1
|
Rastogi I, Mannone JA, Gibadullin R, Moseman JE, Sidney J, Sette A, McNeel DG, Gellman SH. β-amino acid substitution in the SIINFEKL antigen alters immunological recognition. Cancer Biol Ther 2025; 26:2486141. [PMID: 40200635 PMCID: PMC11988276 DOI: 10.1080/15384047.2025.2486141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Peptide vaccines offer a direct way to initiate an immunogenic response to a defined antigen epitope. However, peptide vaccines are unstable in vivo, subject to rapid enzymatic proteolysis. Replacement of an α-amino acid residue with a homologous β-amino acid residue (native side chain, but backbone extended by a single CH2 unit) impairs proteolysis at nearby amide bonds. Therefore, antigen analogues containing α-to-β replacements have been examined for functional mimicry of native all-α antigens. Another group previously took this approach in the ovalbumin (OVA) antigen model by evaluating single α-to-β analogues of the murine major histocompatibility complex (MHC) I-restricted peptide SIINFEKL. METHODS We re-examined this set of α/β SIINFEKL antigens. We tested the susceptibility to proteolysis in mouse serum and their ability to activate OVA-antigen-specific CD8 T cells in vitro. Additionally, we tested the α/β antigens in vivo for their ability to induce an antigen-specific immunogenic response in naïve mice and in OVA-expressing tumor-bearing mice. RESULTS The α/β antigens were comparable to the native antigen in their susceptibility to proteolysis in serum. Each α/β antigen was capable of activating antigen-specific CD8 T cells in vitro. However, antigen-specific CD8 T cells induced against α/β antigens in vivo were not cross-reactive to the native antigen. Moreover, immunization with α/β analogues did not elicit anti-tumor effects in tumor-bearing mice. CONCLUSIONS We conclude that even though α/β analogues of the SIINFEKL antigen can elicit a T cell-based response, this class of backbone-modified peptides is not promising from the perspective of antitumor vaccine development.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John A. Mannone
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jena E. Moseman
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Douglas G. McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Xu R, Huang J, Kuhn AJ, Gellman SH. Effects of D-Amino Acid Replacements on the Conformational Stability of Miniproteins. Chembiochem 2025; 26:e202500085. [PMID: 39948034 PMCID: PMC12002103 DOI: 10.1002/cbic.202500085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
For many proteins, proper function requires adoption of a specific tertiary structure. This study explores the effects of L-to-D amino acid substitutions on tertiary structure stability for two well-known miniproteins, a single-site variant of the chicken villin headpiece subdomain (VHP) and the human Pin1 WW domain (WW). For VHP, which features an α-helix-rich tertiary structure, substitutions led to significant destabilization, as detected by variable temperature circular dichroism (CD) measurements. For WW, which has a β-sheet-rich tertiary structure, most single L-to-D changes seemed to cause complete unfolding at room temperature, according to CD measurements. These findings suggest that amino acid residue configuration changes at a single site will often prove to be deleterious in terms of tertiary structure stability, and in some cases dramatically destabilizing.
Collapse
Affiliation(s)
- Ruiwen Xu
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Jiawen Huang
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Ariel J. Kuhn
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Samuel H. Gellman
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| |
Collapse
|
3
|
Emanuelson C, Naro Y, Shade O, Liu M, Khare SD, Deiters A. Rational Design of Stapled Covalent Peptide Modifiers of Oncoprotein E6 from Human Papillomavirus. ACS Chem Biol 2025; 20:746-757. [PMID: 40063062 PMCID: PMC11934087 DOI: 10.1021/acschembio.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Human Papillomavirus (HPV) is linked to multiple cancers, most significantly cervical cancer, for which HPV infection is associated with nearly all cases. Essential to the oncogenesis of HPV is the function of the viral protein E6 and its role in degrading the cell cycle regulator p53. Degradation of p53, and the resultant loss of cell cycle control, is mediated by E6 recruitment of the E3 ubiquitin ligase E6AP and subsequent ubiquitination of p53. Here, we report the design of a stapled peptide that mimics the LxxLL α-helical domain of E6AP to bind and covalently label a cysteine residue specific to HPV-16 E6. Several acrylamide- and haloacetamide-based warheads were evaluated for reactivity and specificity, and a panel of hydrocarbon-stapled peptides was evaluated for enhanced binding affinity and increased proteolytic stability. Structure-based modeling was used to rationalize the observed trends in the reactivity of the warheads and the impact of the hydrocarbon staple position on the binding affinity of the stapled peptides. The development of a proteolytically stable and reactive peptide represents a new class of peptide-based inhibitors of protein-protein interactions with a potential therapeutic value toward HPV-derived cancers.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuta Naro
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melinda Liu
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
5
|
Amarasiri HADB, Arachchige D, Vince MJK, Holub JM. Inhibitory Potential and Binding Thermodynamics of Scyllatoxin-Based BH3 Domain Mimetics Targeting Repressor BCL2 Proteins. J Mol Recognit 2025; 38:e70001. [PMID: 39905677 PMCID: PMC11794977 DOI: 10.1002/jmr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The B-cell lymphoma 2 (BCL2) proteins are a class of apoptosis regulators that control the release of apoptogenic factors from mitochondria. Under normal physiological conditions, apoptosis is inhibited through the actions of anti-apoptotic (repressor) BCL2 proteins that bind semi-indiscriminately to the helical BH3 domains of pro-apoptotic (effector) BCL2 proteins. In this work, we developed a series of BH3 domain mimetics by grafting residues from the effector BCL2 protein Bax onto the α-helix of scyllatoxin (ScTx). These so-called "ScTx-Bax" constructs were then used to gain insight into the physicochemical nature of repressor/effector BCL2 interactions. Specifically, we utilized competitive binding and isothermal titration calorimetry (ITC) to investigate the inhibitory potential and binding thermodynamics of ScTx-Bax structural variants that target the repressor protein Bcl-2 (proper) in vitro. Our data show that ScTx-Bax mimetics compete with isolated Bax BH3 domain peptides for Bcl-2 with IC50 values in the mid-nanomolar range and that greater flexibility within the ScTx-Bax BH3 domain correlates with more effective inhibition. Furthermore, ITC experiments revealed that unstructured ScTx-Bax variants target Bcl-2 with greater entropic, but lower enthalpic, efficiencies than structured ScTx-Bax peptides. These results suggest that entropic contributions to binding Bcl-2 are more favorable for flexible BH3 domains; however, this enhancement is counterbalanced by a moderate enthalpic penalty. Overall, this study improves understanding of how structural properties of effector BH3 domains influence the promiscuous binding patterns of BCL2 proteins and expands the utility of ScTx-based BH3 domain mimetics as molecular tools to study discrete recognition elements that facilitate repressor/effector BCL2 interactions.
