1
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
2
|
Ji H, Chen S, Hu Q, He Y, Zhou L, Xie J, Pan H, Tong X, Wu C. Investigating the Correlation between Serum Amyloid A and Infarct-Related Artery Patency Prior to Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction Patients. Angiology 2024; 75:585-594. [PMID: 37402552 DOI: 10.1177/00033197231183031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Serum amyloid A (SAA) is a cardiovascular risk factor and may serve as a predictor of infarct-related artery (IRA) patency in patients with ST-segment elevation myocardial infarction (STEMI). We measured SAA levels in STEMI patients who underwent percutaneous coronary intervention (PCI) and investigated their association with IRA patency. According to the Thrombolysis in Myocardial Infarction (TIMI) flow grade, 363 STEMI patients undergoing PCI in our hospital were divided into an occlusion group (TIMI 0-2) and a patency group (TIMI 3). The SAA level before PCI was significantly higher in STEMI patients with IRA occluded than in those with patent ones. At a cutoff value of 36.9 mg/L, SAA had a sensitivity of 63.0% and a specificity of 90.6% (area under the ROC curve [AUC] = .833, 95% CI: .793-.873, P < .001). Multivariate logistic regression analysis showed that SAA was an independent predictor of IRA patency in STEMI patients before PCI (odds ratio [OR] = 1.041, 95% CI: 1.020-1.062, P < .001). SAA can be used as a potential predictor of IRA patency in STEMI patients before PCI.
Collapse
Affiliation(s)
- Hao Ji
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senjiang Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingqing Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying He
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianchang Xie
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Hao Pan
- Department of Cardiology, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoshan Tong
- Catheter Room, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Critical Care Medicine, Hangzhou First People's Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Erickson MA, Mahankali AP. Interactions of Serum Amyloid A Proteins with the Blood-Brain Barrier: Implications for Central Nervous System Disease. Int J Mol Sci 2024; 25:6607. [PMID: 38928312 PMCID: PMC11204325 DOI: 10.3390/ijms25126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease. In this review of the thematic series on SAA, we discuss the existing literature that relates SAA to neuroinflammation and CNS disease, and the possible roles of the BBB in these relations.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| | - Anvitha P. Mahankali
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| |
Collapse
|
4
|
Dahlgren C, Lind S, Mårtensson J, Björkman L, Wu Y, Sundqvist M, Forsman H. G
protein coupled pattern recognition receptors expressed in neutrophils
: Recognition, activation/modulation, signaling and receptor regulated functions. Immunol Rev 2022; 314:69-92. [PMID: 36285739 DOI: 10.1111/imr.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| |
Collapse
|
5
|
Shan LL, Wang YL, Qiao TC, Bian YF, Huo YJ, Guo C, Liu QY, Yang ZD, Li ZZ, Liu MY, Han Y. Association of Serum Interleukin-8 and Serum Amyloid A With Anxiety Symptoms in Patients With Cerebral Small Vessel Disease. Front Neurol 2022; 13:938655. [PMID: 35923828 PMCID: PMC9341200 DOI: 10.3389/fneur.2022.938655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Cerebral small vessel disease (CSVD) is a clinical syndrome caused by pathological changes in small vessels. Anxiety is a common symptom of CSVD. Previous studies have reported the association between inflammatory factors and anxiety in other diseases, but this association in patients with CSVD remains uncovered. Our study aimed to investigate whether serum inflammatory factors correlated with anxiety in patients with CSVD. METHODS A total of 245 CSVD patients confirmed using brain magnetic resonance imaging (MRI) were recruited from December 2019 to December 2021. Hamilton Anxiety Rating Scale (HAMA) was used to assess the anxiety symptoms of CSVD patients. Patients with HAMA scores ≥7 were considered to have anxiety symptoms. The serum levels of interleukin-1β (IL-1β), IL-2R, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), serum amyloid A (SAA), C-reactive protein (CRP), high-sensitivity C-reactive protein (hs-CRP) and erythrocyte sedimentation rate (ESR) were detected. We compared levels of inflammatory factors between the anxiety and non-anxiety groups. Logistic regression analyses examined the correlation between inflammatory factors and anxiety symptoms. We further performed a gender subgroup analysis to investigate whether this association differed by gender. RESULTS In the fully adjusted multivariate logistic regression analysis model, we found that lower levels of IL-8 were linked to a higher risk of anxiety symptoms. Moreover, higher levels of SAA were linked to a lower risk of anxiety symptoms. Our study identified sex-specific effects, and the correlation between IL-8 and anxiety symptoms remained significant among males, while the correlation between SAA and anxiety symptoms remained significant among females. CONCLUSIONS In this study, we found a suggestive association between IL-8, SAA, and anxiety symptoms in CSVD participants. Furthermore, IL-8 and SAA may have a sex-specific relationship with anxiety symptoms.
Collapse
Affiliation(s)
- Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Lin Wang
- Georgetown Preparatory School, North Bethesda, MD, United States
| | - Tian-Ci Qiao
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Feng Bian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian-Yun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Dong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ze-Zhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Serum Amyloid A is not obligatory for high-fat, high-sucrose, cholesterol-fed diet-induced obesity and its metabolic and inflammatory complications. PLoS One 2022; 17:e0266688. [PMID: 35436297 PMCID: PMC9015120 DOI: 10.1371/journal.pone.0266688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.
