1
|
Kogan V, Molodtsov I, Fleyshman DI, Leontieva OV, Koman IE, Gudkov AV. The reconstruction of evolutionary dynamics of processed pseudogenes indicates deep silencing of "retrobiome" in naked mole rat. Proc Natl Acad Sci U S A 2024; 121:e2313581121. [PMID: 39467133 PMCID: PMC11551321 DOI: 10.1073/pnas.2313581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
Approximately half of mammalian genomes are occupied by retrotransposons, highly repetitive interspersed genetic elements expanded through the mechanism of reverse transcription. The evolution of this "retrobiome" involved a series of explosive amplifications, presumably associated with high mutation rates, interspersed with periods of silencing. A by-product of retrotransposon activity is the formation of processed pseudogenes (PPGs)-intron-less, promoter-less DNA copies of messenger RNA (mRNA). We examined the proportion of PPGs with varying degrees of deviation from their ancestor mRNAs as an indicator of the intensity of retrotranspositions at different times in the past. Our analysis revealed a high proportion of "young'' (recently acquired) PPGs in the DNA of mice and rats, indicating significant retrobiome activity during the recent evolution of these species. The ongoing process of new PPG entries in mouse germ line DNA was confirmed by identifying diversity in PPG content within the single strain of mice, C57BL/6. In contrast, the highly abundant PPGs of the naked mole rat (NMR) exhibited substantial deviation from their mRNAs, with a near-complete lack of PPGs without mutations, indicative of the silencing of the retrobiome in the most recent evolutionary past, preceded by a period of high activity. This distinctive feature of the NMR genome was confirmed through the analysis of a broad range of mammalian species. The peculiar evolutionary dynamics of PPGs in the NMR, an organism with exceptional longevity and resistance to cancer, may reflect the role played by the retrobiome in aging and cancer.
Collapse
Affiliation(s)
- Valeria Kogan
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Ivan Molodtsov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Daria I. Fleyshman
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Olga V. Leontieva
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Igor E. Koman
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| |
Collapse
|
2
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Touma F, Lambert M, Martínez Villarreal A, Gantchev J, Ramchatesingh B, Litvinov IV. The Ultraviolet Irradiation of Keratinocytes Induces Ectopic Expression of LINE-1 Retrotransposon Machinery and Leads to Cellular Senescence. Biomedicines 2023; 11:3017. [PMID: 38002016 PMCID: PMC10669206 DOI: 10.3390/biomedicines11113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons have played an important role in evolution through their transposable activity. The largest and the only currently active human group of mobile DNAs are the LINE-1 retrotransposons. The ectopic expression of LINE-1 has been correlated with genomic instability. Narrow-band ultraviolet B (NB-UVB) and broad-band ultraviolet B (BB-UVB) phototherapy is commonly used for the treatment of dermatological diseases. UVB exposure is carcinogenic and can lead, in keratinocytes, to genomic instability. We hypothesize that LINE-1 reactivation occurs at a high rate in response to UVB exposure on the skin, which significantly contributes to genomic instability and DNA damage leading to cellular senescence and photoaging. Immortalized N/TERT1 and HaCaT human keratinocyte cell lines were irradiated in vitro with either NB-UVB or BB-UVB. Using immunofluorescence and Western blotting, we confirmed UVB-induced protein expression of LINE-1. Using RT-qPCR, we measured the mRNA expression of LINE-1 and senescence markers that were upregulated after several NB-UVB exposures. Selected miRNAs that are known to bind LINE-1 mRNA were measured using RT-qPCR, and the expression of miR-16 was downregulated with UVB exposure. Our findings demonstrate that UVB irradiation induces LINE-1 reactivation and DNA damage in normal keratinocytes along with the associated upregulation of cellular senescence markers and change in miR-16 expression.
Collapse
Affiliation(s)
- Fadi Touma
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | - Marine Lambert
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Amelia Martínez Villarreal
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Jennifer Gantchev
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Brandon Ramchatesingh
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
| | - Ivan V. Litvinov
- Research Institute, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (F.T.); (B.R.)
- Department of Dermatology, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Son JH, Do H, Han J. Intragenic L1 Insertion: One Possibility of Brain Disorder. Life (Basel) 2022; 12:life12091425. [PMID: 36143463 PMCID: PMC9505610 DOI: 10.3390/life12091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE1, L1) is a retrotransposon comprising ~17% of the human genome. A subset of L1s maintains the potential to mobilize and alter the genomic landscape, consequently contributing to the change in genome integrity and gene expression. L1 retrotransposition occurs in the human brain regardless of disease status. However, in the brain of patients with various brain diseases, the expression level and copy number of L1 are significantly increased. In this review, we briefly introduce the methodologies applied to measure L1 mobility and identify genomic loci where new insertion of L1 occurs in the brain. Then, we present a list of genes disrupted by L1 transposition in the genome of patients with brain disorders. Finally, we discuss the association between genes disrupted by L1 and relative brain disorders.
Collapse
Affiliation(s)
- Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
5
|
On the Base Composition of Transposable Elements. Int J Mol Sci 2022; 23:ijms23094755. [PMID: 35563146 PMCID: PMC9099904 DOI: 10.3390/ijms23094755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Transposable elements exhibit a base composition that is often different from the genomic average and from hosts’ genes. The most common compositional bias is towards Adenosine and Thymine, although this bias is not universal, and elements with drastically different base composition can coexist within the same genome. The AT-richness of transposable elements is apparently maladaptive because it results in poor transcription and sub-optimal translation of proteins encoded by the elements. The cause(s) of this unusual base composition remain unclear and have yet to be investigated. Here, I review what is known about the nucleotide content of transposable elements and how this content can affect the genome of their host as well as their own replication. The compositional bias of transposable elements could result from several non-exclusive processes including horizontal transfer, mutational bias, and selection. It appears that mutation alone cannot explain the high AT-content of transposons and that selection plays a major role in the evolution of the compositional bias. The reason why selection would favor a maladaptive nucleotide content remains however unexplained and is an area of investigation that clearly deserves attention.
Collapse
|
6
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
7
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
8
|
Rocha A, Dalgarno A, Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genomics 2021; 21:24-34. [PMID: 33755107 PMCID: PMC8789270 DOI: 10.1093/bfgp/elab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the irreversible cell cycle arrest in response to DNA damage. Because senescent cells accumulate with age and contribute to chronic inflammation, they are promising therapeutic targets for healthspan extension. The senescent phenotype can vary depending on cell type and on the specific insults that induce senescence. This variability is also reflected in the extensive remodeling of the genome organization within the nucleus of senescent cells. Here, we give an overview of the nuclear changes that occur in different forms of senescence, including changes to chromatin state and composition and to the three-dimensional organization of the genome, as well as alterations to the nuclear envelope and to the accessibility of repetitive genomic regions. Many of these changes are shared across all forms of senescence, implicating nuclear organization as a fundamental driver of the senescent state and of how senescent cells interact with the surrounding tissue.