Collapse
Affiliation(s)
| | | | - Matthew J. K. Vince
- Department of Chemistry and BiochemistryOhio UniversityAthensOhioUSA
- Institut für Bioanalytische Chemie, Biotechnologisch‐Biomedizinisches Zentrum, Fakultät für Chemie Und MineralogieUniversität LeipzigLeipzigGermany
| | - Justin M. Holub
- Department of Chemistry and BiochemistryOhio UniversityAthensOhioUSA
- Molecular and Cellular Biology ProgramOhio UniversityAthensOhioUSA
- Edison Biotechnology InstituteOhio UniversityAthensOhioUSA
| |
Collapse
|
6
|
Gare CL, White AM, Malins LR. From lead to market: chemical approaches to transform peptides into therapeutics. Trends Biochem Sci 2025:S0968-0004(25)00024-6. [PMID: 40011178 DOI: 10.1016/j.tibs.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Peptides are a powerful drug modality with potential to access difficult targets. This recognition underlies their growth in the global pharmaceutical market, with peptides representing ~8% of drugs approved by the FDA over the past decade. Currently, the peptide therapeutic landscape is evolving, with high-throughput display technologies driving the identification of peptide leads with enhanced diversity. Yet, chemical modifications remain essential for improving the 'drug-like' properties of peptides and ultimately translating leads to market. In this review, we explore two recent therapeutic candidates (semaglutide, a peptide hormone analogue, and MK-0616, an mRNA display-derived candidate) as case studies that highlight general approaches to improving pharmacokinetics (PK) and potency. We also emphasize the critical link between advances in medicinal chemistry and the optimisation of highly efficacious peptide therapeutics.
Collapse
Affiliation(s)
- Caitlin L Gare
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Andrew M White
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra 2601, Australian Capital Territory, Australia.
| |
Collapse
|
7
|
Chowdhury A, Shrestha P, Jois SD. Molecular Chimera in Cancer Drug Discovery: Beyond Antibody Therapy, Designing Grafted Stable Peptides Targeting Cancer. Int J Pept Res Ther 2025; 31:38. [PMID: 39974747 PMCID: PMC11832722 DOI: 10.1007/s10989-025-10690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 02/21/2025]
Abstract
Background Several cancer therapies are being developed, and given the variability of different cancer types, the goal of these therapies is to remove the invasive tumor from the body, kill the cancer cells, or else retard the growth. These include chemotherapeutic agents and targeted therapy using small molecules and antibodies. However, antibodies can generate an immune response upon repeated administration, and producing antibodies could be expensive. Purpose The purpose of this review is to describe different therapeutic approaches utilized for cancer therapy, the current therapeutic approaches, and their limitations. As a novel strategy to combat cancer, designing new stable peptide scaffolds such as cyclotides and sunflower trypsin inhibitors (SFTI) is described. Results Stable peptides that can target proteins can be used as therapeutic agents. Here, we review the utilization and amalgamation of plant-based peptides with biological epitopes in designing molecules called "Molecular Chimeras" using a grafted peptide strategy. These cyclic peptides can bind to target receptors or modulate protein-protein interactions as they bind with high affinity and selectivity. Grafted peptides also possess better serum stability owing to the head-to-tail cyclization and other structural modifications. Conclusion Stable cyclic peptides outweigh the other biologicals in terms of stability and manufacturing process. Peptides and peptidomimetics can be used as therapeutic agents, and these molecules provide alternatives for biologicals and small molecule inhibitors as drugs.
Collapse
Affiliation(s)
- Arpan Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Prajesh Shrestha
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University Baton Rouge, Skip Bertman Drive, Baton Rouge, LA-70803 USA
| |
Collapse
|
8
|
Harmon TW, Song J, Gulewicz AJ, Di YP, Horne WS. Structural and Functional Mimicry of the Antimicrobial Defensin Plectasin by Analogues with Engineered Backbone Composition. Chembiochem 2025; 26:e202400951. [PMID: 39714882 PMCID: PMC11875557 DOI: 10.1002/cbic.202400951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that also exert antimicrobial activity via Lipid II binding. Made up entirely of canonical amino acids, these molecules are potentially more susceptible to degradation by protease enzymes than non-ribosomal counterparts. Here, we report the development of proteomimetic variants of plectasin through the systematic incorporation of artificial backbone connectivity in the domain. An iterative secondary-structure-based design scheme yields a variant with a tertiary fold indistinguishable from the prototype natural product, potent activity against Gram positive bacteria, and low mammalian cell toxicity. Backbone modification is shown to improve oxidative folding efficiency of the disulfide-rich scaffold as well as resistance to proteolytic hydrolysis. These results broaden the scope of design strategies toward protein mimetics as well as folds and biological functions possible in such agents.
Collapse
Affiliation(s)
- Thomas W. Harmon
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| | - Junming Song
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPA 15260USA
| | | | - Y. Peter Di
- Department of Environmental and Occupational HealthGraduate School of Public HealthUniversity of PittsburghPittsburghPA 15260USA
| | - W. Seth Horne
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| |
Collapse
|
9
|
Bazzi S, Hadj Mohamed A, Ryzhakov D, Ghouilem J, Beniddir MA, Gandon V, Messaoudi S. Diastereoselective Anomeric C(sp 3)-H Cyclization Towards the Design of New Cyclophane-Braced Glycopeptides. Angew Chem Int Ed Engl 2025; 64:e202418057. [PMID: 39513488 DOI: 10.1002/anie.202418057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/15/2024]
Abstract
Here we report a macrocyclization route towards the synthesis of glycophane peptides by a selective C-H arylation of the anomeric bond. This approach demonstrates the power of Pd-catalysis C-H activation to access unusual cyclic peptides.
Collapse
Affiliation(s)
- Sakna Bazzi
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | - Ameni Hadj Mohamed
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| | | | - Juba Ghouilem
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
| | | | - Vincent Gandon
- Université Paris-Saclay, CNRS, ICMMO, 91400, Orsay, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 91400, Orsay, France
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
10
|
Iglesias V, Bárcenas O, Pintado‐Grima C, Burdukiewicz M, Ventura S. Structural information in therapeutic peptides: Emerging applications in biomedicine. FEBS Open Bio 2025; 15:254-268. [PMID: 38877295 PMCID: PMC11788753 DOI: 10.1002/2211-5463.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Peptides are attracting a growing interest as therapeutic agents. This trend stems from their cost-effectiveness and reduced immunogenicity, compared to antibodies or recombinant proteins, but also from their ability to dock and interfere with large protein-protein interaction surfaces, and their higher specificity and better biocompatibility relative to organic molecules. Many tools have been developed to understand, predict, and engineer peptide function. However, most state-of-the-art approaches treat peptides only as linear entities and disregard their structural arrangement. Yet, structural details are critical for peptide properties such as solubility, stability, or binding affinities. Recent advances in peptide structure prediction have successfully addressed the scarcity of confidently determined peptide structures. This review will explore different therapeutic and biotechnological applications of peptides and their assemblies, emphasizing the importance of integrating structural information to advance these endeavors effectively.