Collapse
|
7
|
Shridas P, Patrick AC, Tannock LR. Role of Serum Amyloid A in Abdominal Aortic Aneurysm and Related Cardiovascular Diseases. Biomolecules 2021; 11:biom11121883. [PMID: 34944527 PMCID: PMC8699432 DOI: 10.3390/biom11121883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with cardiovascular disease severity and mortality. Studies by several investigators have indicated a causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA) formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway leading to its involvement needs to be understood. This review provides a brief description of the pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered questions in the field.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
| | - Avery C Patrick
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
- Veterans Affairs Lexington, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Ciregia F, Nys G, Cobraiville G, Badot V, Di Romana S, Sidiras P, Sokolova T, Durez P, Fillet M, Malaise MG, de Seny D. A Cross-Sectional and Longitudinal Study to Define Alarmins and A-SAA Variants as Companion Markers in Early Rheumatoid Arthritis. Front Immunol 2021; 12:638814. [PMID: 34489924 PMCID: PMC8418532 DOI: 10.3389/fimmu.2021.638814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, in the study of rheumatoid arthritis (RA), more and more interest is directed towards an earlier effective therapeutic intervention and the determination of companion markers for predicting response to therapy with the goal to prevent progressive joint damage, deformities, and functional disability. With the present work, we aimed at quantifying in a cohort of early RA (ERA) patients naïve to DMARD therapy, proteins whose increase was previously found associated with RA: serum amyloid A (A-SAA) and alarmins. Five A-SAA variants (SAA1α, SAA1β, SAA1γ, SAA2α, and SAA2β) but also S100A8 and S100A9 proteins were simultaneously quantified in plasma applying a method based on single targeted bottom-up proteomics LC-MS/MS. First, we compared their expression between ERA (n = 100) and healthy subjects (n = 100), then we focused on their trend by monitoring ERA patients naïve to DMARD treatment, 1 year after starting therapy. Only SAA1α and SAA2α levels were increased in ERA patients, and SAA2α appears to mostly mediate the pathological role of A-SAA. Levels of these variants, together with SAA1β, only decreased under biologic DMARD treatment but not under methotrexate monotherapy. This study highlights the importance to better understand the modulation of expression of these variants in ERA in order to subsequently better characterize their biological function. On the other hand, alarmin expression increased in ERA compared to controls but remained elevated after 12 months of methotrexate or biologic treatment. The work overcomes the concept of considering these proteins as biomarkers for diagnosis, demonstrating that SAA1α, SAA1β, and SAA2α variants but also S100A8 and S100A9 do not respond to all early treatment in ERA and should be rather considered as companion markers useful to improve the follow-up of treatment response and remission state. Moreover, it suggests that earlier use of biologics in addition to methotrexate may be worth considering.
Collapse
Affiliation(s)
- Federica Ciregia
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Gwenaël Nys
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Valérie Badot
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Brugmann, Bruxelles, Belgium
| | - Silvana Di Romana
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Saint–Pierre, Bruxelles, Belgium
| | - Paschalis Sidiras
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Tatiana Sokolova
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Patrick Durez
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| |
Collapse
|
9
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. The turning away of serum amyloid A biological activities and receptor usage. Immunology 2021; 163:115-127. [PMID: 33315264 PMCID: PMC8114209 DOI: 10.1111/imm.13295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.
Collapse
Affiliation(s)
- Nancy R Webb
- Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes Center, University of Kentucky, 553 Wethington Building, 900 South Limestone, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
12
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
13
|
Matsumoto J, Dohgu S, Takata F, Iwao T, Kimura I, Tomohiro M, Aono K, Kataoka Y, Yamauchi A. Serum amyloid A-induced blood-brain barrier dysfunction associated with decreased claudin-5 expression in rat brain endothelial cells and its inhibition by high-density lipoprotein in vitro. Neurosci Lett 2020; 738:135352. [PMID: 32931862 DOI: 10.1016/j.neulet.2020.135352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier (BBB) is the multicellular interface located between the peripheral circulation and the brain parenchyma. BBB dysfunction is reported in many CNS diseases, such cognitive impairment, depression, Alzheimer's disease (AD), and multiple sclerosis (MS). Emerging evidence indicates that liver-derived inflammatory mediators are upregulated in neurological diseases with BBB dysfunction. Serum amyloid A (SAA), an acute phase protein secreted by hepatocytes, could be a candidate inflammatory signaling molecule transmitted from the liver to the brain; however, its contribution to BBB dysfunction is poorly understood. The present study aimed to elucidate the involvement of SAA in BBB impairment in an in vitro BBB model using rat brain microvascular endothelial cells (RBECs). We demonstrated that Apo-SAA significantly decreased transendothelial electrical resistance (TEER) and increased sodium fluorescein (Na-F) permeability in RBEC monolayers. Apo-SAA also decreased claudin-5 expression levels in RBECs. Furthermore, the Apo-SAA-mediated impairment of the BBB with decreased claudin-5 expression was inhibited by the addition of a high-density lipoprotein (HDL) related to SAA in plasma. These findings suggest that HDL counteracts the effects of SAA on BBB function. Therefore, the functional imbalance between SAA and HDL may induce BBB impairment, thereby triggering development of neuroinflammation. SAA could be a significant endogenous mediator in the liver-to-brain inflammation axis.
Collapse
Affiliation(s)
- Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Takuro Iwao
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Ikuya Kimura
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Misaki Tomohiro
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
14
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
15
|
Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol 2020; 21:756-765. [PMID: 32572240 DOI: 10.1038/s41590-020-0698-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.
