1
|
Palande S, Arsenault J, Basurto‐Lozada P, Bleich A, Brown BNI, Buysse SF, Connors NA, Das Adhikari S, Dobson KC, Guerra‐Castillo FX, Guerrero‐Carrillo MF, Harlow S, Herrera‐Orozco H, Hightower AT, Izquierdo P, Jacobs M, Johnson NA, Leuenberger W, Lopez‐Hernandez A, Luckie‐Duque A, Martínez‐Avila C, Mendoza‐Galindo EJ, Plancarte DC, Schuster JM, Shomer H, Sitar SC, Steensma AK, Thomson JE, Villaseñor‐Amador D, Waterman R, Webster BM, Whyte M, Zorilla‐Azcué S, Montgomery BL, Husbands AY, Krishnan A, Percival S, Munch E, VanBuren R, Chitwood DH, Rougon‐Cardoso A. Expression-based machine learning models for predicting plant tissue identity. APPLICATIONS IN PLANT SCIENCES 2025; 13:e11621. [PMID: 39906497 PMCID: PMC11788907 DOI: 10.1002/aps3.11621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 02/06/2025]
Abstract
Premise The selection of Arabidopsis as a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural- or ecological-based model species were rejected, in favor of building knowledge in a species that would facilitate genome-enabled research. Methods Here, we examine the ability of models based on Arabidopsis gene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested on Arabidopsis data achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained on Arabidopsis data, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64. Results The identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance from Arabidopsis. k-nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants. Discussion Our data-driven results highlight that the assertion that knowledge from Arabidopsis is translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis on Arabidopsis and prioritize plant diversity.
Collapse
Affiliation(s)
- Sourabh Palande
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Jeremy Arsenault
- Department of Computer Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Patricia Basurto‐Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoJuriquillaQuerétaroMexico
| | - Andrew Bleich
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - Sophia F. Buysse
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
| | - Noelle A. Connors
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Sikta Das Adhikari
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichiganUSA
| | - Kara C. Dobson
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Francisco Xavier Guerra‐Castillo
- Unidad de Investigación Médica en Inmunología e InfectologíaInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
- Programa de Posgrado en Ciencias Biológicas, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Maria F. Guerrero‐Carrillo
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - Sophia Harlow
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Héctor Herrera‐Orozco
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Asia T. Hightower
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Paulo Izquierdo
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - MacKenzie Jacobs
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Nicholas A. Johnson
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Genetics and Genome SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Wendy Leuenberger
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Alessandro Lopez‐Hernandez
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH)Universidad Nacional Autónoma de MéxicoJuriquillaQuerétaroMexico
- Computational Population Genetics GroupUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Alicia Luckie‐Duque
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - Camila Martínez‐Avila
- Colección Nacional de Aves, Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Eddy J. Mendoza‐Galindo
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
| | - David Cruz Plancarte
- Departamento de Botánica, Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jenny M. Schuster
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- Cell and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Harry Shomer
- Department of Computer Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Sidney C. Sitar
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Plant Breeding, Genetics, and BiotechnologyMichigan State UniversityEast LansingMichiganUSA
- Crop and Soil Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
| | - Anne K. Steensma
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- MSU‐DOE Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Joanne Elise Thomson
- Molecular Plant Sciences ProgramMichigan State UniversityEast LansingMichiganUSA
- Cell and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Damián Villaseñor‐Amador
- Programa de Posgrado en Ciencias Biológicas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Robin Waterman
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
| | - Brandon M. Webster
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Madison Whyte
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Sofía Zorilla‐Azcué
- Programa de Posgrado en Ciencias Biológicas, Escuela Nacional de Estudios Superiores (ENES)Unidad Morelia, Universidad Nacional Autónoma de MéxicoMoreliaMichoacánMexico
| | | | - Aman Y. Husbands
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Krishnan
- Department of Biomedical Informatics, Center for Health AIUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sarah Percival
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Elizabeth Munch
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of MathematicsMichigan State UniversityEast LansingMichiganUSA
| | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| | - Daniel H. Chitwood
- Department of Computational Mathematics, Science and EngineeringMichigan State UniversityEast LansingMichiganUSA
- Department of HorticultureMichigan State UniversityEast LansingMichiganUSA
| | - Alejandra Rougon‐Cardoso
- Laboratory of Agrigenomic Sciences, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de MéxicoLeónGuanajuatoMexico
- Plantecc National LaboratoryENES‐LeónLeónGuanajuatoMexico
| |
Collapse
|
2
|
Janda M. Methods in plant science. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5163-5168. [PMID: 39259818 DOI: 10.1093/jxb/erae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Martin Janda
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, České Budějovice 37005, Czech Republic
| |
Collapse
|
3
|
Furuta T, Saw OM, Moe S, Win KT, Hlaing MM, Hlaing ALL, Thein MS, Yasui H, Ashikari M, Yoshimura A, Yamagata Y. Development of genomic and genetic resources facilitating molecular genetic studies on untapped Myanmar rice germplasms. BREEDING SCIENCE 2024; 74:124-137. [PMID: 39355624 PMCID: PMC11442107 DOI: 10.1270/jsbbs.23077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 10/03/2024]
Abstract
To counteract the growing population and climate changes, resilient varieties adapted to regional environmental changes are required. Landraces are valuable genetic resources for achieving this goal. Recent advances in sequencing technology have enabled national seed/gene banks to share genomic and genetic information from their collections including landraces, promoting the more efficient utilization of germplasms. In this study, we developed genomic and genetic resources for Myanmar rice germplasms. First, we assembled a diversity panel consisting of 250 accessions representing the genetic diversity of Myanmar indica varieties, including an elite lowland variety, Inn Ma Yebaw (IMY). Our population genetic analyses illustrated that the diversity panel represented Myanmar indica varieties well without any apparent population structure. Second, de novo genome assembly of IMY was conducted. The IMY assembly was constructed by anchoring 2888 contigs, which were assembled from 30× coverage of long reads, into 12 chromosomes. Although many gaps existed in the IMY genome assembly, our quality assessments indicated high completeness in the gene-coding regions, identical to other near-gap-free assemblies. Together with dense variant information, the diversity panel and IMY genome assembly will facilitate deeper genetic research and breeding projects that utilize the untapped Myanmar rice germplasms.