Collapse
Affiliation(s)
- Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSICBarcelonaSpain
| | - Carlos Pintado‐Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
11
|
Wéber E, Ábrányi-Balogh P, Nagymihály B, Menyhárd DK, Péczka N, Gadanecz M, Schlosser G, Orgován Z, Bogár F, Bajusz D, Kecskeméti G, Szabó Z, Bartus É, Tököli A, Tóth GK, Szalai TV, Takács T, de Araujo E, Buday L, Perczel A, Martinek TA, Keserű GM. Target-Templated Construction of Functional Proteomimetics Using Photo-Foldamer Libraries. Angew Chem Int Ed Engl 2025; 64:e202410435. [PMID: 39329252 DOI: 10.1002/anie.202410435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Current methods for proteomimetic engineering rely on structure-based design. Here we describe a design strategy that allows the construction of proteomimetics against challenging targets without a priori characterization of the target surface. Our approach employs (i) a 100-membered photoreactive foldamer library, the members of which act as local surface mimetics, and (ii) the subsequent affinity maturation of the primary hits using systems chemistry. Two surface-oriented proteinogenic side chains drove the interactions between the short helical foldamer fragments and the proteins. Diazirine-based photo-crosslinking was applied to sensitively detect and localize binding even to shallow and dynamic patches on representatively difficult targets. Photo-foldamers identified functionally relevant protein interfaces, allosteric and previously unexplored targetable regions on the surface of STAT3 and an oncogenic K-Ras variant. Target-templated dynamic linking of foldamer hits resulted in two orders of magnitude affinity improvement in a single step. The dimeric K-Ras ligand mimicked protein-like catalytic functions. The photo-foldamer approach thus enables the highly efficient mapping of protein-protein interaction sites and provides a viable starting point for proteomimetic ligand development without a priori structural hypotheses.
Collapse
Affiliation(s)
- Edit Wéber
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Bence Nagymihály
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dóra K Menyhárd
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Márton Gadanecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - Tibor V Szalai
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás Takács
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Egyetem tér 1-3, H-1053, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Elvin de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Ontario, L5 L 1 C6, Mississauga, Canada
| | - László Buday
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, H-6720, Szeged, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budafoki út 8, H-1111, Budapest, Hungary
- National Drug Discovery and Development Laboratory, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
12
|
Singh SS, Calvo R, Kumari A, Sable RV, Fang Y, Tao D, Hu X, Castle SG, Nahar S, Li D, Major E, Sanchez TW, Kato R, Xu X, Zhou J, Liu L, LeClair CA, Simeonov A, Baljinnyam B, Henderson MJ, Marugan J, Rudloff U. Fatty Acid Derivatization and Cyclization of the Immunomodulatory Peptide RP-182 Targeting CD206high Macrophages Improve Antitumor Activity. Mol Cancer Ther 2024; 23:1827-1841. [PMID: 39212669 PMCID: PMC11612619 DOI: 10.1158/1535-7163.mct-23-0790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
As tumor-associated macrophages (TAM) exercise a plethora of protumor and immune evasive functions, novel strategies targeting TAMs to inhibit tumor progression have emerged within the current arena of cancer immunotherapy. Activation of the mannose receptor 1 (CD206) is a recent approach that recognizes immunosuppressive CD206high M2-like TAMs as a drug target. Ligation of CD206 both induces reprogramming of CD206high TAMs toward a proinflammatory phenotype and selectively triggers apoptosis in these cells. CD206-activating therapeutics are currently limited to the linear, 10mer peptide RP-182, 1, which is not a drug candidate. In this study, we sought to identify a better suitable candidate for future clinical development by synthesizing and evaluating a series of RP-182 analogs. Surprisingly, fatty acid derivative 1a [RP-182-PEG3-K(palmitic acid)] not only showed improved stability but also increased affinity to the CD206 receptor through enhanced interaction with a hydrophobic binding motif of CD206. Peptide 1a showed superior in vitro activity in cell-based assays of macrophage activation which was restricted to CD206high M2-polarized macrophages. Improvement in responses was disproportionally skewed toward improved induction of phagocytosis including cancer cell phagocytosis. Peptide 1a reprogrammed the immune landscape in genetically engineered murine KPC pancreatic tumors toward increased innate immune surveillance and improved tumor control and effectively suppressed tumor growth of murine B16 melanoma allografts.
Collapse
Affiliation(s)
- Sitanshu S. Singh
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raul Calvo
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anju Kumari
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rushikesh V. Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuhong Fang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Dingyin Tao
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xin Hu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Sarah Gray Castle
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Saifun Nahar
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Major
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tino W. Sanchez
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rintaro Kato
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xin Xu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | | | - Liang Liu
- CPC Scientific Inc., San Jose, California
| | - Christopher A. LeClair
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Anton Simeonov
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Bolormaa Baljinnyam
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Mark J. Henderson
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan Marugan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Hussaini IM, Sulaiman AN, Abubakar SC, Abdulazeez TM, Abdullahi MM, Sulaiman MA, Madika A, Bishir M, Muhammad A. Unveiling the arsenal against antibiotic resistance: Antibacterial peptides as broad-spectrum weapons targeting multidrug-resistant bacteria. THE MICROBE 2024; 5:100169. [DOI: 10.1016/j.microb.2024.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Kawaguchi Y, Terada S, Futaki S. An approach for the intracellular delivery of IgG via enzymatic ligation with a cell-permeable attenuated cationic amphiphilic lytic peptide. Bioorg Med Chem 2024; 111:117835. [PMID: 39053075 DOI: 10.1016/j.bmc.2024.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji City, Kyoto 611-0011, Japan.
| | - Sakahiro Terada
- Institute for Chemical Research, Kyoto University, Uji City, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji City, Kyoto 611-0011, Japan.
| |
Collapse
|
15
|
Cawood EE, Baker E, Edwards TA, Woolfson DN, Karamanos TK, Wilson AJ. Understanding β-strand mediated protein-protein interactions: tuning binding behaviour of intrinsically disordered sequences by backbone modification. Chem Sci 2024; 15:10237-10245. [PMID: 38966365 PMCID: PMC11220606 DOI: 10.1039/d4sc02240h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
A significant challenge in chemical biology is to understand and modulate protein-protein interactions (PPIs). Given that many PPIs involve a folded protein domain and a peptide sequence that is intrinsically disordered in isolation, peptides represent powerful tools to understand PPIs. Using the interaction between small ubiquitin-like modifier (SUMO) and SUMO-interacting motifs (SIMs), here we show that N-methylation of the peptide backbone can effectively restrict accessible peptide conformations, predisposing them for protein recognition. Backbone N-methylation in appropriate locations results in faster target binding, and thus higher affinity, as shown by relaxation-based NMR experiments and computational analysis. We show that such higher affinities occur as a consequence of an increase in the energy of the unbound state, and a reduction in the entropic contribution to the binding and activation energies. Thus, backbone N-methylation may represent a useful modification within the peptidomimetic toolbox to probe β-strand mediated interactions.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Emily Baker
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- College of Biomedical Sciences, Larkin University 18301 N Miami Ave #1 Miami FL 33169 USA
| | - Derek N Woolfson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
16
|
Badenhorst M, Windhorst AD, Beaino W. Navigating the landscape of PD-1/PD-L1 imaging tracers: from challenges to opportunities. Front Med (Lausanne) 2024; 11:1401515. [PMID: 38915766 PMCID: PMC11195831 DOI: 10.3389/fmed.2024.1401515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Immunotherapy targeted to immune checkpoint inhibitors, such as the program cell death receptor (PD-1) and its ligand (PD-L1), has revolutionized cancer treatment. However, it is now well-known that PD-1/PD-L1 immunotherapy response is inconsistent among patients. The current challenge is to customize treatment regimens per patient, which could be possible if the PD-1/PD-L1 expression and dynamic landscape are known. With positron emission tomography (PET) imaging, it is possible to image these immune targets non-invasively and system-wide during therapy. A successful PET imaging tracer should meet specific criteria concerning target affinity, specificity, clearance rate and target-specific uptake, to name a few. The structural profile of such a tracer will define its properties and can be used to optimize tracers in development and design new ones. Currently, a range of PD-1/PD-L1-targeting PET tracers are available from different molecular categories that have shown impressive preclinical and clinical results, each with its own advantages and disadvantages. This review will provide an overview of current PET tracers targeting the PD-1/PD-L1 axis. Antibody, peptide, and antibody fragment tracers will be discussed with respect to their molecular characteristics and binding properties and ways to optimize them.