Collapse
|
16
|
Abouelasrar Salama S, De Bondt M, De Buck M, Berghmans N, Proost P, Oliveira VLS, Amaral FA, Gouwy M, Van Damme J, Struyf S. Serum Amyloid A1 (SAA1) Revisited: Restricted Leukocyte-Activating Properties of Homogeneous SAA1. Front Immunol 2020; 11:843. [PMID: 32477346 PMCID: PMC7240019 DOI: 10.3389/fimmu.2020.00843] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Infection, sterile injury, and chronic inflammation trigger the acute phase response in order to re-establish homeostasis. This response includes production of positive acute phase proteins in the liver, such as members of the serum amyloid A (SAA) family. In humans the major acute phase SAAs comprise a group of closely related variants of SAA1 and SAA2. SAA1 was proven to be chemotactic for several leukocyte subtypes through activation of the G protein-coupled receptor FPRL1/FPR2. Several other biological activities of SAA1, such as cytokine induction, reported to be mediated via TLRs, have been debated recently. Especially commercial SAA1, recombinantly produced in Escherichia coli, was found to be contaminated with bacterial products confounding biological assays performed with this rSAA1. We purified rSAA1 by RP-HPLC to homogeneity, removing contaminants such as lipopolysaccharides, lipoproteins and formylated peptides, and re-assessed several biological activities attributed to SAA1 (chemotaxis, cytokine induction, MMP-9 release, ROS generation, and macrophage differentiation). The homogeneous rSAA1 (hrSAA1) lacked most cell-activating properties, but its leukocyte-recruiting capacity in vivo and it’s in vitro synergy with other leukocyte attractants remained preserved. Furthermore, hrSAA1 maintained the ability to promote monocyte survival. This indicates that pure hrSAA1 retains its potential to activate FPR2, whereas TLR-mediated effects seem to be related to traces of bacterial TLR ligands in the E. coli-produced human rSAA1.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Louise Soares Oliveira
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavio A Amaral
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 2020; 17:433-450. [PMID: 32238918 PMCID: PMC7192912 DOI: 10.1038/s41423-020-0412-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium.
| |
Collapse
|
18
|
Fan Y, Zhang G, Vong CT, Ye RD. Serum amyloid A3 confers protection against acute lung injury in Pseudomonas aeruginosa-infected mice. Am J Physiol Lung Cell Mol Physiol 2019; 318:L314-L322. [PMID: 31851532 DOI: 10.1152/ajplung.00309.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium associated with serious illnesses, including ventilator-associated pneumonia and various sepsis syndromes in humans. Understanding the host immune mechanisms against P. aeruginosa is, therefore, of clinical importance. The present study identified serum amyloid A3 (SAA3) as being highly inducible in mouse bronchial epithelium following P. aeruginosa infection. Genetic deletion of Saa3 rendered mice more susceptible to P. aeruginosa infection with decreased neutrophil superoxide anion production, and ex vivo treatment of mouse neutrophils with recombinant SAA3 restored the ability of neutrophils to produce superoxide anions. The SAA3-deficient mice showed exacerbated inflammatory responses, which was characterized by pronounced neutrophil infiltration, elevated expression of TNF-α, KC/CXCL1, and MIP-2/CXCL2 in bronchoalveolar lavage fluid (BALF), and increased lung microvascular permeability compared with their wild-type littermates. BALF neutrophils from Saa3 knockout mice exhibited reduced superoxide anion production compared with neutrophils from wild-type mice. Adoptive transfer of SAA3-treated neutrophils to Saa3 knockout mice ameliorated P. aeruginosa-induced acute lung injury. These findings demonstrate that SAA3 not only serves as a biomarker for infection and inflammation, but also plays a protective role against P. aeruginosa infection-induced lung injury in part through augmentation of neutrophil bactericidal functions.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Gufang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chi Teng Vong
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Richard D Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Acute phase serum amyloid A (SAA) is persistently elevated in chronic inflammatory conditions, and elevated levels predict cardiovascular risk in humans. More recently, murine studies have demonstrated that over-expression of SAA increases and deficiency/suppression of SAA attenuates atherosclerosis. Thus, beyond being a biomarker, SAA appears to play a causal role in atherogenesis. The purpose of this review is to summarize the data supporting SAA as a key player in atherosclerosis development. RECENT FINDINGS A number of pro-inflammatory and pro-atherogenic activities have been ascribed to SAA. However, the literature is conflicted, as recombinant SAA, and/or lipid-free SAA, used in many of the earlier studies, do not reflect the activity of native human or murine SAA, which exists largely lipid-associated. Recent literatures demonstrate that SAA activates the NLRP3 inflammasome, alters vascular function, affects HDL function, and increases thrombosis. Importantly, SAA activity appears to be regulated by its lipid association, and HDL may serve to sequester and limit SAA activity. SUMMARY SAA has many pro-inflammatory and pro-atherogenic activities, is clearly demonstrated to affect atherosclerosis development, and may be a candidate target for clinical trials in cardiovascular diseases.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
| | - Lisa R Tannock
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
- Veterans Affairs Lexington, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Björkman L, Christenson K, Davidsson L, Mårtensson J, Amirbeagi F, Welin A, Forsman H, Karlsson A, Dahlgren C, Bylund J. Neutrophil recruitment to inflamed joints can occur without cellular priming. J Leukoc Biol 2018; 105:1123-1130. [DOI: 10.1002/jlb.3ab0918-369r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lena Björkman
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Karin Christenson
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
- Sahlgrenska Cancer CenterInstitute of BiomedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
- Department of Oral Microbiology and ImmunologyInstitute of OdontologySahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Lisa Davidsson
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Firoozeh Amirbeagi
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
- Department of Oral Microbiology and ImmunologyInstitute of OdontologySahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Anna Karlsson
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
| | - Johan Bylund
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska Academy at University of Gothenburg Göteborg Sweden
- Department of Oral Microbiology and ImmunologyInstitute of OdontologySahlgrenska Academy at University of Gothenburg Göteborg Sweden
| |
Collapse
|
21
|
Burgess EJ, Hoyt LR, Randall MJ, Mank MM, Bivona JJ, Eisenhauer PL, Botten JW, Ballif BA, Lam YW, Wargo MJ, Boyson JE, Ather JL, Poynter ME. Bacterial Lipoproteins Constitute the TLR2-Stimulating Activity of Serum Amyloid A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2377-2384. [PMID: 30158125 PMCID: PMC6179936 DOI: 10.4049/jimmunol.1800503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.
