1
|
Rana JN, Mumtaz S, Han I, Choi EH. Harnessing the synergy of nanosecond high-power microwave pulses and cisplatin to increase the induction of apoptosis in cancer cells through the activation of ATR/ATM and intrinsic pathways. Free Radic Biol Med 2024; 225:221-235. [PMID: 39362289 DOI: 10.1016/j.freeradbiomed.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/17/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The therapeutic application and dose of cisplatin are limited due to its toxicity to normal cells. Therefore, combination treatments might be the solution with a low dose of cisplatin. The combination effect of nanosecond pulsed high-power microwave (HPM) with cisplatin has not been investigated before. In this work, we aimed to investigate and assess the potential synergistic effects and most likely underlying mechanisms resulting from the combination of nanosecond pulsed HPM and cisplatin. Three cancer (SKOV3, H460, and MDA-MB231) and two normal (MRC5 and HGF) cell lines underwent separate treatments with HPM and cisplatin, as well as a combined treatment. A higher reduction of viability was observed in cancer cells using combination treatments following 24-h incubation. Cell death, membrane permeability, and intracellular reactive oxygen species (ROS) levels exhibit a noteworthy increase in response to combined 60 pulses of HPM (HPM60) and cisplatin (0.5 μM) treatments compared to control and individual treatments. Elevated γ-H2AX levels indicate DNA double-strand breaks in combined treatments. Additionally, upregulation of ATR/ATM, Chk1/Chk2, P53, and caspase 3/8, Bax, PARP, and Bcl2 confirms DNA damage and mitochondrial dysfunction, leading to apoptosis. Remarkably, half maximal inhibitory concentration (IC50) results showed that HPM60 and cisplatin (0.5 μM) resulted in 16 times higher cell death in SKOV3 and H460 cells compared to cisplatin alone. Moreover, the efficacy of this combined treatment led to an over 50 % decrease in the viability of cancer cells. On the other hand, normal cells (MRC5 and HGF) exhibited only a minor 3-5 % decrease in viability under the same treatment conditions. The obtained results elucidate the cellular mechanisms driving cell apoptosis/death, offering insights for potential advancements in cancer therapy through the combined application of nanosecond pulses of HPM and cisplatin. This serves as a first step for future investigations in this domain.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul, South Korea; Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, South Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea.
| |
Collapse
|
2
|
Rana JN, Mumtaz S, Han I, Choi EH. Formation of reactive species via high power microwave induced DNA damage and promoted intrinsic pathway-mediated apoptosis in lung cancer cells: An in vitro investigation. FUNDAMENTAL RESEARCH 2024; 4:1542-1556. [PMID: 39734544 PMCID: PMC11670698 DOI: 10.1016/j.fmre.2024.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 12/31/2024] Open
Abstract
Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies. High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before. In this work, we uncovered the effect of pulsed HPM on NSCLC (H460 and A549) for the first time and the most likely underlying mechanisms. Two NSCLC (H460 and A549) cells and lung normal MRC5 were exposed to HPM (15, 30, 45, and 60) pulses (2.1 mJ/pulse). After exposure, the effects were observed at 12, 24, 48, and 72 h. HPM primarily increases the level of intracellular reactive species by a strong electric field of ∼27 kV/cm, which altered NSCLC viability, mitochondrial activity, and death rates. A model for the production of intracellular reactive species by HPM was also presented. NSCLC is found to be affected by HPM through DNA damage (upregulation of ATR/ATM, Chk1/Chk2, and P53) and increased expression of apoptotic markers. NAC scavenger and CPTIO-inhibitor confirm that the reactive species are mainly accountable for cellular effects. In order to ensure suitability for real-world usage, the skin depth was calculated as 30 mm. ROS played a main role in inducing cellular effects, with NO species possibly playing a contributing role. These findings clarify the cellular mechanisms underlying HPM-induced cell death, potentially advancing therapeutic approaches for treating NSCLC, and a useful first step for future investigations in this area. Moreover, this technique has the potential to serve as an adjunct to non-surgical methods in cancer therapy.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| |
Collapse
|
3
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
4
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
5
|
Lai H, Levitt BB. The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med 2022; 41:230-255. [PMID: 35438055 DOI: 10.1080/15368378.2022.2065683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system's ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological "stressor" capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely functionthrough different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Pooam M, Jourdan N, Aguida B, Dahon C, Baouz S, Terry C, Raad H, Ahmad M. Exposure to 1.8 GHz radiofrequency field modulates ROS in human HEK293 cells as a function of signal amplitude. Commun Integr Biol 2022; 15:54-66. [PMID: 35126804 PMCID: PMC8816398 DOI: 10.1080/19420889.2022.2027698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The modern telecommunications industry is ubiquitous throughout the world, with a significant percentage of the population using cellular phones on a daily basis. The possible physiological consequences of wireless emissions in the GHz range are therefore of major interest, but remain poorly understood. Here, we show that exposure to a 1.8 GHz carrier frequency in the amplitude range of household telecommunications induces the formation of ROS (Reactive Oxygen Species) in human HEK293 cultured cells. The ROS concentrations detected by fluorescent imaging techniques increased significantly after 15 minutes of RF field exposure, and were localized to both nuclear and cytosolic cellular compartments. qPCR analysis showed altered gene expression of both anti-oxidative (SOD, GPX, GPX, and CAT) and oxidative (Nox-2) enzymes. In addition, multiple genes previously identified as responsive to static magnetic fields were found to also be regulated by RF, suggesting common features in response mechanisms. By contrast, many RF effects showed evidence of hormesis, whereby biological responsivity does not occur linearly as a function of signal amplitude. Instead, biphasic dose response curves occur with ‘blind’ spots at certain signal amplitudes where no measureable response occurs. We conclude that modulation of intracellular ROS can be a direct consequence of RF exposure dependent on signal frequency and amplitude. Since changes in intracellular ROS may have both harmful and beneficial effects, these could provide the basis for many reported physiological effects of RF exposure.