Collapse
Affiliation(s)
- Azucena Rocha
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Audrey Dalgarno
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Nicola Neretti
- Associate Professor in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown University
| |
Collapse
|
9
|
Ishino K, Hasuwa H, Yoshimura J, Iwasaki YW, Nishihara H, Seki NM, Hirano T, Tsuchiya M, Ishizaki H, Masuda H, Kuramoto T, Saito K, Sakakibara Y, Toyoda A, Itoh T, Siomi MC, Morishita S, Siomi H. Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res 2021; 49:2700-2720. [PMID: 33590099 PMCID: PMC7969018 DOI: 10.1093/nar/gkab059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/27/2022] Open
Abstract
In animal gonads, transposable elements are actively repressed to preserve genome integrity through the PIWI-interacting RNA (piRNA) pathway. In mice, piRNAs are abundantly expressed in male germ cells, and form effector complexes with three distinct PIWIs. The depletion of individual Piwi genes causes male-specific sterility with no discernible phenotype in female mice. Unlike mice, most other mammals have four PIWI genes, some of which are expressed in the ovary. Here, purification of PIWI complexes from oocytes of the golden hamster revealed that the size of the PIWIL1-associated piRNAs changed during oocyte maturation. In contrast, PIWIL3, an ovary-specific PIWI in most mammals, associates with short piRNAs only in metaphase II oocytes, which coincides with intense phosphorylation of the protein. An improved high-quality genome assembly and annotation revealed that PIWIL1- and PIWIL3-associated piRNAs appear to share the 5'-ends of common piRNA precursors and are mostly derived from unannotated sequences with a diminished contribution from TE-derived sequences, most of which correspond to endogenous retroviruses. Our findings show the complex and dynamic nature of biogenesis of piRNAs in hamster oocytes, and together with the new genome sequence generated, serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes.
Collapse
Affiliation(s)
- Kyoko Ishino
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Naomi M Seki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takamasa Hirano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- National Institute of Genetics, Mishima 411-8540, Japan
| | - Marie Tsuchiya
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Harumi Masuda
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tae Kuramoto
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Kuniaki Saito
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- National Institute of Genetics, Mishima 411-8540, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan
| | | | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Mikiko C Siomi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Abstract
Exogenous retroviruses are RNA viruses that require reverse transcription for their replication. Among these viruses, human immunodeficiency virus (HIV) is infectious to humans and causes the development of acquired immune deficiency syndrome (AIDS). There are also endogenous retroelements that require reverse transcription for their retrotransposition, among which the type 1 long interspersed element (LINE-1) is the only type of retroelement that can replicate autonomously. It was once believed that retroviruses like HIV and retroelements like LINE-1 share similarities in processes such as reverse transcription and integration. Accordingly, many HIV suppressors are also potent LINE-1 inhibitors. However, in many cases, one suppressor uses two or more distinct mechanisms to repress HIV and LINE-1. In this review, we discuss some of these suppressors, focusing on their alternative mechanisms opposing the replication of HIV and LINE-1. Based on the differences in HIV and LINE-1 activity, the subcellular localization of these suppressors, and the impact of LINE-1 retrotransposition on human cells, we propose possible reasons for the inhibition of HIV and LINE-1 through different pathways by these suppressors, with the hope of accelerating future studies in associated research fields.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Ruggiero RP, Boissinot S. Variation in base composition underlies functional and evolutionary divergence in non-LTR retrotransposons. Mob DNA 2020; 11:14. [PMID: 32280379 PMCID: PMC7140322 DOI: 10.1186/s13100-020-00209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/24/2020] [Indexed: 12/03/2022] Open
Abstract
Background Non-LTR retrotransposons often exhibit base composition that is markedly different from the nucleotide content of their host’s gene. For instance, the mammalian L1 element is AT-rich with a strong A bias on the positive strand, which results in a reduced transcription. It is plausible that the A-richness of mammalian L1 is a self-regulatory mechanism reflecting a trade-off between transposition efficiency and the deleterious effect of L1 on its host. We examined if the A-richness of L1 is a general feature of non-LTR retrotransposons or if different clades of elements have evolved different nucleotide content. We also investigated if elements belonging to the same clade evolved towards different base composition in different genomes or if elements from different clades evolved towards similar base composition in the same genome. Results We found that non-LTR retrotransposons differ in base composition among clades within the same host but also that elements belonging to the same clade differ in base composition among hosts. We showed that nucleotide content remains constant within the same host over extended period of evolutionary time, despite mutational patterns that should drive nucleotide content away from the observed base composition. Conclusions Our results suggest that base composition is evolving under selection and may be reflective of the long-term co-evolution between non-LTR retrotransposons and their host. Finally, the coexistence of elements with drastically different base composition suggests that these elements may be using different strategies to persist and multiply in the genome of their host.
