1
|
Pomerleau F, Sulkowski BA, Suhail C, Quintero JE, Littrell OM, Murphy MP, Huettl P, Gerhardt GA. Age-related differences in resting glutamate levels and glutamate uptake in the hippocampus and frontal cortex of C57BL/6 mice. Neurobiol Aging 2025; 150:146-156. [PMID: 40121724 PMCID: PMC11981836 DOI: 10.1016/j.neurobiolaging.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
In normal aging, little is known in human and animal models about functional changes to glutamate neuronal systems that may contribute to age-related cognitive differences. The present studies investigated glutamate neuronal signaling in the hippocampus (dentate gyrus) and frontal cortex (infralimbic) of young adult (3-8 months), middle-aged (10-13 months), and aged (15-27 months) male and female C57BL/6 mice using microelectrode electrode array (MEA) recording technology to measure second-by-second resting levels of glutamate in anesthetized mice. Glutamate regulation was investigated in vivo by inhibiting the uptake of glutamate by local application of the competitive non-transportable blocker of excitatory amino acid transporters DL-threo-beta-benzyloxyaspartate (TBOA). Resting levels of glutamate and TBOA-induced changes in extracellular glutamate concentration were reliably measured in the hippocampus and frontal cortex of young adult, middle-aged, and aged mice and were seen to significantly increase in aging in the hippocampus. In the frontal cortex we observed an increase only in the middle-aged animals. TBOA produced robust changes in extracellular glutamate in the hippocampus and frontal cortex which showed significant changes in the kinetics of the signals in the middle-aged mice. Interestingly, the variance of the resting glutamate levels in the hippocampus of aged female mice was greater than in aged male mice, supporting a possible age-related gender difference in glutamate function. Taken together, these data support that glutamate signaling in the hippocampus and frontal cortex of aged mice is affected in normal aging with changes in glial regulation of glutamate uptake observed from the TBOA effects in the middle-aged mice.
Collapse
Affiliation(s)
- Francois Pomerleau
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA.
| | - Brittany A Sulkowski
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Cocanut Suhail
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - O Meagan Littrell
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - M Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Sanders Brown Center on Aging, University of Kentucky Medical Center, 800 S. Limestone, Lexington, KY 40536, USA
| | - Peter Huettl
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| |
Collapse
|
2
|
Al-Dmour RH, Al-Tawarah NM, Mwafi N, Alkhataybeh BM, Khleifat KM, Tarawneh A, Satari AO, Alkharabsheh SM, Albustanji L. Enhancement of hippocampal-dependent spatial memory by Ashwagandha ( Withania somnifera) characterized by activation of NMDA receptors against monosodium glutamate-induced neurotoxicity in rats. Int J Neurosci 2024; 134:1220-1228. [PMID: 37659008 DOI: 10.1080/00207454.2023.2255372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND AIM Monosodium glutamate (MSG) is used in food-additives, and the Food and Drug Administration has placed it under intense scrutiny following several reports that it causes glutamate neurotoxicity. Ashwagandha (ASH) roots are traditionally used for memory enhancement. This study aimed to evaluate the nootropic activity of ASH as well as its therapeutic anti-amnesic activity against MSG-induced hippocampal-dependent spatial memory impairment and hippocampal-NMDAR modulation. METHOD A total of 36 rats were divided equally into six groups (n = 6 in each group); the rats in the normal and negative groups were administered daily doses of normal saline and MSG (300 mg/kg), respectively, for 21 days. Two nootropic groups were administered ASH at 300 and 500 mg/kg o.p., respectively, for 21 days. Two other treatment groups were administered daily doses of MSG 300 mg/kg o.p. as well as 300 mg/kg and 500 mg/kg o.p. of ASH for 21 days. The rats' spatial memory was assessed for five days using the MWM. Additionally, NMDAR were measured quantitatively by immunohistochemistry. RESULTS We found that the rats in the nootropic groups showed significantly enhanced nootropic activity characterized by improved hippocampal-dependent spatial memory, as well as increases in the level of NMDAR in the Cornu Ammonis 1 region of their hippocampus. Moreover, we elucidated the therapeutic potential of ASH to protect against the depression of spatial memory caused by MSG-induced neurotoxicity. CONCLUSION Further, we elucidated a strong correlation between NMDAR-positive cells in the hippocampus and enhancement of spatial learning induced by long-term administration of ASH as well as a strong correlation between NMDAR positive cells in the hippocampus and depression of spatial learning induced by long-term administration of ASH and MSG.