Collapse
Affiliation(s)
- Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | - Colin Terry
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Haider Raad
- Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | - Margaret Ahmad
- Sorbonne Université - CNRS, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Shaw P, Kumar N, Mumtaz S, Lim JS, Jang JH, Kim D, Sahu BD, Bogaerts A, Choi EH. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Sci Rep 2021; 11:14003. [PMID: 34234197 PMCID: PMC8263747 DOI: 10.1038/s41598-021-93274-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR, Escherichia coli and Staphylococcus aureus cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm2 at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in E. coli and 4 log reduction in S. aureus. Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.
Collapse
Affiliation(s)
- Priyanka Shaw
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea ,grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium
| | - Naresh Kumar
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea ,grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium ,grid.464627.50000 0004 1775 2612Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, Assam 781101 India
| | - Sohail Mumtaz
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Jung Hyun Jang
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Doyoung Kim
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Bidya Dhar Sahu
- grid.464627.50000 0004 1775 2612Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, Assam 781101 India
| | - Annemie Bogaerts
- grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium
| | - Eun Ha Choi
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|
8
|
Alkis ME, Akdag MZ, Dasdag S. Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats. Bioelectromagnetics 2020; 42:76-85. [PMID: 33368426 DOI: 10.1002/bem.22315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76-85. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Mehmet E Alkis
- Department of Occupational Health and Safety, Health School of Muş Alparslan University, Muş, Turkey
| | - Mehmet Z Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
9
|
Stein Y, Udasin IG. Electromagnetic hypersensitivity (EHS, microwave syndrome) - Review of mechanisms. ENVIRONMENTAL RESEARCH 2020; 186:109445. [PMID: 32289567 DOI: 10.1016/j.envres.2020.109445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Electromagnetic hypersensitivity (EHS), known in the past as "Microwave syndrome", is a clinical syndrome characterized by the presence of a wide spectrum of non-specific multiple organ symptoms, typically including central nervous system symptoms, that occur following the patient's acute or chronic exposure to electromagnetic fields in the environment or in occupational settings. Numerous studies have shown biological effects at the cellular level of electromagnetic fields (EMF) at magnetic (ELF) and radio-frequency (RF) frequencies in extremely low intensities. Many of the mechanisms described for Multiple Chemical Sensitivity (MCS) apply with modification to EHS. Repeated exposures result in sensitization and consequent enhancement of response. Many hypersensitive patients appear to have impaired detoxification systems that become overloaded by excessive oxidative stress. EMF can induce changes in calcium signaling cascades, significant activation of free radical processes and overproduction of reactive oxygen species (ROS) in living cells as well as altered neurological and cognitive functions and disruption of the blood-brain barrier. Magnetite crystals absorbed from combustion air pollution could have an important role in brain effects of EMF. Autonomic nervous system effects of EMF could also be expressed as symptoms in the cardiovascular system. Other common effects of EMF include effects on skin, microvasculature, immune and hematologic systems. It is concluded that the mechanisms underlying the symptoms of EHS are biologically plausible and that many organic physiologic responses occur following EMF exposure. Patients can have neurologic, neuro-hormonal and neuro-psychiatric symptoms following exposure to EMF as a consequence of neural damage and over-sensitized neural responses. More relevant diagnostic tests for EHS should be developed. Exposure limits should be lowered to safeguard against biologic effects of EMF. Spread of local and global wireless networks should be decreased, and safer wired networks should be used instead of wireless, to protect susceptible members of the public. Public places should be made accessible for electrohypersensitive individuals.
Collapse
Affiliation(s)
- Yael Stein
- Pain Clinic, Department of Anesthesiology and Critical Care Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; Electromagnetic Radiation Clinic, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Iris G Udasin
- EOHSI Clinical Center, Rutgers University- School of Public Health, NJ, USA
| |
Collapse
|
10
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
11
|
Durdik M, Kosik P, Markova E, Somsedikova A, Gajdosechova B, Nikitina E, Horvathova E, Kozics K, Davis D, Belyaev I. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep 2019; 9:16182. [PMID: 31700008 PMCID: PMC6838175 DOI: 10.1038/s41598-019-52389-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to electromagnetic fields (EMF) has been associated with the increased risk of childhood leukemia, which arises from mutations induced within hematopoietic stem cells often through preleukemic fusion genes (PFG). In this study we investigated whether exposure to microwaves (MW) emitted by mobile phones could induce various biochemical markers of cellular damage including reactive oxygen species (ROS), DNA single and double strand breaks, PFG, and apoptosis in umbilical cord blood (UCB) cells including CD34+ hematopoietic stem/progenitor cells. UCB cells were exposed to MW pulsed signals from GSM900/UMTS test-mobile phone and ROS, apoptosis, DNA damage, and PFG were analyzed using flow cytometry, automated fluorescent microscopy, imaging flow cytometry, comet assay, and RT-qPCR. In general, no persisting difference in DNA damage, PFG and apoptosis between exposed and sham-exposed samples was detected. However, we found increased ROS level after 1 h of UMTS exposure that was not evident 3 h post-exposure. We also found that the level of ROS rise with the higher degree of cellular differentiation. Our data show that UCB cells exposed to pulsed MW developed transient increase in ROS that did not result in sustained DNA damage and apoptosis.