Collapse
Affiliation(s)
- Tomoyuki Furuta
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Ohm Mar Saw
- Department of Agricultural Research, Ministry of Agriculture Livestock and Irrigation, Yezin, Myanmar
| | - Sandar Moe
- Department of Agricultural Research, Ministry of Agriculture Livestock and Irrigation, Yezin, Myanmar
| | - Khin Thanda Win
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Moe Moe Hlaing
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Aye Lae Lae Hlaing
- Department of Agricultural Research, Ministry of Agriculture Livestock and Irrigation, Yezin, Myanmar
| | - Min San Thein
- Department of Agricultural Research, Ministry of Agriculture Livestock and Irrigation, Yezin, Myanmar
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Atsushi Yoshimura
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Littleford-Colquhoun B, Kartzinel TR. A CRISPR-based strategy for targeted sequencing in biodiversity science. Mol Ecol Resour 2024; 24:e13920. [PMID: 38153158 DOI: 10.1111/1755-0998.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Many applications in molecular ecology require the ability to match specific DNA sequences from single- or mixed-species samples with a diagnostic reference library. Widely used methods for DNA barcoding and metabarcoding employ PCR and amplicon sequencing to identify taxa based on target sequences, but the target-specific enrichment capabilities of CRISPR-Cas systems may offer advantages in some applications. We identified 54,837 CRISPR-Cas guide RNAs that may be useful for enriching chloroplast DNA across phylogenetically diverse plant species. We tested a subset of 17 guide RNAs in vitro to enrich plant DNA strands ranging in size from diagnostic DNA barcodes of 1,428 bp to entire chloroplast genomes of 121,284 bp. We used an Oxford Nanopore sequencer to evaluate sequencing success based on both single- and mixed-species samples, which yielded mean chloroplast sequence lengths of 2,530-11,367 bp, depending on the experiment. In comparison to mixed-species experiments, single-species experiments yielded more on-target sequence reads and greater mean pairwise identity between contigs and the plant species' reference genomes. But nevertheless, these mixed-species experiments yielded sufficient data to provide ≥48-fold increase in sequence length and better estimates of relative abundance for a commercially prepared mixture of plant species compared to DNA metabarcoding based on the chloroplast trnL-P6 marker. Prior work developed CRISPR-based enrichment protocols for long-read sequencing and our experiments pioneered its use for plant DNA barcoding and chloroplast assemblies that may have advantages over workflows that require PCR and short-read sequencing. Future work would benefit from continuing to develop in vitro and in silico methods for CRISPR-based analyses of mixed-species samples, especially when the appropriate reference genomes for contig assembly cannot be known a priori.
Collapse
Affiliation(s)
- Bethan Littleford-Colquhoun
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Tyler R Kartzinel
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Guenzi-Tiberi P, Istace B, Alsos IG, Coissac E, Lavergne S, Aury JM, Denoeud F. LocoGSE, a sequence-based genome size estimator for plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1328966. [PMID: 38550287 PMCID: PMC10972871 DOI: 10.3389/fpls.2024.1328966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/22/2024] [Indexed: 06/21/2024]
Abstract
Extensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches. LocoGSE relies on mapping the reads on single copy consensus proteins without the need for a reference genome assembly. We calibrated LocoGSE using 430 low-coverage Angiosperm genome skimming datasets and compared its performance against other estimators. Our results demonstrate that LocoGSE accurately predicts monoploid genome size even at very low depth of coverage (<1X) and on highly heterozygous samples. Additionally, LocoGSE provides stable estimates across individuals with varying ploidy levels. LocoGSE fills a gap in sequence-based plant genome size estimation by offering a user-friendly and reliable tool that does not rely on high coverage or reference assemblies. We anticipate that LocoGSE will facilitate plant genome size analysis and contribute to evolutionary and ecological studies in the field. Furthermore, at the cost of an initial calibration, LocoGSE can be used in other lineages.
Collapse
Affiliation(s)
- Pierre Guenzi-Tiberi
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eric Coissac
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), Grenoble, France
| | - Sébastien Lavergne
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), Grenoble, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
6
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
7
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
8
|
De La Cerda GY, Landis JB, Eifler E, Hernandez AI, Li F, Zhang J, Tribble CM, Karimi N, Chan P, Givnish T, Strickler SR, Specht CD. Balancing read length and sequencing depth: Optimizing Nanopore long-read sequencing for monocots with an emphasis on the Liliales. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11524. [PMID: 37342170 PMCID: PMC10278932 DOI: 10.1002/aps3.11524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/22/2023]
Abstract
Premise We present approaches used to generate long-read Nanopore sequencing reads for the Liliales and demonstrate how modifications to standard protocols directly impact read length and total output. The goal is to help those interested in generating long-read sequencing data determine which steps may be necessary for optimizing output and results. Methods Four species of Calochortus (Liliaceae) were sequenced. Modifications made to sodium dodecyl sulfate (SDS) extractions and cleanup protocols included grinding with a mortar and pestle, using cut or wide-bore tips, chloroform cleaning, bead cleaning, eliminating short fragments, and using highly purified DNA. Results Steps taken to maximize read length can decrease overall output. Notably, the number of pores in a flow cell is correlated with the overall output, yet we did not see an association between the pore number and the read length or the number of reads produced. Discussion Many factors contribute to the overall success of a Nanopore sequencing run. We showed the direct impact that several modifications to the DNA extraction and cleaning steps have on the total sequencing output, read size, and number of reads generated. We show a tradeoff between read length and the number of reads and, to a lesser extent, the total sequencing output, all of which are important factors for successful de novo genome assembly.
Collapse
Affiliation(s)
- Gisel Y. De La Cerda
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Evan Eifler
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Adriana I. Hernandez
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| | - Fay‐Wei Li
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Jing Zhang
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
| | - Carrie M. Tribble
- School of Life SciencesUniversity of Hawaiʻi, MānoaHonoluluHawaiʻi96822USA
| | - Nisa Karimi
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Patricia Chan
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Thomas Givnish
- Department of BotanyUniversity of Wisconsin–MadisonMadisonWisconsin53706USA
| | - Susan R. Strickler
- BTI Computational Biology CenterBoyce Thompson InstituteIthacaNew York14853USA
- Present address:
Plant Science and ConservationChicago Botanic GardenGlencoeIllinois60022USA
- Present address:
Plant Biology and Conservation ProgramNorthwestern UniversityEvanstonIllinois60208USA
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey HortoriumCornell UniversityIthacaNew York14853USA
| |
Collapse
|
9
|
Xie P, Ke Y, Kuo L. Modified CTAB protocols for high-molecular-weight DNA extractions from ferns. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11526. [PMID: 37342164 PMCID: PMC10278929 DOI: 10.1002/aps3.11526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Premise Efficient protocols for extracting high-molecular-weight (HMW) DNA from ferns facilitate the long-read sequencing of their large and complex genomes. Here, we perform two cetyltrimethylammonium bromide (CTAB)-based protocols to extract HMW DNA and evaluate their applicability in diverse fern taxa for the first time. Methods and Results We describe two modified CTAB protocols, with key adjustments to minimize mechanical disruption during lysis to prevent DNA shearing. One of these protocols uses a small amount of fresh tissue but yields a considerable quantity of HMW DNA with high efficiency. The other accommodates a large amount of input tissue, adopts an initial step of nuclei isolation, and thus ensures a high yield in a short period of time. Both methods were proven to be robust and effective in obtaining HMW DNA from diverse fern lineages, including 33 species in 19 families. The DNA extractions mostly had high DNA integrity, with mean sizes larger than 50 kbp, as well as high purity (A260/A230 and A260/A280 > 1.8). Conclusions This study provides HMW DNA extraction protocols for ferns in the hope of facilitating further attempts to sequence their genomes, which will bridge our genomic understanding of land plant diversity.