Collapse
Affiliation(s)
- Edward J Burgess
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Laura R Hoyt
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Madeleine M Mank
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Joseph J Bivona
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Philip L Eisenhauer
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Jason W Botten
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Matthew J Wargo
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Jonathan E Boyson
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, VT 05405;
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| |
Collapse
|
22
|
Cheng N, Liang Y, Du X, Ye RD. Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury. EMBO Rep 2018; 19:embr.201745517. [PMID: 30126923 DOI: 10.15252/embr.201745517] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major microbial mediator for tissue injury and sepsis resulting from Gram-negative bacterial infection. LPS is an external factor that induces robust expression of serum amyloid A (SAA), a major constituent of the acute-phase proteins, but the relationship between SAA expression and LPS-induced tissue injury remains unclear. Here, we report that mice with inducible transgenic expression of human SAA1 are partially protected against inflammatory response and lung injury caused by LPS and cecal ligation and puncture (CLP). In comparison, transgenic SAA1 does not attenuate TNFα-induced lung inflammation and injury. The SAA1 expression level correlates inversely with the endotoxin concentrations in serum and lung tissues since SAA1 binds directly to LPS to form a complex that promotes LPS uptake by macrophages. Disruption of the SAA1-LPS interaction with a SAA1-derived peptide partially reduces the protective effect and exacerbates inflammation. These findings demonstrate that acute-phase SAA provides innate feedback protection against LPS-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Yurong Liang
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Xiaoping Du
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA .,State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| |
Collapse
|
23
|
Cheng N, Liang Y, Du X, Ye RD. Serum amyloid A promotes
LPS
clearance and suppresses
LPS
‐induced inflammation and tissue injury. EMBO Rep 2018. [DOI: 10.15252/embr.201745517 (e45517):14 pp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Yurong Liang
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Xiaoping Du
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
- State Key Laboratory for Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| |
Collapse
|
24
|
Shridas P, De Beer MC, Webb NR. High-density lipoprotein inhibits serum amyloid A-mediated reactive oxygen species generation and NLRP3 inflammasome activation. J Biol Chem 2018; 293:13257-13269. [PMID: 29976759 DOI: 10.1074/jbc.ra118.002428] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is a high-density apolipoprotein whose plasma levels can increase more than 1000-fold during a severe acute-phase inflammatory response and are more modestly elevated in chronic inflammation. SAA is thought to play important roles in innate immunity, but its biological activities have not been completely delineated. We previously reported that SAA deficiency protects mice from developing abdominal aortic aneurysms (AAAs) induced by chronic angiotensin II (AngII) infusion. Here, we report that SAA is required for AngII-induced increases in interleukin-1β (IL-1β), a potent proinflammatory cytokine that is tightly controlled by the Nod-like receptor protein 3 (NLRP3) inflammasome and caspase-1 and has been implicated in both human and mouse AAAs. We determined that purified SAA stimulates IL-1β secretion in murine J774 and bone marrow-derived macrophages through a mechanism that depends on NLRP3 expression and caspase-1 activity, but is independent of P2X7 nucleotide receptor (P2X7R) activation. Inhibiting reactive oxygen species (ROS) by N-acetyl-l-cysteine or mito-TEMPO and inhibiting activation of cathepsin B by CA-074 blocked SAA-mediated inflammasome activation and IL-1β secretion. Moreover, inhibiting cellular potassium efflux with glyburide or increasing extracellular potassium also significantly reduced SAA-mediated IL-1β secretion. Of note, incorporating SAA into high-density lipoprotein (HDL) prior to its use in cell treatments completely abolished its ability to stimulate ROS generation and inflammasome activation. These results provide detailed insights into SAA-mediated IL-1β production and highlight HDL's role in regulating SAA's proinflammatory effects.