Collapse
Affiliation(s)
- Rawand H Al-Dmour
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Nafe M Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Nesrin Mwafi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak
| | - Banan M Alkhataybeh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Khaled M Khleifat
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Amjad Tarawneh
- Pediatric Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Anas O Satari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Al-Karak
| | - Sahem M Alkharabsheh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Mutah University, Al-Karak, Jordan
| | - Layla Albustanji
- Departement of Biology, Faculty of Sciences, Mutah University, Al-Karak, Jordan
| |
Collapse
|
3
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
4
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Karaduman A, Keskus AG, Arslan-Ergul A, Konu O, Kafaligonul H, Adams MM. Long-Term Acetylcholinesterase Depletion Alters the Levels of Key Synaptic Proteins while Maintaining Neuronal Markers in the Aging Zebrafish (Danio rerio) Brain. Gerontology 2023; 69:1424-1436. [PMID: 37793352 PMCID: PMC10711754 DOI: 10.1159/000534343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Interventions targeting cholinergic neurotransmission like acetylcholinesterase (AChE) inhibition distinguish potential mechanisms to delay age-related impairments and attenuate deficits related to neurodegenerative diseases. However, the chronic effects of these interventions are not well described. METHODS In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages. RESULTS Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined. CONCLUSION Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Aysenur Karaduman
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Ayca Arslan-Ergul
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Michelle M. Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
- National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
- Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Department of Psychology, Bilkent University, Ankara, Turkey
| |
Collapse
|
5
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Vallejos MJ, Eadaim A, Hahm ET, Tsunoda S. Age-related changes in Kv4/Shal and Kv1/Shaker expression in Drosophila and a role for reactive oxygen species. PLoS One 2021; 16:e0261087. [PMID: 34932577 PMCID: PMC8691634 DOI: 10.1371/journal.pone.0261087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Age-related changes in ion channel expression are likely to affect neuronal signaling. Here, we examine how age affects Kv4/Shal and Kv1/Shaker K+ channel protein levels in Drosophila. We show that Kv4/Shal protein levels decline sharply from 3 days to 10 days, then more gradually from 10 to 40 days after eclosion. In contrast, Kv1/Shaker protein exhibits a transient increase at 10 days that then stabilizes and eventually declines at 40 days. We present data that begin to show a relationship between reactive oxygen species (ROS), Kv4/Shal, and locomotor performance. We show that Kv4/Shal levels are negatively affected by ROS, and that over-expression of Catalase or RNAi knock-down of the ROS-generating enzyme, Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX), can attenuate the loss of Kv4/Shal protein. Finally, we compare levels of Kv4.2 and Kv4.3 in the hippocampus, olfactory bulb, cerebellum, and motor cortex of mice aged 6 weeks and 1 year. While there was no global decline in Kv4.2/4.3 that parallels what we report in Drosophila, we did find that Kv4.2/4.3 are differentially affected in various brain regions; this survey of changes may help inform mammalian studies that examine neuronal function with age.
Collapse
Affiliation(s)
- Maximiliano J. Vallejos
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Abdunaser Eadaim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eu-Teum Hahm
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Karoglu-Eravsar ET, Tuz-Sasik MU, Adams MM. Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: Evidence from the zebrafish model organism. Exp Gerontol 2021; 149:111346. [PMID: 33838219 DOI: 10.1016/j.exger.2021.111346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Progression of cognitive decline with or without neurodegeneration varies among elderly subjects. The main aim of the current study was to illuminate the molecular mechanisms that promote and retain successful aging in the context of factors such as environment and gender, both of which alter the resilience of the aging brain. Environmental enrichment (EE) is one intervention that may lead to the maintenance of cognitive processing at older ages in both humans and animal subjects. EE is easily applied to different model organisms, including zebrafish, which show similar age-related molecular and behavioral changes as humans. Global changes in cellular and synaptic markers with respect to age, gender and 4-weeks of EE applied with sensory stimulation were investigated using the zebrafish model organism. Results indicated that EE increases brain weight in an age-dependent manner without affecting general body parameters like body mass index (BMI). Age-related declines in the presynaptic protein synaptophysin, AMPA-type glutamate receptor subunits and a post-mitotic neuronal marker were observed and short-term EE prevents these changes in aged animals, as well as elevates levels of the inhibitory scaffolding protein, gephyrin. Gender-driven alterations were observed in the levels of the glutamate receptor subunits. Oxidative stress markers were significantly increased in the old animals, while exposure to EE did not alter this pattern. These data suggest that EE with sensory stimulation exerts its effects mainly on age-related changes in synaptic dynamics, which likely increase brain resilience through specific cellular mechanisms.