Collapse
Affiliation(s)
- Pei‐Jun Xie
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Ya‐Ting Ke
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| | - Li‐Yaung Kuo
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchu CityTaiwan
| |
Collapse
|
10
|
Gladman N, Goodwin S, Chougule K, Richard McCombie W, Ware D. Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding. Curr Opin Biotechnol 2023; 79:102886. [PMID: 36640454 PMCID: PMC9899316 DOI: 10.1016/j.copbio.2022.102886] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Whole-genome sequencing and assembly have revolutionized plant genetics and molecular biology over the last two decades. However, significant shortcomings in first- and second-generation technology resulted in imperfect reference genomes: numerous and large gaps of low quality or undeterminable sequence in areas of highly repetitive DNA along with limited chromosomal phasing restricted the ability of researchers to characterize regulatory noncoding elements and genic regions that underwent recent duplication events. Recently, advances in long-read sequencing have resulted in the first gapless, telomere-to-telomere (T2T) assemblies of plant genomes. This leap forward has the potential to increase the speed and confidence of genomics and molecular experimentation while reducing costs for the research community.
Collapse
Affiliation(s)
- Nicholas Gladman
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | | | - Doreen Ware
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA.
| |
Collapse
|
11
|
Molecular mapping of drought-responsive QTLs during the reproductive stage of rice using a GBS (genotyping-by-sequencing) based SNP linkage map. Mol Biol Rep 2023; 50:65-76. [PMID: 36306008 DOI: 10.1007/s11033-022-08002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance. METHODS AND RESULTS A high-density SNP-based genetic map was constructed using a Genotyping-by-sequencing (GBS) approach. The recombinant inbred lines (RILs) derived from crossing 'Banglami × Ranjit' were used for QTL analysis. A total map length of 1306.424 cM was constructed, which had an average inter-marker distance of 0.281 cM. The phenotypic evaluation of F6 and F7 RILs were performed under drought stress and control conditions. A total of 42 QTLs were identified under drought stress and control conditions for yield component traits explaining 1.95-13.36% of the total phenotypic variance (PVE). Among these, 19 QTLs were identified under drought stress conditions, whereas 23 QTLs were located under control conditions. A total of 4 QTLs explained a PVE ≥ 10% which are considered as the major QTLs. Moreover, bioinformatics analysis revealed the presence of 6 candidate genes, which showed differential expression under drought and control conditions. CONCLUSION These QTLs/genes may be deployed for marker-assisted pyramiding to improve drought tolerance in the existing rice varieties.
Collapse
|
12
|
Henniges MC, Johnston E, Pellicer J, Hidalgo O, Bennett MD, Leitch IJ. The Plant DNA C-Values Database: A One-Stop Shop for Plant Genome Size Data. Methods Mol Biol 2023; 2703:111-122. [PMID: 37646941 DOI: 10.1007/978-1-0716-3389-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Genome size is a plant character with far-reaching implications, ranging from impacts on the financial and computing feasibility of sequencing and assembling genomes all the way to influencing the very ecology and evolution of species. The increasing recognition of the role of genome size in plant science has led to a rising demand for comprehensive and easily accessible sources of genome size data. The Plant DNA C-values database has established itself as a trusted and widely used central hub for users needing to access available plant genome size data, complemented with related cytogenetic (ploidy level) and karyological (chromosome number) information where available. Since its inception in 2001, the database has undergone six major updates to incorporate newly available genome size information, leading to the most recent release (Release 7.1), which comprises data for 12,273 species across all the major land plant and some algal lineages. Here we describe how to use the database efficiently, making use of its different query and filtering settings.
Collapse
Affiliation(s)
- Marie C Henniges
- Royal Botanic Gardens, Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, UK
- Institut Botànic de Barcelona, IBB (CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, UK
- Institut Botànic de Barcelona, IBB (CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | | | | |
Collapse
|
13
|
Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, Yang B, Pires JC. Prospects of Feral Crop De Novo Redomestication. PLANT & CELL PHYSIOLOGY 2022; 63:1641-1653. [PMID: 35639623 DOI: 10.1093/pcp/pcac072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.
Collapse
Affiliation(s)
- Michael T Pisias
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Harmeet Singh Bakala
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO 63132, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Melton AE, Galla SJ, Dumaguit CDC, Wojahn JMA, Novak S, Serpe M, Martinez P, Buerki S. Meta-Analysis Reveals Challenges and Gaps for Genome-to-Phenome Research Underpinning Plant Drought Response. Int J Mol Sci 2022; 23:12297. [PMID: 36293161 PMCID: PMC9602940 DOI: 10.3390/ijms232012297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
15
|
Sheikh-Assadi M, Naderi R, Salami SA, Kafi M, Fatahi R, Shariati V, Martinelli F, Cicatelli A, Triassi M, Guarino F, Improta G, Claros MG. Normalized Workflow to Optimize Hybrid De Novo Transcriptome Assembly for Non-Model Species: A Case Study in Lilium ledebourii (Baker) Boiss. PLANTS 2022; 11:plants11182365. [PMID: 36145766 PMCID: PMC9503428 DOI: 10.3390/plants11182365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
A high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet–Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet–Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Manuel Gonzalo Claros
- Molecular Biology and Biochemistry Department, University of Málaga, 29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), 29010 Málaga, Spain
| |
Collapse
|
16
|
Dmitriev AA, Pushkova EN, Melnikova NV. Plant Genome Sequencing: Modern Technologies and Novel Opportunities for Breeding. Mol Biol 2022. [DOI: 10.1134/s0026893322040045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Nishii K, Hart M, Kelso N, Barber S, Chen Y, Thomson M, Trivedi U, Twyford AD, Möller M. The first genome for the Cape Primrose Streptocarpus rexii (Gesneriaceae), a model plant for studying meristem-driven shoot diversity. PLANT DIRECT 2022; 6:e388. [PMID: 35388373 PMCID: PMC8977575 DOI: 10.1002/pld3.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 05/16/2023]
Abstract
Cape Primroses (Streptocarpus, Gesneriaceae) are an ideal study system for investigating the genetics underlying species diversity in angiosperms. Streptocarpus rexii has served as a model species for plant developmental research for over five decades due to its unusual extended meristem activity present in the leaves. In this study, we sequenced and assembled the complete nuclear, chloroplast, and mitochondrial genomes of S. rexii using Oxford Nanopore Technologies long read sequencing. Two flow cells of PromethION sequencing resulted in 32 billion reads and were sufficient to generate a draft assembly including the chloroplast, mitochondrial and nuclear genomes, spanning 776 Mbp. The final nuclear genome assembly contained 5,855 contigs, spanning 766 Mbp of the 929-Mbp haploid genome with an N50 of 3.7 Mbp and an L50 of 57 contigs. Over 70% of the draft genome was identified as repeats. A genome repeat library of Gesneriaceae was generated and used for genome annotation, with a total of 45,045 genes annotated in the S. rexii genome. Ks plots of the paranomes suggested a recent whole genome duplication event, shared between S. rexii and Primulina huaijiensis. A new chloroplast and mitochondrial genome assembly method, based on contig coverage and identification, was developed, and successfully used to assemble both organellar genomes of S. rexii. This method was developed into a pipeline and proved widely applicable. The nuclear genome of S. rexii and other datasets generated and reported here will be invaluable resources for further research to aid in the identification of genes involved in morphological variation underpinning plant diversification.