Collapse
Affiliation(s)
- Melinda Badenhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Albert D. Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
17
|
Feng Y, Qirjollari A, Fawaz MV, Cancilla MT, Gonzalez RJ, Pearson K. Rapid and Definitive Identification of Cyclic Peptide Soft Spots by Isotope-Labeled Reductive Dimethylation and Mass Spectrometry Fragmentation. Anal Chem 2024; 96:7756-7762. [PMID: 38690743 DOI: 10.1021/acs.analchem.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cyclic peptides are an emerging therapeutic modality over the past few decades. To identify drug candidates with sufficient proteolytic stability for oral administration, it is critical to pinpoint the amide bond hydrolysis sites, or soft spots, to better understand their metabolism and provide guidance on further structure optimization. However, the unambiguous characterization of cyclic peptide soft spots remains a significant challenge during early stage discovery studies, as amide bond hydrolysis forms a linearized isobaric sequence with the addition of a water molecule, regardless of the amide hydrolysis location. In this study, an innovative strategy was developed to enable the rapid and definitive identification of cyclic peptide soft spots by isotope-labeled reductive dimethylation and mass spectrometry fragmentation. The dimethylated immonium ion with enhanced MS signal at a distinctive m/z in MS/MS fragmentation spectra reveals the N-terminal amino acid on a linearized peptide sequence definitively and, thus, significantly simplifies the soft spot identification workflow. This approach has been evaluated to demonstrate the potential of isotope-labeled dimethylation to be a powerful analytical tool in cyclic peptide drug discovery and development.
Collapse
Affiliation(s)
- Yu Feng
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Athanasia Qirjollari
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Maria V Fawaz
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Mark T Cancilla
- Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Raymond J Gonzalez
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Kara Pearson
- Nonclinical Drug Safety, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
18
|
Ma X, Beard AM, Burgess SA, Darlak M, Newman JA, Nogle LM, Pietrafitta MJ, Smith DA, Wang X, Yue L. General Synthesis of Conformationally Constrained Noncanonical Amino Acids with C( sp3)-Rich Benzene Bioisosteres. J Org Chem 2024; 89:5010-5018. [PMID: 38532573 DOI: 10.1021/acs.joc.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Recent years have seen novel modalities emerge for the treatment of human diseases resulting in an increase in beyond rule of 5 (bRo5) chemical matter. As a result, synthetic innovations aiming to enable rapid access to complex bRo5 molecular entities have become increasingly valuable for medicinal chemists' toolkits. Herein, we report the general synthesis of a new class of noncanonical amino acids (ncAA) with a cyclopropyl backbone to achieve conformational constraint and bearing C(sp3)-rich benzene bioisosteres. We also demonstrate preliminary studies toward utilities of these ncAA as building blocks for medicinal chemistry research.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Adam M Beard
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Samantha A Burgess
- Analytical Research & Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Miroslawa Darlak
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lisa M Nogle
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Mark J Pietrafitta
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David A Smith
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xiao Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lei Yue
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Liu S, Daley EJ, My-Linh Tran L, Yu Z, Reyes M, Dean T, Khatri A, Levine PM, Balana AT, Pratt MR, Jüppner H, Gellman SH, Gardella TJ. Backbone Modification Provides a Long-Acting Inverse Agonist of Pathogenic, Constitutively Active PTH1R Variants. J Am Chem Soc 2024; 146:6522-6529. [PMID: 38417010 PMCID: PMC11162201 DOI: 10.1021/jacs.3c09694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Parathyroid hormone 1 receptor (PTH1R) plays a key role in mediating calcium homeostasis and bone development, and aberrant PTH1R activity underlies several human diseases. Peptidic PTH1R antagonists and inverse agonists have therapeutic potential in treating these diseases, but their poor pharmacokinetics and pharmacodynamics undermine their in vivo efficacy. Herein, we report the use of a backbone-modification strategy to design a peptidic PTH1R inhibitor that displays prolonged activity as an antagonist of wild-type PTH1R and an inverse agonist of the constitutively active PTH1R-H223R mutant both in vitro and in vivo. This peptide may be of interest for the future development of therapeutic agents that ameliorate PTH1R malfunction.
Collapse
Affiliation(s)
- Shi Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Eileen J Daley
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Paul M Levine
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Aaron T Balana
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
20
|
Passley KD, Ruble JC, Kerr MS, Organ MG. A General Approach to Optically Pure, α-Methyl Non-Natural Amino Acids: Enabling Unique Peptides as Drug Candidates. J Org Chem 2024; 89:3211-3213. [PMID: 38333986 DOI: 10.1021/acs.joc.3c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An α-methyl, non-natural amino acid (NNAA) building block equipped with an alkyl halide tail that could be readily transformed into an organozinc was prepared. This single organometallic was cross-coupled to an array of heterocyclic electrophiles using the Pd-PEPPSI-IHeptCl catalyst to produce a wide selection of optically pure α-methyl NNAAs. With these in hand, non-natural peptides are being produced for evaluation in a variety of therapeutic areas in drug discovery.
Collapse
Affiliation(s)
- Kyle D Passley
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - J Craig Ruble
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Mark S Kerr
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
21
|
Al Musaimi O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH Realms. Biomolecules 2024; 14:264. [PMID: 38540684 PMCID: PMC10968328 DOI: 10.3390/biom14030264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 12/21/2024] Open
Abstract
Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Jaag S, Valadbeigi Y, Causon T, Gross H, Lämmerhofer M. Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach. Anal Chem 2024; 96:2666-2675. [PMID: 38297457 PMCID: PMC10867800 DOI: 10.1021/acs.analchem.3c05426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.