Collapse
Affiliation(s)
- Elif Tugce Karoglu-Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Melek Umay Tuz-Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Buss EW, Corbett NJ, Roberts JG, Ybarra N, Musial TF, Simkin D, Molina-Campos E, Oh KJ, Nielsen LL, Ayala GD, Mullen SA, Farooqi AK, D'Souza GX, Hill CL, Bean LA, Rogalsky AE, Russo ML, Curlik DM, Antion MD, Weiss C, Chetkovich DM, Oh MM, Disterhoft JF, Nicholson DA. Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:e1921481118. [PMID: 33593893 PMCID: PMC7923642 DOI: 10.1073/pnas.1921481118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Nicola J Corbett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Joshua G Roberts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dina Simkin
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Lauren L Nielsen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gelique D Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Sheila A Mullen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gary X D'Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Corinne L Hill
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dani M Curlik
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Marci D Antion
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Matthew Oh
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
9
|
Rao G, Lee H, Gallagher M, Knierim JJ. Decreased investigatory head scanning during exploration in learning-impaired, aged rats. Neurobiol Aging 2021; 98:1-9. [PMID: 33221571 PMCID: PMC8639103 DOI: 10.1016/j.neurobiolaging.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/23/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
"Head scanning" is an investigatory behavior that has been linked to spatial exploration and the one-trial formation or strengthening of place cells in the hippocampus. Previous studies have demonstrated that a subset of aged rats with normal spatial learning performance show head scanning rates during a novel, local-global cue-mismatch manipulation that are similar to those of young rats. However, these aged rats demonstrated different patterns of expression of neural activity markers in brain regions associated with spatial learning, perhaps suggesting neural mechanisms that compensate for age-related brain changes. These prior studies did not investigate the head scanning properties of aged rats that had spatial learning impairments. The present study analyzed head scanning behavior in young, aged-unimpaired, and aged-impaired Long Evans rats. Aged-impaired rats performed the head scan behavior at a lower rate than the young rats. These results suggest that decreased attention to spatial landmarks may be a contributing factor to the spatial learning deficits shown by the aged-impaired rats.
Collapse
Affiliation(s)
- Geeta Rao
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Heekyung Lee
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Jones EA, Gillespie AK, Yoon SY, Frank LM, Huang Y. Early Hippocampal Sharp-Wave Ripple Deficits Predict Later Learning and Memory Impairments in an Alzheimer's Disease Mouse Model. Cell Rep 2020; 29:2123-2133.e4. [PMID: 31747587 PMCID: PMC7437815 DOI: 10.1016/j.celrep.2019.10.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive memory loss, and there is a pressing need to identify early pathophysiological alterations that predict subsequent memory impairment. Hippocampal sharp-wave ripples (SWRs)—electrophysiological signatures of memory reactivation in the hippocampus—are a compelling candidate for this purpose. Mouse models of AD show reductions in both SWR abundance and associated slow gamma (SG) power during aging, but these alterations have yet to be directly linked to memory impairments. In aged apolipoprotein E4 knockin (apoE4-KI) mice—a model of the major genetic risk factor for AD—we find that reduced SWR abundance and associated CA3 SG power predicted spatial memory impairments measured 1–2 months later. Importantly, SWR-associated CA3 SG power reduction in young apoE4-KI mice also predicted spatial memory deficits measured 10 months later. These results establish features of SWRs as potential functional biomarkers of memory impairment in AD. Currently, there are no functional biomarkers that can predict progression to Alzheimer’s disease before cognitive decline begins. Jones et al. demonstrate that sharp-wave ripple and associated slow gamma deficits predict memory impairments in aged apoE4 mice. Slow gamma deficits in young apoE4 mice predict memory impairment onset 10+ months later.