Collapse
Affiliation(s)
- Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUK
- Kanagawa UniversityHiratsukaJapan
| | | | | | | | - Yun‐Yu Chen
- Royal Botanic Garden EdinburghEdinburghUK
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghUK
| | - Marian Thomson
- Edinburgh Genomics, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | - Urmi Trivedi
- Edinburgh Genomics, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | - Alex D. Twyford
- Royal Botanic Garden EdinburghEdinburghUK
- Institute of Evolutionary Biology, Ashworth LaboratoriesThe University of EdinburghEdinburghUK
| | | |
Collapse
|
18
|
Nitta JH, Chambers SM. Identifying cryptic fern gametophytes using DNA barcoding: A review. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11465. [PMID: 35495195 PMCID: PMC9039790 DOI: 10.1002/aps3.11465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/14/2023]
Abstract
Ferns and lycophytes are unique among land plants in having sporophyte (diploid) and gametophyte (haploid) generations that can grow independently of each other. While most studies of fern ecology focus on the more visible sporophytic stage, the gametophyte is critically important, as it is the sexual phase of the life cycle. Yet, fern gametophytes have long been neglected in field studies due to their small size and cryptic morphology. DNA barcoding is a powerful method that can be used to identify field-collected gametophytes to species and allow for detailed study of their ecology. Here, we review the state of DNA barcoding as applied to fern gametophytes. First, we trace the history of DNA barcoding and how it has come to be applied to fern gametophytes. Next, we summarize case studies that show how DNA barcoding has been used to better understand fern species distributions, gametophyte ecology, and community ecology. Finally, we propose avenues for future research using this powerful tool, including next-generation DNA sequencing for in-field identification of cryptic gametophytes.
Collapse
Affiliation(s)
- Joel H. Nitta
- Department of Biological Sciences, Graduate School of ScienceThe University of Tokyo2‐11‐16 Yayoi, Bunkyo‐kuTokyo113‐0032Japan
| | - Sally M. Chambers
- Marie Selby Botanical GardensBotany DepartmentSarasotaFlorida34236USA
| |
Collapse
|
19
|
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A 2022; 119:e2115640118. [PMID: 35042803 PMCID: PMC8795535 DOI: 10.1073/pnas.2115640118] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.
Collapse
Affiliation(s)
- W John Kress
- National Museum of Natural History, Smithsonian Institution, Department of Botany, Washington, DC 20013-7012;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Arnold Arboretum, Harvard University, Boston, MA 02130
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269-3214
| | - James H Leebens-Mack
- Department of Plant Biology, 2101 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX 76107-3400
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
20
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
21
|
Gross BL. The future of plant science: Applications at the intersection. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11459. [PMID: 35228915 PMCID: PMC8861586 DOI: 10.1002/aps3.11459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Briana L. Gross
- Department of BiologyUniversity of Minnesota Duluth207 Swenson Science Building, 1035 Kirby DriveDuluthMinnesota55812USA
| |
Collapse
|
22
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
23
|
Johnson LK, Sahasrabudhe R, Gill JA, Roach JL, Froenicke L, Brown CT, Whitehead A. Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish. Gigascience 2021; 9:5859380. [PMID: 32556169 PMCID: PMC7301629 DOI: 10.1093/gigascience/giaa067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Whole-genome sequencing data from wild-caught individuals of closely related North American killifish species (Fundulus xenicus, Fundulus catenatus, Fundulus nottii, and Fundulus olivaceus) were obtained using long-read Oxford Nanopore Technology (ONT) PromethION and short-read Illumina platforms. FINDINGS Draft de novo reference genome assemblies were generated using a combination of long and short sequencing reads. For each species, the PromethION platform was used to generate 30-45× sequence coverage, and the Illumina platform was used to generate 50-160× sequence coverage. Illumina-only assemblies were fragmented with high numbers of contigs, while ONT-only assemblies were error prone with low BUSCO scores. The highest N50 values, ranging from 0.4 to 2.7 Mb, were from assemblies generated using a combination of short- and long-read data. BUSCO scores were consistently >90% complete using the Eukaryota database. CONCLUSIONS High-quality genomes can be obtained from a combination of using short-read Illumina data to polish assemblies generated with long-read ONT data. Draft assemblies and raw sequencing data are available for public use. We encourage use and reuse of these data for assembly benchmarking and other analyses.
Collapse
Affiliation(s)
- Lisa K Johnson
- Department of Environmental Toxicology, University of California. 1 Shields Avenue, Davis, CA 95616, Davis, CA, USA
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California. 1 Shields Avenue, Davis, CA 95616, Davis, CA, USA
| | - Ruta Sahasrabudhe
- DNA Technologies Core, Genome Center, University of California, 1 Shields Avenue, Davis, CA 95616
| | - James Anthony Gill
- Department of Environmental Toxicology, University of California. 1 Shields Avenue, Davis, CA 95616, Davis, CA, USA
| | - Jennifer L Roach
- Department of Environmental Toxicology, University of California. 1 Shields Avenue, Davis, CA 95616, Davis, CA, USA
| | - Lutz Froenicke
- DNA Technologies Core, Genome Center, University of California, 1 Shields Avenue, Davis, CA 95616
| | - C Titus Brown
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California. 1 Shields Avenue, Davis, CA 95616, Davis, CA, USA
| | - Andrew Whitehead
- Correspondence address. Andrew Whitehead, Department of Environmental Toxicology, University of California. 1 Shields Avenue, Davis, CA 95616, USA, Davis, CA, USA. E-mail:
| |
Collapse
|
24
|
Melnikova NV, Pushkova EN, Dvorianinova EM, Beniaminov AD, Novakovskiy RO, Povkhova LV, Bolsheva NL, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Dmitriev AA. Genome Assembly and Sex-Determining Region of Male and Female Populus × sibirica. FRONTIERS IN PLANT SCIENCE 2021; 12:625416. [PMID: 34567016 PMCID: PMC8455832 DOI: 10.3389/fpls.2021.625416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The genus Populus is presented by dioecious species, and it became a promising object to study the genetics of sex in plants. In this work, genomes of male and female Populus × sibirica individuals were sequenced for the first time. To achieve high-quality genome assemblies, we used Oxford Nanopore Technologies and Illumina platforms. A protocol for the isolation of long and pure DNA from young poplar leaves was developed, which enabled us to obtain 31 Gb (N50 = 21 kb) for the male poplar and 23 Gb (N50 = 24 kb) for the female one using the MinION sequencer. Genome assembly was performed with different tools, and Canu provided the most complete and accurate assemblies with a length of 818 Mb (N50 = 1.5 Mb) for the male poplar and 816 Mb (N50 = 0.5 Mb) for the female one. After polishing with Racon and Medaka (Nanopore reads) and then with POLCA (Illumina reads), assembly completeness was 98.45% (87.48% duplicated) for the male and 98.20% (76.77% duplicated) for the female according to BUSCO (benchmarking universal single-copy orthologs). A high proportion of duplicated BUSCO and the increased genome size (about 300 Mb above the expected) pointed at the separation of haplotypes in a large part of male and female genomes of P. × sibirica. Due to this, we were able to identify two haplotypes of the sex-determining region (SDR) in both assemblies; and one of these four SDR haplotypes, in the male genome, contained partial repeats of the ARR17 gene (Y haplotype), while the rest three did not (X haplotypes). The analysis of the male P. × sibirica SDR suggested that the Y haplotype originated from P. nigra, while the X haplotype is close to P. trichocarpa and P. balsamifera species. Moreover, we revealed a Populus-specific repeat that could be involved in translocation of the ARR17 gene or its part to the SDR of P. × sibirica and other Populus species. The obtained results expand our knowledge on SDR features in the genus Populus and poplar phylogeny.