Collapse
Affiliation(s)
- Preetha Shridas
- From the Departments of Internal Medicine, .,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky 40536
| | - Maria C De Beer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky 40536.,Physiology, and.,Pharmacology and Nutritional Sciences
| | - Nancy R Webb
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky 40536.,Pharmacology and Nutritional Sciences.,Saha Cardiovascular Research Center, and
| |
Collapse
|
25
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 2016; 114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
27
|
Ballbach M, Hall T, Brand A, Neri D, Singh A, Schaefer I, Herrmann E, Hansmann S, Handgretinger R, Kuemmerle-Deschner J, Hartl D, Rieber N. Induction of Myeloid-Derived Suppressor Cells in Cryopyrin-Associated Periodic Syndromes. J Innate Immun 2016; 8:493-506. [PMID: 27351923 DOI: 10.1159/000446615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
Cryopyrin-associated periodic syndromes (CAPS) are caused by mutations in the NLRP3 gene leading to overproduction of IL-1β and other NLRP3 inflammasome products. Myeloid-derived suppressor cells (MDSCs) represent a novel innate immune cell subset capable of suppressing T-cell responses. As inflammasome products were previously found to induce MDSCs, we hypothesized that NLRP3 inflammasome-dependent factors induce the generation of MDSCs in CAPS. We studied neutrophilic MDSCs, their clinical relevance, and MDSC-inducing factors in a unique cohort of CAPS patients under anti-IL-1 therapy. Despite anti-IL-1 therapy and low clinical disease activity, CAPS patients showed significantly elevated MDSCs compared to healthy controls. MDSCs were functionally competent, as they suppressed polyclonal T-cell proliferation, as well as Th1 and Th17 responses. In addition, MDSCs decreased monocytic IL-1β secretion. Multiplex assays revealed a distinct pattern of MDSC-inducing cytokines, chemokines, and growth factors. Experimental analyses demonstrated that IL-1 cytokine family members and autoinflammation-associated alarmins differentially induced human MDSCs. Increased MDSCs might represent a novel autologous anti-inflammatory mechanism in autoinflammatory conditions and may serve as a future therapeutic target.
Collapse
Affiliation(s)
- Marlene Ballbach
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hwang YG, Balasubramani GK, Metes ID, Levesque MC, Bridges SL, Moreland LW. Differential response of serum amyloid A to different therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Res Ther 2016; 18:108. [PMID: 27188329 PMCID: PMC4869396 DOI: 10.1186/s13075-016-1009-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background The aim was to compare the effect of etanercept (ETN) and conventional synthetic disease-modifying anti-rheumatic drug (DMARD) therapy on serum amyloid A (SAA) levels and to determine whether SAA reflects rheumatoid arthritis (RA) disease activity better than C-reactive protein (CRP). Methods We measured SAA and CRP at baseline, 24, 48, and 102 week follow-up visits in 594 patients participating in the Treatment of early RA (TEAR) study. We used Spearman correlation coefficients (rho) to evaluate the relationship between SAA and CRP and mixed effects models to determine whether ETN and methotrexate (MTX) treatment compared to triple DMARD therapy differentially lowered SAA. Akaike information criteria (AIC) were used to determine model fits. Results SAA levels were only moderately correlated with CRP levels (rho = 0.58, p < 0.0001). There were significant differences in SAA by both visit (p = 0.0197) and treatment arm (p = 0.0130). RA patients treated with ETN plus MTX had a larger reduction in SAA than patients treated with traditional DMARD therapy. Similar results were found for serum CRP by visit (p = 0.0254) and by treatment (p < 0.0001), with a more pronounced difference than for SAA. Across all patients and time points, models of the disease activity score of 28 joints (DAS28)-erythrocyte sedimentation rate (ESR) using SAA levels were better than models using CRP; the ΔAIC between the SAA and CRP models was 305. Conclusions SAA may be a better biomarker of RA disease activity than CRP, especially during treatment with tumor necrosis factor (TNF) antagonists. This warrants additional studies in other cohorts of patients on treatment for RA. Trial registration (ClinicalTrials.gov identifier: NCT00259610, Date of registration: 28 November 2005)
Collapse
Affiliation(s)
- Yong Gil Hwang
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Goundappa K Balasubramani
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 DeSoto Street, 127 Parran Hall, Pittsburgh, PA, 15261, USA
| | - Ilinca D Metes
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Marc C Levesque
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA.,AbbVie Inc, 100 Research Dr, Worcester, MA, 01605, USA
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and Rheumatology Birmingham, University of Alabama at Birmingham, Shelby Building, Room 178B, 1825 University Blvd., Birmingham, AL, 35294-2182, USA
| | - Larry W Moreland
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
29
|
Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol 2015; 98:923-9. [PMID: 26130702 DOI: 10.1189/jlb.3vmr0315-080r] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
SAA is a major acute-phase protein produced in large quantity during APR. The rise of SAA concentration in blood circulation during APR has been a clinical marker for active inflammation. In the past decade, research has been conducted to determine whether SAA plays an active role during inflammation and if so, how it influences the course of inflammation. These efforts have led to the discovery of cytokine-like activities of rhSAA, which is commercially available and widely used in most of the published studies. SAA activates multiple receptors, including the FPR2, the TLRs TLR2 and TLR4, the scavenger receptor SR-BI, and the ATP receptor P2X7. More recent studies have shown that SAA not only activates transcription factors, such as NF-κB, but also plays a role in epigenetic regulation through a MyD88-IRF4-Jmjd3 pathway. It is postulated that the activation of these pathways leads to induced expression of proinflammatory factors and a subset of proteins expressed by the M2 macrophages. These functional properties set SAA apart from well-characterized inflammatory factors, such as LPS and TNF-α, suggesting that it may play a homeostatic role during the course of inflammation. Ongoing and future studies are directed to addressing unresolved issues, including the difference between rSAA and native SAA isoforms and the exact functions of SAA in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Richard D Ye
- *School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; and Department of Pharmacology, University of Illinois at Chicago, Illinois, USA
| | - Lei Sun
- *School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; and Department of Pharmacology, University of Illinois at Chicago, Illinois, USA