Collapse
Affiliation(s)
- Robert P Ruggiero
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates PO 129188
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates PO 129188
| |
Collapse
|
12
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
13
|
Della Valle F, Thimma MP, Caiazzo M, Pulcrano S, Celii M, Adroub SA, Liu P, Alanis-Lobato G, Broccoli V, Orlando V. Transdifferentiation of Mouse Embryonic Fibroblasts into Dopaminergic Neurons Reactivates LINE-1 Repetitive Elements. Stem Cell Reports 2020; 14:60-74. [PMID: 31902705 PMCID: PMC6962658 DOI: 10.1016/j.stemcr.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
In mammals, LINE-1 (L1) retrotransposons constitute between 15% and 20% of the genome. Although only a few copies have retained the ability to retrotranspose, evidence in brain and differentiating pluripotent cells indicates that L1 retrotransposition occurs and creates mosaics in normal somatic tissues. The function of de novo insertions remains to be understood. The transdifferentiation of mouse embryonic fibroblasts to dopaminergic neuronal fate provides a suitable model for studying L1 dynamics in a defined genomic and unaltered epigenomic background. We found that L1 elements are specifically re-expressed and mobilized during the initial stages of reprogramming and that their insertions into specific acceptor loci coincides with higher chromatin accessibility and creation of new transcribed units. Those events accompany the maturation of neuronal committed cells. We conclude that L1 retrotransposition is a non-random process correlating with chromatin opening and lncRNA production that accompanies direct somatic cell reprogramming. L1 activation accompanies induced dopaminergic neuron maturation L1 inhibition impairs the transdifferentiation potential of MEFs L1 retrotransposition creates a lineage-specific genetic mosaicism L1 insertions correlates with open chromatin and lncRNA transcription
Collapse
Affiliation(s)
- Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Manjula P Thimma
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), 3584 Utrecht, the Netherlands; Institute of Genetics and Biophysics, "A. Buzzati-Traverso", C.N.R., 80131 Naples, Italy; Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "A. Buzzati-Traverso", C.N.R., 80131 Naples, Italy
| | - Mirko Celii
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sabir A Adroub
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gregorio Alanis-Lobato
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institute of Molecular Biology, Computational Biology and Data Mining Unit, 55128 Mainz, Germany
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Bld 2, Level 3, Room 3234, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
14
|
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 2019; 38:e102870. [PMID: 31368590 PMCID: PMC6717896 DOI: 10.15252/embj.2019102870] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Yuka W Iwasaki
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Akane Mashiko
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Graduate School of EngineeringYokohama National UniversityYokohamaJapan
| | - Aoi Shibuya
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Shu Kondo
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Saori Suzuki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Kuniaki Saito
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Haruhiko Siomi
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
15
|
A comprehensive analysis of chimpanzee (Pan troglodytes)-specific LINE-1 retrotransposons. Gene 2019; 693:46-51. [DOI: 10.1016/j.gene.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
|
16
|
Tangsuwansri C, Saeliw T, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, Tencomnao T, Hu VW, Sarachana T. Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. PLoS One 2018; 13:e0201071. [PMID: 30036398 PMCID: PMC6056057 DOI: 10.1371/journal.pone.0201071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The exact cause and mechanisms underlying the pathobiology of autism spectrum disorder (ASD) remain unclear. Dysregulation of long interspersed element-1 (LINE-1) has been reported in the brains of ASD-like mutant mice and ASD brain tissues. However, the role and methylation of LINE-1 in individuals with ASD remain unclear. In this study, we aimed to investigate whether LINE-1 insertion is associated with differentially expressed genes (DEGs) and to assess LINE-1 methylation in ASD. METHODS To identify DEGs associated with LINE-1 in ASD, we reanalyzed previously published transcriptome profiles and overlapped them with the list of LINE-1-containing genes from the TranspoGene database. An Ingenuity Pathway Analysis (IPA) of DEGs associated with LINE-1 insertion was conducted. DNA methylation of LINE-1 was assessed via combined bisulfite restriction analysis (COBRA) of lymphoblastoid cell lines from ASD individuals and unaffected individuals, and the methylation levels were correlated with the expression levels of LINE-1 and two LINE-1-inserted DEGs, C1orf27 and ARMC8. RESULTS We found that LINE-1 insertion was significantly associated with DEGs in ASD. The IPA showed that LINE-1-inserted DEGs were associated with ASD-related mechanisms, including sex hormone receptor signaling and axon guidance signaling. Moreover, we observed that the LINE-1 methylation level was significantly reduced in lymphoblastoid cell lines from ASD individuals with severe language impairment and was inversely correlated with the transcript level. The methylation level of LINE-1 was also correlated with the expression of the LINE-1-inserted DEG C1orf27 but not ARMC8. CONCLUSIONS In ASD individuals with severe language impairment, LINE-1 methylation was reduced and correlated with the expression levels of LINE-1 and the LINE-1-inserted DEG C1orf27. Our findings highlight the association of LINE-1 with DEGs in ASD blood samples and warrant further investigation. The molecular mechanisms of LINE-1 and the effects of its methylation in ASD pathobiology deserve further study.
Collapse
Affiliation(s)
- Chayanin Tangsuwansri
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surangrat Thongkorn
- M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weerasak Chonchaiya
- Division of Growth and Development and Maximizing Thai Children’s Developmental Potential Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie Wailin Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Tewarit Sarachana
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Zhao K, Du J, Peng Y, Li P, Wang S, Wang Y, Hou J, Kang J, Zheng W, Hua S, Yu XF. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J Autoimmun 2018; 90:105-115. [PMID: 29525183 DOI: 10.1016/j.jaut.2018.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/25/2022]
Abstract
Improper host immune activation leads to the development of the autoimmune disease Aicardi-Goutières syndrome (AGS), which is attributed to defined genetic mutations in such proteins as TREX1 and ADAR1. The mechanism of immune activation in AGS patients has not been thoroughly elucidated to date. In this study, we report that endogenous LINE1 components trigger IFNβ production in multiple human cell types, including those defective for cGAS/STING-mediated DNA sensing. In these cells, LINE1 DNA synthesis and retrotransposition were not required for LINE1-triggered immune activation, but RNA sensing pathways were essential. LINE1-triggered immune activation could be suppressed by diverse LINE1 inhibitors, including AGS-associated proteins targeting LINE1 RNA or proteins. However, AGS-associated ADAR1 or TREX1 mutants were defective in suppressing LINE1 retrotransposition or LINE1-triggered immune activation. Therefore, we have revealed a new function for LINE1 as an endogenous trigger of innate immune activation, which is important for understanding the molecular basis of IFN-based autoimmune diseases and may offer new intervention strategies.
Collapse
Affiliation(s)
- Ke Zhao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China.
| | - Juan Du
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Yanfeng Peng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Peng Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Yu Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Jingwei Hou
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Jian Kang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China
| | - Shucheng Hua
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China; Department of Internal Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, 519 E. Minzhu St., Changchun, Jilin 130061, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
18
|
Rota F, Conti A, Campo L, Favero C, Cantone L, Motta V, Polledri E, Mercadante R, Dieci G, Bollati V, Fustinoni S. Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and MTBE. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E735. [PMID: 29649143 PMCID: PMC5923777 DOI: 10.3390/ijerph15040735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022]
Abstract
Benzene, a known human carcinogen, and methyl tert-butyl ether (MTBE), not classifiable as to its carcinogenicity, are fuel-related pollutants. This study investigated the effect of these chemicals on epigenetic and transcriptional alterations in DNA repetitive elements. In 89 petrol station workers and 90 non-occupationally exposed subjects the transcriptional activity of retrotransposons (LINE-1, Alu), the methylation on repeated-element DNA, and of H3K9 histone, were investigated in peripheral blood lymphocytes. Median work shift exposure to benzene and MTBE was 59 and 408 µg/m³ in petrol station workers, and 4 and 3.5 µg/m³, in controls. Urinary benzene (BEN-U), S-phenylmercapturic acid, and MTBE were significantly higher in workers than in controls, while trans,trans-muconic acid (tt-MA) was comparable between the two groups. Increased BEN-U was associated with increased Alu-Y and Alu-J expression; moreover, increased tt-MA was associated with increased Alu-Y and Alu-J and LINE-1 (L1)-5'UTR expression. Among repetitive element methylation, only L1-Pa5 was hypomethylated in petrol station workers compared to controls. While L1-Ta and Alu-YD6 methylation was not associated with benzene exposure, a negative association with urinary MTBE was observed. The methylation status of histone H3K9 was not associated with either benzene or MTBE exposure. Overall, these findings only partially support previous observations linking benzene exposure with global DNA hypomethylation.
Collapse
Affiliation(s)
- Federica Rota
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
| | - Anastasia Conti
- Department of Life Sciences, University of Parma, 43124 Parma, Italy.
