1
|
Perić R, Kozić D, Brkić S, Lendak D, Ostojić J, Bugarski Ignjatović V, Boban J. Reduction in Brain Parenchymal Volume Correlates with Depression and Cognitive Decline in HIV-Positive Males. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:632. [PMID: 40282923 PMCID: PMC12028741 DOI: 10.3390/medicina61040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Human immunodeficiency virus (HIV) has a profound impact on the central nervous system (CNS), contributing to cognitive impairment and depressive symptoms even in individuals receiving combination antiretroviral therapy (cART). This study aimed to investigate the associations between brain parenchymal volumes and neuropsychological outcomes, specifically focusing on cognitive function and depressive symptoms in HIV-positive males. Materials and Methods: A total of 48 male participants underwent cognitive assessment using the Mini-Mental State Examination (MMSE), while depressive symptoms were evaluated in 35 participants using the Beck Depression Inventory (BDI). Volumetric brain analysis was conducted through automated imaging software, volBrain (Version 1.0, published on 23 November 2021), ensuring high consistency and accuracy. Statistical analyses included Pearson correlation to identify relationships between brain volumes and neuropsychological outcomes, emphasizing key regions like the basal forebrain and cingulate gyrus. Results: Significant trends were observed between basal forebrain volume and MMSE scores, emphasizing the role of this region in cognitive regulation. Additional correlations were found with the anterior and middle cingulate gyri, which are crucial for executive functioning and attentional control. Notably, smaller right basal forebrain volumes were associated with greater depressive symptom severity, suggesting the region's specific involvement in mood regulation. These findings highlight the dual impact of HIV on cognitive and emotional health, with structural vulnerabilities in key brain regions playing a central role. Conclusions: This study underscores the selective vulnerability of certain brain regions, such as the basal forebrain and cingulate gyrus, to HIV-associated neurodegeneration. The results highlight the importance of integrating neuroimaging and neuropsychological assessments in routine clinical care for HIV-positive individuals. The study emphasizes the importance of early detection and targeted interventions to address neuropsychological challenges in this population, with a call for further research in larger and more diverse cohorts.
Collapse
Affiliation(s)
- Radmila Perić
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Center for Radiology, University Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Duško Kozić
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Centre for Diagnostic Imaging, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Snežana Brkić
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Clinic for Infectious Diseases, University Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Dajana Lendak
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Clinic for Infectious Diseases, University Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Jelena Ostojić
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
| | - Vojislava Bugarski Ignjatović
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Clinic for Neurology, University Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Jasmina Boban
- Faculty of Medicine Novi Sad, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia (J.O.)
- Centre for Diagnostic Imaging, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
2
|
Horvath RM, Sadowski I. CBP/p300 lysine acetyltransferases inhibit HIV-1 expression in latently infected T cells. iScience 2024; 27:111244. [PMID: 39640574 PMCID: PMC11617383 DOI: 10.1016/j.isci.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation. In contrast, inhibition of CBP/p300 impaired reversal of latency by the HDACi SAHA, indicating that CBP/p300 must contribute to acetylation on the HIV-1 LTR associated with HDACi-mediated latency reversal. CBP/p300 inhibition caused loss of H3K27ac and H3K4me3 from the LTR, but did not affect association of the inhibitor protein BRD4. Furthermore, inhibition of the additional lysine acetyltransferases PCAF/GCN5 or KAT6A/KAT6B also caused reversal of latency, suggesting that protein acetylation has an inhibitory effect on HIV-1 expression. Collectively, these observations indicate that transcription from the HIV-1 LTR is controlled both positively and negatively by protein acetylation, likely including both histone and non-histone regulatory targets.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Grunblatt E, Feinstein MJ. Precision Phenotyping of Heart Failure in People with HIV: Early Insights and Challenges. Curr Heart Fail Rep 2024; 21:417-427. [PMID: 38940893 DOI: 10.1007/s11897-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE OF REVIEW People with HIV have an elevated risk of developing heart failure even with optimally controlled disease. In this review, we outline the various mechanisms through which HIV infection may directly and indirectly contribute to heart failure pathology and highlight the emerging relationship between HIV, chronic inflammation, and cardiometabolic disease. RECENT FINDINGS HIV infection leads to chronic inflammation, immune dysregulation, and metabolic imbalances even in those with well controlled disease. These dysregulations occur through several diverse mechanisms which may lead to manifestations of different phenotypes of heart failure in people with HIV. While it has long been known that people with HIV are at risk of developing heart failure, recent studies have suggested numerous complex mechanisms involving chronic inflammation, immune dysregulation, and metabolic derangement through which this may be mediated. Further comprehensive studies are needed to elucidate the precise relationship between these mechanisms and the development of different subtypes of heart failure in people with HIV.
Collapse
Affiliation(s)
- Eli Grunblatt
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA
| | - Matthew J Feinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, 300 E Superior St, Ste 12-758, Chicago, IL, 60611, USA.
- Division of Cardiology in the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Pinzone MR, Shan L. Pharmacological approaches to promote cell death of latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:56-61. [PMID: 38169429 PMCID: PMC10872923 DOI: 10.1097/coh.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
5
|
Rong SY, Guo T, Smith JT, Wang X. The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12093-12117. [PMID: 37501434 DOI: 10.3934/mbe.2023538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
HIV infection remains a serious global public health problem. Although current drug treatment is effective and can reduce plasma viral loads below the level of detection, it cannot eradicate the virus. The reasons for the low virus persistence despite long-term therapy have not been fully elucidated. In addition, multiple HIV infection, i.e., infection of a cell by multiple viruses, is common and can facilitate viral recombination and mutations, evading the immune system and conferring resistance to drug treatment. The mechanisms for multiple HIV infection formation and their respective contributions remain unclear. To answer these questions, we developed a mathematical modeling framework that encompasses cell-free viral infection and cell-to-cell spread. We fit sub-models that only have one transmission route and the full model containing both to the multi-infection data from HIV-infected patients, and show that the multi-infection data can only be reproduced if these two transmission routes are both considered. Computer simulations with the best-fitting parameter values indicate that cell-to-cell spread leads to the majority of multiple infection and also accounts for the majority of overall infection. Sensitivity analysis shows that cell-to-cell spread has reduced susceptibility to treatment and may explain low HIV persistence. Taken together, this work indicates that cell-to-cell spread plays a crucial role in the development of HIV multi-infection and low HIV persistence despite long-term therapy, and therefore has important implications for understanding HIV pathogenesis and developing more effective treatment strategies to control or even eliminate the disease.
Collapse
Affiliation(s)
| | - Ting Guo
- Aliyun School of Big Data, Changzhou University, Changzhou 213164, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - J Tyler Smith
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Xia Wang
- School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
7
|
Abstract
The biggest challenge to immune control of HIV infection is the rapid within-host viral evolution, which allows selection of viral variants that escape from T cell and antibody recognition. Thus, it is impossible to clear HIV infection without targeting "immutable" components of the virus. Unlike the adaptive immune system that recognizes cognate epitopes, the CARD8 inflammasome senses the essential enzymatic activity of the HIV-1 protease, which is immutable for the virus. Hence, all subtypes of HIV clinical isolates can be recognized by CARD8. In HIV-infected cells, the viral protease is expressed as a subunit of the viral Gag-Pol polyprotein and remains functionally inactive prior to viral budding. A class of anti-HIV drugs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs), can promote Gag-pol dimerization and subsequent premature intracellular activation of the viral protease. NNRTI treatment triggers CARD8 inflammasome activation, which leads to pyroptosis of HIV-infected CD4+ T cells and macrophages. Targeting the CARD8 inflammasome can be a potent and broadly effective strategy for HIV eradication.