Collapse
Affiliation(s)
- Simon
Jonas Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Younes Valadbeigi
- Department
of Chemistry, Faculty of Science, Imam Khomeini
International University, Nowrouzian, 3414896818 Qazvin, Iran
| | - Tim Causon
- University
of Natural Resources and Life Sciences, Vienna Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Harald Gross
- Pharmaceutical
Biology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
23
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Gibadullin R, Morris RK, Niu J, Sidney J, Sette A, Gellman SH. Thioamide Analogues of MHC I Antigen Peptides. J Am Chem Soc 2023; 145:25559-25569. [PMID: 37968794 PMCID: PMC10782604 DOI: 10.1021/jacs.3c05300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Short, synthetic peptides that are displayed by major histocompatibility complex I (MHC I) can stimulate CD8 T cells in vivo to destroy virus-infected or cancer cells. The development of such peptides as vaccines that provide protective immunity, however, is limited by rapid proteolytic degradation. Introduction of unnatural amino acid residues can suppress MHC I antigen proteolysis, but the modified peptides typically display lower affinity for MHC I and/or diminished ability to activate CD8 T cells relative to native antigen. Here, we report a new strategy for modifying MHC I antigens to enhance resistance to proteolysis while preserving MHC I affinity and T cell activation properties. This approach, replacing backbone amide groups with thioamides, was evaluated in two well-characterized antigens presented by HLA-A2, a common human MHC I. For each antigen, singly modified thioamide analogues retained affinity for HLA-A2 and activated T cells specific for the native antigen, as measured via interferon-γ secretion. In each system, we identified a highly potent triply substituted thioamide antigen ("thio-antigen") that displayed substantial resistance to proteolytic cleavage. Collectively, our results suggest that thio-antigens may represent a general and readily accessible source of potent vaccine candidates that resist degradation.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Rylie K. Morris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jiani Niu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
- Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Brown KA, Gellman SH. Effects of Replacing a Central Glycine Residue in GLP-1 on Receptor Affinity and Signaling Profile. Chembiochem 2023; 24:e202300504. [PMID: 37624685 PMCID: PMC10666649 DOI: 10.1002/cbic.202300504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Agonists of the glucagon-like peptide-1 receptor (GLP-1R) are used to treat diabetes and obesity. Cryo-EM structures indicate that GLP-1 is completely α-helical when bound to the GLP-1R. The mature form of this hormone, GLP-1(7-36), contains a glycine residue near the center (Gly22). Since glycine has the second-lowest α-helix propensity among the proteinogenic α-amino acid residues, and Gly22 does not appear to make direct contact with the receptor, we were motivated to explore the impact on agonist activity of altering the α-helix propensity at this position. We examined GLP-1 analogues in which Gly22 was replaced with L-Ala, D-Ala, or β-amino acid residues with varying helix propensities. The results suggest that the receptor is reasonably tolerant of variations in helix propensity, and that the functional receptor-agonist complex may comprise a conformational spectrum rather than a single fixed structure.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
27
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
29
|
Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur J Med Chem 2023; 255:115377. [PMID: 37099837 DOI: 10.1016/j.ejmech.2023.115377] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Na Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
30
|
Marciano Y, Nayeem N, Dave D, Ulijn RV, Contel M. N-Acetylation of Biodegradable Supramolecular Peptide Nanofilaments Selectively Enhances Their Proteolytic Stability for Targeted Delivery of Gold-Based Anticancer Agents. ACS Biomater Sci Eng 2023; 9:3379-3389. [PMID: 37192486 PMCID: PMC10699682 DOI: 10.1021/acsbiomaterials.3c00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peptide materials are promising for various biomedical applications; however, a significant concern is their lack of stability and rapid degradation in vivo due to non-specific proteolysis. For materials specifically designed to respond to disease-specific proteases, it would be desirable to retain high susceptibility to target proteases while minimizing the impact of non-specific proteolysis. We describe N-terminal acetylation as a simple synthetic modification of amphiphilic self-assembling peptides that contain an MMP-9-cleavable segment and form soluble, nanoscale filaments. We found that the N-terminus capping of these peptides did not significantly impact their self-assembly behavior, critical aggregation concentration, or ability to encapsulate hydrophobic payloads. By contrast, their proteolytic stability in human plasma (especially for anionic peptide sequences) was considerably increased while susceptibility to hydrolysis by MMP-9 was retained when compared to non-acetylated peptides, especially during the first 12 h. We note, however, that due to the longer time scale required for in vitro studies (72 h), non-specific proteolysis of both anionic acetylated peptides leads to similar activity in vitro despite differing MMP-9 kinetics during the early stages. Overall, the enhanced stability against non-specific proteases, combined with the ability of these nanofilaments to enhance the effectiveness of gold-based drugs toward cancerous cells compared to healthy cells, brings these acetylated peptide filaments a step closer toward clinical translation.
Collapse
Affiliation(s)
- Yaron Marciano
- Department of Chemistry, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, NY 10031, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- PhD Program Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dhwanit Dave
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, NY 10031, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Rein V. Ulijn
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, NY 10031, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Maria Contel
- Department of Chemistry, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
31
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
32
|
Hickey J, Sindhikara D, Zultanski SL, Schultz DM. Beyond 20 in the 21st Century: Prospects and Challenges of Non-canonical Amino Acids in Peptide Drug Discovery. ACS Med Chem Lett 2023; 14:557-565. [PMID: 37197469 PMCID: PMC10184154 DOI: 10.1021/acsmedchemlett.3c00037] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Life is constructed primarily using a toolbox of 20 canonical amino acids-relying upon these building blocks for the assembly of proteins and peptides that regulate nearly every cellular task, including cell structure, function, and maintenance. While Nature continues to be a source of inspiration for drug discovery, medicinal chemists are not beholden to only 20 canonical amino acids and have begun to explore non-canonical amino acids (ncAAs) for the construction of designer peptides with improved drug-like properties. However, as our toolbox of ncAAs expands, drug hunters are encountering new challenges in approaching the iterative peptide design-make-test-analyze cycle with a seemingly boundless set of building blocks. This Microperspective focuses on new technologies that are accelerating ncAA interrogation in peptide drug discovery (including HELM notation, late-stage functionalization, and biocatalysis) while shedding light on areas where further investment could not only accelerate the discovery of new medicines but also improve downstream development.
Collapse
Affiliation(s)
- Jennifer
L. Hickey
- Department
of Medicinal Chemistry, Merck & Co.,
Inc., Kenilworth, New Jersey 07033, United States
| | - Dan Sindhikara
- Department
of Modeling and Informatics, Merck &
Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Department
of Process Research & Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Danielle M. Schultz
- Department
of Process Research & Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
33
|
Viana de Freitas T, Karmakar U, Vasconcelos AG, Santos MA, Oliveira do Vale Lira B, Costa SR, Barbosa EA, Cardozo-Fh J, Correa R, Ribeiro DJS, Prates MV, Magalhães KG, Soller Ramada MH, Roberto de Souza Almeida Leite J, Bloch C, Lima de Oliveira A, Vendrell M, Brand GD. Release of immunomodulatory peptides at bacterial membrane interfaces as a novel strategy to fight microorganisms. J Biol Chem 2023; 299:103056. [PMID: 36822328 PMCID: PMC10074799 DOI: 10.1016/j.jbc.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Cationic and amphiphilic peptides can be used as homing devices to accumulate conjugated antibiotics to bacteria-enriched sites and promote efficient microbial killing. However, just as important as tackling bacterial infections, is the modulation of the immune response in this complex microenvironment. In the present report, we designed a peptide chimaera called Chim2, formed by a membrane-active module, an enzyme hydrolysis site and a formyl peptide receptor 2 (FPR2) agonist. This molecule was designed to adsorb onto bacterial membranes, promote their lysis, and upon hydrolysis by local enzymes, release the FPR2 agonist sequence for activation and recruitment of immune cells. We synthesized the isolated peptide modules of Chim2 and characterized their biological activities independently and as a single polypeptide chain. We conducted antimicrobial assays, along with other tests aiming at the analyses of the cellular and immunological responses. In addition, assays using vesicles as models of eukaryotic and prokaryotic membranes were conducted and solution structures of Chim2 were generated by 1H NMR. Chim2 is antimicrobial, adsorbs preferentially to negatively charged vesicles while adopting an α-helix structure and exposes its disorganized tail to the solvent, which facilitates hydrolysis by tryptase-like enzymes, allowing the release of the FPR2 agonist fragment. This fragment was shown to induce accumulation of the cellular activation marker, lipid bodies, in mouse macrophages and the release of immunomodulatory interleukins. In conclusion, these data demonstrate that peptides with antimicrobial and immunomodulatory activities can be considered for further development as drugs.