Collapse
Affiliation(s)
- Matus Durdik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Pavol Kosik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Markova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alexandra Somsedikova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Beata Gajdosechova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ekaterina Nikitina
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Eva Horvathova
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Kozics
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Devra Davis
- The Hebrew University Hadassah School of Medicine, and Environmental Health Trust, Washington, USA
| | - Igor Belyaev
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
12
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
13
|
Shojaeifard M, Jarideh S, Owjfard M, Nematollahii S, Talaei-Khozani T, Malekzadeh M. Electromagnetic Fields of Mobile Phone Jammer Exposure on Blood Factors in Rats. J Biomed Phys Eng 2018; 8:403-408. [PMID: 30568930 PMCID: PMC6280113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/28/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND The increasing demand for using mobile phones has led to increasing mobile phone jammers as well. On the other hand, reports show that exposure to electromagnetic field causes an increase in the incidence of diseases such as leukemia, cancer, depression and failure in pregnancy outcomes; therefore, the aim of this study is to investigate the effects of exposure to electromagnetic fields of mobile phone jammers on blood factors. MATERIALS AND METHODS Thirty male Wistar immature and thirty mature rats were selected randomly and each one was divided into three groups of ten. The control group did not receive any radiation; the sham group was exposed to a switched-off jammer device and the experimental group was exposed to electromagnetic fields (EMF) radiated by Mobile Phone Jammer daily eight hours for five days a week during forty days. Blood sample was taken from heart and blood factors including PLT, MCHC and RDWCV were measured. The data were analyzed by ANOVA which was followed by Duncan's test. RESULTS The data from mature rats revealed that jammer usage led to a significant difference in blood factors including RBC, platelet, hemoglobin, hematocrit, MCV and RDWCV (P≤0.05); however, the number of lymphocytes, WBC and MCVH in the blood was the same in all groups. In immature rats, the exposure to jammer did not change RBC, lymphocyte and WBC count, hemoglobin and hematocrit; while, the platelet count along with MCHC, MVC and RDWCV changed by jammer radiation. CONCLUSION The results exhibited that mobile phone jammer caused frequent changes in blood cell factors.
Collapse
Affiliation(s)
- M.B. Shojaeifard
- Physiology Department, Fasa University of Medical Sciences, Fasa, Iran
,Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Jarideh
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Owjfard
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Nematollahii
- Biostatistic Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - T. Talaei-Khozani
- Anatomy Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Malekzadeh
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Szymanski L, Cios A, Lewicki S, Szymanski P, Stankiewicz W. Fas/FasL pathway and cytokines in keratinocytes in atopic dermatitis - Manipulation by the electromagnetic field. PLoS One 2018; 13:e0205103. [PMID: 30286163 PMCID: PMC6171903 DOI: 10.1371/journal.pone.0205103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/05/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most frequent skin diseases. Changes of the keratinocytes functionality play a major role in the development of AD. For example, activation of the Fas (CD95)/FasL (CD178) pathway in AD does not lead to extensive apoptosis in skin. Binding of the Fas receptor to its protein ligand-FasL, which are present on the (AD)-modified keratinocytes, should result in the sequential induction of cell death, but there is no evidence of extensive apoptosis of these cells. This suggests that non-apoptotic mechanism of Fas/FasL pathway is commonly encountered, although not examined in the case of AD, phenomenon. An electromagnetic field, which was used to influence cultured cells in this study, can modulate proliferation, apoptosis, differentiation, and metabolism in various cells. OBJECTIVE Here, we evaluate the possibility to manipulate the immune activation of AD keratinocytes and their response to the electromagnetic field, which was not tested before. METHODS Keratinocytes isolated from the skin of healthy subjects (n = 20) and patients with atopic dermatitis (n = 20) as well as HaCaT and PCS-200-010 cell were exposed to the 900 MHz electromagnetic field for 60 minutes. Cytometric analysis of viability, Fas/FasL, p-ERK, p-p38 and p-JNK expression and Luminex analysis of cytokine concentration were performed in two-time points: 4 and 24 hours after the exposition. RESULTS This research has shown upregulated Fas, FasL, p-ERK, p-p38, and p-JNK expression along with increased cytokine secretion (IL-1β, IL-4, IL-8, IL-10, IL-12p70, IL-13, IL-17A, IL-31 and TNFα) by keratinocytes derived from the skin of patients with the AD when compared with healthy control. Exposure of keratinocyte cultures obtained from AD patients to EMF resulted in a decrease of 1β, IL-4, IL-10, IL-12, I L-13, IL-17, IL-31 and TNFα levels. Keratinocytes derived from the skin of AD patients are characterized by elevated Fas and FasL expression when compared to healthy control. CONCLUSION Apoptotic and nonapoptotic activation of the Fas/FasL-dependent signaling pathway may play a significant role in the pathogenesis of AD, by adjusting the local cytokine and chemokine environment at the site of inflammation. Moreover, the electromagnetic field exhibits strong immunomodulatory effects on AD-modified keratinocytes.