Collapse
Affiliation(s)
- Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Priya Pal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Josh G Kim
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
8
|
Comorbid disease in children and adolescents with perinatal HIV infection: A pilot study. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. With the increased use of combination antiretroviral therapy, the mortality of people living with HIV has decreased significantly, which has led to an increase of comorbidity and secondary HIV-related pathology in both adults and also in children and adolescents living with HIV infection. The incidence of children and adolescents with HIV infection and those in the general population varies significantly.The aim. To assess the frequency and range of chronic comorbidities in children and adolescents with perinatal HIV infection Methods. We carried out an observational study. Data on the incidence of 161 children with perinatal HIV infection registered in the Irkutsk Regional AIDS Center were copied.Results. Overall incidence of tuberculosis (18633.5 per 100 000 children), diseases of the digestive system (24844.7 per 100 000 children), diseases of the eye and adnexa (28571.4 per 100 000 children), diseases of the nervous system (18012.4 per 100 000 children), mental and behavioral disorders (13,664.6 per 100 000 children) in children with perinatal HIV infection is the higher than in children of comparable age. The overall incidence values of the endocrine system diseases, eating and metabolic disorders, diseases of the ear and mastoid process, diseases of the circulatory system, diseases of the genitourinary system, as well as congenital disorders and chromosomal disorders in children and adolescents with and without perinatal HIV infection are comparable.Conclusion. The prevalence of diseases of the circulatory, respiratory and genitourinary systems in children with perinatal HIV infection is comparable to that in the corresponding population. Prevalence of tuberculosis, anemia, diseases of the gastrointestinal tract, diseases of the eye and adnexa, diseases of the nervous system, mental and behavioral disorders is higher compared to children not exposed to HIV.
Collapse
|
9
|
Establishment, Persistence, and Reactivation of Latent HIV-1 Infection in Renal Epithelial Cells. J Virol 2022; 96:e0062422. [PMID: 35867560 PMCID: PMC9327708 DOI: 10.1128/jvi.00624-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HIV-1 persistence in different cell types presents the main obstacle to an HIV-1 cure. We have previously shown that the renal epithelium is a site of HIV-1 infection and that the kidney represents a separate viral compartment from blood. Whether renal cells can harbor latent virus that can be reactivated upon treatment with latency reversing agents (LRAs) is unknown. To address this question, we developed an in vitro HIV-1 latency model in renal tubule epithelial (RTE) cells using a dual color HIV-1 reporter virus, R7/E-/GFP/EF1a-mCherry (R7GEmC), and evaluated the effect of LRAs, both as single agents and in combination, on viral reactivation. Our data show that HIV-1 can establish latency in RTE cells early postinfection. While the pool of latently infected cells expanded overtime, the percentage of productively infected cells declined. Following LRA treatment only a small fraction of latently infected cells, both T cells and RTE cells, could be reactivated, and the drug combinations more effective in reactivating HIV transcription in RTE cells differed from those more active in T cells. Our study demonstrates that HIV can establish latency in RTE cells and that current LRAs are only marginally effective in inducing HIV-1 reactivation. This suggests that further study of LRA dynamics in non-T cells may be warranted to assess the suitability of LRAs as a sterilizing cure strategy. IMPORTANCE Anti-retroviral therapy (ART) has dramatically reduced HIV-related morbidity and mortality. Despite this success, a number of challenges remain, including the long-term persistence of multiple, clinically latent viral reservoirs capable of reactivation in the absence of ART. As efforts proceed toward HIV eradication or functional cure, further understanding of the dynamics of HIV-1 replication, establishment of latency and mechanisms of reactivation in reservoirs harboring the virus throughout the body is necessary. HIV-1 can infect renal epithelial cells and the expression of viral genes in those cells contributes to the development of HIV associated nephropathy (HIVAN) in untreated individuals. The significance of our work is in developing the first model of HIV-1 latency in renal epithelial cells. This model enhances our understanding of HIV-1 latency and persistence in the kidney and can be used to screen candidate latency reversing agents.
Collapse
|
10
|
LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. eLife 2022; 11:76004. [PMID: 35852143 PMCID: PMC9467514 DOI: 10.7554/elife.76004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.
Collapse
Affiliation(s)
- Colin LaMont
- Max Planck Institute for Dynamics and Self-Organization
| | | | | | | | | | | |
Collapse
|
11
|
Bergstresser S, Kulpa DA. TGF-β Signaling Supports HIV Latency in a Memory CD4+ T Cell Based In Vitro Model. Methods Mol Biol 2022; 2407:69-79. [PMID: 34985658 DOI: 10.1007/978-1-0716-1871-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During antiretroviral therapy (ART), HIV-1 persists as a latent reservoir in CD4+ T cell subsets in central (TCM), transitional (TTM) and effector memory (TEM) CD4+ T cells. Understanding the mechanisms that support HIV-1 latency in each of these subsets is essential to the identification of cure strategies to eliminate them. Due to the very low frequency of latently infected cells in vivo, model systems that can accurately reflect the heterogenous population of HIV-1 infected cells are a critical component in HIV cure discoveries. Here, we describe a novel primary cell-based model of HIV-1 latency that recapitulates the complex dynamics of the establishment and maintenance of the latent reservoir in different memory T cell subsets. The latency and reversion assay (LARA ) culture conditions uniquely retain phenotypically and transcriptionally distinct memory CD4+ T cell subsets that allow in a single assay to assess LRA activity in each memory subset and differential examination of the dynamics of HIV latency reversal.
Collapse
Affiliation(s)
- Sydney Bergstresser
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, and Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
12
|
Mu Y, Cory TJ. Suppression of HIV-1 Viral Replication by Inhibiting Drug Efflux Transporters in Activated Macrophages. Curr HIV Res 2021; 19:128-137. [PMID: 33032513 DOI: 10.2174/1570162x18666201008143833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ethanol has been shown to increase oxidative stress, drug efflux transporter expression, and promote HIV progression. Macrophages, which express drug efflux transporters, serve as an essential sanctuary site for HIV. The antiretroviral drug lopinavir, a protease inhibitor, is a substrate of the drug efflux transporters P-glycoprotein and multidrug resistance-associated protein 1. The NF-κB signaling pathway is associated with inflammation and drug efflux transporter expression. OBJECTIVE To examine the effects of ethanol on drug efflux transporters and HIV replication of macrophages and develop strategies to increase the efficacy of the protease inhibitor. METHODS The expression of PGP and MRP1 was examined with western blot. The NF- κB inhibition was assessed with nuclear western blot. LC-MS/MS and p24 ELISA were used to assess intracellular LPV and viral replication. RESULTS Ethanol at 40mM slightly increased drug efflux transporter PGP and MRP1 expression in activated macrophages. IKK-16, an NF- κB inhibitor, counteracted the increased transporter expression caused by ethanol exposure. MK571, an MRP1 inhibitor, and IKK-16 significantly increased intracellular LPV concentration with or without ethanol treatment. MK571 significantly increased LPV efficacy in suppressing viral replication with or without ethanol treatment. A decreasing trend and a significant decrease were observed with IKK-16+LPV treatment compared with LPV alone in the no ethanol treatment and ethanol treatment groups, respectively. CONCLUSION In activated macrophages, inhibiting drug efflux transporter MRP1 activity and reducing its expression may represent a promising approach to suppress viral replication by increasing intracellular antiretroviral concentrations. However, different strategies may be required for ethanolrelated vs. untreated groups.