| |
Collapse
|
30
|
Tan SZ, Ooi DSQ, Shen HM, Heng CK. The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. J Atheroscler Thromb 2014; 21:854-67. [DOI: 10.5551/jat.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
31
|
Abstract
Systemic amyloid A (AA) amyloidosis is a serious complication of chronic inflammation. Serum AA protein (SAA), an acute phase plasma protein, is deposited extracellularly as insoluble amyloid fibrils that damage tissue structure and function. Clinical AA amyloidosis is typically preceded by many years of active inflammation before presenting, most commonly with renal involvement. Using dose-dependent, doxycycline-inducible transgenic expression of SAA in mice, we show that AA amyloid deposition can occur independently of inflammation and that the time before amyloid deposition is determined by the circulating SAA concentration. High level SAA expression induced amyloidosis in all mice after a short, slightly variable delay. SAA was rapidly incorporated into amyloid, acutely reducing circulating SAA concentrations by up to 90%. Prolonged modest SAA overexpression occasionally produced amyloidosis after long delays and primed most mice for explosive amyloidosis when SAA production subsequently increased. Endogenous priming and bulk amyloid deposition are thus separable events, each sensitive to plasma SAA concentration. Amyloid deposits slowly regressed with restoration of normal SAA production after doxycycline withdrawal. Reinduction of SAA overproduction revealed that, following amyloid regression, all mice were primed, especially for rapid glomerular amyloid deposition leading to renal failure, closely resembling the rapid onset of renal failure in clinical AA amyloidosis following acute exacerbation of inflammation. Clinical AA amyloidosis rarely involves the heart, but amyloidotic SAA transgenic mice consistently had minor cardiac amyloid deposits, enabling us to extend to the heart the demonstrable efficacy of our unique antibody therapy for elimination of visceral amyloid.
Collapse
|
32
|
Ahlin S, Olsson M, Olsson B, Svensson PA, Sjöholm K. No evidence for a role of adipose tissue-derived serum amyloid a in the development of insulin resistance or obesity-related inflammation in hSAA1(+/-) transgenic mice. PLoS One 2013; 8:e72204. [PMID: 23967285 PMCID: PMC3744463 DOI: 10.1371/journal.pone.0072204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.
Collapse
Affiliation(s)
- Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maja Olsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bob Olsson
- Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
33
|
Welin A, Amirbeagi F, Christenson K, Björkman L, Björnsdottir H, Forsman H, Dahlgren C, Karlsson A, Bylund J. The human neutrophil subsets defined by the presence or absence of OLFM4 both transmigrate into tissue in vivo and give rise to distinct NETs in vitro. PLoS One 2013; 8:e69575. [PMID: 23922742 PMCID: PMC3726694 DOI: 10.1371/journal.pone.0069575] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
Neutrophil heterogeneity was described decades ago, but it could not be elucidated at the time whether the existence of different neutrophil subsets had any biological relevance. It has been corroborated in recent years that neutrophil subsets, defined by differential expression of various markers, are indeed present in human blood, calling for renewed attention to this question. The expression of the granule protein olfactomedin 4 (OLFM4) has been suggested to define two such neutrophil subsets. We confirm the simultaneous presence of one OLFM4-positive and one OLFM4-negative neutrophil subpopulation as well as the localization of the protein to specific granules. In vitro, these neutrophil subsets displayed equal tendency to undergo apoptosis and phagocytose bacteria. In addition, the subpopulations were recruited equally to inflammatory sites in vivo, and this was true both in an experimental model of acute inflammation and in naturally occurring pathological joint inflammation. In line with its subcellular localization, only limited OLFM4 release was seen upon in vivo transmigration, and release through conventional degranulation required strong secretagogues. However, extracellular release of OLFM4 could be achieved upon formation of neutrophil extracellular traps (NETs) where it was detected only in a subset of the NETs. Although we were unable to demonstrate any functional differences between the OLFM4-defined subsets, our data show that different neutrophil subsets are present in inflamed tissue in vivo. Furthermore, we demonstrate NETs characterized by different markers for the first time, and our results open up for functions of OLFM4 itself in the extracellular space through exposure in NETs.
Collapse
Affiliation(s)
- Amanda Welin
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Christenson K, Björkman L, Ahlin S, Olsson M, Sjöholm K, Karlsson A, Bylund J. Endogenous Acute Phase Serum Amyloid A Lacks Pro-Inflammatory Activity, Contrasting the Two Recombinant Variants That Activate Human Neutrophils through Different Receptors. Front Immunol 2013; 4:92. [PMID: 23626589 PMCID: PMC3631709 DOI: 10.3389/fimmu.2013.00092] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 12/30/2022] Open
Abstract
Most notable among the acute phase proteins is serum amyloid A (SAA), levels of which can increase 1000-fold during infections, aseptic inflammation, and/or trauma. Chronically elevated SAA levels are associated with a wide variety of pathological conditions, including obesity and rheumatic diseases. Using a recombinant hybrid of the two human SAA isoforms (SAA1 and 2) that does not exist in vivo, numerous in vitro studies have given rise to the notion that acute phase SAA is a pro-inflammatory molecule with cytokine-like properties. It is however unclear whether endogenous acute phase SAA per se mediates pro-inflammatory effects. We tested this in samples from patients with inflammatory arthritis and in a transgenic mouse model that expresses human SAA1. Endogenous human SAA did not drive production of pro-inflammatory IL-8/KC in either of these settings. Human neutrophils derived from arthritis patients displayed no signs of activation, despite being exposed to severely elevated SAA levels in circulation, and SAA-rich sera also failed to activate cells in vitro. In contrast, two recombinant SAA variants (the hybrid SAA and SAA1) both activated human neutrophils, inducing L-selectin shedding, production of reactive oxygen species, and production of IL-8. The hybrid SAA was approximately 100-fold more potent than recombinant SAA1. Recombinant hybrid SAA and SAA1 activated neutrophils through different receptors, with recombinant SAA1 being a ligand for formyl peptide receptor 2 (FPR2). We conclude that even though recombinant SAAs can be valuable tools for studying neutrophil activation, they do not reflect the nature of the endogenous protein.