Collapse
Affiliation(s)
- Lukasz Szymanski
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Aleksandra Cios
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Pawel Szymanski
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
15
|
Magnetic Fields and Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18102175. [PMID: 29057846 PMCID: PMC5666856 DOI: 10.3390/ijms18102175] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Collapse
|
16
|
Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 2017; 5:167-176. [PMID: 30023251 PMCID: PMC6025786 DOI: 10.1016/j.jmau.2017.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems. Abbreviations: EMF, electromagnetic fields; RF, radiofrequency; ROS, reactive oxygen species; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; CAT, catalase; SOD, superoxide dismutase; HSP, heat shock protein; EMF/RFR, electromagnetic frequency and radiofrequency exposures; ELF-EMFs, exposure to extremely low frequency; MEL, melatonin; FA, folic acid; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Elfide Gizem Kıvrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
17
|
Kivrak EG, Altunkaynak BZ, Alkan I, Yurt KK, Kocaman A, Onger ME. Effects of 900-MHz radiation on the hippocampus and cerebellum of adult rats and attenuation of such effects by folic acid and Boswellia sacra. J Microsc Ultrastruct 2017; 5:216-224. [PMID: 30023257 PMCID: PMC6025788 DOI: 10.1016/j.jmau.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
The radiation emitted from mobile phones has various deleterious effects on human health. This study was conducted to evaluate the effects of exposure to the 900-MHz radiation electromagnetic fields (EMF) emitted by mobile phones on Ammon's horn and the dentate gyrus (DG) in the hippocampus and cerebellum of male Wistar albino rats. We also investigated the neuroprotective effects of the antioxidants Boswellia sacra (BS) and folic acid (FA) against exposure to EMF. Twenty-four adult male rats were randomly divided into four groups of six animals each, an EMF group, an EMF + FA exposure group (EFA), an EMF + BS exposure group (EBS) and a control group (Cont). The EMF, EFA and EBS groups were exposed to 900-MHz EMF radiation inside a tube once daily over 21 days (60 min/day). The Cont group was not exposed to 900-MHz EMF. The results showed that EMF caused a significant decrease in total pyramidal and granular cell numbers in the hippocampus, and DG and in Purkinje cell numbers in the cerebellum in the EMF group compared to the other groups (p < 0.05). BS and FA attenuated the neurodegenerative effects of EMF in the hippocampus and cerebellum. Significant differences were also determined between the numbers of neurons in the EFA and EMF groups, and between the EBS and EMF groups (p < 0.05). However, there were no significant differences among Cont, EFA and EBS (p > 0.05). Our results may contribute to ongoing research into the effects of 900-MHz EMF exposure. Abbreviations: BS, Boswellia sacra; CA, cornu ammonis; CAT, catalase; CE, coefficient of error; CV, coefficient of variation; DG, dentate gyrus; DNA, deoxyribonucleic acid; EMF, electromagnetic field; EBS, the group that is exposed to EMF and received a single daily gavage of BS (500 mg/kg/day) during 21 days; EEG, electroencephalogram; EFA, the group that is exposed to EMF and received a single daily gavage of folic acid (50 mg/kg/day) during 21 days; FA, folic acid; gr, granular layer; H2O2, hydrogen peroxide; MHz, Megahertz; ml, molecular layer; RF, radiofrequency; ROS, reactive oxygen specimens; SEM, standard error of the mean.
Collapse
Affiliation(s)
- Elfide Gizem Kivrak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Isinsu Alkan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kiymet Kubra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Kocaman
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Emin Onger
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
18
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [PMID: 28818275 DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
19
|
RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8653286. [PMID: 28904975 PMCID: PMC5585657 DOI: 10.1155/2017/8653286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/17/2017] [Indexed: 01/05/2023]
Abstract
The advent of Wi-Fi connected high technology devices in executing day-to-day activities is fast evolving especially in developing countries of the world and hence the need to assess its safety among others. The present study was conducted to investigate the injurious effect of radiofrequency emissions from installed Wi-Fi devices in brains of young male rats. Animals were divided into four equal groups; group 1 served as control while groups 2, 3, and 4 were exposed to 2.5 Ghz at intervals of 30, 45, and 60 consecutive days with free access to food and water ad libitum. Alterations in harvested brain tissues were confirmed by histopathological analyses which showed vascular congestion and DNA damage in the brain was assayed using agarose gel electrophoresis. Histomorphometry analyses of their brain tissues showed perivascular congestion and tissue damage as well.
Collapse
|
20
|
D'Silva MH, Swer RT, Anbalagan J, Rajesh B. Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo - A Comparative Study. J Clin Diagn Res 2017; 11:AC05-AC09. [PMID: 28892876 DOI: 10.7860/jcdr/2017/26360.10275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/08/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. AIM To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. MATERIALS AND METHODS Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. RESULTS In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. CONCLUSION The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone.
Collapse
Affiliation(s)
- Mary Hydrina D'Silva
- Tutor, Department of Anatomy, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, India
| | - Rijied Thompson Swer
- Associate Professor, Department of Anatomy, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, India
| | - J Anbalagan
- Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute, Puducherry, India
| | - Bhargavan Rajesh
- Associate Professor, Department of Anatomy, Sri Lakshminarayana Institute of Medical Sciences, Bharath University, Puducherry, India
| |
Collapse
|
21
|
Tamrin SH, Majedi FS, Tondar M, Sanati-Nezhad A, Hasani-Sadrabadi MM. Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Rev Physiol Biochem Pharmacol 2017; 171:63-97. [PMID: 27515674 DOI: 10.1007/112_2016_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Center of Excellence in Biomaterials, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Amir Sanati-Nezhad
- BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada, T2N1N4.
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Chemistry & Biochemistry, and California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Mortazavi SMJ, Mostafavi-Pour Z, Daneshmand M, Zal F, Zare R, Mosleh-Shirazi MA. Adaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity. J Biomed Phys Eng 2017; 7:137-142. [PMID: 28580335 PMCID: PMC5447250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/20/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND Over the past few years, the rapid use of high frequency electromagnetic fields like mobile phones has raised global concerns about the negative health effects of its use. Adaptive response is the ability of a cell or tissue to better resist stress damage by prior exposure to a lesser amount of stress. This study aimed to assess whether radiofrequency radiation can induce adaptive response by changing the antioxidant balance. MATERIALS AND METHODS In order to assess RF-induced adaptive response in tissues, we evaluated the level of GSH and the activity of GR in liver. 50 rats were divided into 5 groups. Three groups were pre-exposed to 915 MHz RF radiation, 4 hours per day for one week at different powers, as low, medium and high. 24 hours after the last exposure to radiation, they were exposed to 4 Gy sublethal dose of gamma radiation and then sacrificed after 5 hours. Their livers were removed, washed and were kept at -80o C until used. RESULTS Our finding showed that pre-exposure to 915 MHz radiofrequency radiation with specific power could induce adaptive response in liver by inducing changes in the activity and level of antioxidant enzymes. CONCLUSION It can be concluded that pre-exposure to microwave radiation could increase the level of GSH and the activity of GR enzyme, although these increases were seen just in low power group, and the GR activity was indicated in medium power group. This increase protects tissue from oxidative damage induced by sublethal dose of gamma radiation.