Collapse
Affiliation(s)
- Ying Mu
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| | - Theodore J Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy 881 Madison, Memphis, United States
| |
Collapse
|
13
|
Oriol-Tordera B, Berdasco M, Llano A, Mothe B, Gálvez C, Martinez-Picado J, Carrillo J, Blanco J, Duran-Castells C, Ganoza C, Sanchez J, Clotet B, Calle ML, Sánchez-Pla A, Esteller M, Brander C, Ruiz-Riol M. Methylation regulation of Antiviral host factors, Interferon Stimulated Genes (ISGs) and T-cell responses associated with natural HIV control. PLoS Pathog 2020; 16:e1008678. [PMID: 32760119 PMCID: PMC7410168 DOI: 10.1371/journal.ppat.1008678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/03/2020] [Indexed: 01/21/2023] Open
Abstract
GWAS, immune analyses and biomarker screenings have identified host factors associated with in vivo HIV-1 control. However, there is a gap in the knowledge about the mechanisms that regulate the expression of such host factors. Here, we aimed to assess DNA methylation impact on host genome in natural HIV-1 control. To this end, whole DNA methylome in 70 untreated HIV-1 infected individuals with either high (>50,000 HIV-1-RNA copies/ml, n = 29) or low (<10,000 HIV-1-RNA copies/ml, n = 41) plasma viral load (pVL) levels were compared and identified 2,649 differentially methylated positions (DMPs). Of these, a classification random forest model selected 55 DMPs that correlated with virologic (pVL and proviral levels) and HIV-1 specific adaptive immunity parameters (IFNg-T cell responses and neutralizing antibodies capacity). Then, cluster and functional analyses identified two DMP clusters: cluster 1 contained hypo-methylated genes involved in antiviral and interferon response (e.g. PARP9, MX1, and USP18) in individuals with high viral loads while in cluster 2, genes related to T follicular helper cell (Tfh) commitment (e.g. CXCR5 and TCF7) were hyper-methylated in the same group of individuals with uncontrolled infection. For selected genes, mRNA levels negatively correlated with DNA methylation, confirming an epigenetic regulation of gene expression. Further, these gene expression signatures were also confirmed in early and chronic stages of infection, including untreated, cART treated and elite controllers HIV-1 infected individuals (n = 37). These data provide the first evidence that host genes critically involved in immune control of the virus are under methylation regulation in HIV-1 infection. These insights may offer new opportunities to identify novel mechanisms of in vivo virus control and may prove crucial for the development of future therapeutic interventions aimed at HIV-1 cure.
Collapse
Affiliation(s)
- Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Carmela Ganoza
- Asociación Civil IMPACTA Salud y Educacion, Lima, Peru
- Alberto Hurtado School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Sanchez
- Asociación Civil IMPACTA Salud y Educacion, Lima, Peru
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, CITBM, Lima, Peru
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maria Luz Calle
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
| | - Alex Sánchez-Pla
- Statistics Department, Biology Faculty, University of Barcelona, Spain
- Statistics and Bioinformatics Unit Vall d'Hebron Institut de Recerca (VHIR), Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic—Central University of Catalonia, Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
14
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
15
|
Modeling the role of macrophages in HIV persistence during antiretroviral therapy. J Math Biol 2020; 81:369-402. [PMID: 32583031 DOI: 10.1007/s00285-020-01513-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/13/2020] [Indexed: 12/17/2022]
Abstract
HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.
Collapse
|
16
|
Sleem A, Saleh F. Mesenchymal stem cells in the fight against viruses: Face to face with the invisible enemy. Curr Res Transl Med 2020; 68:105-110. [PMID: 32616467 PMCID: PMC7252154 DOI: 10.1016/j.retram.2020.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023]
Abstract
The relative ease of isolation of mesenchymal stem cells (MSCs) from different tissues coupled with their culture expansion in vitro and their differentiation capacity to mesodermal, endodermal and ectodermal lineages have made these cells attractive for a large number of therapeutic applications. In recent years, there has been remarkable progress in the utilization of MSCs in diverse clinical indications both in animal models and human clinical trials. However, the potential of MSCs to control or treat viral diseases is still in its infancy. In this study, we report quantitative data on the MSC-based clinical trials over the last ten years as they appear on the online database of clinical research studies from US National Institutes of Health. In particular, we provide comprehensive review of either completed or ongoing clinical trials using MSCs for virus-associated diseases focusing on HIV, hepatitis B virus and COVID-19 virus.
Collapse
Affiliation(s)
- Aleen Sleem
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Lebanon
| | - Fatima Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Lebanon.
| |
Collapse
|
17
|
Bozzi G, Simonetti FR, Watters SA, Anderson EM, Gouzoulis M, Kearney MF, Rote P, Lange C, Shao W, Gorelick R, Fullmer B, Kumar S, Wank S, Hewitt S, Kleiner DE, Hattori J, Bale MJ, Hill S, Bell J, Rehm C, Grossman Z, Yarchoan R, Uldrick T, Maldarelli F. No evidence of ongoing HIV replication or compartmentalization in tissues during combination antiretroviral therapy: Implications for HIV eradication. SCIENCE ADVANCES 2019; 5:eaav2045. [PMID: 31579817 PMCID: PMC6760922 DOI: 10.1126/sciadv.aav2045] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/29/2019] [Indexed: 05/28/2023]
Abstract
HIV persistence during combination antiretroviral therapy (cART) is the principal obstacle to cure. Mechanisms responsible for persistence remain uncertain; infections may be maintained by persistence and clonal expansion of infected cells or by ongoing replication in anatomic locations with poor antiretroviral penetration. These mechanisms require different strategies for eradication, and determining their contributions to HIV persistence is essential. We used phylogenetic approaches to investigate, at the DNA level, HIV populations in blood, lymphoid, and other infected tissues obtained at colonoscopy or autopsy in individuals who were on cART for 8 to 16 years. We found no evidence of ongoing replication or compartmentalization of HIV; we did detect clonal expansion of infected cells that were present before cART. Long-term persistence, and not ongoing replication, is primarily responsible for maintaining HIV. HIV-infected cells present when cART is initiated represent the only identifiable source of persistence and is the appropriate focus for eradication.