Collapse
Affiliation(s)
- Emily A Jones
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna K Gillespie
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Fredriksson R, Sreedharan S, Nordenankar K, Alsiö J, Lindberg FA, Hutchinson A, Eriksson A, Roshanbin S, Ciuculete DM, Klockars A, Todkar A, Hägglund MG, Hellsten SV, Hindlycke V, Västermark Å, Shevchenko G, Olivo G, K C, Kullander K, Moazzami A, Bergquist J, Olszewski PK, Schiöth HB. The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain. PLoS Genet 2019; 15:e1008455. [PMID: 31800589 PMCID: PMC6927659 DOI: 10.1371/journal.pgen.1008455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling. A fundamental function of the nervous system is its ability to modulate and change the connections between nerve cells, and this forms the basis for memory and learning. This is most well studied for synapses that are using the neurotransmitter glutamate, and a central part of this is referred to Long Term Potentiation. This process is dependent on a specific glutamate receptor called the NMDA receptor, and the function of this receptor can be controlled by various mechanisms. Here, we show that polyamines can regulate this receptor and that lack of polyamines result in impaired learning and memory. Polyamines are small peptides made by many different cells in the body, including cells in the brain, and by removing a gene coding for a transporter important for the release of polyamines in nerve cells of mice, we show that polyamines are important for proper function of the glutamate system. We also show the deletion of this gene result in fundamentally rearranged GABA and glutamate systems, resulting in the mice having a much higher tolerance for the sedative drug benzodiazepines. Polyamines and targets for these molecules could be important points of intervention for future drugs aiming at modulating the glutamatergic system.
Collapse
Affiliation(s)
- Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Smitha Sreedharan
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Karin Nordenankar
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Johan Alsiö
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Frida A. Lindberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ashley Hutchinson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Anders Eriksson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Diana M. Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Anica Klockars
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Aniruddha Todkar
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Maria G. Hägglund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Sofie V. Hellsten
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Viktoria Hindlycke
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Åke Västermark
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | | | - Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Cheng K
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Klas Kullander
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Pawel K. Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
13
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
14
|
Perez EJ, Cepero ML, Perez SU, Coyle JT, Sick TJ, Liebl DJ. EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiol Dis 2016; 94:73-84. [PMID: 27317833 PMCID: PMC5662938 DOI: 10.1016/j.nbd.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by >50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3(-/-) mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.
Collapse
Affiliation(s)
- Enmanuel J Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria L Cepero
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian U Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joseph T Coyle
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA
| | - Thomas J Sick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Arslan-Ergul A, Erbaba B, Karoglu ET, Halim DO, Adams MM. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 2016; 334:64-75. [DOI: 10.1016/j.neuroscience.2016.07.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
|
16
|
Villanueva-Castillo C, Tecuatl C, Herrera-López G, Galván EJ. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol Aging 2016; 49:119-137. [PMID: 27794263 DOI: 10.1016/j.neurobiolaging.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability.
Collapse
Affiliation(s)
| | - Carolina Tecuatl
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México
| | | | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México.
| |
Collapse
|
17
|
Kempsell AT, Fieber LA. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica. Front Aging Neurosci 2015; 7:173. [PMID: 26388769 PMCID: PMC4558425 DOI: 10.3389/fnagi.2015.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023] Open
Abstract
Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT) in sensory neurons (SN) isolated from mature but not aged animals. Activation of protein kinase A (PKA) and protein kinase C (PKC) signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
18
|
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia. Neural Plast 2015; 2015:375391. [PMID: 26355725 PMCID: PMC4556331 DOI: 10.1155/2015/375391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional No. 1669, 07760 México, DF, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Maricela Torres-Soto
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | | | | | | | - I. Daniel Limón
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Jose R. Eguibar
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | | | | |
Collapse
|
19
|
Yamada K, Shimizu M, Kawabe K, Ichitani Y. Hippocampal AP5 treatment impairs both spatial working and reference memory in radial maze performance in rats. Eur J Pharmacol 2015; 758:137-41. [DOI: 10.1016/j.ejphar.2015.03.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/27/2022]
|
20
|
Kempsell AT, Fieber LA. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica. PLoS One 2015; 10:e0127056. [PMID: 25970633 PMCID: PMC4430239 DOI: 10.1371/journal.pone.0127056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 11/18/2022] Open
Abstract
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.