Collapse
Affiliation(s)
- S M J Mortazavi
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Z Mostafavi-Pour
- Biochemistry Department, Medical School, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
- Recombinant Protein Laboratory, School of Advanced Medical Sciences and Technologies, Shiraz University of Medicinal Sciences, Shiraz, Iran
| | - M Daneshmand
- Radiology Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Zal
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Zare
- Biochemistry Department, Medical School, Shiraz University of Medicinal Sciences, Shiraz, IR Iran
| | - M A Mosleh-Shirazi
- Radiation Physics Section, Radiotherapy, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Xing F, Zhan Q, He Y, Cui J, He S, Wang G. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro. PLoS One 2016; 11:e0163935. [PMID: 27689798 PMCID: PMC5045209 DOI: 10.1371/journal.pone.0163935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 04/17/2016] [Indexed: 12/23/2022] Open
Abstract
Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.
Collapse
Affiliation(s)
- Fuqiang Xing
- SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), 510006 Guangzhou, China
- Department of Biology, South University of Science and Technology of China (SUSTC), Shenzhen 518055, China
| | - Qiuqiang Zhan
- SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), 510006 Guangzhou, China
| | - Yiduo He
- Department of Biology, South University of Science and Technology of China (SUSTC), Shenzhen 518055, China
| | - Jiesheng Cui
- Department of Biology, South University of Science and Technology of China (SUSTC), Shenzhen 518055, China
| | - Sailing He
- SCNU-ZJU Joint Research Center of Photonics, South China Academy of Advanced Optoelectronics, South China Normal University (SCNU), 510006 Guangzhou, China
- Department of Electromagnetic Engineering, Royal Institute of Technology (KTH), 10044 Stockholm, Sweden
- * E-mail: (SH); (GW)
| | - Guanyu Wang
- Department of Biology, South University of Science and Technology of China (SUSTC), Shenzhen 518055, China
- * E-mail: (SH); (GW)
| |
Collapse
|
24
|
Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health 2016; 23:411-20. [DOI: 10.1177/0748233707080906] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Mechanisms of adverse effects of EMR indicate that reactive oxygen species (ROS) may play a role in the biological effects of this radiation. The aims of this study were to examine 900 MHz mobile phone-induced oxidative stress that promotes production of ROS and to investigate the role of vitamins E and C, which have antioxidant properties, on endometrial tissue against possible 900MHz mobile phone-induced endometrial impairment in rats. The animals were randomly grouped (eight each) as follows: 1) Control group (without stress and EMR, Group I), 2) sham-operated rats stayed without exposure to EMR (exposure device off, Group II), 3) rats exposed to 900MHz EMR (EMR group, Group III) and 4) a 900MHz EMR exposed + vitamin-treated group (EMR + Vit group, Group IV). A 900 MHz EMR was applied to EMR and EMR + Vit group 30min/day, for 30 days using an experimental exposure device. Endometrial levels of nitric oxide (NO, an oxidant product) and malondialdehyde (MDA, an index of lipid peroxidation), increased in EMR exposed rats while the combined vitamins E and C caused a significant reduction in the levels of NO and MDA. Likewise, endometrial superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased in EMR exposed animals while vitamins E and C caused a significant increase in the activities of these antioxidant enzymes. In the EMR group histopathologic changes in endometrium, diffuse and severe apoptosis was present in the endometrial surface epithelial and glandular cells and the stromal cells. Diffuse eosinophilic leucocyte and lymphocyte infiltration were observed in the endometrial stroma whereas the combination of vitamins E and C caused a significant decrease in these effects of EMR. It is concluded that oxidative endometrial damage plays an important role in the 900 MHz mobile phone-induced endometrial impairment and the modulation of oxidative stress with vitamins E and C reduces the 900MHz mobile phone-induced endometrial damage both at biochemical and histological levels. Toxicology and Industrial Health 2007; 23: 411—420.
Collapse
Affiliation(s)
- Mehmet Guney
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey, mguney@ med.sdu.edu.tr
| | - Fehmi Ozguner
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Baha Oral
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Nermin Karahan
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Tamer Mungan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
25
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
26
|
Moraitis N, Christopoulou M, Nikita KS, Voulgaridou GP, Anestopoulos I, Panagiotidis MI, Pappa A. In-vitro assessment of Jurkat T-cells response to 1966 MHz electromagnetic fields in a GTEM cell. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2592-5. [PMID: 26736822 DOI: 10.1109/embc.2015.7318922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents the experimental configuration and procedure as well as the in-vitro assessment of Jurkat T-cells response to 1966 MHz exposure of modulated and unmodulated electromagnetic signals within a Gigahertz Transverse Electro-Magnetic (GTEM) cell. Different combinations of electric field intensity, exposure duration and modulation schemes were applied. Exposures at continuous wave (CW) signal at low intensity levels (3 V/m) did not induce any significant DNA damage, but a slight increase was observed for extreme stress levels (76.4 V/m). On the other hand, the results indicate that, at both, low and high electric field intensity UMTS (Universal Mobile Telecommunications System) signal could be statistically related to DNA damage in-vitro. Nevertheless, further experiments are required, increasing the statistical number of samples and recruiting more DNA damage endpoints before conclusive statements are drawn.
Collapse
|
27
|
Furtado-Filho OV, Borba JB, Maraschin T, Souza LM, Henriques JAP, Moreira JCF, Saffi J. Effects of chronic exposure to 950 MHz ultra-high-frequency electromagnetic radiation on reactive oxygen species metabolism in the right and left cerebral cortex of young rats of different ages. Int J Radiat Biol 2015; 91:891-7. [DOI: 10.3109/09553002.2015.1083629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Orlando V. Furtado-Filho
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Military School of Porto Alegre, Brazilian Army, Porto Alegre, Brazil
| | - Juliana B. Borba
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiana Maraschin
- Toxicological Genetics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Larissa M. Souza
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - João A. P. Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José C. F. Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jenifer Saffi
- Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
28
|
Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat 2015; 75:85-93. [PMID: 26371078 DOI: 10.1016/j.jchemneu.2015.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies.