Collapse
Affiliation(s)
- G. Bozzi
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - F. R. Simonetti
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Biomedical and Clinical Sciences, L. Sacco Hospital, University of Milan, Milan, Italy
| | - S. A. Watters
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
- Department of Infection and Immunity, University College London, London, UK
| | - E. M. Anderson
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. Gouzoulis
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. F. Kearney
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - P. Rote
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - C. Lange
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - W. Shao
- Advanced Biomedical Computing Center, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - R. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - B. Fullmer
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - S. Kumar
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - S. Wank
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - S. Hewitt
- Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
| | - D. E. Kleiner
- Laboratory of Pathology, NCI, NIH, Bethesda, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - J. Hattori
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - M. J. Bale
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - S. Hill
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - J. Bell
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - C. Rehm
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Z. Grossman
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| | - R. Yarchoan
- HIV and AIDS Malignancy Branch, NCI, NIH, Bethesda, MD, USA
| | - T. Uldrick
- HIV and AIDS Malignancy Branch, NCI, NIH, Bethesda, MD, USA
| | - F. Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, USA
| |
Collapse
|
18
|
Sadowski I, Hashemi FB. Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 2019; 76:3583-3600. [PMID: 31129856 PMCID: PMC6697715 DOI: 10.1007/s00018-019-03156-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Collapse
Affiliation(s)
- Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ruiz-Riol M, Brander C. Can we just kick-and-kill HIV: possible challenges posed by the epigenetically controlled interplay between HIV and host immunity. Immunotherapy 2019; 11:931-935. [PMID: 31218904 PMCID: PMC6609895 DOI: 10.2217/imt-2019-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- ICREA, Pg. Luis Companys 23, Barcelona, Spain
- AELIX Therapeutics, Barcelona, Spain
| |
Collapse
|
20
|
Hashemi P, Barreto K, Bernhard W, Lomness A, Honson N, Pfeifer TA, Harrigan PR, Sadowski I. Compounds producing an effective combinatorial regimen for disruption of HIV-1 latency. EMBO Mol Med 2019; 10:160-174. [PMID: 29246970 PMCID: PMC5838563 DOI: 10.15252/emmm.201708193] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) has improved the outlook for the HIV epidemic, but does not provide a cure. The proposed “shock‐and‐kill” strategy is directed at inducing latent HIV reservoirs, which may then be purged via boosted immune response or targeting infected cells. We describe five novel compounds that are capable of reversing HIV latency without affecting the general T‐cell activation state. The new compounds exhibit synergy for reactivation of latent provirus with other latency‐reversing agents (LRAs), in particular ingenol‐3‐angelate/PEP005. One compound, designated PH02, was efficient at reactivating viral transcription in several cell lines bearing reporter HIV‐1 at different integration sites. Furthermore, it was capable of reversing latency in resting CD4+ T lymphocytes from latently infected aviremic patient cells on HAART, while producing minimal cellular toxicity. The combination of PH02 and PEP005 produces a strong synergistic effect for reactivation, as demonstrated through a quantitative viral outgrowth assay (qVOA), on CD4+ T lymphocytes from HIV‐1‐infected individuals. We propose that the PH02/PEP005 combination may represent an effective novel treatment for abrogating persistent HIV‐1 infection.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kris Barreto
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Bernhard
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Lomness
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nicolette Honson
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Tom A Pfeifer
- The Centre for Drug Research and Development, Vancouver, BC, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, BC, Canada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Abstract
HIV integrates into the host genome to create a persistent viral reservoir. Stimulation of CD4+ memory T lymphocytes with common γc-chain cytokines renders these cells more susceptible to HIV infection, making them a key component of the reservoir itself. IL-15 is up-regulated during primary HIV infection, a time when the HIV reservoir established. Therefore, we investigated the molecular and cellular impact of IL-15 on CD4+ T-cell infection. We found that IL-15 stimulation induces SAM domain and HD domain-containing protein 1 (SAMHD1) phosphorylation due to cell cycle entry, relieving an early block to infection. Perturbation of the pathways downstream of IL-15 receptor (IL-15R) indicated that SAMHD1 phosphorylation after IL-15 stimulation is JAK dependent. Treating CD4+ T cells with Ruxolitinib, an inhibitor of JAK1 and JAK2, effectively blocked IL-15-induced SAMHD1 phosphorylation and protected CD4+ T cells from HIV infection. Using high-resolution single-cell immune profiling using mass cytometry by TOF (CyTOF), we found that IL-15 stimulation altered the composition of CD4+ T-cell memory populations by increasing proliferation of memory CD4+ T cells, including CD4+ T memory stem cells (TSCM). IL-15-stimulated CD4+ TSCM, harboring phosphorylated SAMHD1, were preferentially infected. We propose that IL-15 plays a pivotal role in creating a self-renewing, persistent HIV reservoir by facilitating infection of CD4+ T cells with stem cell-like properties. Time-limited interventions with JAK1 inhibitors, such as Ruxolitinib, should prevent the inactivation of the endogenous restriction factor SAMHD1 and protect this long-lived CD4+ T-memory cell population from HIV infection.
Collapse
|
22
|
Chattong S, Chaikomon K, Chaiya T, Tangkosakul T, Palavutitotai N, Anusornvongchai T, Manotham K. Efficient ZFN-Mediated Stop Codon Integration into the CCR5 Locus in Hematopoietic Stem Cells: A Possible Source for Intrabone Marrow Cell Transplantation. AIDS Res Hum Retroviruses 2018; 34:575-579. [PMID: 29575905 DOI: 10.1089/aid.2018.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We reported a simple genome editing approach that can generate human immunodeficiency virus-1 (HIV) coreceptor defective cells, which may be useful for latent viral eradication treatment. Samples of bone marrow leftover after diagnostic procedures and crude bone marrow from aviremic HIV patients were subjected to zinc finger nuclease-mediated stop codon insertion into chemokine receptor 5 (CCR5) loci. Locked nucleic acid-based polymerase chain reaction was used to estimate the amount of insertion in the expandable CD34+ cells. The results showed that about 0.5% of CD34+ cells carried stop codon insertions in CCR5 loci. Cells edited using this simple protocol have the potential to be infused back into the bone marrow.
Collapse
Affiliation(s)
- Supreecha Chattong
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
- EST. Laboratory, S.S Manufacturing, Nonthaburi, Thailand
| | - Kamontip Chaikomon
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Theerasak Chaiya
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
| | - Thitirat Tangkosakul
- Infectious Disease Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
| | - Nattawan Palavutitotai
- Infectious Disease Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
| | - Thitinun Anusornvongchai
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
| | - Krissanapong Manotham
- Molecular and Cellular Biology Unit, Department of Medicine, Lerdsin General Hospital, Bang-Rak Bangkok, Thailand
| |
Collapse
|
23
|
Murray MJ, Peters NE, Reeves MB. Navigating the Host Cell Response during Entry into Sites of Latent Cytomegalovirus Infection. Pathogens 2018; 7:pathogens7010030. [PMID: 29547547 PMCID: PMC5874756 DOI: 10.3390/pathogens7010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The host cell represents a hostile environment that viruses must counter in order to establish infection. Human cytomegalovirus (HCMV) is no different and encodes a multitude of functions aimed at disabling, re-directing or hijacking cellular functions to promulgate infection. However, during the very early stages of infection the virus relies on the outcome of interactions between virion components, cell surface receptors and host signalling pathways to promote an environment that supports infection. In the context of latent infection—where the virus establishes an infection in an absence of many gene products specific for lytic infection—these initial interactions are crucial events. In this review, we will discuss key host responses triggered by viral infection and how, in turn, the virus ameliorates the impact on the establishment of non-lytic infections of cells. We will focus on strategies to evade intrinsic antiviral and innate immune responses and consider their impact on viral infection. Finally, we will consider the hypothesis that the very early events upon viral infection are important for dictating the outcome of infection and consider the possibility that events that occur during entry into non-permissive cells are unique and thus contribute to the establishment of latency.