Collapse
Affiliation(s)
- Karin Christenson
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, EULAR Centre of Excellence in Rheumatology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Lena Björkman
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, EULAR Centre of Excellence in Rheumatology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Sofie Ahlin
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maja Olsson
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Kajsa Sjöholm
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Anna Karlsson
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, EULAR Centre of Excellence in Rheumatology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Johan Bylund
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, EULAR Centre of Excellence in Rheumatology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
35
|
SAA does not induce cytokine production in physiological conditions. Cytokine 2012; 61:506-12. [PMID: 23165195 DOI: 10.1016/j.cyto.2012.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/05/2012] [Accepted: 10/19/2012] [Indexed: 02/02/2023]
Abstract
SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.
Collapse
|
36
|
Soler L, Molenaar A, Merola N, Eckersall PD, Gutiérrez A, Cerón JJ, Mulero V, Niewold TA. Why working with porcine circulating serum amyloid A is a pig of a job. J Theor Biol 2012; 317:119-25. [PMID: 23073471 DOI: 10.1016/j.jtbi.2012.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/06/2012] [Accepted: 10/06/2012] [Indexed: 01/01/2023]
Abstract
Serum amyloid A (SAA) is a major acute phase protein in most species, and is widely employed as a health marker. Systemic SAA isoforms (SAA1, and SAA2) are apolipoproteins synthesized by the liver which associate with high density lipoproteins (HDL). Local SAA (SAA3) isoforms are synthesized in other tissues and are present in colostrums, mastitic milk and mammary dry secretions. Of systemic SAA the bulk is monomeric and bound to HDL, and a small proportion is found in serum in a multimeric form with a buried HDL binding site. In most species, systemic SAA could easily be studied by purifying it from serum of diseased individuals by hydrophobic interaction chromatography methods. For years, we were not able to isolate systemic pig SAA using the latter methods, and found that the bulk of pig SAA did not reside in the HDL-rich serum fractions but in the soluble protein fraction mainly as a multimeric protein. Based on these surprising results, we analysed in silico the theoretical properties and predicted the secondary structure of pig SAA by using the published pig primary SAA amino acid sequence. Results of the analysis confirmed that systemic pig SAA had the highest homology with local SAA3 which in other species is the isoform associated with non-hepatic production in tissues such as mammary gland and intestinal epithelium. Furthermore, the primary sequence of the pig SAA N-terminal HDL binding site did differ considerably from SAA1/2. Secondary structure analysis of the predicted alpha-helical structure of this HDL binding site showed a considerable reduction in hydrophobicity compared to SAA1/2. Based on these results, it is argued that systemic acute phase SAA in the pig has the structural properties of locally produced SAA (SAA3). It is proposed that in pig SAA multimers the charged N-terminal sequence is buried, which would explain their different properties. It is concluded that pig systemic SAA is unique compared to other species, which raises questions about the proposed importance of acute phase SAA in HDL metabolism during inflammation in this species.
Collapse
Affiliation(s)
- L Soler
- Department of Animal Medicine and Surgery, University of Murcia, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jin C, Ekwall AKH, Bylund J, Björkman L, Estrella RP, Whitelock JM, Eisler T, Bokarewa M, Karlsson NG. Human synovial lubricin expresses sialyl Lewis x determinant and has L-selectin ligand activity. J Biol Chem 2012; 287:35922-33. [PMID: 22930755 DOI: 10.1074/jbc.m112.363119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galβ1-3(GlcNAcβ1-6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shi B, Huang Q, Tak PP, Vervoordeldonk MJ, Huang CC, Dorfleutner A, Stehlik C, Pope RM. SNAPIN: an endogenous Toll-like receptor ligand in rheumatoid arthritis. Ann Rheum Dis 2012; 71:1411-7. [PMID: 22523426 DOI: 10.1136/annrheumdis-2011-200899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The mechanisms contributing to the persistent activation of macrophages in rheumatoid arthritis (RA) are not fully understood. Some studies suggest that endogenous toll-like receptor (TLR) ligands promote the chronic inflammation observed in RA. The objective of this study was to identify endogenous TLR ligands expressed in RA synovial tissue (ST) based on their ability to bind the extracellular domains of TLR2 or TLR4. METHODS A yeast two-hybrid cDNA library was constructed from ST obtained by arthroscopy from patients with RA and screened using the extracellular domains of TLR2 and TLR4 as the bait. Interactions between TLRs and Snapin were demonstrated by reciprocal co-immunoprecipitation. ST was examined by histology, and single- and two-colour immunohistochemistry and quantitative reverse transcriptase PCR. Snapin (SNAP - associated protein) expression in macrophages was examined by Western Blot analysis and confocal microscopy. The ability of Snapin to activate through TLR2 was examined. RESULTS Employing a yeast two-hybrid system, Snapin was the most frequently identified molecule that interacted with TLR2. These results were confirmed by pull-down of in vitro-expressed Snapin together with TLR2. By immunohistochemistry and quantitative reverse transcriptase PCR, Snapin was highly expressed in RA ST, and it was readily detected in macrophages, where it co-localised in the late endosomes. ST Snapin expression correlated with inflammation and was not disease specific. Finally, Snapin was capable of activating through TLR2. CONCLUSION These observations identify Snapin as a novel endogenous TLR2 ligand in RA, and thus support a role for persistent TLR2 signalling in the pathogenesis of RA.