Collapse
Affiliation(s)
- Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, 21280 Diyarbakir, Turkey
| |
Collapse
|
29
|
Gandhi G, Kaur G, Nisar U. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station. Electromagn Biol Med 2015; 34:344-54. [DOI: 10.3109/15368378.2014.933349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Marjanovic AM, Pavicic I, Trosic I. Cell oxidation-reduction imbalance after modulated radiofrequency radiation. Electromagn Biol Med 2015; 34:381-6. [PMID: 25119294 DOI: 10.3109/15368378.2014.948184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.
Collapse
Affiliation(s)
- Ana Marija Marjanovic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivan Pavicic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| | - Ivancica Trosic
- a Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health , Zagreb , Croatia
| |
Collapse
|
31
|
Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2015; 35:186-202. [PMID: 26151230 DOI: 10.3109/15368378.2015.1043557] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
Collapse
Affiliation(s)
- Igor Yakymenko
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Olexandr Tsybulin
- b Department of Biophysics , Bila Tserkva National Agrarian University , Bila Tserkva , Ukraine
| | - Evgeniy Sidorik
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Diane Henshel
- c School of Public and Environmental Affairs , Indiana University Bloomington , Bloomington , IN , USA
| | - Olga Kyrylenko
- d A.I. Virtanen Institute, University of Eastern Finland , Kuopio , Finland
| | - Sergiy Kyrylenko
- e Department of Structural and Functional Biology , University of Campinas , Campinas , Brazil
| |
Collapse
|
32
|
Paffi A, Liberti M, Apollonio F, Sheppard A, Balzano Q. In vitro exposure: Linear and non-linear thermodynamic events in Petri dishes. Bioelectromagnetics 2015; 36:527-37. [PMID: 25995097 DOI: 10.1002/bem.21923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 05/04/2015] [Indexed: 11/10/2022]
Abstract
We conducted an electromagnetic-thermal analysis of Petri dishes filled with different medium volumes under different radio frequency exposure conditions with the aim of identifying linear and non-linear parameters that might explain contradictory results of many in vitro bioelectromagnetic experiments. We found that power loss density and temperature depend on shape, size, and orientation of the exposed sample with respect to direction of incident energy, showing that the liquid medium acts as a receiving antenna. In addition, we investigated the possibility of convection from thermodynamic principles within the liquid medium. For a 35 mm diameter Petri dish, a 2 or 4 ml medium volume is too small to support vertical convection. Conversely, horizontal convective motion is possible for H-polarization exposures at 1.8 GHz.
Collapse
Affiliation(s)
- Alessandra Paffi
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | - Micaela Liberti
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | - Francesca Apollonio
- ICEmB (Italian Interuniversity Center Electromagnetic Field and Biosystems) at "La Sapienza", University of Rome, Rome, Italy
| | | | - Quirino Balzano
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
33
|
Zhang Y, Li Z, Gao Y, Zhang C. Effects of fetal microwave radiation exposure on offspring behavior in mice. JOURNAL OF RADIATION RESEARCH 2015; 56:261-268. [PMID: 25359903 PMCID: PMC4380045 DOI: 10.1093/jrr/rru097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 05/31/2023]
Abstract
The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5-18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects.
Collapse
Affiliation(s)
- Yanchun Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Yan Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| |
Collapse
|
34
|
Kang KA, Lee HC, Lee JJ, Hong MN, Park MJ, Lee YS, Choi HD, Kim N, Ko YG, Lee JS. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells. JOURNAL OF RADIATION RESEARCH 2014; 55:265-276. [PMID: 24105709 PMCID: PMC3951078 DOI: 10.1093/jrr/rrt116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/04/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Hyung Chul Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Je-Jung Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Mi-Na Hong
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Myung-Jin Park
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Yun-Sil Lee
- College of Pharmacy and Division of Life Science and Pharmaceuticals, Ewha Womans University, Seoul 120-808, Republic of Korea
| | - Hyung-Do Choi
- EM Environment Research Team, Electronics and Telecommunications Research Institute, Daejeon 305-700, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 361-763, Korea
| | - Young-Gyu Ko
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Jae-Seon Lee
- Research Center for Radio-senescence, and Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| |
Collapse
|
35
|
Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B, Save E. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload. Behav Brain Res 2013; 258:80-9. [PMID: 24144546 DOI: 10.1016/j.bbr.2013.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022]
Abstract
The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain.
Collapse
Affiliation(s)
- Karima Maaroufi
- Aix-Marseille University, CNRS, Federation 3C FR 3512, Laboratory of Cognitive Neuroscience, UMR 7291, Marseille, France; Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Could radiotherapy effectiveness be enhanced by electromagnetic field treatment? Int J Mol Sci 2013; 14:14974-95. [PMID: 23867611 PMCID: PMC3742283 DOI: 10.3390/ijms140714974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022] Open
Abstract
One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.
Collapse
|
37
|
Tkalec M, Stambuk A, Srut M, Malarić K, Klobučar GIV. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 90:7-12. [PMID: 23352129 DOI: 10.1016/j.ecoenv.2012.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
Accumulating evidence suggests that exposure to radiofrequency electromagnetic field (RF-EMF) can have various biological effects. In this study the oxidative and genotoxic effects were investigated in earthworms Eisenia fetida exposed in vivo to RF-EMF at the mobile phone frequency (900 MHz). Earthworms were exposed to the homogeneous RF-EMF at field levels of 10, 23, 41 and 120 V m(-1) for a period of 2h using a Gigahertz Transversal Electromagnetic (GTEM) cell. At the field level of 23 V m(-1) the effect of longer exposure (4h) and field modulation (80% AM 1 kHz sinusoidal) was investigated as well. All exposure treatments induced significant genotoxic effect in earthworms coelomocytes detected by the Comet assay, demonstrating DNA damaging capacity of 900 MHz electromagnetic radiation. Field modulation additionally increased the genotoxic effect. Moreover, our results indicated the induction of antioxidant stress response in terms of enhanced catalase and glutathione reductase activity as a result of the RF-EMF exposure, and demonstrated the generation of lipid and protein oxidative damage. Antioxidant responses and the potential of RF-EMF to induce damage to lipids, proteins and DNA differed depending on the field level applied, modulation of the field and duration of E. fetida exposure to 900 MHz electromagnetic radiation. Nature of detected DNA lesions and oxidative stress as the mechanism of action for the induction of DNA damage are discussed.