Collapse
Affiliation(s)
- Matthew J Murray
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | - Nicholas E Peters
- Institute of Immunity & Transplantation, University College London, Royal Free Campus, London NW3 2PF, UK.
| | | |
Collapse
|
24
|
Yang X, Zhu X, Ji H, Deng J, Lu P, Jiang Z, Li X, Wang Y, Wang C, Zhao J, Wang Y, Zhong Y, Yang H, Zhu H. Quercetin synergistically reactivates human immunodeficiency virus type 1 latency by activating nuclear factor‑κB. Mol Med Rep 2017; 17:2501-2508. [PMID: 29207194 DOI: 10.3892/mmr.2017.8188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/16/2017] [Indexed: 11/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) is very effective in suppressing human immunodeficiency virus type 1 (HIV‑1) replication. However, the treatment is required to be administered for the remainder of an individual's lifetime due to latent HIV‑1 reservoirs. The 'shock‑and‑kill' strategy, which involves using agents to reactivate latent HIV‑1 and subsequently killing latently infected cells in the presence of HAART, was recently proposed. Unfortunately, no agents have currently demonstrated an ability to reactivate latent HIV‑1 in vivo in the absence of toxicity. Therefore, the identification of novel latency activators is required. In order to identify a potential novel agent, the present study investigated the effect of quercetin on latent HIV‑1 reactivation using an established model of HIV‑1 latency. As a marker for reactivation of HIV‑1 in C11 Jurkat cells, the expression of green fluorescent protein, controlled by HIV‑1 long terminal repeat, was observed by fluorescence microscopy. The results of the present study demonstrated that quercetin effectively reactivated latent HIV‑1 gene expression alone, and led to synergistic reactivation when combined with prostratin or valproic acid. In addition, the present study provides evidence that quercetin may reactivate HIV‑1 expression by inducing nuclear factor‑κB nuclear translocation, and that the toxicity of quercetin is lower when compared with various additional activators of HIV‑1. Combined, the results of the present study indicate that quercetin may be an effective agent to disrupt HIV‑1 latency and may be useful in future eradication strategies.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xian Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yibo Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chuqiao Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingya Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - He Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
25
|
Abstract
INTRODUCTION HIV eradication and remission research has largely taken place in high-income countries. In low- and middle-income countries (LMIC), there may be factors that have a substantial impact on the size of the latent HIV reservoir and the immunological response to infection. If a curative strategy is to be available to all HIV-infected individuals, these factors must be understood. METHODS We use a scoping review to examine the literature on biological factors that may have an impact on HIV persistence in LMIC. Three databases were searched without date restrictions. RESULTS Uncontrolled viral replication and higher coinfection prevalence may alter the immunological milieu of individuals in LMIC and increase the size of the HIV reservoir. Differences in HIV subtype could also influence the measurement and size of the HIV reservoir. Immune activation may differ due to late presentation to care, presence of chronic infections, increased gut translocation of bacterial products and poor nutrition. CONCLUSIONS Research on HIV remission is urgently needed in LMIC. Research into chronic immune activation in resource poor environments, the immune response to infection, the mechanisms of HIV persistence and latency in different viral clades and the effect of the microbiological milieu must be performed. Geographic differences, which may be substantial and may delay access to curative strategies, should be identified.
Collapse
|
26
|
Scherrer D, Rouzier R, Noel Barrett P, Steens JM, Gineste P, Murphy RL, Tazi J, Ehrlich HJ. Pharmacokinetics and tolerability of ABX464, a novel first-in-class compound to treat HIV infection, in healthy HIV-uninfected subjects. J Antimicrob Chemother 2017; 72:820-828. [PMID: 27999038 DOI: 10.1093/jac/dkw458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background An anti-HIV compound (ABX464) has been developed with a novel mechanism of activity in that it blocks viral gene expression in cells that are already infected. Objectives A first-in-man study was conducted to determine the pharmacokinetic and safety profiles of ABX464. This was carried out as an open label, parallel group, single ascending dose, exploratory study. Methods Twenty-four male subjects in good health without HIV infection, aged from 18 to 55 years old, with BMIs of 18-27 kg/m 2 were included. A single oral dose of ABX464 (50, 100, 150 or 200 mg) was administered on the morning of day 0 after overnight fasting, with follow-up for 45 days. Safety assessments consisted of vital signs, electrocardiogram, physical examination, laboratory tests and urinalysis. Pharmacokinetic parameters were calculated for ABX464 and its main metabolite ABX-464- N -glucuronide (ABX464-NGlc). The study was registered at https://www.clinicaltrials (trial number NCT02792686). Results ABX464 was well tolerated; the most frequent related treatment-emergent adverse events were headaches, nausea and vomiting; they were not considered as treatment-limiting effects. ABX464's C max was observed approximately 2 h after administration in all groups. ABX464 was rapidly and substantially metabolized into ABX464-NGlc. The C max of ABX464-NGlc was observed approximately 4 h post-dose and was about 160-fold higher than that of the parent with a much longer t 1/2 (90-110 h). The ratio of metabolite to parent drug was consistent across the complete dose range. Conclusions These studies confirmed that ABX464 is well tolerated and rapidly and substantially metabolized into ABX464-NGlc in human subjects.
Collapse
Affiliation(s)
| | - Regine Rouzier
- Centre Cap Montpellier, 9 avenue Charles Flahault, 34094 Montpellier, France
| | - P Noel Barrett
- Independent Consultant c/o ABIVAX, 5 Rue de la Baume, Paris, France
| | | | | | - Robert L Murphy
- Northwestern University Feinberg School of Medicine, 645 N Michigan Avenue, Suite 1058, Chicago, IL 60611, USA
| | - Jamal Tazi
- Institut de Génétique Moléculaire, University of Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
27
|
Manoto SL, Thobakgale L, Malabi R, Maphanga C, Ombinda-Lemboumba S, Mthunzi-Kufa P. Therapeutic strategies to fight HIV-1 latency: progress and challenges. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN, Martin A, Bassik MC, Verschueren E, Battivelli E, Chan J, Svensson JP, Gramatica A, Conrad RJ, Ott M, Greene WC, Krogan NJ, Siliciano RF, Weissman JS, Verdin E. The mTOR Complex Controls HIV Latency. Cell Host Microbe 2017; 20:785-797. [PMID: 27978436 DOI: 10.1016/j.chom.2016.11.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/30/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
A population of CD4 T lymphocytes harboring latent HIV genomes can persist in patients on antiretroviral therapy, posing a barrier to HIV eradication. To examine cellular complexes controlling HIV latency, we conducted a genome-wide screen with a pooled ultracomplex shRNA library and in vitro system modeling HIV latency and identified the mTOR complex as a modulator of HIV latency. Knockdown of mTOR complex subunits or pharmacological inhibition of mTOR activity suppresses reversal of latency in various HIV-1 latency models and HIV-infected patient cells. mTOR inhibitors suppress HIV transcription both through the viral transactivator Tat and via Tat-independent mechanisms. This inhibition occurs at least in part via blocking the phosphorylation of CDK9, a p-TEFb complex member that serves as a cofactor for Tat-mediated transcription. The control of HIV latency by mTOR signaling identifies a pathway that may have significant therapeutic opportunities.
Collapse
Affiliation(s)
- Emilie Besnard
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shweta Hakre
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nina N Hosmane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Alyssa Martin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Michael C Bassik
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erik Verschueren
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Emilie Battivelli
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan Chan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J Peter Svensson
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, 141 83 Huddinge, Sweden
| | - Andrea Gramatica
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, The California Institute for Quantitative Biomedical Research, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Jakobsdottir GM, Iliopoulou M, Nolan R, Alvarez L, Compton AA, Padilla-Parra S. On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol Med 2017; 23:932-944. [PMID: 28899754 DOI: 10.1016/j.molmed.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
HIV-1 disseminates to diverse tissues through different cell types and establishes long-lived reservoirs. The exact cellular compartment where fusion occurs differs depending on the cell type and mode of viral transmission. This implies that HIV-1 may modulate a number of common host cell factors in different cell types. In this review, we evaluate recent advances on the host cell factors that play an important role in HIV-1 entry and fusion. New insights from restriction factors inhibiting virus-cell fusion in vitro may contribute to the development of future therapeutic interventions. Collectively, novel findings underline the need for potent, host-directed therapies that disrupt the earliest stages of the virus life cycle and preclude the emergence of resistant viral variants.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Maro Iliopoulou
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Rory Nolan
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Luis Alvarez
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Alex A Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sergi Padilla-Parra
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK; Division of Structural Biology, University of Oxford,The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
30
|
Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection. Int J Mol Sci 2017; 18:ijms18071390. [PMID: 28661459 PMCID: PMC5535883 DOI: 10.3390/ijms18071390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Persistent low grade immune activation and chronic inflammation are nowadays considered main driving forces of the progressive immunologic failure in effective antiretroviral therapy treated HIV-1 infected individuals. Among the factors contributing to this phenomenon, microbial translocation has emerged as a key driver of persistent immune activation. Indeed, the rapid depletion of gastrointestinal CD4+ T lymphocytes occurring during the early phases of infection leads to a deterioration of the gut epithelium followed by the translocation of microbial products into the systemic circulation and the subsequent activation of innate immunity. In this context, monocytes/macrophages are increasingly recognized as an important source of inflammation, linked to HIV-1 disease progression and to non-AIDS complications, such as cardiovascular disease and neurocognitive decline, which are currently main challenges in treated patients. Lipid signaling plays a central role in modulating monocyte/macrophage activation, immune functions and inflammatory responses. Phospholipase-mediated phospholipid hydrolysis leads to the production of lipid mediators or second messengers that affect signal transduction, thus regulating a variety of physiologic and pathophysiologic processes. In this review, we discuss the contribution of phospholipases to monocyte/macrophage activation in the context of HIV-1 infection, focusing on their involvement in virus-associated chronic inflammation and co-morbidities.