Collapse
Affiliation(s)
- Thiago Viana de Freitas
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Utsa Karmakar
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Andreanne G Vasconcelos
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Michele A Santos
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil; Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Bianca Oliveira do Vale Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - Samuel Ribeiro Costa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - Eder Alves Barbosa
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil
| | - José Cardozo-Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Dalila J S Ribeiro
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Maura Vianna Prates
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Kelly G Magalhães
- Universidade de Brasília, Instituto de Biologia, Laboratório de Imunologia e Inflamação, LIMI, Brasília, Distrito Federal, Brasil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brasil
| | - José Roberto de Souza Almeida Leite
- Universidade de Brasília, Faculdade de Medicina, Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Brasília, Distrito Federal, Brasil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brasil
| | - Aline Lima de Oliveira
- Universidade de Brasília, Instituto de Química, Laboratório de Ressonância Magnética Nuclear, LRMN, Brasília, Distrito Federal, Brasil
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Guilherme Dotto Brand
- Universidade de Brasília, Instituto de Química, Laboratório de Síntese e Análise de Biomoléculas, LSAB, Brasília, Distrito Federal, Brasil.
| |
Collapse
|
34
|
Patra J, Rana D, Arora S, Pal M, Mahindroo N. Falcipains: Biochemistry, target validation and structure-activity relationship studies of inhibitors as antimalarials. Eur J Med Chem 2023; 252:115299. [PMID: 36996716 DOI: 10.1016/j.ejmech.2023.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Malaria is a tropical disease with significant morbidity and mortality burden caused by Plasmodium species in Africa, the Middle East, Asia, and South America. Pathogenic Plasmodium species have lately become increasingly resistant to approved chemotherapeutics and combination therapies. Therefore, there is an emergent need for identifying new druggable targets and novel chemical classes against the parasite. Falcipains, cysteine proteases required for heme metabolism in the erythrocytic stage, have emerged as promising drug targets against Plasmodium species that infect humans. This perspective discusses the biology, biochemistry, structural features, and genetics of falcipains. The efforts to identify selective or dual inhibitors and their structure-activity relationships are reviewed to give a perspective on the design of novel compounds targeting falcipains for antimalarial activity evaluating reasons for hits and misses for this important target.
Collapse
Affiliation(s)
- Jeevan Patra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Devika Rana
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Smriti Arora
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India
| | - Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, 151001, India
| | - Neeraj Mahindroo
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Via Prem Nagar, Uttarakhand, 248007, India; School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, 124 Paud Road, Kothrud, Pune, Maharashtra, 411038, India.
| |
Collapse
|
35
|
Digal LD, Kirkeby EK, Austin MJ, Roberts AG. Design and Evaluation of Ambiphilic Aryl Thiol-Iminium-Based Molecules for Organocatalyzed Thioacyl Aminolysis. ACS OMEGA 2023; 8:9319-9325. [PMID: 36936301 PMCID: PMC10018527 DOI: 10.1021/acsomega.2c07586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Progress toward the design and synthesis of ambiphilic aryl thiol-iminium-based small molecules for organocatalyzed thioacyl aminolysis is reported. Here we describe the synthesis of a novel tetrahydroisoquinoline-derived scaffold, bearing both thiol and iminium functionalities, capable of promoting the transthioesterification and subsequent amine capture reactions necessary to achieve organocatalyzed thioacyl aminolysis. Model studies demonstrate the ability of this designed organocatalyst to deliver critical intermediates capable of undergoing these individual reactions necessary for the proposed process. Future design improvements and directions toward cysteine-independent organocatalyzed native chemical ligation are discussed.
Collapse
|
36
|
Lee MF, Anasir MI, Poh CL. Development of novel antiviral peptides against dengue serotypes 1-4. Virology 2023; 580:10-27. [PMID: 36739680 DOI: 10.1016/j.virol.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023]
Abstract
Dengue infections pose a critical threat to public health worldwide. Since there are no clinically approved antiviral drugs to treat dengue infections caused by the four dengue virus (DENV) serotypes, there is an urgent need to develop effective antivirals. Peptides are promising antiviral candidates due to their specificity and non-toxic properties. The DENV envelope (E) protein was selected for the design of antiviral peptides due to its importance in receptor binding and viral fusion to the host cell membrane. Twelve novel peptides were designed to mimic regions containing critical amino acid residues of the DENV E protein required for interaction with the host. A total of four peptides were identified to exhibit potent inhibitory effects against at least three or all four DENV serotypes. Peptide 3 demonstrated all three modes of action: cell protection and inhibition of post-infection against all four DENV serotypes, whereas direct virus-inactivating effects were only observed against DENV-2, 3, and 4. Peptide 4 showed good direct virus-inactivating effects against DENV-2 (74.26%) as well as good inhibitions of DENV-1 (80.37%) and DENV-4 (72.22%) during the post-infection stage. Peptide 5 exhibited direct virus-inactivating effects against all four DENV serotypes, albeit at lower inhibition levels against DENV-1 and DENV-3. It also exhibited highly significant inhibition of DENV-4 (89.31%) during post-infection. Truncated peptide 5F which was derived from peptide 5 showed more significant inhibition of DENV-4 (91.58%) during post-infection and good direct virus-inactivating effects against DENV-2 (77.55%) at a lower concentration of 100 μM. Peptide 3 could be considered as the best antiviral candidate for pre- and post-infection treatments of DENV infections in regions with four circulating dengue serotypes. However, if the most predominant dengue serotype for a particular region could be identified, peptides with significantly high antiviral activities against that particular dengue serotype could serve as more suitable antiviral candidates. Thus, peptide 5F serves as a more suitable antiviral candidate for post-infection treatment against DENV-4.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, Selangor, 47500, Malaysia
| | - Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
37
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
38
|
Interaction of Positively Charged Oligopeptides with Blood Plasma Proteins. Int J Mol Sci 2023; 24:ijms24032836. [PMID: 36769160 PMCID: PMC9918186 DOI: 10.3390/ijms24032836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
In this project, we combine two areas of research, experimental characterization and molecular docking studies of the interaction of positively charged oligopeptides with crucial blood plasma proteins. The investigated peptides are rich in NH2 groups of amino acid side chains from Dap, Orn, Lys, and Arg residues, which are relevant in protein interaction. The peptides are 9- and 11-mer with the following sequences: (Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt), (Lys-Dab-Ala-Gly-Orn-Pro-His-Lys-Arg), and (Lys-Dab-Dab-Gly-Orn-Pro-Phe(2-F)-Lys-Arg). The net charge of the compound strongly depends on the pH environment and it is an important aspect of protein binding. The studied oligopeptides exhibit therapeutic properties: anti-inflammatory activity and the capacity to diminish reactive oxygen species (ROS). Therefore, the mechanism of potential binding with blood plasma components is the next challenge. The binding interaction has been investigated under pseudo-physiological conditions with the main blood plasma proteins: albumin (BSA), α1-acid glycoprotein (AAG), and γ-globulin fraction (GGF). The biomolecular quenching constant (kq) and binding constant (Kb) were obtained by fluorescence spectroscopy at various temperatures. Simultaneously, the changes in the secondary structure of proteins were monitored by circular dichroism (CD) and infrared spectroscopy (IR) by quantity analysis. Moreover, molecular docking studies were conducted to estimate the binding affinity, the binding domain, and the chemical nature of these interactions. The results show that the investigated oligopeptides could be mainly transported by albumin, and the binding domain I is the most favored cavity. The BSA and GGF are able to form stable complexes with the studied compounds as opposed to AAG. The binding reactions are spontaneous processes. The highest binding constants were determined for Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt peptide, in which the values of the binding constants Kb to BSA and GGF were 10.1 × 104 dm3mol-1 and 3.39 × 103 dm3mol-1, respectively. The positively charged surface of peptides participated in salt bridge interaction with proteins; however, hydrogen bonds were also formed. The secondary structure of BSA and GGF after contact with peptides was changed. A reduction in the α-helix structure was observed with an increase in the β-sheet and β-turn and random coil structures.