Collapse
Affiliation(s)
- Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Artemy D. Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Ulaszewski B, Meger J, Mishra B, Thines M, Burczyk J. Complete Chloroplast Genomes of Fagus sylvatica L. Reveal Sequence Conservation in the Inverted Repeat and the Presence of Allelic Variation in NUPTs. Genes (Basel) 2021; 12:1357. [PMID: 34573338 PMCID: PMC8468245 DOI: 10.3390/genes12091357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Growing amounts of genomic data and more efficient assembly tools advance organelle genomics at an unprecedented scale. Genomic resources are increasingly used for phylogenetic analyses of many plant species, but are less frequently used to investigate within-species variability and phylogeography. In this study, we investigated genetic diversity of Fagus sylvatica, an important broadleaved tree species of European forests, based on complete chloroplast genomes of 18 individuals sampled widely across the species distribution. Our results confirm the hypothesis of a low cpDNA diversity in European beech. The chloroplast genome size was remarkably stable (158,428 ± 37 bp). The polymorphic markers, 12 microsatellites (SSR), four SNPs and one indel, were found only in the single copy regions, while inverted repeat regions were monomorphic both in terms of length and sequence, suggesting highly efficient suppression of mutation. The within-individual analysis of polymorphisms showed >9k of markers which were proportionally present in gene and non-gene areas. However, an investigation of the frequency of alternate alleles revealed that the source of this diversity originated likely from nuclear-encoded plastome remnants (NUPTs). Phylogeographic and Mantel correlation analysis based on the complete chloroplast genomes exhibited clustering of individuals according to geographic distance in the first distance class, suggesting that the novel markers and in particular the cpSSRs could provide a more detailed picture of beech population structure in Central Europe.
Collapse
Affiliation(s)
- Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| | - Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (B.M.); (M.T.)
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60483 Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (B.M.); (M.T.)
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60483 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (J.M.); (J.B.)
| |
Collapse
|
26
|
Paule J, von Döhren J, Sagorny C, Nilsson MA. Genome Size Dynamics in Marine Ribbon Worms (Nemertea, Spiralia). Genes (Basel) 2021; 12:1347. [PMID: 34573329 PMCID: PMC8468679 DOI: 10.3390/genes12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Nemertea is a phylum consisting of 1300 mostly marine species. Nemertea is distinguished by an eversible muscular proboscis, and most of the species are venomous. Genomic resources for this phylum are scarce despite their value in understanding biodiversity. Here, we present genome size estimates of Nemertea based on flow cytometry and their relationship to different morphological and developmental traits. Ancestral genome size estimations were done across the nemertean phylogeny. The results increase the available genome size estimates for Nemertea three-fold. Our analyses show that Nemertea has a narrow genome size range (0.43-3.89 pg) compared to other phyla in Lophotrochozoa. A relationship between genome size and evolutionary rate, developmental modes, and habitat was found. Trait analyses show that the highest evolutionary rate of genome size is found in upper intertidal, viviparous species with direct development. Despite previous findings, body size in nemerteans was not correlated with genome size. A relatively small genome (1.18 pg) is assumed for the most recent common ancestor of all extant nemerteans. The results provide an important basis for future studies in nemertean genomics, which will be instrumental to understanding the evolution of this enigmatic and often neglected phylum.
Collapse
Affiliation(s)
- Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany;
| | - Jörn von Döhren
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany; (J.v.D.); (C.S.)
| | - Christina Sagorny
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany; (J.v.D.); (C.S.)
| | - Maria A. Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Amaral DT, Bombonato JR, da Silva Andrade SC, Moraes EM, Franco FF. The genome of a thorny species: comparative genomic analysis among South and North American Cactaceae. PLANTA 2021; 254:44. [PMID: 34357508 DOI: 10.1007/s00425-021-03690-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The first South American cactus nuclear genome assembly associated with comparative genomic analyses provides insights into nuclear and plastid genomic features, such as size, transposable elements, and metabolic processes related to cactus development. Here, we assembled the partial genome, plastome, and transcriptome of Cereus fernambucensis (Cereeae, Cactaceae), a representative species of the South American core Cactoideae. We accessed other genomes and transcriptomes available for cactus species to compare the heterozygosity level, genome size, transposable elements, orthologous genes, and plastome structure. These estimates were obtained from the literature or using the same pipeline adopted for C. fermabucensis. In addition to the C. fernambucensis plastome, we also performed de novo plastome assembly of Pachycereus pringlei, Stenocereus thurberi, and Pereskia humboldtii based on the sequences available in public databases. We estimated a genome size of ~ 1.58 Gb for C. fernambucensis, the largest genome among the compared species. The genome heterozygosity was 0.88% in C. fernambucensis but ranged from 0.36 (Carnegiea gigantea) to 17.4% (Lophocereus schottii) in the other taxa. The genome lengths of the studied cacti are constituted by a high amount of transposable elements, ranging from ~ 57 to ~ 67%. Putative satellite DNAs are present in all species, excepting C. gigantea. The plastome of C. fernambucensis was ~ 104 kb, showing events of translocation, inversion, and gene loss. We observed a low number of shared unique orthologs, which may suggest gene duplication events and the simultaneous expression of paralogous genes. We recovered 37 genes that have undergone positive selection along the Cereus branch that are associated with different metabolic processes, such as improving photosynthesis during drought stress and nutrient absorption, which may be related to the adaptation to xeric areas of the Neotropics.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
- Graduate Program in Comparative Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Juliana Rodrigues Bombonato
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
- Graduate Program in Comparative Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Sónia Cristina da Silva Andrade
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Evandro Marsola Moraes
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
| | - Fernando Faria Franco
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil.