Collapse
|
31
|
Safety, Pharmacokinetics, and Antiviral Activity of a Novel HIV Antiviral, ABX464, in Treatment-Naive HIV-Infected Subjects in a Phase 2 Randomized, Controlled Study. Antimicrob Agents Chemother 2017; 61:AAC.00545-17. [PMID: 28507108 PMCID: PMC5487684 DOI: 10.1128/aac.00545-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
We investigated the safety and antiviral effects of an anti-HIV compound (ABX464) with a unique mechanism of viral replication inhibition. This was a randomized, double-blind, placebo-controlled, dose-ranging study in treatment-naive HIV-infected patients. Participants were assigned to eight groups; each group included eight subjects receiving either the study compound, ABX464 (n = 6), or the corresponding placebo (n = 2), according to a randomization code. The first dose administered was 25 mg, given once or 3 times a day over a 2- to 3-week period. Ascending doses of up to 150 mg were delivered after review of the safety data. The primary objective of the study was to assess the safety and tolerability of ABX464 after repeated oral administrations in subjects infected by HIV. Sixty-six subjects were enrolled and were randomized. Sixty-three subjects completed the study according to the study protocol. Twenty-one adverse events (AEs) were reported by 7 subjects out of 16 (44%) who received placebo, and 158 AEs were reported by 39 subjects out of 50 (78%) who received the study drug. In the ABX464 treatment group, all of these adverse events were mild to moderate. No subjects discontinued treatment due to drug-related AEs. Administration of ABX464 at up to 150 mg once a day was safe and well tolerated in HIV-infected subjects. An efficacy signal with respect to a reduction of the viral load by ABX464 was detected, mainly in subjects treated at the highest dose. Further studies will be required to demonstrate antiviral effects in HIV-infected subjects in combination with other antiretroviral therapies. (This study is registered on the ClinicalTrials.gov website under registration no. NCT02452242.)
Collapse
|
32
|
Sandstrom TS, Ranganath N, Angel JB. Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 2017; 37:1-16. [PMID: 28455216 DOI: 10.1016/j.cytogfr.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Teslin S Sandstrom
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Nischal Ranganath
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, ORCC Room C4445, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Division of Infectious Diseases, Ottawa Hospital-General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
33
|
A humanized mouse-based HIV-1 viral outgrowth assay with higher sensitivity than in vitro qVOA in detecting latently infected cells from individuals on ART with undetectable viral loads. Virology 2017; 507:135-139. [PMID: 28432928 DOI: 10.1016/j.virol.2017.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
Assays that can verify full viral eradication are essential in the context of achieving a cure for HIV/AIDS. In vitro quantitative viral out growth assays (qVOA) are currently the gold standard for measuring latent HIV-1 but these assays often fail to detect very low levels of replication-competent virus. Here we investigated an alternative in vivo approach for sensitive viral detection using humanized mice (hmVOA). Peripheral blood CD4+ T cell samples from HIV subjects on stable ART with undetectable viral loads by RT-PCR were first assayed by in vitro qVOA. Corresponding patient samples in which no virus was detected by qVOA were injected into humanized mice to allow viral outgrowth. Of the five qVOA virus negative samples, four gave positive viral outgrowth in the hmVOA assay suggesting that it is more sensitive in detecting latent HIV-1.
Collapse
|
34
|
Titanji BK, Pillay D, Jolly C. Combination antiretroviral therapy and cell-cell spread of wild-type and drug-resistant human immunodeficiency virus-1. J Gen Virol 2017; 98:821-834. [PMID: 28141491 PMCID: PMC5657029 DOI: 10.1099/jgv.0.000728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/27/2017] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient direct cell-cell spread. The high local multiplicity that characterizes cell-cell infection causes variability in the effectiveness of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell-cell and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the efficacy of PI- and RTI-based cART against cell-cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative assay to measure cell-cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both cell-free and cell-cell spread. Combining drugs that alone are poor inhibitors of cell-cell spread markedly improves HIV-1 inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore, comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage over wild-type virus when spreading by cell-cell means in the presence of cART, suggesting that in the context of inadequate drug combinations or drug resistance, cell-cell spread could potentially allow for ongoing viral replication.
Collapse
Affiliation(s)
- Boghuma Kabisen Titanji
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Africa Centre for Health and Population Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
35
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
36
|
Hu Y, O’Boyle K, Auer J, Raju S, You F, Wang P, Fikrig E, Sutton RE. Multiple UBXN family members inhibit retrovirus and lentivirus production and canonical NFκΒ signaling by stabilizing IκBα. PLoS Pathog 2017; 13:e1006187. [PMID: 28152074 PMCID: PMC5308826 DOI: 10.1371/journal.ppat.1006187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/14/2017] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
UBXN proteins likely participate in the global regulation of protein turnover, and we have shown that UBXN1 interferes with RIG-I-like receptor (RLR) signaling by interacting with MAVS and impeding its downstream effector functions. Here we demonstrate that over-expression of multiple UBXN family members decreased lentivirus and retrovirus production by several orders-of-magnitude in single cycle assays, at the level of long terminal repeat-driven transcription, and three family members, UBXN1, N9, and N11 blocked the canonical NFκB pathway by binding to Cullin1 (Cul1), inhibiting IκBα degradation. Multiple regions of UBXN1, including its UBA domain, were critical for its activity. Elimination of UBXN1 resulted in early murine embryonic lethality. shRNA-mediated knockdown of UBXN1 enhanced human immunodeficiency virus type 1 (HIV) production up to 10-fold in single cycle assays. In primary human fibroblasts, knockdown of UBXN1 caused prolonged degradation of IκBα and enhanced NFκB signaling, which was also observed after CRISPR-mediated knockout of UBXN1 in mouse embryo fibroblasts. Knockout of UBXN1 significantly up- and down-regulated hundreds of genes, notably those of several cell adhesion and immune signaling pathways. Reduction in UBXN1 gene expression in Jurkat T cells latently infected with HIV resulted in enhanced HIV gene expression, consistent with the role of UBXN1 in modulating the NFκB pathway. Based upon co-immunoprecipitation studies with host factors known to bind Cul1, models are presented as to how UBXN1 could be inhibiting Cul1 activity. The ability of UBXN1 and other family members to negatively regulate the NFκB pathway may be important for dampening the host immune response in disease processes and also re-activating quiescent HIV from latent viral reservoirs in chronically infected individuals.