Collapse
Affiliation(s)
- Mirta Tkalec
- Faculty of Science, Department of Botany, University of Zagreb, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
38
|
Simultaneous Effects of Exposure to Microwaves and Noise on Male Rats’ Sperm Parameters and Total Antioxidant Capacity. HEALTH SCOPE 2013. [DOI: 10.5812/jhs.8230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Ghanbari M, Mortazavi SB, Khavanin A, Khazaei M. Simultaneous Effects of Exposure to Microwaves and Noise on Male Rats’ Sperm Parameters and Total Antioxidant Capacity. HEALTH SCOPE 2013. [DOI: 10.17795/jhealthscope-8230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Politański P, Rajkowska E, Brodecki M, Bednarek A, Zmyślony M. Combined effect of X-ray radiation and static magnetic fields on reactive oxygen species in rat lymphocytes in vitro. Bioelectromagnetics 2012. [DOI: 10.1002/bem.21767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Consales C, Merla C, Marino C, Benassi B. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012; 2012:683897. [PMID: 22991514 PMCID: PMC3444040 DOI: 10.1155/2012/683897] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.
Collapse
Affiliation(s)
- Claudia Consales
- Unit of Radiation Biology and Human Health, ENEA-Casaccia, Rome 00123, Italy
| | | | | | - Barbara Benassi
- Unit of Radiation Biology and Human Health, ENEA-Casaccia, Rome 00123, Italy
| |
Collapse
|
42
|
Jin YB, Pyun BJ, Jin H, Choi HD, Pack JK, Kim N, Lee YS. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic field on immune functions in rats. Int J Radiat Biol 2012; 88:814-21. [DOI: 10.3109/09553002.2012.711501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Hong MN, Kim BC, Ko YG, Lee YS, Hong SC, Kim T, Pack JK, Choi HD, Kim N, Lee JS. Effects of 837 and 1950 MHz radiofrequency radiation exposure alone or combined on oxidative stress in MCF10A cells. Bioelectromagnetics 2012; 33:604-11. [PMID: 22549623 DOI: 10.1002/bem.21731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 03/31/2012] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine whether the exposure to either single or multiple radio-frequency (RF) radiation frequencies could induce oxidative stress in cell cultures. Exposures of human MCF10A mammary epithelial cells to either a single frequency (837 MHz alone or 1950 MHz alone) or multiple frequencies (837 and 1950 MHz) were conducted at specific absorption rate (SAR) values of 4 W/kg for 2 h. During the exposure period, the temperature in the exposure chamber was maintained isothermally. Intracellular levels of reactive oxygen species (ROS), the antioxidant enzyme activity of superoxide dismutase (SOD), and the ratio of reduced/oxidized glutathione (GSH/GSSG) showed no statistically significant alterations as the result of either single or multiple RF radiation exposures. In contrast, ionizing radiation-exposed cells, used as a positive control, showed evident changes in all measured biological endpoints. These results indicate that single or multiple RF radiation exposure did not elicit oxidative stress in MCF10A cells under our exposure conditions.
Collapse
Affiliation(s)
- Mi-Na Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fetal radiofrequency radiation exposure from 800-1900 mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2012; 2:312. [PMID: 22428084 PMCID: PMC3306017 DOI: 10.1038/srep00312] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
Neurobehavioral disorders are increasingly prevalent in children, however their etiology is not well understood. An association between prenatal cellular telephone use and hyperactivity in children has been postulated, yet the direct effects of radiofrequency radiation exposure on neurodevelopment remain unknown. Here we used a mouse model to demonstrate that in-utero radiofrequency exposure from cellular telephones does affect adult behavior. Mice exposed in-utero were hyperactive and had impaired memory as determined using the object recognition, light/dark box and step-down assays. Whole cell patch clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) revealed that these behavioral changes were due to altered neuronal developmental programming. Exposed mice had dose-responsive impaired glutamatergic synaptic transmission onto layer V pyramidal neurons of the prefrontal cortex. We present the first experimental evidence of neuropathology due to in-utero cellular telephone radiation. Further experiments are needed in humans or non-human primates to determine the risk of exposure during pregnancy.
Collapse
|
45
|
Güler G, Tomruk A, Ozgur E, Sahin D, Sepici A, Altan N, Seyhan N. The effect of radiofrequency radiation on DNA and lipid damage in female and male infant rabbits. Int J Radiat Biol 2011; 88:367-73. [DOI: 10.3109/09553002.2012.646349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Aydin B, Akar A. Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Arch Med Res 2011; 42:261-7. [PMID: 21820603 DOI: 10.1016/j.arcmed.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 05/25/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS The present study investigated the effects of a 900-MHz electromagnetic field (EMF) for 2 h/day for 45 days on lymphoid organs (spleen, thymus, bone marrow), polymorphonuclear leukocytes (PMNs) and plasma of rats, focusing on changes in the enzymatic and nonenzymatic antioxidant system. We determined whether there is any difference between immature and mature rats in terms of oxidative damage caused by EMF and tested recovery groups to determine whether EMF-induced damage is reversible in immature and mature rats. METHODS Twenty four immature and 24 mature rats were divided randomly and equally into six groups as follows: two control groups, immature (2 weeks old) and mature (10 weeks old); two groups were exposed to 900 MHz (28.2 ± 2.1 V/m) EMF for 2 h/day for 45 days. Two recovery groups were kept for 15 days after EMF exposure. RESULTS Substantial, deleterious biochemical changes were observed in oxidative stress metabolism after EMF exposure. Antioxidant enzyme activity, glutathione levels in lymphoid organs and the antioxidant capacity of the plasma decreased, but lipid peroxidation and nitric oxide levels in PMNs and plasma and also myeloperoxidase activity in PMNs increased. Oxidative damage was tissue specific and improvements seen after the recovery period were limited, especially in immature rats. CONCLUSIONS In the present study, much higher levels of irreversible oxidative damage were observed in the major lymphoid organs of immature rats than in mature rats.