- Present address: San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy.
| | - Laura Campo
- Occupational Medicine Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Chiara Favero
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
| | - Laura Cantone
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
| | - Valeria Motta
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
| | - Elisa Polledri
- Occupational Medicine Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Rosa Mercadante
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
| | - Giorgio Dieci
- Department of Life Sciences, University of Parma, 43124 Parma, Italy.
| | - Valentina Bollati
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
- Occupational Medicine Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Silvia Fustinoni
- EPIGET, Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, via San Barnaba 8, 20122 Milan, Italy.
- Occupational Medicine Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
19
|
Kitano S, Kurasawa H, Aizawa Y. Transposable elements shape the human proteome landscape via formation of cis-acting upstream open reading frames. Genes Cells 2018; 23:274-284. [PMID: 29446201 DOI: 10.1111/gtc.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Transposons are major drivers of mammalian genome evolution. To obtain new insights into the contribution of transposons to the regulation of protein translation, we here examined how transposons affected the genesis and function of upstream open reading frames (uORFs), which serve as cis-acting elements to regulate translation from annotated ORFs (anORFs) located downstream of the uORFs in eukaryotic mRNAs. Among 39,786 human uORFs, 3,992 had ATG trinucleotides of a transposon origin, termed "transposon-derived upstream ATGs" or TuATGs. Luciferase reporter assays suggested that many TuATGs modulate translation from anORFs. Comparisons with transposon consensus sequences revealed that most TuATGs were generated by nucleotide substitutions in non-ATG trinucleotides of integrated transposons. Among these non-ATG trinucleotides, GTG and ACG were converted into TuATGs more frequently, indicating a CpG methylation-mediated process of TuATG formation. Interestingly, it is likely that this process accelerated human-specific upstream ATG formation within transposon sequences in 5' untranslated regions after divergence between human and nonhuman primates. Methylation-mediated TuATG formation seems to be ongoing in the modern human population and could alter the expression of disease-related proteins. This study shows that transposons have potentially been shaping the human proteome landscape via cis-acting uORF creation.
Collapse
Affiliation(s)
- Shohei Kitano
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Hikaru Kurasawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasunori Aizawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
20
|
Servant G, Streva VA, Deininger PL. Transcription coupled repair and biased insertion of human retrotransposon L1 in transcribed genes. Mob DNA 2017; 8:18. [PMID: 29225704 PMCID: PMC5717806 DOI: 10.1186/s13100-017-0100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022] Open
Abstract
Background L1 retrotransposons inserted within genes in the human genome show a strong bias against sense orientation with respect to the gene. One suggested explanation for this observation was the possibility that L1 inserted randomly, but that there was negative selection against sense-oriented insertions. However, multiple studies have now found that de novo and polymorphic L1 insertions, which have little opportunity for selection to act, also show the same bias. Results Here we show that the transcription-coupled sub-pathway of nucleotide excision repair does not affect the overall rate of insertion of L1 elements, which is in contrast with the regulation by the global sub-pathway of nucleotide excision repair. The transcription-coupled subpathway does cause a strong bias against insertion in the sense orientation relative to genes. Conclusions This suggests that a major portion of the L1 orientation bias might be generated during the process of insertion through the action of transcription-coupled nucleotide excision repair. Electronic supplementary material The online version of this article (10.1186/s13100-017-0100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geraldine Servant
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Vincent A Streva
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA.,Present Address: Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 USA
| | - Prescott L Deininger
- Tulane University, Tulane Cancer Center and the Department of Epidemiology, 1430 Tulane Ave, New Orleans, LA 70112 USA.,Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112 USA
| |
Collapse
|
21
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
22
|
Reid NM, Jackson CE, Gilbert D, Minx P, Montague MJ, Hampton TH, Helfrich LW, King BL, Nacci DE, Aluru N, Karchner SI, Colbourne JK, Hahn ME, Shaw JR, Oleksiak MF, Crawford DL, Warren WC, Whitehead A. The landscape of extreme genomic variation in the highly adaptable Atlantic killifish. Genome Biol Evol 2017; 9:659-676. [PMID: 28201664 PMCID: PMC5381573 DOI: 10.1093/gbe/evx023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/22/2022] Open
Abstract
Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.
Collapse
Affiliation(s)
- Noah M Reid
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| | - Craig E Jackson
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405
| | - Don Gilbert
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Michael J Montague
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College Geisel School of Medicine, Hanover, NH 03755
| | - Lily W Helfrich
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672
| | - Diane E Nacci
- US Environmental Protection Agency, Office of Research and Development, Narragansett, RI, 02882
| | - Neel Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - John K Colbourne
- School of Biosciences, University of Birmingham, United Kingdom, B15 2TT
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Joseph R Shaw
- School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405
| | - Marjorie F Oleksiak
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149
| | - Douglas L Crawford
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| |
Collapse
|
23
|
Scavariello C, Luchetti A, Martoni F, Bonandin L, Mantovani B. Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida). Sci Rep 2017; 7:41946. [PMID: 28165062 PMCID: PMC5292737 DOI: 10.1038/srep41946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/04/2017] [Indexed: 01/16/2023] Open
Abstract
Horizontal transfer (HT) is an event in which the genetic material is transferred from one species to another, even if distantly related, and it has been demonstrated as a possible essential part of the lifecycle of transposable elements (TEs). However, previous studies on the non-LTR R2 retrotransposon, a metazoan-wide distributed element, indicated its vertical transmission since the Radiata-Bilateria split. Here we present the first possible instances of R2 HT in stick insects of the genus Bacillus (Phasmida). Six R2 elements were characterized in the strictly bisexual subspecies B. grandii grandii, B. grandii benazzii and B. grandii maretimi and in the obligatory parthenogenetic taxon B. atticus. These elements were compared with those previously retrieved in the facultative parthenogenetic species B. rossius. Phylogenetic inconsistencies between element and host taxa, and age versus divergence analyses agree and support at least two HT events. These HT events can be explained by taking into consideration the complex Bacillus reproductive biology, which includes also hybridogenesis, gynogenesis and androgenesis. Through these non-canonical reproductive modes, R2 elements may have been transferred between Bacillus genomes. Our data suggest, therefore, a possible role of hybridization for TEs survival and the consequent reshaping of involved genomes.