Collapse
Affiliation(s)
- Yani Hu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kaitlin O’Boyle
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jim Auer
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sagar Raju
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fuping You
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Richard E. Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Bispecific antibody engineering, in which binding specificities toward 2 distinct epitopes are combined into a single molecule, can greatly enhance immunotherapeutic properties of monoclonal antibodies. While the bispecific antibody approach has been applied widely to targets for indications such as cancer and inflammation, the development of such agents for viral immunotherapy is only now emerging. Here, we review recent advances in the development of bispecific antibodies for viral immunotherapy, highlighting promising in vitro and in vivo results.
Collapse
Affiliation(s)
- Elisabeth K Nyakatura
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Alexandra Y Soare
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Jonathan R Lai
- a Department of Biochemistry , Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
38
|
Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, Salemi M, Garcia DL, Bracci P, Yong W, Commins D, Said J, Khanlou N, Hinkin CH, Sueiras MV, Mathisen G, Donovan S, Shiramizu B, Stoddart CA, McGrath MS, Singer EJ. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J Virol 2016; 90:8968-83. [PMID: 27466426 PMCID: PMC5044815 DOI: 10.1128/jvi.00674-16] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCE It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Melissa Agsalda-Garcia
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - David J Nolan
- Bioinfoexperts, LLC, Thibodaux, Louisiana, USA The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, California, USA
| | - Marco Salemi
- The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Debra L Garcia
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - William Yong
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Deborah Commins
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jonathan Said
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Negar Khanlou
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Charles H Hinkin
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA UCLA School of Medicine, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, California, USA
| | - Miguel Valdes Sueiras
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| | - Glenn Mathisen
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Suzanne Donovan
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bruce Shiramizu
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Michael S McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Elyse J Singer
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| |
Collapse
|
39
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
40
|
Tsukrov D, McFarren A, Morgenstern A, Bruchertseifer F, Dolce E, Gorny MK, Zolla-Pazner S, Berman JW, Schoenbaum E, Zingman BS, Casadevall A, Dadachova E. Combination of Antiretroviral Drugs and Radioimmunotherapy Specifically Kills Infected Cells from HIV-Infected Individuals. Front Med (Lausanne) 2016; 3:41. [PMID: 27725930 PMCID: PMC5035742 DOI: 10.3389/fmed.2016.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT), a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infected cells. Since gp41 expression by infected cells is likely downregulated in patients on antiretroviral therapy (ART), we evaluated the ability of RIT to kill ART-treated infected cells using both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs) were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal antibody to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: 10 on ART and 5 ART-naïve. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART and supports continued development of 213Bi-2556 for co-administration with ART toward an HIV eradication strategy.
Collapse
Affiliation(s)
- Dina Tsukrov
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements , Karlsruhe , Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements , Karlsruhe , Germany
| | - Eugene Dolce
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | - Susan Zolla-Pazner
- New York University School of Medicine, New York, NY, USA; Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Joan W Berman
- Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | | | | | |
Collapse
|
41
|
Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers. PLoS Pathog 2016; 12:e1005879. [PMID: 27632364 PMCID: PMC5025140 DOI: 10.1371/journal.ppat.1005879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus. Antiretroviral therapy (ART) does not eradicate HIV-1 in infected individuals due to virus persistence in latently infected reservoir cells, despite apparently effective ART. The persistent virus and can rekindle infection when ART is interrupted. The goal of the “shock and kill” viral clearance strategy is to induce expression of latent proviruses and eliminate the infected cells through viral cytolysis or immune clearance mechanisms. Latency reversing agents (LRAs) tested to date have been reported to have variable effects, both on virus reactivation and on immune functions. We performed in vivo reactivation experiments in SIV-infected RMs that controlled viral replication after a period of ART to evaluate the ability of the histone deacetylase inhibitor romidepsin (RMD) to reactivate SIV and its impact on SIV-specific immune responses. Our results suggest that RMD treatment can increase virus expression in this setting, and that it does not markedly or durably impair the ability of SIV-specific T cells to control viral replication.
Collapse
|
42
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Yang W, Jackson B, Zhang H. Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics. Proteomics 2016; 16:1872-80. [PMID: 27195445 DOI: 10.1002/pmic.201500215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 04/11/2016] [Accepted: 05/11/2016] [Indexed: 11/12/2022]
Abstract
HIV infection is not curable due to viral latency. Compelling reports suggest that there is a distinct profile of surface proteins that can be used for targeting latently infected cells. We have recently reported that glycoproteins were differentially secreted from HIV latently infected ACH-2 cells compared to the parental A3.01 cells. This finding suggests that glyco-phenotype might be different in these two cell lines. To determine the difference, the ACH-2 and A3.01 cell lines were subjected to a glycoproteomic analysis. A total number of 940 unique N-linked glycosite-containing peptides from 515 glycoproteins were identified. Among the glycoproteins, 365 and 104 were annotated as cell surface and membrane-associated proteins, respectively. Quantitative LC-MS/MS analysis revealed a change of 236 glycosite-containing peptides from 172 glycoproteins between the two cell lines without reactivation. Bioinformatic analysis suggests that cell adhesion, immune response, glycoprotein metabolic process, cell motion, and cell activation were associated with the changed proteins. After reactivation of latency, changes in glycosite-containing peptides were observed in both cell lines. The changed proteins suggest that cell migration, response to wounding and immune response might be impaired in reactivated latently infected cells. Glycoproteomics merits future application using primary cells to discover reveal mechanisms in HIV pathogenesis.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brooks Jackson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
HIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site. J Virol 2016; 90:5302-14. [PMID: 26984732 PMCID: PMC4934743 DOI: 10.1128/jvi.02842-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanisms of HIV proviral latency is essential for development of a means to eradicate infection and achieve a cure. We have previously described an in vitro latency model that reliably identifies HIV expression phenotypes of infected cells using a dual-fluorescence reporter virus. Our results have demonstrated that ∼50% of infected cells establish latency immediately upon integration of provirus, a phenomenon termed early latency, which appears to occur by mechanisms that are distinct from epigenetic silencing observed with HIV provirus that establishes productive infections. In this study, we have used a mini-dual HIV reporter virus (mdHIV) to compare the long-term stability of provirus produced as early latent or productive infections using Jurkat-Tat T cell clones. Cloned lines bearing mdHIV provirus integrated at different chromosomal locations display unique differences in responsiveness to signaling agonists and chromatin-modifying compounds, and they also produce characteristic expression patterns from the 5′ long terminal repeat (LTR) dsRed and internal EIF1α-enhanced green fluorescent protein (EIF1α-eGFP) reporters. Furthermore, reporter expression profiles of single cell sorted subcultures faithfully reproduce expression profiles identical to that of their original parental population, following prolonged growth in culture, without shifting toward expression patterns resembling that of cell subclones at the time of sorting. Comparison of population dispersion coefficient (CV) and mean fluorescence intensity (MFI) of the subcloned lines showed that both untreated and phorbol myristate acetate (PMA)-ionomycin-stimulated cultures produce expression patterns identical to those of their parental lines. These results indicate that HIV provirus expression characteristics are strongly influenced by the epigenetic landscape at the site of chromosomal integration.