| |
Collapse
|
28
|
Sharma P, Al-Dossary O, Alsubaie B, Al-Mssallem I, Nath O, Mitter N, Rodrigues Alves Margarido G, Topp B, Murigneux V, Kharabian Masouleh A, Furtado A, Henry RJ. Improvements in the sequencing and assembly of plant genomes. GIGABYTE 2021; 2021:gigabyte24. [PMID: 36824328 PMCID: PMC9631998 DOI: 10.46471/gigabyte.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, Al Hofuf, Saudi Arabia
| | - Onkar Nath
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo 13418-900, Brazil
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | | | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
29
|
|
30
|
Anjanappa RB, Gruissem W. Current progress and challenges in crop genetic transformation. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153411. [PMID: 33872932 DOI: 10.1016/j.jplph.2021.153411] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Plant transformation remains the most sought-after technology for functional genomics and crop genetic improvement, especially for introducing specific new traits and to modify or recombine already existing traits. Along with many other agricultural technologies, the global production of genetically engineered crops has steadily grown since they were first introduced 25 years ago. Since the first transfer of DNA into plant cells using Agrobacterium tumefaciens, different transformation methods have enabled rapid advances in molecular breeding approaches to bring crop varieties with novel traits to the market that would be difficult or not possible to achieve with conventional breeding methods. Today, transformation to produce genetically engineered crops is the fastest and most widely adopted technology in agriculture. The rapidly increasing number of sequenced plant genomes and information from functional genomics data to understand gene function, together with novel gene cloning and tissue culture methods, is further accelerating crop improvement and trait development. These advances are welcome and needed to make crops more resilient to climate change and to secure their yield for feeding the increasing human population. Despite the success, transformation remains a bottleneck because many plant species and crop genotypes are recalcitrant to established tissue culture and regeneration conditions, or they show poor transformability. Improvements are possible using morphogenetic transcriptional regulators, but their broader applicability remains to be tested. Advances in genome editing techniques and direct, non-tissue culture-based transformation methods offer alternative approaches to enhance varietal development in other recalcitrant crops. Here, we review recent developments in plant transformation and regeneration, and discuss opportunities for new breeding technologies in agriculture.
Collapse
Affiliation(s)
- Ravi B Anjanappa
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland; Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City 402, Taiwan.
| |
Collapse
|
31
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
32
|
Whibley A, Kelley JL, Narum SR. The changing face of genome assemblies: Guidance on achieving high-quality reference genomes. Mol Ecol Resour 2021; 21:641-652. [PMID: 33326691 DOI: 10.1111/1755-0998.13312] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
The quality of genome assemblies has improved rapidly in recent years due to continual advances in sequencing technology, assembly approaches, and quality control. In the field of molecular ecology, this has led to the development of exceptional quality genome assemblies that will be important long-term resources for broader studies into ecological, conservation, evolutionary, and population genomics of naturally occurring species. Moreover, the extent to which a single reference genome represents the diversity within a species varies: pan-genomes will become increasingly important ecological genomics resources, particularly in systems found to have considerable presence-absence variation in their functional content. Here, we highlight advances in technology that have raised the bar for genome assembly and provide guidance on standards to achieve exceptional quality reference genomes. Key recommendations include the following: (a) Genome assemblies should include long-read sequencing except in rare cases where it is effectively impossible to acquire adequately preserved samples needed for high molecular weight DNA standards. (b) At least one scaffolding approach should be included with genome assembly such as Hi-C or optical mapping. (c) Genome assemblies should be carefully evaluated, this may involve utilising short read data for genome polishing, error correction, k-mer analyses, and estimating the percent of reads that map back to an assembly. Finally, a genome assembly is most valuable if all data and methods are made publicly available and the utility of a genome for further studies is verified through examples. While these recommendations are based on current technology, we anticipate that future advances will push the field further and the molecular ecology community should continue to adopt new approaches that attain the highest quality genome assemblies.
Collapse
Affiliation(s)
| | | | - Shawn R Narum
- University of Idaho, Moscow, ID, USA.,Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
33
|
Dmitriev AA, Pushkova EN, Novakovskiy RO, Beniaminov AD, Rozhmina TA, Zhuchenko AA, Bolsheva NL, Muravenko OV, Povkhova LV, Dvorianinova EM, Kezimana P, Snezhkina AV, Kudryavtseva AV, Krasnov GS, Melnikova NV. Genome Sequencing of Fiber Flax Cultivar Atlant Using Oxford Nanopore and Illumina Platforms. Front Genet 2021; 11:590282. [PMID: 33519894 PMCID: PMC7841463 DOI: 10.3389/fgene.2020.590282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artemy D Beniaminov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Federal Research Center for Bast Fiber Crops, Torzhok, Russia
| | - Alexander A Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok, Russia.,All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow, Russia
| | - Nadezhda L Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liubov V Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ekaterina M Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Parfait Kezimana
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 2021; 245:126690. [PMID: 33460987 DOI: 10.1016/j.micres.2020.126690] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The rhizosphere microbiome is composed of diverse microbial organisms, including archaea, viruses, fungi, bacteria as well as eukaryotic microorganisms, which occupy a narrow region of soil directly associated with plant roots. The interactions between these microorganisms and the plant can be commensal, beneficial or pathogenic. These microorganisms can also interact with each other, either competitively or synergistically. Promoting plant growth by harnessing the soil microbiome holds tremendous potential for providing an environmentally friendly solution to the increasing food demands of the world's rapidly growing population, while also helping to alleviate the associated environmental and societal issues of large-scale food production. There recently have been many studies on the disease suppression and plant growth promoting abilities of the rhizosphere microbiome; however, these findings largely have not been translated into the field. Therefore, additional research into the dynamic interactions between crop plants, the rhizosphere microbiome and the environment are necessary to better guide the harnessing of the microbiome to increase crop yield and quality. This review explores the biotic and abiotic interactions that occur within the plant's rhizosphere as well as current agricultural practices, and how these biotic and abiotic factors, as well as human practices, impact the plant microbiome. Additionally, some limitations, safety considerations, and future directions to the study of the plant microbiome are discussed.
Collapse
Affiliation(s)
- Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
35
|
An Introduction and Applications of Bioinformatics. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Hale JM. Engaging the next generation of plant geneticists through sustained research: an overview of a post-16 project. Heredity (Edinb) 2020; 125:431-436. [PMID: 32943768 PMCID: PMC7495401 DOI: 10.1038/s41437-020-00370-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
Student career aspirations are directly linked to the careers that they are exposed to and the esteem that they are given in society. Where schools are located in areas with low visibility of scientific careers this will have an impact on student aspirations. This project is demonstrating that aspirations can be altered by engaging 16-18-year-old A level biologists in sustained research. A total of 20 students from schools across Jersey are attempting to sequence the chloroplast genomes from daffodils that they have collected from non-cultivated locations using Oxford Nanopore Technologies' MinION. Despite site closures due to COVID-19 control measures, the project has developed insight into different scientific careers through experience and ownership of the entire project pipeline. This project demonstrates an opportunity for schools and academics to collaborate to further science and potentially improve student outcomes.