Collapse
Affiliation(s)
- Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Livia Bonandin
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Manzardo AM, Butler MG. Examination of Global Methylation and Targeted Imprinted Genes in Prader-Willi Syndrome. ACTA ACUST UNITED AC 2017; 2. [PMID: 28111641 DOI: 10.21767/2472-1158.100026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Methylation changes observed in Prader-Willi syndrome (PWS) may impact global methylation as well as regional methylation status of imprinted genes on chromosome 15 (in cis) or other imprinted obesity-related genes on other chromosomes (in trans) leading to differential effects on gene expression impacting obesity phenotype unique to (PWS). OBJECTIVE Characterize the global methylation profiles and methylation status for select imprinted genes associated with obesity phenotype in a well-characterized imprinted, obesity-related syndrome (PWS) relative to a cohort of obese and non-obese individuals. DESIGN Global methylation was assayed using two methodologies: 1) enriched LINE-1 repeat sequences by EpigenDx and 2) ELISA-based immunoassay method sensitive to genomic 5-methylcytosine by Epigentek. Target gene methylation patterns at selected candidate obesity gene loci were determined using methylation-specific PCR. SETTING Study participants were recruited as part of an ongoing research program on obesity-related genomics and Prader-Willi syndrome. PARTICIPANTS Individuals with non-syndromic obesity (N=26), leanness (N=26) and PWS (N=39). RESULTS A detailed characterization of the imprinting status of select target genes within the critical PWS 15q11-q13 genomic region showed enhanced cis but not trans methylation of imprinted genes. No significant differences in global methylation were found between non-syndromic obese, PWS or non-obese controls. INTERVENTION None. MAIN OUTCOME MEASURES Percentage methylation and the methylation index. CONCLUSION The methylation abnormality in PWS due to errors of genomic imprinting effects both upstream and downstream effectors in the 15q11-q13 region showing enhanced cis but not trans methylation of imprinted genes. Obesity in our subject cohorts did not appear to impact global methylation levels using the described methodology.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, Kansas, USA
| | - M G Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, Kansas, USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
25
|
da Silva KR, Mariotto S, Centofante L, Parise-Maltempi PP. Chromosome mapping of a Tc1-like transposon in species of the catfish Ancistrus. COMPARATIVE CYTOGENETICS 2017; 11:65-79. [PMID: 28919950 PMCID: PMC5599695 DOI: 10.3897/compcytogen.v11i1.10519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
The Tc1 mariner element is widely distributed among organisms and have been already described in different species of fish. The genus Ancistrus (Kner, 1854) has 68 nominal species and is part of an interesting taxonomic and cytogenetic group, as well as presenting a variation of chromosome number, ranging from 2n=34 to 54 chromosomes, and the existence of simple and multiple sex chromosome system and the occurrence of chromosomal polymorphisms involving chromosomes that carry the nucleolus organizer region. In this study, a repetitive element by restriction enzyme, from Ancistrus sp.1 "Flecha" was isolated, which showed similarity with a transposable element Tc1-mariner. Its chromosomal location is distributed in heterochromatic regions and along the chromosomal arms of all specimens covered in this study, confirming the pattern dispersed of this element found in other studies carried out with other species. Thus, this result reinforces the hypothesis that the sequence AnDraI is really a dispersed element isolated. As this isolated sequence showed the same pattern in all species which have different sex chromosomes systems, including in all sex chromosomes, we could know that it is not involved in sex chromosome differentiation.
Collapse
Affiliation(s)
- Keteryne Rodrigues da Silva
- Laboratório de Citogenética Animal – Universidade Estadual Paulista “Júlio de Mesquita Filho” Campus de Rio Claro – Av 24A, 1515 Jardim Bela Vista- 13600-000- Rio Claro/SP, Brasil
| | - Sandra Mariotto
- Instituto Federal de Ciências e Tecnologia do Mato Grosso, campus de Cuiabá – Bela Vista, MT, Brasil
| | - Liano Centofante
- Instituto de Biociências, UFMT Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil
| | - Patricia Pasquali Parise-Maltempi
- Laboratório de Citogenética Animal – Universidade Estadual Paulista “Júlio de Mesquita Filho” Campus de Rio Claro – Av 24A, 1515 Jardim Bela Vista- 13600-000- Rio Claro/SP, Brasil
| |
Collapse
|
26
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
27
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between Species: Evolutionary Dynamics of LINE-1 Retrotransposons across the Eukaryotic Tree of Life. Genome Biol Evol 2016; 8:3301-3322. [PMID: 27702814 PMCID: PMC5203782 DOI: 10.1093/gbe/evw243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Bertozzi
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Udomsinprasert W, Kitkumthorn N, Mutirangura A, Chongsrisawat V, Poovorawan Y, Honsawek S. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci Rep 2016; 6:26969. [PMID: 27243754 PMCID: PMC4886632 DOI: 10.1038/srep26969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
Abstract
Alu and LINE-1 elements are retrotransposons with a ubiquitous presence in the human genome that can cause genomic instability, specifically relating to telomere length. Genotoxic agents may induce methylation of retrotransposons, in addition to oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methylation of retrotransposons induced by these agents may contribute to biliary atresia (BA) etiology. Here, we investigated correlations between global methylation, 8-OHdG, and relative telomere length, as well as reporting on Alu and LINE-1 hypomethylation in BA patients. Alu and LINE-1 hypomethylation were found to be associated with elevated risk of BA (OR = 4.07; 95% CI: 2.27-7.32; P < 0.0001 and OR = 3.51; 95% CI: 1.87-6.59; P < 0.0001, respectively). Furthermore, LINE-1 methylation was associated with liver stiffness in BA patients (β coefficient = -0.17; 95% CI: -0.24 to -0.10; P < 0.0001). Stratified analysis revealed negative correlations between Alu and LINE-1 methylation and 8-OHdG in BA patients (P < 0.0001). In contrast, positive relationships were identified between Alu and LINE-1 methylation and relative telomere length in BA patients (P < 0.0001). These findings suggest that retrotransposon hypomethylation is associated with plasma 8-OHdG and telomere length in BA patients.
Collapse
Affiliation(s)
- Wanvisa Udomsinprasert
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral and Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Voranush Chongsrisawat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
29
|
Mita P, Boeke JD. How retrotransposons shape genome regulation. Curr Opin Genet Dev 2016; 37:90-100. [PMID: 26855260 DOI: 10.1016/j.gde.2016.01.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/30/2015] [Accepted: 01/17/2016] [Indexed: 12/30/2022]
Abstract
Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA
| |
Collapse
|
30
|
Lötsch J, Ultsch A. A computational functional genomics based self-limiting self-concentration mechanism of cell specialization as a biological role of jumping genes. Integr Biol (Camb) 2016; 8:91-103. [DOI: 10.1039/c5ib00203f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LINE-1 retrotransposition may result in silencing of genes. This is more likely with genes not carrying active LINE-1 as those are about 10 times more frequent in the given set of genes. Over time this leads to self-specialization of the cell toward processes associated with gene carrying active LINE-1, which then functionally prevail in the chronified situation.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology
- Goethe-University
- Theodor-Stern-Kai 7
- 60590 Frankfurt am Main
- Germany
| | - Alfred Ultsch
- DataBionics Research Group, University of Marburg
- Hans-Meerwein-Straβe
- D-35032 Marburg
- Germany
| |
Collapse
|
31
|
Aschacher T, Wolf B, Enzmann F, Kienzl P, Messner B, Sampl S, Svoboda M, Mechtcheriakova D, Holzmann K, Bergmann M. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene 2015; 35:94-104. [PMID: 25798839 DOI: 10.1038/onc.2015.65] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/17/2015] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.