Collapse
Affiliation(s)
- Andrew T. Kempsell
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
| | - Lynne A. Fieber
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kouvaros S, Kotzadimitriou D, Papatheodoropoulos C. Hippocampal sharp waves and ripples: Effects of aging and modulation by NMDA receptors and L-type Ca2+ channels. Neuroscience 2015; 298:26-41. [PMID: 25869622 DOI: 10.1016/j.neuroscience.2015.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 12/19/2022]
Abstract
Aging is accompanied by a complicated pattern of changes in the brain organization and often by alterations in specific memory functions. One of the brain activities with important role in the process of memory consolidation is thought to be the hippocampus activity of sharp waves and ripple oscillation (SWRs). Using field recordings from the CA1 area of hippocampal slices we compared SWRs as well as single pyramidal cell activity between adult (3-6-month old) and old (24-34-month old) Wistar rats. The slices from old rats displayed ripple oscillation with a significantly less number of ripples and lower frequency compared with those from adult animals. However, the hippocampus from old rats had significantly higher propensity to organized SWRs in long sequences. Furthermore, the bursts recorded from complex spike cells in slices from old compared with adult rats displayed higher number of spikes and longer mean inter-spike interval. Blockade of N-methyl-D-aspartic acid (NMDA) receptors by 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) increased the amplitude of both sharp waves and ripples and increased the interval between events of SWRs in both age groups. On the contrary, CPP reduced the probability of occurrence of sequences of SWRs more strongly in slices from adult than old rats. Blockade of L-type voltage-dependent calcium channels by nifedipine only enhanced the amplitude of sharp waves in slices from adult rats. CPP increased the postsynaptic excitability and the paired-pulse inhibition in slices from both adult and old rats similarly while nifedipine increased the postsynaptic excitability only in slices from adult rats. We propose that the tendency of the aged hippocampus to generate long sequences of SWR events might represent the consequence of homeostatic mechanisms that adaptively try to compensate the impairment in the ripple oscillation in order to maintain the behavioral outcome efficient in the old individuals. The age-dependent alterations in the firing mode of pyramidal cells might underlie to some extent the changes in ripples that occur in old animals.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, University of Patras, 26504 Rion, Greece
| | - D Kotzadimitriou
- Laboratory of Physiology, Department of Medicine, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
22
|
Effects of an α5GABAA inverse agonist on MK-801-induced learning deficits in an incremental repeated acquisition task. Behav Pharmacol 2014; 25:331-5. [PMID: 25006978 DOI: 10.1097/fbp.0000000000000053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are essential for several kinds of synaptic plasticity and play a critical role in learning and memory. Deficits in NMDAR functioning may be partially responsible for the learning and memory deficits associated with aging and numerous diseases. Administration of MK-801, a noncompetitive NMDAR antagonist, is commonly used as a preclinical model of NMDAR dysfunction. The objective of this study was to assess the effects of α5GABAA receptor inhibition on learning deficits in the incremental repeated acquisition (IRA) task induced by acute MK-801 administration. The IRA task, commonly used to examine factors that affect learning, begins with a single response and increments to progressively longer chains throughout a single session as behavior meets preset criteria. MK-801 (0.03-0.5 mg/kg, intraperitoneally), administered 10 min pretesting, produced a significant dose-dependent decrease in measures of IRA performance at doses greater than or equal to 0.25 mg/kg. The MK-801-induced deficit was attenuated after treatment with an α5GABAA receptor inverse agonist, L-655,708 (1 mg/kg, intraperitoneally). The present study provides the focus for, and supports the feasibility of, further in-depth definitive studies examining α5GABAA receptor inhibition as a suitable candidate for the attenuation of NMDAR-related deficits.
Collapse
|
23
|
Davis KE, Eacott MJ, Easton A, Gigg J. Episodic-like memory is sensitive to both Alzheimer's-like pathological accumulation and normal ageing processes in mice. Behav Brain Res 2013; 254:73-82. [DOI: 10.1016/j.bbr.2013.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 02/05/2023]
|
24
|
Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:11-20. [PMID: 23590874 DOI: 10.1016/j.pnpbp.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
Abstract
It has been reported that Growth hormone (GH) has an immediate effect enhancing excitatory postsynaptic potentials mediated by AMPA and NMDA receptors in hippocampal area CA1. As GH plays a role in adult memory processing, this work aims to study the acute effects of GH on working memory tasks in rodents and the possible involvement of NMDA and AMPA receptors and also the MEK/ERK signalling pathway. To evaluate memory processes, two different tests were used, the spatial working memory 8-arm radial maze, and the novel object recognition as a form of non-spatial working memory test. Acute GH treatment (1mg/kg i.p., 1h) improved spatial learning in the radial maze respect to the control group either in young rats (reduction of 46% in the performance trial time and 61% in the number of errors), old rats (reduction of 38% in trial time and 48% in the number of errors), and adult mice (reduction of 32% in the performance time and 34% in the number of errors). GH treatment also increased the time spent exploring the novel object respect to the familiar object compared to the control group in young rats (from 63% to 79%), old rats (from 53% to 70%), and adult mice (from 61 to 68%). The improving effects of GH on working memory tests were blocked by the NMDA antagonist MK801 dizocilpine (0.025 mg/kg i.p.) injected 10 min before the administration of GH, in both young and old rats. In addition, the AMPA antagonist DNQX (1mg/kg i.p.) injected 10 min before the administration of GH to young rats, blocked the positive effect of GH. Moreover, in mice, the MEK inhibitor SL 327 (20mg/kg i.p.) injected 30 min before the administration of GH, blocked the positive effect of GH on radial maze and the novel object recognition. In conclusion, GH improved working memory processes through both glutamatergic receptors NMDA and AMPA and it required the activation of extracellular MEK/ERK signalling pathway. These effects could be related to the enhancement of excitatory synaptic transmission in the hippocampus reported by GH.