Collapse
Affiliation(s)
- Jon Michael Hale
- Beaulieu Convent School, Wellington Road, St. Helier, JE2 4RJ, Jersey.
| |
Collapse
|
37
|
de Oliveira Almeida R, Valente GT. Predicting metabolic pathways of plant enzymes without using sequence similarity: Models from machine learning. THE PLANT GENOME 2020; 13:e20043. [PMID: 33217216 DOI: 10.1002/tpg2.20043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Most of the bioinformatics tools for enzyme annotation focus on enzymatic function assignments. Sequence similarity to well-characterized enzymes is often used for functional annotation and to assign metabolic pathways. However, these approaches are not feasible for all sequences leading to inaccurate annotations or lack of metabolic pathway information. Here we present the mApLe (metabolic pathway predictor of plant enzymes), a high-performance machine learning-based tool with models to label the metabolic pathway of enzymes rather than specifying enzymes' reactions. The mApLe uses molecular descriptors of the enzyme sequences to perform predictions without considering sequence similarities with reference sequences. Hence, mApLe can classify a diversity of enzymes, even the ones without any homolog or with incomplete EC numbers. This tool can be used to improve the quality of genomic annotation of plants or to narrow down the number of candidate genes for metabolic engineering researches. The mApLe tool is available online, and the GUI can be locally installed.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Almeida
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Muriaé, Brazil
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (Unesp), Botucatu, Brazil
| | - Guilherme Targino Valente
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (Unesp), Botucatu, Brazil
- Department of Developmental Genetics, Max Planck Institut für Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
38
|
Kim KD, Kang Y, Kim C. Application of Genomic Big Data in Plant Breeding:Past, Present, and Future. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1454. [PMID: 33126607 PMCID: PMC7694055 DOI: 10.3390/plants9111454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023]
Abstract
Plant breeding has a long history of developing new varieties that have ensured the food security of the human population. During this long journey together with humanity, plant breeders have successfully integrated the latest innovations in science and technologies to accelerate the increase in crop production and quality. For the past two decades, since the completion of human genome sequencing, genomic tools and sequencing technologies have advanced remarkably, and adopting these innovations has enabled us to cost down and/or speed up the plant breeding process. Currently, with the growing mass of genomic data and digitalized biological data, interdisciplinary approaches using new technologies could lead to a new paradigm of plant breeding. In this review, we summarize the overall history and advances of plant breeding, which have been aided by plant genomic research. We highlight the key advances in the field of plant genomics that have impacted plant breeding over the past decades and introduce the current status of innovative approaches such as genomic selection, which could overcome limitations of conventional breeding and enhance the rate of genetic gain.
Collapse
Affiliation(s)
- Kyung Do Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 17058, Korea;
| | - Yuna Kang
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea;
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea;
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
39
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
40
|
Van Eck J. Applying gene editing to tailor precise genetic modifications in plants. J Biol Chem 2020; 295:13267-13276. [PMID: 32723863 PMCID: PMC7504920 DOI: 10.1074/jbc.rev120.010850] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
The ability to tailor alterations in genomes, including plant genomes, in a site-specific manner has been greatly advanced through approaches that reduced the complexity and time of genome sequencing along with development of gene editing technologies. These technologies provide a valuable foundation for studies of gene function, metabolic engineering, and trait modification for crop improvement. Development of genome editing methodologies began ∼20 years ago, first with meganucleases and followed by zinc finger nucleases, transcriptional activator-like effector nucleases and, most recently, clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas) (CRISPR/Cas), which is by far the most utilized method. The premise of CRISPR/Cas centers on the cleaving of one or both DNA strands by a Cas protein, an endonuclease, followed by mending of the DNA by repair mechanisms inherent in cells. Its user-friendly construct design, greater flexibility in targeting genomic regions, and cost-effective attributes have resulted in it being widely adopted and revolutionizing precise modification of the genomes of many organisms. Indeed, the CRISPR/Cas system has been utilized for gene editing in many plant species, including important food crops, such as maize, wheat, rice, and potatoes. This review summarizes the various approaches, including the most recent designs being used to make modifications from as small as a single-base-pair change to insertion of DNA fragments. On the gene expression level, strategies are presented that make it possible to knock out or modulate through activation and repression. Also discussed are prerequisites necessary for CRISPR/Cas-mediated editing as well as the current challenges.
Collapse
Affiliation(s)
- Joyce Van Eck
- Boyce Thompson Institute, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
41
|
McGarvey P, Huang J, McCoy M, Orvis J, Katsir Y, Lotringer N, Nesher I, Kavarana M, Sun M, Peet R, Meiri D, Madhavan S. De novo assembly and annotation of transcriptomes from two cultivars of Cannabis sativa with different cannabinoid profiles. Gene 2020; 762:145026. [PMID: 32781193 DOI: 10.1016/j.gene.2020.145026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Cannabis has been cultivated for millennia for medicinal, industrial and recreational uses. Our long-term goal is to compare the transcriptomes of cultivars with different cannabinoid profiles for therapeutic purposes. Here we describe the de novo assembly, annotation and initial analysis of two cultivars of Cannabis, a high THC variety and a CBD plus THC variety. Cultivars were grown under different lighting conditions; flower buds were sampled over 71 days. Cannabinoid profiles were determined by ESI-LC/MS. RNA samples were sequenced using the HiSeq4000 platform. Transcriptomes were assembled using the DRAP pipeline and annotated using the BLAST2GO pipeline and other tools. Each transcriptome contained over twenty thousand protein encoding transcripts with ORFs and flanking sequence. Identification of transcripts for cannabinoid pathway and related enzymes showed full-length ORFs that align with the draft genomes of the Purple Kush and Finola cultivars. Two transcripts were found for olivetolic acid cyclase (OAC) that mapped to distinct locations on the Purple Kush genome suggesting multiple genes for OAC are expressed in some cultivars. The ability to make high quality annotated reference transcriptomes in Cannabis or other plants can promote rapid comparative analysis between cultivars and growth conditions in Cannabis and other organisms without annotated genome assemblies.
Collapse
Affiliation(s)
- Peter McGarvey
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
| | - Jiahao Huang
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
| | - Matthew McCoy
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yael Katsir
- Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | - Mingyang Sun
- Teewinot Life Sciences Corporation, Tampa, FL, USA
| | | | - David Meiri
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
42
|
Henry RJ. Innovations in plant genetics adapting agriculture to climate change. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:168-173. [PMID: 31836470 DOI: 10.1016/j.pbi.2019.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Developing new genotypes of plants is one of the key options for adaptation of agriculture to climate change. Plants may be required to provide resilience in changed climates or support the migration of agriculture to new regions. Very different genotypes may be required to perform in the modified environments of protected agriculture. Consumers will continue to demand taste, convenience, healthy and safe food and sustainably and ethically produced food, despite the greater challenges of climate in the future. Improving the nutritional value of foods in response to climate change is a significant challenge. Genomic sequences of relevant germplasm and an understanding of the functional role of alleles controlling key traits will be an enabling platform for this innovation.