Collapse
Affiliation(s)
- Bo Shi
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-2909, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Connolly M, Mullan RH, McCormick J, Matthews C, Sullivan O, Kennedy A, FitzGerald O, Poole AR, Bresnihan B, Veale DJ, Fearon U. Acute-phase serum amyloid A regulates tumor necrosis factor α and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologic therapy. ACTA ACUST UNITED AC 2011; 64:1035-45. [PMID: 22076945 DOI: 10.1002/art.33455] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the relationship between acute-phase serum amyloid A (A-SAA) and joint destruction in inflammatory arthritis. METHODS Serum A-SAA and C-reactive protein (CRP) levels, the erythrocyte sedimentation rate (ESR), and levels of matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, MMP-9, MMP-13, tissue inhibitor of metalloproteinases 1 (TIMP-1), vascular endothelial growth factor (VEGF), and type I and type II collagen-generated biomarkers C2C and C1,2C were measured at 0-3 months in patients with inflammatory arthritis commencing anti-tumor necrosis factor α (anti-TNFα) therapy and were correlated with 1-year radiographic progression. The effects of A-SAA on MMP/TIMP expression on RA fibroblast-like synoviocytes (FLS), primary human chondrocytes, and RA/psoriatic arthritis synovial explant cultures were assessed using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, antibody protein arrays, and gelatin zymography. RESULTS Serum A-SAA levels were significantly (P < 0.05) correlated with MMP-3, the MMP-3:TIMP-1 ratio, C1,2C, C2C, and VEGF. The baseline A-SAA level but not the ESR or the CRP level correlated with the 28-joint swollen joint count and was independently associated with 1-year radiographic progression (P = 0.038). A-SAA increased MMP-1, MMP-3, MMP-13, and MMP/TIMP expression in RA FLS and synovial explants (P < 0.05). In chondrocytes, A-SAA induced MMP-1, MMP-3, and MMP-13 messenger RNA and protein expression (all P < 0.01), resulting in a significant shift in MMP:TIMP ratios (P < 0.05). Gelatin zymography revealed that A-SAA induced MMP-2 and MMP-9 activity. Blockade of the A-SAA receptor SR-B1 (A-SAA receptor scavenger receptor-class B type 1) inhibited MMP-3, MMP-2, and MMP-9 expression in synovial explant cultures ex vivo. Importantly, we demonstrated that A-SAA has the ability to induce TNFα expression in RA synovial explant cultures (P < 0.05). CONCLUSION A-SAA may be involved in joint destruction though MMP induction and collagen cleavage in vivo. The ability of A-SAA to regulate TNFα suggests that A-SAA signaling pathways may provide new therapeutic strategies for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Mary Connolly
- St. Vincent's University Hospital, Dublin Academic Medical Centre, The Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Connolly M, Veale DJ, Fearon U. Acute serum amyloid A regulates cytoskeletal rearrangement, cell matrix interactions and promotes cell migration in rheumatoid arthritis. Ann Rheum Dis 2011; 70:1296-303. [PMID: 21482536 DOI: 10.1136/ard.2010.142240] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Serum amyloid A (A-SAA) is an acute-phase protein with cytokine-like properties implicated in the pathogenesis of rheumatoid arthritis (RA), atherosclerosis, diabetes and Alzheimer's disease. This study characterises the mechanism of A-SAA-induced cytoskeletal rearrangement and migration in synovial fibroblasts and microvascular endothelial cells (human dermal endothelial cells; HDEC). METHODS Immunohistology and immunofluorescence were used to examine αvβ3 and β1-integrins, filamentous actin (F-actin) and focal adhesion expression in rheumatoid arthritis synovial tissue (RAST) and rheumatoid arthritis synovial fibroblast cells (RASFC). A-SAA-induced αvβ3 and β1-integrin binding was measured by adhesion assay. Cytoskeletal rearrangement and ρ-GTPase activation following A-SAA stimulation was examined using dual immunofluorescent staining for F-actin/vinculin staining, pull down assays and immunoblotting for Cdc42 and RhoA. Cell growth, invasion/migration, angiogenesis and actin formation were examined in the presence or absence of specific Rac1 and Cdc42 inhibitors (NSC23766 and 187-1). RESULTS αvβ3, β1-integrin and F-actin predominantly localised to vascular endothelium and lining layer cells in RAST, compared with osteoarthritis and normal control synovial tissue. A-SAA significantly increased αvβ3 and β1 binding in RASFC. A-SAA induced cytoskeletal disassembly, loss of focal adhesions and filopodia formation in RASFC and HDEC. A-SAA significantly induced Cdc42 activation but failed to promote RhoA activation in HDEC and synovial fibroblast cells. Blockade of Rac-1 and Cdc42 inhibited A-SAA-induced cell growth, invasion/migration, actin cytoskeletal rearrangement and angiogenesis. CONCLUSIONS These data show a novel mechanism for A-SAA-induced cell migrational events in RA mediated via cytoskeletal signalling pathways.
Collapse
Affiliation(s)
- M Connolly
- Department of Rheumatology, Dublin Academic Medical Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | |
Collapse
|