IMPORTANCE There is currently considerable interest in development of therapies to eliminate latently infected cells from HIV-infected patients on antiretroviral therapy. One proposed strategy, known as “shock and kill,” would involve treatment with therapies capable of inducing expression of latent provirus, with the expectation that the latently infected cells could be killed by a host immune response or virus-induced apoptosis. In clinical trials, histone deacetylase (HDAC) inhibitors were shown to cause reactivation of latent provirus but did not produce a significant effect toward eliminating the latently infected population. Results shown here indicate that integration of HIV provirus at different chromosomal locations produces significant effects on the responsiveness of virus expression to T cell signaling agonists and chromatin-modifying compounds. Given the variety of phenotypes produced by integrated provirus, it is unlikely that any single potential shock-and-kill therapy will be effective toward purging the latently infected population.
Collapse
|
45
|
Gandon S. Why Be Temperate: Lessons from Bacteriophage λ. Trends Microbiol 2016; 24:356-365. [PMID: 26946976 DOI: 10.1016/j.tim.2016.02.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 01/19/2023]
Abstract
Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens.
Collapse
Affiliation(s)
- Sylvain Gandon
- CEFE UMR 5175, CNRS - Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
46
|
Peterson CW, Haworth KG, Burke BP, Polacino P, Norman KK, Adair JE, Hu SL, Bartlett JS, Symonds GP, Kiem HP. Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16007. [PMID: 26958575 PMCID: PMC4765711 DOI: 10.1038/mtm.2016.7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
Abstract
We have focused on gene therapy approaches to induce functional cure/remission of HIV-1 infection. Here, we evaluated the safety and efficacy of the clinical grade anti-HIV lentiviral vector, Cal-1, in pigtailed macaques (Macaca nemestrina). Cal-1 animals exhibit robust levels of gene marking in myeloid and lymphoid lineages without measurable adverse events, suggesting that Cal-1 transduction and autologous transplantation of hematopoietic stem cells are safe, and lead to long-term, multilineage engraftment following myeloablative conditioning. Ex vivo, CD4+ cells from transplanted animals undergo positive selection in the presence of simian/human immunodeficiency virus (SHIV). In vivo, Cal-1 gene-marked cells are evident in the peripheral blood and in HIV-relevant tissue sites such as the gastrointestinal tract. Positive selection for gene-marked cells is observed in blood and tissues following SHIV challenge, leading to maintenance of peripheral blood CD4+ T-cell counts in a normal range. Analysis of Cal-1 lentivirus integration sites confirms polyclonal engraftment of gene-marked cells. Following infection, a polyclonal, SHIV-resistant clonal repertoire is established. These findings offer strong preclinical evidence for safety and efficacy of Cal-1, present a new method for tracking protected cells over the course of virus-mediated selective pressure in vivo, and reveal previously unobserved dynamics of virus-dependent T-cell selection.
Collapse
Affiliation(s)
- Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington, USA
| | - Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington, USA
| | | | - Patricia Polacino
- Washington National Primate Research Center , Seattle, Washington, USA
| | - Krystin K Norman
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington, USA
| | - Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington, USA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, Seattle, Washington, USA; Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | | | | | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Chan CN, Trinité B, Lee CS, Mahajan S, Anand A, Wodarz D, Sabbaj S, Bansal A, Goepfert PA, Levy DN. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology 2016; 13:1. [PMID: 26728316 PMCID: PMC4700562 DOI: 10.1186/s12977-015-0234-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background HIV-1 integration is prone to a high rate of failure, resulting in the accumulation of unintegrated viral genomes (uDNA) in vivo and in vitro. uDNA can be transcriptionally active, and circularized uDNA genomes are biochemically stable in non-proliferating cells. Resting, non-proliferating CD4 T cells are prime targets of HIV-1 infection and latently infected resting CD4 T cells are the major barrier to HIV cure. Our prior studies demonstrated that uDNA generates infectious virions when T cell activation follows rather than precedes infection. Results Here, we characterize in primary resting CD4 T cells the dynamics of integrated and unintegrated virus expression, genome persistence and sensitivity to latency reversing agents. Unintegrated HIV-1 was abundant in directly infected resting CD4 T cells. Maximal gene expression from uDNA was delayed compared with integrated HIV-1 and was less toxic, resulting in uDNA enrichment over time relative to integrated proviruses. Inhibiting integration with raltegravir shunted the generation of durable latency from integrated to unintegrated genomes. Latent uDNA was activated to de novo virus production by latency reversing agents that also activated latent integrated proviruses, including PKC activators, histone deacetylase inhibitors and P-TEFb agonists. However, uDNA responses displayed a wider dynamic range, indicating differential regulation of expression relative to integrated proviruses. Similar to what has recently been demonstrated for latent integrated proviruses, one or two applications of latency reversing agents failed to activate all latent unintegrated genomes. Unlike integrated proviruses, uDNA gene expression did not down modulate expression of HLA Class I on resting CD4 T cells. uDNA did, however, efficiently prime infected cells for killing by HIV-1-specific cytotoxic T cells. Conclusions These studies demonstrate that contributions by unintegrated genomes to HIV-1 gene expression, virus production, latency and immune responses are inherent properties of the direct infection of resting CD4 T cells. Experimental models of HIV-1 latency employing directly infected resting CD4 T cells should calibrate the contribution of unintegrated HIV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi N Chan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Benjamin Trinité
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Caroline S Lee
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Saurabh Mahajan
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Akanksha Anand
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, School of Biological, Sciences, Irvine, CA, 92697, USA.
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
48
|
Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M, Bess J, Anderson JL, Perkey KE, Reilly C, McCune JM, Haase AT, Lifson JD, Schacker TW, Estes JD. Defining HIV and SIV Reservoirs in Lymphoid Tissues. Pathog Immun 2016; 1:68-106. [PMID: 27430032 PMCID: PMC4943335 DOI: 10.20411/pai.v1i1.100] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A primary obstacle to an HIV-1 cure is long-lived viral reservoirs, which must be eliminated or greatly reduced. Cure strategies have largely focused on monitoring changes in T cell reservoirs in peripheral blood (PB), even though the lymphoid tissues (LT) are primary sites for viral persistence. To track and discriminate viral reservoirs within tissue compartments we developed a specific and sensitive next-generation in situ hybridization approach to detect vRNA, including vRNA+ cells and viral particles ("RNAscope"), vDNA+ cells ("DNAscope") and combined vRNA and vDNA with immunohistochemistry to detect and phenotype active and latently infected cells in the same tissue section. RNAscope is highly sensitive with greater speed of analysis compared to traditional in situ hybridization. The highly sensitive and specific DNAscope detected SIV/HIV vDNA+ cells, including duplexed detection of vDNA and vRNA or immunophenotypic markers in the same section. Analysis of LT samples from macaques prior to and during combination antiretroviral therapy demonstrated that B cell follicles are an important anatomical compartment for both latent and active viral persistence during treatment. These new tools should allow new insights into viral reservoir biology and evaluation of cure strategies.
Collapse
Affiliation(s)
- Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Stephen W. Wietgrefe
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Gregory Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - David R. Morcock
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Xing Pei Hao
- Pathology and Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Deceased 19 September 2014
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jodi L. Anderson
- Department of Medicine. Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Katherine E. Perkey
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Cavan Reilly
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California
| | - Ashley T. Haase
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Timothy W. Schacker
- Department of Medicine. Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
49
|
The Effect of Therapeutic HIV Vaccination With ALVAC-HIV With or Without Remune on the Size of the Viral Reservoir (A CTN 173 Substudy). J Acquir Immune Defic Syndr 2015; 70:122-8. [PMID: 26375464 PMCID: PMC4577611 DOI: 10.1097/qai.0000000000000734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To assess whether therapeutic vaccination with ALVAC-HIV ± Remune affects viral reservoir size in antiretroviral therapy–treated individuals.
Collapse
|
50
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|