Collapse
Affiliation(s)
- Birsen Aydin
- Department of Biology, Faculty of Science, Amasya University, Turkey.
| | | |
Collapse
|
47
|
Luukkonen J, Juutilainen J, Naarala J. Combined effects of 872 MHz radiofrequency radiation and ferrous chloride on reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells. Bioelectromagnetics 2011; 31:417-24. [PMID: 20564172 DOI: 10.1002/bem.20580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to investigate possible cooperative effects of radiofrequency (RF) radiation and ferrous chloride (FeCl(2)) on reactive oxygen species (ROS) production and DNA damage. In order to test intracellular ROS production as a possible underlying mechanism of DNA damage, we applied the fluorescent probe DCFH-DA. Integrity of DNA was quantified by alkaline comet assay. The exposures to 872 MHz RF radiation were conducted at a specific absorption rate (SAR) of 5 W/kg using continuous waves (CW) or a modulated signal similar to that used in Global System for Mobile Communications (GSM) phones. Four groups were included: (1) Sham exposure (control), (2) RF radiation, (3) Chemical treatment, (4) Chemical treatment, and RF radiation. In the ROS production experiments, human neuroblastoma (SH-SY5Y) cells were exposed to RF radiation and 10 microg/ml FeCl(2) for 1 h. In the comet assay experiments, the exposure time was 3 h and an additional chemical (0.015% diethyl maleate) was used to make DNA damage level observable. The chemical treatments resulted in statistically significant responses, but no effects from either CW or modulated RF radiation were observed on ROS production, DNA damage or cell viability.
Collapse
Affiliation(s)
- Jukka Luukkonen
- Department of Environmental Science, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
48
|
Trillo MA, Cid MA, Martínez MA, Page JE, Esteban J, Úbeda A. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals. Bioelectromagnetics 2011; 32:340-50. [DOI: 10.1002/bem.20643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/02/2010] [Indexed: 12/28/2022]
|
49
|
Poulletier de Gannes F, Haro E, Hurtier A, Taxile M, Ruffié G, Billaudel B, Veyret B, Lagroye I. Effect of exposure to the edge signal on oxidative stress in brain cell models. Radiat Res 2010; 175:225-30. [PMID: 21268716 DOI: 10.1667/rr2320.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study we investigated the effect of the Enhanced Data rate for GSM Evolution (EDGE) signal on cells of three human brain cell lines, SH-SY5Y, U87 and CHME5, used as models of neurons, astrocytes and microglia, respectively, as well as on primary cortical neuron cultures. SXC-1800 waveguides (IT'IS-Foundation, Zürich, Switzerland) were modified for in vitro exposure to the EDGE signal radiofrequency (RF) radiation at 1800 MHz. Four exposure conditions were tested: 2 and 10 W/kg for 1 and 24 h. The production of reactive oxygen species (ROS) was measured by flow cytometry using the dichlorofluorescein diacetate (DCFH-DA) probe at the end of the 24-h exposure or 24 h after the 1-h exposure. Rotenone treatment was used as a positive control. All cells tested responded to rotenone treatment by increasing ROS production. These findings indicate that exposure to the EDGE signal does not induce oxidative stress under these test conditions, including 10 W/kg. Our results are in agreement with earlier findings that RF radiation alone does not increase ROS production.
Collapse
|
50
|
Eşmekaya MA, Seyhan N, Ömeroğlu S. Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: a light, electron microscopy and immunohistochemical study. Int J Radiat Biol 2010; 86:1106-16. [PMID: 20807179 DOI: 10.3109/09553002.2010.502960] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In the present study we investigated the possible histopathological effects of pulse modulated Radiofrequency (RF) fields on the thyroid gland using light microscopy, electron microscopy and immunohistochemical methods. MATERIALS AND METHODS Two months old male Wistar rats were exposed to a 900 MHz pulse-modulated RF radiation at a specific absorption rate (SAR) of 1.35 Watt/kg for 20 min/day for three weeks. The RF signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). To assess thyroid endocrine disruption and estimate the degree of the pathology of the gland, we analysed structural alterations in follicular and colloidal diameters and areas, colloid content of the follicles, and height of the follicular epithelium. Apoptosis was confirmed by Transmission Electron Microscopy and assessing the activites of an initiator (caspase-9) and an effector (caspase-3) caspases that are important markers of cells undergoing apoptosis. RESULTS Morphological analyses revealed hypothyrophy of the gland in the 900 MHz RF exposure group. The results indicated that thyroid hormone secretion was inhibited by the RF radiation. In addition, we also observed formation of apoptotic bodies and increased caspase-3 and caspase-9 activities in thyroid cells of the rats that were exposed to modulated RF fields. CONCLUSION The overall findings indicated that whole body exposure to pulse-modulated RF radiation that is similar to that emitted by global system for mobile communications (GSM) mobile phones can cause pathological changes in the thyroid gland by altering the gland structure and enhancing caspase-dependent pathways of apoptosis.
Collapse
Affiliation(s)
- Meriç Arda Eşmekaya
- Department of Biophysics, Faculty of Medicine & Gazi Non-ionizing Radiation Protection (GNRP) Center, Gazi University, Ankara, Turkey.
| | | | | |
Collapse
|