Collapse
Affiliation(s)
- Robert J Henry
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld 4072 Australia.
| |
Collapse
|
43
|
Shirasawa K, Yakushiji H, Nishimura R, Morita T, Jikumaru S, Ikegami H, Toyoda A, Hirakawa H, Isobe S. The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1313-1322. [PMID: 31978270 PMCID: PMC7317799 DOI: 10.1111/tpj.14703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 05/31/2023]
Abstract
Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single-molecule real-time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high-confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double-digest restriction-site-associated DNA sequencing. Subsequent linkage analysis and whole-genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome-wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease-resistance breeding programmes in fig.
Collapse
Affiliation(s)
| | | | | | - Takeshige Morita
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | - Shota Jikumaru
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | | | | | | | | |
Collapse
|
44
|
Lichman BR, Godden GT, Buell CR. Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:74-83. [PMID: 32344371 DOI: 10.1016/j.pbi.2020.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023]
Abstract
Plants are reservoirs of extreme chemical diversity, yet biosynthetic pathways remain underexplored in the majority of taxa. Access to improved, inexpensive genomic and computational technologies has recently enhanced our understanding of plant specialized metabolism at the biochemical and evolutionary levels including the elucidation of pathways leading to key metabolites. Furthermore, these approaches have provided insights into the mechanisms of chemical evolution, including neofunctionalization and subfunctionalization, structural variation, and modulation of gene expression. The broader utilization of genomic tools across the plant tree of life, and an expansion of genomic resources from multiple accessions within species or populations, will improve our overall understanding of chemodiversity. These data and knowledge will also lead to greater insight into the selective pressures contributing to and maintaining this diversity, which in turn will enable the development of more accurate predictive models of specialized metabolism in plants.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK
| | - Grant T Godden
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Carol Robin Buell
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA; MSU AgBioResearch, Michigan State University, 446 West Circle Drive, East Lansing, MI 48824, USA.
| |
Collapse
|
45
|
Pellicer J, Leitch IJ. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. THE NEW PHYTOLOGIST 2020; 226:301-305. [PMID: 31608445 DOI: 10.1111/nph.16261] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/08/2019] [Indexed: 05/07/2023]
Affiliation(s)
- Jaume Pellicer
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK
| |
Collapse
|
46
|
Michael TP, VanBuren R. Building near-complete plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:26-33. [PMID: 31981929 DOI: 10.1016/j.pbi.2019.12.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 05/23/2023]
Abstract
Plant genomes span several orders of magnitude in size, vary in levels of ploidy and heterozygosity, and contain old and recent bursts of transposable elements, which render them challenging but interesting to assemble. Recent advances in single molecule sequencing and physical mapping technologies have enabled high-quality, chromosome scale assemblies of plant species with increasing complexity and size. Single molecule reads can now exceed megabases in length, providing unprecedented opportunities to untangle genomic regions missed by short read technologies. However, polyploid and heterozygous plant genomes are still difficult to assemble but provide opportunities for new tools and approaches. Haplotype phasing, structural variant analysis and de novo pan-genomics are the emerging frontiers in plant genome assembly.
Collapse
Affiliation(s)
- Todd P Michael
- Informatics Department, J. Craig Venter Institute, La Jolla, CA, USA.
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
47
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
48
|
Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. TRENDS IN PLANT SCIENCE 2019; 24:700-724. [PMID: 31208890 DOI: 10.1016/j.tplants.2019.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 05/16/2023]
Abstract
The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.
Collapse
Affiliation(s)
- Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Christopher Winefield
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, 7647 Christchurch, New Zealand
| | - Aureliano Bombarely
- Department of Bioscience, University of Milan, Milan 20133, Italy; School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter Prentis
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Peter Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
49
|
Saban JM, Chapman MA, Taylor G. FACE facts hold for multiple generations; Evidence from natural CO 2 springs. GLOBAL CHANGE BIOLOGY 2019; 25:1-11. [PMID: 30422366 PMCID: PMC7379517 DOI: 10.1111/gcb.14437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 05/05/2023]
Abstract
Rising atmospheric CO2 concentration is a key driver of enhanced global greening, thought to account for up to 70% of increased global vegetation in recent decades. CO2 fertilization effects have further profound implications for ecosystems, food security and biosphere-atmosphere feedbacks. However, it is also possible that current trends will not continue, due to ecosystem level constraints and as plants acclimate to future CO2 concentrations. Future predictions of plant response to rising [CO2 ] are often validated using single-generation short-term FACE (Free Air CO2 Enrichment) experiments but whether this accurately represents vegetation response over decades is unclear. The role of transgenerational plasticity and adaptation in the multigenerational response has yet to be elucidated. Here, we propose that naturally occurring high CO2 springs provide a proxy to quantify the multigenerational and long-term impacts of rising [CO2 ] in herbaceous and woody species respectively, such that plasticity, transgenerational effects and genetic adaptation can be quantified together in these systems. In this first meta-analysis of responses to elevated [CO2 ] at natural CO2 springs, we show that the magnitude and direction of change in eight of nine functional plant traits are consistent between spring and FACE experiments. We found increased photosynthesis (49.8% in spring experiments, comparable to 32.1% in FACE experiments) and leaf starch (58.6% spring, 84.3% FACE), decreased stomatal conductance (gs , 27.2% spring, 21.1% FACE), leaf nitrogen content (6.3% spring, 13.3% FACE) and Specific Leaf Area (SLA, 9.7% spring, 6.0% FACE). These findings not only validate the use of these sites for studying multigenerational plant response to elevated [CO2 ], but additionally suggest that long-term positive photosynthetic response to rising [CO2 ] are likely to continue as predicted by single-generation exposure FACE experiments.
Collapse
Affiliation(s)
- Jasmine M. Saban
- Biological SciencesUniversity of Southampton, Life SciencesSouthamptonUK
| | - Mark A. Chapman
- Biological SciencesUniversity of Southampton, Life SciencesSouthamptonUK
| | - Gail Taylor
- Biological SciencesUniversity of Southampton, Life SciencesSouthamptonUK
- Department of Plant SciencesUniversity of CaliforniaDavisCalifornia
| |
Collapse
|
50
|
Gitzendanner MA, Yang Y, Wickett NJ, McKain M, Beaulieu JM. Methods for exploring the plant tree of life. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1039. [PMCID: PMC5895194 DOI: 10.1002/aps3.1039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 05/24/2023]
Affiliation(s)
| | - Ya Yang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Norman J. Wickett
- Department of Plant ScienceChicago Botanic GardenGlencoeIllinois60022USA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinois60208USA
| | - Michael McKain
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabama35487USA
| | - Jeremy M. Beaulieu
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansas72701USA
| |
Collapse
|