Collapse
|
39
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Previti S, Desgagné M, Tourwé D, Cavelier F, Sarret P, Ballet S. Opening the amino acid toolbox for peptide-based NTS2-selective ligands as promising lead compounds for pain management. J Pept Sci 2022; 29:e3471. [PMID: 36539999 DOI: 10.1002/psc.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chronic pain is one of the most critical health issues worldwide. Despite considerable efforts to find therapeutic alternatives, opioid drugs remain the gold standard for pain management. The administration of μ-opioid receptor (MOR) agonists is associated with detrimental and limiting adverse effects. Overall, these adverse effects strongly overshadow the effectiveness of opioid therapy. In this context, the development of neurotensin (NT) ligands has shown to be a promising approach for the management of chronic and acute pain. NT exerts its opioid-independent analgesic effects through the binding of two G protein-coupled receptors (GPCRs), NTS1 and NTS2. In the last decades, modified NT analogues have been proven to provide potent analgesia in vivo. However, selective NTS1 and nonselective NTS1/NTS2 ligands cause antinociception associated with hypothermia and hypotension, whereas selective NTS2 ligands induce analgesia without altering the body temperature and blood pressure. In light of this, various structure-activity relationship (SAR) studies provided findings addressing the binding affinity of ligands towards NTS2. Herein, we comprehensively review peptide-based NTS2-selective ligands as a robust alternative for future pain management. Particular emphasis is placed on SAR studies governing the desired selectivity and associated in vivo results.
Collapse
Affiliation(s)
- Santo Previti
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Desgagné
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
41
|
Chernykh AV, Aloshyn D, Kuchkovska YO, Daniliuc CG, Tolmachova NA, Kondratov IS, Zozulya S, Grygorenko OO, Haufe G. Impact of β-perfluoroalkyl substitution of proline on the proteolytic stability of its peptide derivatives. Org Biomol Chem 2022; 20:9337-9350. [PMID: 36107003 DOI: 10.1039/d2ob01430k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of all stereoisomers of β-CF3 or β-C2F5 substituted prolines and their dipeptide derivatives were synthesized. Mouse plasma stability assay was carried out to study the impact of fluoroalkyl substituents on the proteolytic stability of proline-derived peptides. The effect of the (R)-/(S)-configuration at the C-2 atom in combination with electronic and steric effects imposed by fluoroalkyl groups was addressed to rationalize the difference in the half-life stability of diastereomeric β-CF3-Pro-Gly and β-C2F5-Pro-Gly derivatives and compared to those of parent (S)-Pro-Gly and (R)-Pro-Gly dipeptides. The steric effect was predominant when the β-CF3 or β-C2F5 group was placed properly to create a spatial interference within the pockets of proteases, thereby protecting the substances from degradation (e.g., for cis-isomeric derivatives). Otherwise, a smaller electronic effect accelerating proteolysis was in charge (i.e., for the (2S,3S) isomers).
Collapse
Affiliation(s)
- Anton V Chernykh
- Enamine Ltd., Chervonotkatska Street 78, Kyïv 02094, Ukraine. .,Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine.
| | - Danylo Aloshyn
- Bienta/Enamine Ltd., Chervonotkatska Street 78, Kyïv 02094, Ukraine
| | | | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | | | - Ivan S Kondratov
- Enamine Ltd., Chervonotkatska Street 78, Kyïv 02094, Ukraine. .,V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of, Ukraine, Murmanska Street 1, Kyïv 02660, Ukraine
| | - Sergey Zozulya
- Bienta/Enamine Ltd., Chervonotkatska Street 78, Kyïv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyïv 02094, Ukraine. .,Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, Kyïv 01601, Ukraine.
| | - Günter Haufe
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, Universität Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|
42
|
Austin MJ, Schunk H, Watkins C, Ling N, Chauvin J, Morton L, Rosales AM. Fluorescent Peptomer Substrates for Differential Degradation by Metalloproteases. Biomacromolecules 2022; 23:4909-4923. [PMID: 36269900 DOI: 10.1021/acs.biomac.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteases, especially MMPs, are attractive biomarkers given their central role in both physiological and pathological processes. Distinguishing MMP activity with degradable substrates, however, is a difficult task due to overlapping substrate specificity profiles. Here, we developed a system of peptomers (peptide-peptoid hybrids) to probe the impact of non-natural residues on MMP specificity for an MMP peptide consensus sequence. Peptoids are non-natural, N-substituted glycines with a large side-chain diversity. Given the presence of a hallmark proline residue in the P3 position of MMP consensus sequences, we hypothesized that peptoids may offer N-substituted alternatives to generate differential interactions with MMPs. To investigate this hypothesis, peptomer substrates were exposed to five different MMPs, as well as bacterial collagenase, and monitored by fluorescence resonance energy transfer and liquid chromatography-mass spectrometry to determine the rate of cleavage and the composition of degraded fragments, respectively. We found that peptoid residues are well tolerated in the P3 and P3' substrate sites and that the identity of the peptoid in these sites displays a moderate influence on the rate of cleavage. However, peptoid residues were even better tolerated in the P1 substrate site where activity was more strongly correlated with side-chain identity than side-chain position. All MMPs explored demonstrated similar trends in specificity for the peptomers but exhibited different degrees of variability in proteolytic rate. These kinetic profiles served as "fingerprints" for the proteases and yielded separation by multivariate data analysis. To further demonstrate the practical application of this tunability in degradation kinetics, peptomer substrates were tethered into hydrogels and released over distinct timescales. Overall, this work represents a significant step toward the design of probes that maximize differential MMP behavior and presents design rules to tune degradation kinetics with peptoid substitutions, which has promising implications for diagnostic and prognostic applications using array-based sensors.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Hattie Schunk
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States.,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Carolyn Watkins
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Natalie Ling
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Jeremy Chauvin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Logan Morton
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
43
|
Meiers J, Rox K, Titz A. Lectin-Targeted Prodrugs Activated by Pseudomonas aeruginosa for Self-Destructive Antibiotic Release. J Med Chem 2022; 65:13988-14014. [PMID: 36201248 PMCID: PMC9619409 DOI: 10.1021/acs.jmedchem.2c01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chronic Pseudomonas aeruginosa infections
are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance.