Collapse
Affiliation(s)
- T Aschacher
- Cardiac Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Wolf
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - F Enzmann
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - P Kienzl
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Messner
- Cardiac Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - S Sampl
- Department of Medicine I, Institute of Cancer Research, Vienna, Austria
| | - M Svoboda
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | - D Mechtcheriakova
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| | - K Holzmann
- Department of Medicine I, Institute of Cancer Research, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| | - M Bergmann
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| |
Collapse
|
32
|
Influence of relative NK-DC abundance on placentation and its relation to epigenetic programming in the offspring. Cell Death Dis 2014; 5:e1392. [PMID: 25165878 PMCID: PMC4454325 DOI: 10.1038/cddis.2014.353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023]
Abstract
Normal placentation relies on an efficient maternal adaptation to pregnancy. Within the decidua, natural killer (NK) cells and dendritic cells (DC) have a critical role in modulating angiogenesis and decidualization associated with pregnancy. However, the contribution of these immune cells to the placentation process and subsequently fetal development remains largely elusive. Using two different mouse models, we here show that optimal placentation and fetal development is sensitive to disturbances in NK cell relative abundance at the fetal–maternal interface. Depletion of NK cells during early gestation compromises the placentation process by causing alteration in placental function and structure. Embryos derived from NK-depleted dams suffer from intrauterine growth restriction (IUGR), a phenomenon that continued to be evident in the offspring on post-natal day 4. Further, we demonstrate that IUGR was accompanied by an overall reduction of global DNA methylation levels and epigenetic changes in the methylation of specific hepatic gene promoters. Thus, temporary changes within the NK cell pool during early gestation influence placental development and function, subsequently affecting hepatic gene methylation and fetal metabolism.
Collapse
|
33
|
LINE-1 retrotransposons: from 'parasite' sequences to functional elements. J Appl Genet 2014; 56:133-45. [PMID: 25106509 DOI: 10.1007/s13353-014-0241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed.
Collapse
|
34
|
Yamanaka S, Siomi MC, Siomi H. piRNA clusters and open chromatin structure. Mob DNA 2014; 5:22. [PMID: 25126116 PMCID: PMC4131230 DOI: 10.1186/1759-8753-5-22] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are major structural components of eukaryotic genomes; however, mobilization of TEs generally has negative effects on the host genome. To counteract this threat, host cells have evolved genetic and epigenetic mechanisms that keep TEs silenced. One such mechanism involves the Piwi-piRNA complex, which represses TEs in animal gonads either by cleaving TE transcripts in the cytoplasm or by directing specific chromatin modifications at TE loci in the nucleus. Most Piwi-interacting RNAs (piRNAs) are derived from genomic piRNA clusters. There has been remarkable progress in our understanding of the mechanisms underlying piRNA biogenesis. However, little is known about how a specific locus in the genome is converted into a piRNA-producing site. In this review, we will discuss a possible link between chromatin boundaries and piRNA cluster formation.
Collapse
Affiliation(s)
- Soichiro Yamanaka
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
35
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Accelerated Evolution of Fetuin Family Proteins inProtobothrops flavoviridis(Habu Snake) Serum and the Discovery of an L1-Like Genomic Element in the Intronic Sequence of a Fetuin-Encoding Gene. Biosci Biotechnol Biochem 2014; 77:582-90. [DOI: 10.1271/bbb.120829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Klingbeil EC, Hew KM, Nygaard UC, Nadeau KC. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma. Immunol Res 2014; 58:369-73. [PMID: 24760221 PMCID: PMC4161467 DOI: 10.1007/s12026-014-8508-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma.
Collapse
Affiliation(s)
- E C Klingbeil
- Division of Allergy and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Rm. S-303, Stanford, CA, 94305-5107, USA,
| | | | | | | |
Collapse
|
38
|
Polymorphic L1 retrotransposons are frequently in strong linkage disequilibrium with neighboring SNPs. Gene 2014; 541:55-9. [PMID: 24614499 DOI: 10.1016/j.gene.2014.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
Abstract
L1 retrotransposons have been the major driver of structural variation of the human genome. L1 insertion polymorphism (LIP)-mediated genomic variation can alter the transcriptome and contribute to the divergence of human phenotypes. To assess this possibility, a genome-wide association study (GWAS) including LIPs is required. Toward this ultimate goal, the present study examined linkage disequilibrium between six LIPs and their neighboring single nucleotide polymorphisms (SNPs). Genomic PCR and sequencing of L1-plus and -minus alleles from different donors revealed that all six LIPs were in strong linkage disequilibrium with at least one SNP. In addition, comparison of syntenic regions containing the identified SNP nucleotides was performed among modern humans (L1-plus and -minus alleles), archaic humans and non-human primates, revealing two different evolutionary schemes that might have resulted in the observed strong SNP-LIP linkage disequilibria. This study provides an experimental framework and guidance for a future SNP-LIP integrative GWAS.
Collapse
|
39
|
Stindl R. The telomeric sync model of speciation: species-wide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the saltatory appearance of nonadaptive characters. Naturwissenschaften 2014; 101:163-86. [PMID: 24493020 PMCID: PMC3935097 DOI: 10.1007/s00114-014-1152-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
Charles Darwin knew that the fossil record is not overwhelmingly supportive of genetic and phenotypic gradualism; therefore, he developed the core of his theory on the basis of breeding experiments. Here, I present evidence for the existence of a cell biological mechanism that strongly points to the almost forgotten European concept of saltatory evolution of nonadaptive characters, which is in perfect agreement with the gaps in the fossil record. The standard model of chromosomal evolution has always been handicapped by a paradox, namely, how speciation can occur by spontaneous chromosomal rearrangements that are known to decrease the fertility of heterozygotes in a population. However, the hallmark of almost all closely related species is a differing chromosome complement and therefore chromosomal rearrangements seem to be crucial for speciation. Telomeres, the caps of eukaryotic chromosomes, erode in somatic tissues during life, but have been thought to remain stable in the germline of a species. Recently, a large human study spanning three healthy generations clearly found a cumulative telomere effect, which is indicative of transgenerational telomere erosion in the human species. The telomeric sync model of speciation presented here is based on telomere erosion between generations, which leads to identical fusions of chromosomes and triggers a transposon-mediated genomic repatterning in the germline of many individuals of a species. The phenotypic outcome of the telomere-triggered transposon activity is the saltatory appearance of nonadaptive characters simultaneously in many individuals. Transgenerational telomere erosion is therefore the material basis of aging at the species level.