Collapse
|
25
|
Maioli S, Båvner A, Ali Z, Heverin M, Ismail MAM, Puerta E, Olin M, Saeed A, Shafaati M, Parini P, Cedazo-Minguez A, Björkhem I. Is it possible to improve memory function by upregulation of the cholesterol 24S-hydroxylase (CYP46A1) in the brain? PLoS One 2013; 8:e68534. [PMID: 23874659 PMCID: PMC3712995 DOI: 10.1371/journal.pone.0068534] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/30/2013] [Indexed: 01/25/2023] Open
Abstract
We previously described a heterozygous mouse model overexpressing human HA-tagged 24S-hydroxylase (CYP46A1) utilizing a ubiquitous expression vector. In this study, we generated homozygotes of these mice with circulating levels of 24OH 30–60% higher than the heterozygotes. Female homozygous CYP46A1 transgenic mice, aged 15 months, showed an improvement in spatial memory in the Morris water maze test as compared to the wild type mice. The levels of N-Methyl-D-Aspartate receptor 1, phosphorylated-N-Methyl-D-Aspartate receptor 2A, postsynaptic density 95, synapsin-1 and synapthophysin were significantly increased in the hippocampus of the CYP46A1 transgenic mice as compared to the controls. The levels of lanosterol in the brain of the CYP46A1 transgenic mice were significantly increased, consistent with a higher synthesis of cholesterol. Our results are discussed in relation to the hypothesis that the flux in the mevalonate pathway in the brain is of importance in cognitive functions.
Collapse
Affiliation(s)
- Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Novum, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 2013; 5:27. [PMID: 23847531 PMCID: PMC3698444 DOI: 10.3389/fnagi.2013.00027] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is an important anabolic hormone that decreases with age. In the past two decades, extensive research has determined that the reduction in IGF-1 is an important component of the age-related decline in cognitive function in multiple species including humans. Deficiency in circulating IGF-1 results in impairment in processing speed and deficiencies in both spatial and working memory. Replacement of IGF-1 or factors that increase IGF-1 to old animals and humans reverses many of these cognitive deficits. Despite the overwhelming evidence for IGF-1 as an important neurotrophic agent, the specific mechanisms through which IGF-1 acts have remained elusive. Recent evidence indicates that IGF-1 is both produced by and has important actions on the cerebrovasculature as well as neurons and glia. Nevertheless, the specific regulation and actions of brain- and vascular-derived IGF-1 is poorly understood. The diverse effects of IGF-1 discovered thus far reveal a complex endocrine and paracrine system essential for integrating many of the functions necessary for brain health. Identification of the mechanisms of IGF-1 actions will undoubtedly provide critical insight into regulation of brain function in general and the causes of cognitive decline with age.
Collapse
Affiliation(s)
- William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 2013; 1516:93-109. [PMID: 23623816 DOI: 10.1016/j.brainres.2013.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/20/2022]
Abstract
It is well known that alongside senescence there is a gradual decline in cognitive ability, most noticeably certain kinds of memory such as working, episodic, spatial, and long term memory. However, until recently, not much has been known regarding the specific mechanisms responsible for the decline in cognitive ability with age. Over the past decades, researchers have become more interested in cAMP signaling, and its downstream transcription factor cAMP response element binding protein (CREB) in the context of senescence. However, there is still a lack of understanding on what ultimately causes the cognitive deficits observed with senescence. This review will focus on the changes in intracellular signaling in the brain, more specifically, alterations in cAMP/CREB signaling in aging. In addition, the downstream effects of altered cAMP signaling on cognitive ability with age will be further discussed. Overall, understanding the senescent-related changes that occur in cAMP/CREB signaling could be important for the development of novel drug targets for both healthy aging, and pathological aging such as Alzheimer's disease.