Fluoroquinolones are effective antibiotics but are linked to severe
side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components
and can be exploited for targeted drug delivery. In this work, several
fluoroquinolones were conjugated to lectin probes by cleavable peptide
linkers to yield lectin-targeted prodrugs. Mechanistically, these
conjugates therefore remain non-toxic in the systemic distribution
and will be activated to kill only once they have accumulated at the
infection site. The synthesized prodrugs proved stable in the presence
of host blood plasma and liver metabolism but rapidly released the
antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs
showed good absorption, distribution, metabolism, and elimination
(ADME) properties and reduced toxicity in vitro, thus establishing
the first lectin-targeted antibiotic prodrugs against P. aeruginosa.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Katharina Rox
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany.,Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
44
|
Macauyag EA, Kajiura H, Ohashi T, Misaki R, Fujiyama K. High-level transient production of a protease-resistant mutant form of human basic fibroblast growth factor in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:291-301. [PMID: 36349230 PMCID: PMC9592933 DOI: 10.5511/plantbiotechnology.22.0628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
The human basic fibroblast growth factor (bFGF) is a protein that plays a pivotal role in cellular processes like cell proliferation and development. As a result, it has become an important component in cell culture systems, with applications in biomedical engineering, cosmetics, and research. Alternative production techniques, such as transient production in plants, are becoming a feasible option as the demand continues to grow. High-level bFGF production was achieved in this study employing an optimized Agrobacterium-mediated transient expression system, which yielded about a 3-fold increase in production over a conventional system. This yield was further doubled at about 185 µg g-1 FW using a mutant protease-resistant version that degraded/aggregated at a three-fold slower rate in leaf crude extracts. To achieve a pure product, a two-step purification technique was applied. The capacity of the pure protease-resistant bFGF (PRbFGF) to stimulate cell proliferation was tested and was found to be comparable to that of E. coli-produced bFGF in HepG2 and CHO-K1 cells. Overall, this study demonstrates a high-level transient production system of functional PRbFGF in N. benthamiana leaves as well as an efficient tag-less purification technique of leaf crude extracts.
Collapse
Affiliation(s)
- Edjohn Aaron Macauyag
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Cooperative Research Station in Southeast Asia (OU: CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
van Neer RHP, Dranchak PK, Liu L, Aitha M, Queme B, Kimura H, Katoh T, Battaile KP, Lovell S, Inglese J, Suga H. Serum-Stable and Selective Backbone-N-Methylated Cyclic Peptides That Inhibit Prokaryotic Glycolytic Mutases. ACS Chem Biol 2022; 17:2284-2295. [PMID: 35904259 PMCID: PMC9900472 DOI: 10.1021/acschembio.2c00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methylated amino acids (N-MeAAs) are privileged residues of naturally occurring peptides critical to bioactivity. However, de novo discovery from ribosome display is limited by poor incorporation of N-methylated amino acids into the nascent peptide chain attributed to a poor EF-Tu affinity for the N-methyl-aminoacyl-tRNA. By reconfiguring the tRNA's T-stem region to compensate and tune the EF-Tu affinity, we conducted Random nonstandard Peptides Integrated Discovery (RaPID) display of a macrocyclic peptide (MCP) library containing six different N-MeAAs. We have here devised a "pool-and-split" enrichment strategy using the RaPID display and identified N-methylated MCPs against three species of prokaryotic metal-ion-dependent phosphoglycerate mutases. The enriched MCPs reached 57% N-methylation with up to three consecutively incorporated N-MeAAs, rivaling natural products. Potent nanomolar inhibitors ranging in ortholog selectivity, strongly mediated by N-methylation, were identified. Co-crystal structures reveal an architecturally related Ce-2 Ipglycermide active-site metal-ion-coordinating Cys lariat MCP, functionally dependent on two cis N-MeAAs with broadened iPGM species selectivity over the original nematode-selective MCPs. Furthermore, the isolation of a novel metal-ion-independent Staphylococcus aureus iPGM inhibitor utilizing a phosphoglycerate mimetic mechanism illustrates the diversity of possible chemotypes encoded by the N-MeAA MCP library.
Collapse
Affiliation(s)
- R H P van Neer
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - P K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - L Liu
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - M Aitha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - B Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - H Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K P Battaile
- New York Structural Biology Center, NSLS-II, Upton, New York 11973, United States
| | - S Lovell
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - H Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
47
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022; 27:molecules27144584. [PMID: 35889455 PMCID: PMC9317528 DOI: 10.3390/molecules27144584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of antimicrobial-resistant infections is still a major concern for public health worldwide. The number of pathogenic microorganisms capable of resisting common therapeutic treatments are constantly increasing, highlighting the need of innovative and more effective drugs. This phenomenon is strictly connected to the rapid metabolism of microorganisms: due to the huge number of mutations that can occur in a relatively short time, a colony can “adapt” to the pharmacological treatment with the evolution of new resistant species. However, the shortage of available antimicrobial drugs in clinical use is also caused by the high costs involved in developing and marketing new drugs without an adequate guarantee of an economic return; therefore, the pharmaceutical companies have reduced their investments in this area. The use of antimicrobial peptides (AMPs) represents a promising strategy for the design of new therapeutic agents. AMPs act as immune defense mediators of the host organism and show a poor ability to induce antimicrobial resistance, coupled with other advantages such as a broad spectrum of activity, not excessive synthetic costs and low toxicity of both the peptide itself and its own metabolites. It is also important to underline that many antimicrobial peptides, due to their inclination to attack cell membranes, have additional biological activities, such as, for example, as anti-cancer drugs. Unfortunately, they usually undergo rapid degradation by proteolytic enzymes and are characterized by poor bioavailability, preventing their extensive clinical use and landing on the pharmaceutical market. This review is focused on the strength and weak points of antimicrobial peptides as therapeutic agents. We give an overview on the AMPs already employed in clinical practice, which are examples of successful strategies aimed at overcoming the main drawbacks of peptide-based drugs. The review deepens the most promising strategies to design modified antimicrobial peptides with higher proteolytic stability with the purpose of giving a comprehensive summary of the commonly employed approaches to evaluate and optimize the peptide potentialities.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
49
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
50
|
Li Petri G, Di Martino S, De Rosa M. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. J Med Chem 2022; 65:7438-7475. [PMID: 35604326 DOI: 10.1021/acs.jmedchem.2c00123] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.
Collapse
Affiliation(s)
| | | | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| |
Collapse
|