Collapse
Affiliation(s)
- Reinhard Stindl
- apo-med-center, Alpharm GesmbH, Plättenstrasse 7-9, 2380, Perchtoldsdorf, Austria,
| |
Collapse
|
40
|
Patnala R, Lee SH, Dahlstrom JE, Ohms S, Chen L, Dheen ST, Rangasamy D. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat 2013; 143:239-53. [PMID: 24337508 PMCID: PMC3889873 DOI: 10.1007/s10549-013-2812-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/04/2013] [Indexed: 12/31/2022]
Abstract
Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and the development of breast cancer.
Collapse
Affiliation(s)
- Radhika Patnala
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Alexeeff SE, Baccarelli AA, Halonen J, Coull BA, Wright RO, Tarantini L, Bollati V, Sparrow D, Vokonas P, Schwartz J. Association between blood pressure and DNA methylation of retrotransposons and pro-inflammatory genes. Int J Epidemiol 2013; 42:270-80. [PMID: 23508416 DOI: 10.1093/ije/dys220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Methylation of deoxyribonucleic acid (DNA) is an epigenetic regulator of gene expression that changes with age, but its contribution to aging-related disorders, including high blood pressure (BP), is still largely unknown. We examined the relation of BP to the methylation of retrotransposon sequences of DNA and of selected candidate genes. METHODS This investigation included 789 elderly participants in the Normative Aging Study, ranging in age from 55 to 100 years, who had longitudinal measurements of DNA methylation. In these subjects' DNA we measured the proportion of methylated sites in retrotransposable sequences and in pro-inflammatory genes, expressed as the percent of 5-methylated cytosines (%5mC) among all cytosines. From one to four methylation measurements were made for each subject between 1999 and 2009. We fit mixed-effects models, using repeated measures of BP as the outcome and DNA methylation as the explanatory variable, adjusting for confounding variables. We also fit a Bayesian mixed-effects structural equation model to account for heterogeneity in the effects of methylation sites within each gene. RESULTS An increase in inter-quartile range (IQR) in the methylation of Alu elements was associated with an increase of 0.97 mm Hg in diastolic blood pressure (DBP) (95% CI 0.32-1.57), but no such association was observed for long interspersed nuclear element-1 (LINE-1). We also found positive associations between DBP and methylation of the genes for toll-like receptor 2 (TLR2) and inducible nitric oxide synthase (iNOS), and a negative association between DBP and methylation of the gene for interferon-γ (IFN-γ). Associations between methylation and systolic blood pressure (SBP) were weaker than those between methylation and DBP. Bayesian mixed-effects structural equation model results were similar for both DBP and SBP models. CONCLUSIONS The results of our study suggest that changes in DNA methylation of some pro-inflammatory genes and retrotransposable elements are related to small changes in BP.
Collapse
Affiliation(s)
- Stacey E Alexeeff
- Department of Environmental Health, Harvard School of Public Health, Boston MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schulman AH. Retrotransposon replication in plants. Curr Opin Virol 2013; 3:604-14. [PMID: 24035277 DOI: 10.1016/j.coviro.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
Abstract
Retrotransposons comprise the bulk of large plant genomes, replicating via an RNA intermediate whereby the original, integrated element remains in place. Of the two main orders, the LTR retrotransposons considerably outnumber the LINEs. LINEs integrate into target sites simultaneously with the RNA transcript being copied into cDNA by target-primed reverse transcription. LTR retrotransposon replication is basically equivalent to the intracellular phase of retroviral life cycles. The envelope gene giving extracellular mobility to retroviruses is in fact widespread in plants and their retrotransposons. Evolutionary analyses of the retrotransposons and retroviruses suggest that both form an ancient monophyletic group. The particular adaptations of LTR retrotransposons to plant life cycles enabling their success remain to be clarified.
Collapse
Affiliation(s)
- Alan H Schulman
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland; Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen FIN-31600, Finland.
| |
Collapse
|
43
|
Zhu Y, Feng F, Yu J, Song B, Hu M, Gao X, Wang Y, Zhang Q. L1-ORF1p, a Smad4 interaction protein, promotes proliferation of HepG2 cells and tumorigenesis in mice. DNA Cell Biol 2013; 32:531-40. [PMID: 23863096 DOI: 10.1089/dna.2013.2097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nucleotide element (LINE-1; L1) as an autonomous retrotransposon is localized usually in AT-rich, low-recombined, and gene-poor regions of genome. It is transiently activated in embryonic development and continuously activated in all tumor cells tested so far. Full-length L1 gene contains 5' untranslated region, two open reading frames (ORFs) encoded L1ORF1p and L1ORF2p, and a 3' terminal polyadenylation site. Compared with L1ORF2p, a protein encompassing reverse transcriptase and endonuclease activities, L1ORF1p remains to be elucidated. With liver cancer cells and tissues, the expression and sub-localization of L1ORF1p were investigated and shown that L1-ORF1p expresses just in liver cancer cells and tissues but not in normal liver cells and almost not in adjacent tissues. To characterize L1ORF1p, the strategies for over-expression and down-regulation of L1ORF1p in transfected cells were implemented. The phenomenon of promoting cell proliferation and colony formation was observed in transfected cells with L1ORF1p over-expression and vice versa. Down-regulation of L1ORF1p suppresses tumorigenesis in vitro and in vivo. Smad4 as an interaction protein of L1ORF1p is identified for the first time, while L1ORF1p is responsible for Smad4 sequestration in the cytoplasm. Thus, L1ORF1p contributed to tumorigenesis and may attribute to, at least partly, its participation in Smad4-signaling regulation.
Collapse
Affiliation(s)
- Yunfeng Zhu
- The Institute of Life Sciences and Bio-Engineering in Beijing Jiaotong University, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
45
|
Genes associated with the cis-regulatory functions of intragenic LINE-1 elements. BMC Genomics 2013; 14:205. [PMID: 23530910 PMCID: PMC3643820 DOI: 10.1186/1471-2164-14-205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thousands of intragenic long interspersed element 1 sequences (LINE-1 elements or L1s) reside within genes. These intragenic L1 sequences are conserved and regulate the expression of their host genes. When L1 methylation is decreased, either through chemical induction or in cancer, the intragenic L1 transcription is increased. The resulting L1 mRNAs form RISC complexes with pre-mRNA to degrade the complementary mRNA. In this study, we screened for genes that are involved in intragenic L1 regulation networks. RESULTS Genes containing L1s were obtained from L1Base (http://l1base.molgen.mpg.de). The expression profiles of 205 genes in 516 gene knockdown experiments were obtained from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). The expression levels of the genes with and without L1s were compared using Pearson's chi-squared test. After a permutation based statistical analysis and a multiple hypothesis testing, 73 genes were found to induce significant regulatory changes (upregulation and/or downregulation) in genes with L1s. In detail, 5 genes were found to induce both the upregulation and downregulation of genes with L1s, whereas 27 and 37 genes induced the downregulation and upregulation, respectively, of genes with L1s. These regulations sometimes differed depending on the cell type and the orientation of the intragenic L1s. Moreover, the siRNA-regulating genes containing L1s possess a variety of molecular functions, are responsible for many cellular phenotypes and are associated with a number of diseases. CONCLUSIONS Cells use intragenic L1s as cis-regulatory elements within gene bodies to modulate gene expression. There may be several mechanisms by which L1s mediate gene expression. Intragenic L1s may be involved in the regulation of several biological processes, including DNA damage and repair, inflammation, immune function, embryogenesis, cell differentiation, cellular response to external stimuli and hormonal responses. Furthermore, in addition to cancer, intragenic L1s may alter gene expression in a variety of diseases and abnormalities.