Collapse
|
28
|
Billard JM. d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 2012; 43:1851-60. [DOI: 10.1007/s00726-012-1346-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/16/2012] [Indexed: 01/25/2023]
|
29
|
Burton MD, Johnson RW. Interleukin-6 trans-signaling in the senescent mouse brain is involved in infection-related deficits in contextual fear conditioning. Brain Behav Immun 2012; 26:732-8. [PMID: 22062497 PMCID: PMC3699311 DOI: 10.1016/j.bbi.2011.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/29/2022] Open
Abstract
Excessive production of pro-inflammatory cytokines in the senescent brain in response to peripheral immune stimulation is thought to induce behavioral pathology, however, few studies have examined if the increase in pro-inflammatory cytokines is accompanied by an increase in cytokine signaling. Here, we focused on IL-6 as a prototypic pro-inflammatory cytokine and used phosphorylated STAT3 as a marker of IL-6 signaling. In an initial study, IL-6 mRNA and the magnitude and duration of STAT3 activation were increased in the hippocampus of senescent mice compared to adults after i.p. injection of LPS. The LPS-induced increase in STAT3 activity was ablated in aged IL-6(-/-) mice, suggesting IL-6 is a key driver of STAT3 activity in the aged brain. To determine if IL-6 activated the classical or trans-signaling pathway, before receiving LPS i.p., aged mice were injected ICV with sgp130, an antagonist of the trans-signaling pathway. Importantly, the LPS-induced increases in both IL-6 and STAT3 activity in the hippocampus were inhibited by sgp130. To assess hippocampal function, aged mice were injected ICV with sgp130 and i.p. with LPS immediately after the acquisition phase of contextual fear conditioning, and immobility was assessed in the retention phase 48h later. LPS reduced immobility in aged mice, indicating immune activation interfered with memory consolidation. However, sgp130 blocked the deficits in contextual fear conditioning caused by LPS. Taken together, the results suggest IL-6 trans-signaling is increased in the senescent brain following peripheral LPS challenge and that sgp130 may protect against infection-related neuroinflammation and cognitive dysfunction in the aged.
Collapse
Affiliation(s)
- Michael D Burton
- Laboratory of Integrative Immunology and Behavior, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Sharma S, Darland D, Lei S, Rakoczy S, Brown-Borg HM. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:609-20. [PMID: 21544578 PMCID: PMC3337943 DOI: 10.1007/s11357-011-9253-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/15/2011] [Indexed: 05/08/2023]
Abstract
In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Diane Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202 USA
| | - Saobo Lei
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Holly M. Brown-Borg
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| |
Collapse
|
31
|
McQuail JA, Bañuelos C, LaSarge CL, Nicolle MM, Bizon JL. GABA(B) receptor GTP-binding is decreased in the prefrontal cortex but not the hippocampus of aged rats. Neurobiol Aging 2012; 33:1124.e1-12. [PMID: 22169202 PMCID: PMC3310948 DOI: 10.1016/j.neurobiolaging.2011.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
Abstract
Gamma aminobutyric acid (GABA)(B) receptors (GABA(B)Rs) have been linked to a wide range of physiological and cognitive processes and are of interest for treating a number of neurodegenerative and psychiatric disorders. As many of these diseases are associated with advanced age, it is important to understand how the normal aging process impacts GABA(B)R expression and signaling. Thus, we investigated GABA(B)R expression and function in the prefrontal cortex (PFC) and hippocampus of young and aged rats characterized in a spatial learning task. Baclofen-stimulated GTP-binding and GABA(B)R1 and GABA(B)R2 proteins were reduced in the prefrontal cortex of aged rats but these reductions were not associated with spatial learning abilities. In contrast, hippocampal GTP-binding was comparable between young and aged rats but reduced hippocampal GABA(B)R1 expression was observed in aged rats with spatial learning impairment. These data demonstrate marked regional differences in GABA(B)R complexes in the adult and aged brain and could have implications for both understanding the role of GABAergic processes in normal brain function and the development of putative interventions that target this system.
