivo by Stimulated Raman Scattering Microscopy. Biomacromolecules 2019; 20:4008-4014. [PMID: 31408325 PMCID: PMC6794644 DOI: 10.1021/acs.biomac.9b01092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Polymeric nanoparticles (NPs) are attractive candidates for the controlled and targeted delivery of therapeutics in vitro and in vivo. However, detailed understanding of the uptake, location, and ultimate cellular fate of the NPs is necessary to satisfy safety concerns, which is difficult because of the nanoscale size of these carriers. In this work, we show how small chemical labels can be appended to poly(lactic acid-co-glycolic acid) (PLGA) to synthesize NPs that can then be imaged by stimulated Raman scattering microscopy, a vibrational imaging technique that can elucidate bond-specific information in biological environments, such as the identification of alkyne signatures in modified PLGA terpolymers. We show that both deuterium and alkyne labeled NPs can be imaged within primary rat microglia, and the alkyne NPs can also be imaged in ex vivo cortical mouse brain tissue. Immunohistochemical analysis confirms that the NPs localize in microglia in the mouse brain tissue, demonstrating that these NPs have the potential to deliver therapeutics selectively to microglia.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Stefan A. Cairns
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Martin Lee
- Edinburgh
Cancer Research UK Centre, University of
Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Lida Zoupi
- MRC
Centre for Regenerative Medicine, The University
of Edinburgh, Edinburgh
BioQuarter, 5, Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Michael P. Shaver
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Valerie G. Brunton
- Edinburgh
Cancer Research UK Centre, University of
Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, United Kingdom
| | - Anna Williams
- MRC
Centre for Regenerative Medicine, The University
of Edinburgh, Edinburgh
BioQuarter, 5, Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Alison N. Hulme
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|