Collapse
|
46
|
Babatz TD, Burns KH. Functional impact of the human mobilome. Curr Opin Genet Dev 2013; 23:264-70. [PMID: 23523050 DOI: 10.1016/j.gde.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
The human genome is replete with interspersed repetitive sequences derived from the propagation of mobile DNA elements. Three families of human retrotransposons remain active today: LINE1, Alu, and SVA elements. Since 1988, de novo insertions at previously recognized disease loci have been shown to generate highly penetrant alleles in Mendelian disorders. Only recently has the extent of germline-transmitted retrotransposon insertion polymorphism (RIP) in human populations been fully realized. Also exciting are recent studies of somatic retrotransposition in human tissues and reports of tumor-specific insertions, suggesting roles in tissue heterogeneity and tumorigenesis. Here we discuss mobile elements in human disease with an emphasis on exciting developments from the last several years.
Collapse
Affiliation(s)
- Timothy D Babatz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
47
|
Role of Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mice in vitro. ZYGOTE 2013; 22:513-20. [DOI: 10.1017/s0967199412000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryIn a previous study, we have identified a set of conserved spermatogenic genes whose expression is restricted to testis and ovary and that are developmentally regulated. One of these genes, the transcription factor Mael, has been reported to play an essential role in mouse spermatogenesis. Nevertheless, the role of Mael in mouse oogenesis has not been defined. In order to analyse the role of Mael in mouse oogenesis, the expression of this gene was blocked during early oogenesis in mouse in vitro using RNAi technology. In addition, the role of Mael during differentiation of embryonic stem cells (ESC) into germ cells in vitro was analysed. Results show that downregulation of Mael by a specific short interfering RNA disrupted fetal oocyte growth and differentiation in fetal ovary explants in culture and the expression of several germ-cell markers in ESC during their differentiation. These results suggest that there is an important role for Mael in early oogenesis and during germ-cell differentiation from embryonic stem cells in mouse in vitro.
Collapse
|
48
|
Peddigari S, Li PWL, Rabe JL, Martin SL. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res 2013; 41:575-85. [PMID: 23161687 PMCID: PMC3592465 DOI: 10.1093/nar/gks1075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 12/18/2022] Open
Abstract
Long INterspersed Element one (LINE-1, or L1), is a widely distributed, autonomous retrotransposon in mammalian genomes. During retrotransposition, L1 RNA functions first as a dicistronic mRNA and then as a template for cDNA synthesis. Previously, we defined internal ribosome entry sequences (IRESs) upstream of both ORFs (ORF1 and ORF2) in the dicistronic mRNA encoded by mouse L1. Here, RNA affinity chromatography was used to isolate cellular proteins that bind these regions of L1 RNA. Four proteins, the heterogeneous nuclear ribonucleoproteins (hnRNPs) R, Q and L, and nucleolin (NCL), appeared to interact specifically with the ORF2 IRES. These were depleted from HeLa cells to examine their effects on L1 IRES-mediated translation and L1 retrotransposition. NCL knockdown specifically reduced the ORF2 IRES activity, L1 and L1-assisted Alu retrotransposition without altering L1 RNA or protein abundance. These findings are consistent with NCL acting as an IRES trans-acting factor (ITAF) for ORF2 translation and hence a positive host factor for L1 retrotransposition. In contrast, hnRNPL knockdown dramatically increased L1 retrotransposition as well as L1 RNA and ORF1 protein, indicating that this cellular protein normally interferes with retrotransposition. Thus, hnRNPL joins a small, but growing list of cellular proteins that are potent negative regulators of L1 retrotransposition.
Collapse
Affiliation(s)
- Suresh Peddigari
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, PO Box 6511, MS 8108, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
49
|
Sookdeo A, Hepp CM, McClure MA, Boissinot S. Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 2013; 4:3. [PMID: 23286374 PMCID: PMC3600994 DOI: 10.1186/1759-8753-4-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background LINE-1 (L1) is the dominant category of transposable elements in placental mammals. L1 has significantly affected the size and structure of all mammalian genomes and understanding the nature of the interactions between L1 and its mammalian host remains a question of crucial importance in comparative genomics. For this reason, much attention has been dedicated to the evolution of L1. Among the most studied elements is the mouse L1 which has been the subject of a number of studies in the 1980s and 1990s. These seminal studies, performed in the pre-genomic era when only a limited number of L1 sequences were available, have significantly improved our understanding of L1 evolution. Yet, no comprehensive study on the evolution of L1 in mouse has been performed since the completion of this genome sequence. Results Using the Genome Parsing Suite we performed the first evolutionary analysis of mouse L1 over the entire length of the element. This analysis indicates that the mouse L1 has recruited novel 5’UTR sequences more frequently than previously thought and that the simultaneous activity of non-homologous promoters seems to be one of the conditions for the co-existence of multiple L1 families or lineages. In addition the exchange of genetic information between L1 families is not limited to the 5’UTR as evidence of inter-family recombination was observed in ORF1, ORF2, and the 3’UTR. In contrast to the human L1, there was little evidence of rapid amino-acid replacement in the coiled-coil of ORF1, although this region is structurally unstable. We propose that the structural instability of the coiled-coil domain might be adaptive and that structural changes in this region are selectively equivalent to the rapid evolution at the amino-acid level reported in the human lineage. Conclusions The pattern of evolution of L1 in mouse shows some similarity with human suggesting that the nature of the interactions between L1 and its host might be similar in these two species. Yet, some notable differences, particularly in the evolution of ORF1, suggest that the molecular mechanisms involved in host-L1 interactions might be different in these two species.
Collapse
Affiliation(s)
- Akash Sookdeo
- Department of Biology, Queens College, the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367-1597, USA.
| | | | | | | |
Collapse
|
50
|
The Intersection of Genetics and Epigenetics: Reactivation of Mammalian LINE-1 Retrotransposons by Environmental Injury. ENVIRONMENTAL EPIGENOMICS IN HEALTH AND DISEASE 2013. [DOI: 10.1007/978-3-642-23380-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|