Collapse
Affiliation(s)
- Joseph A. McQuail
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
| | - Cristina Bañuelos
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229
| | - Michelle M. Nicolle
- Program in Neuroscience, Graduate School of Arts & Sciences, Wake Forest University, Winston-Salem, NC 27157
- Department of Internal Medicine, Section of Gerontology, Wake Forest University, Winston-Salem, NC 27157
- Department of Physiology & Pharmacology, School of Medicine, Wake Forest University, Winston-Salem, NC 27157
| | - Jennifer L. Bizon
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
32
|
Deak F, Sonntag WE. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 2012; 67:611-25. [PMID: 22503992 PMCID: PMC3348499 DOI: 10.1093/gerona/gls118] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/16/2012] [Indexed: 01/05/2023] Open
Abstract
Insulin-like growth factor (IGF)-1 is an important neurotrophic hormone. Deficiency of this hormone has been reported to influence the genesis of cognitive impairment and dementia in the elderly patients. Nevertheless, there are studies indicating that cognitive function can be maintained into old age even in the absence of circulating IGF-1 and studies that link IGF-1 to an acceleration of neurological diseases. Although IGF-1 has a complex role in brain function, synaptic effects appear to be central to the IGF-1-induced improvement in learning and memory. In this review, synaptic mechanisms of learning and memory and the effects of IGF-1 on synaptic communication are discussed. The emerging data indicate that synaptic function decreases with age and that IGF-1 contributes to information processing in the brain. Further studies that detail the specific actions of this important neurotrophic hormone will likely lead to therapies that result in improved cognitive function for the elderly patients.
Collapse
Affiliation(s)
- Ferenc Deak
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
33
|
Foster TC. Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2+ channels in senescent synaptic plasticity. Prog Neurobiol 2012; 96:283-303. [PMID: 22307057 DOI: 10.1016/j.pneurobio.2012.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
In humans, heterogeneity in the decline of hippocampal-dependent episodic memory is observed during aging. Rodents have been employed as models of age-related cognitive decline and the spatial water maze has been used to show variability in the emergence and extent of impaired hippocampal-dependent memory. Impairment in the consolidation of intermediate-term memory for rapidly acquired and flexible spatial information emerges early, in middle-age. As aging proceeds, deficits may broaden to include impaired incremental learning of a spatial reference memory. The extent and time course of impairment has been be linked to senescence of calcium (Ca²⁺) regulation and Ca²⁺-dependent synaptic plasticity mechanisms in region CA1. Specifically, aging is associated with altered function of N-methyl-D-aspartate receptors (NMDARs), voltage-dependent Ca²⁺ channels (VDCCs), and ryanodine receptors (RyRs) linked to intracellular Ca²⁺ stores (ICS). In young animals, NMDAR activation induces long-term potentiation of synaptic transmission (NMDAR-LTP), which is thought to mediate the rapid consolidation of intermediate-term memory. Oxidative stress, starting in middle-age, reduces NMDAR function. In addition, VDCCs and ICS can actively inhibit NMDAR-dependent LTP and oxidative stress enhances the role of VDCC and RyR-ICS in regulating synaptic plasticity. Blockade of L-type VDCCs promotes NMDAR-LTP and memory in older animals. Interestingly, pharmacological or genetic manipulations to reduce hippocampal NMDAR function readily impair memory consolidation or rapid learning, generally leaving incremental learning intact. Finally, evidence is mounting to indicate a role for VDCC-dependent synaptic plasticity in associative learning and the consolidation of remote memories. Thus, VDCC-dependent synaptic plasticity and extrahippocampal systems may contribute to incremental learning deficits observed with advanced aging.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL 32610-0244, USA. ,
| |
Collapse
|
34
|
Molina DP, Ariwodola OJ, Linville C, Sonntag WE, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone modulates hippocampal excitatory synaptic transmission and plasticity in old rats. Neurobiol Aging 2011; 33:1938-49. [PMID: 22015312 DOI: 10.1016/j.neurobiolaging.2011.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/10/2011] [Accepted: 09/10/2011] [Indexed: 11/19/2022]
Abstract
Alterations in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) have been documented in aged animals and may contribute to changes in hippocampal-dependent memory. Growth hormone (GH) regulates AMPA-R and NMDA-R-dependent excitatory transmission and decreases with age. Chronic GH treatment mitigates age-related cognitive decline. An in vitro CA1 hippocampal slice preparation was used to compare hippocampal excitatory transmission and plasticity in old animals treated for 6-8 months with either saline or GH. Our findings indicate that GH treatment restores NMDA-R-dependent basal synaptic transmission in old rats to young adult levels and enhances both AMPA-R-dependent basal synaptic transmission and long-term potentiation. These alterations in synaptic function occurred in the absence of changes in presynaptic function, as measured by paired-pulse ratios, the total protein levels of AMPA-R and NMDA-R subunits or in plasma or hippocampal levels of insulin-like growth factor-I. These data suggest a direct role for GH in altering age-related changes in excitatory transmission and provide a possible cellular mechanism through which GH changes the course of cognitive decline.
Collapse
Affiliation(s)
- Doris P Molina
- Department of Neurobiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Venkitaramani DV, Moura PJ, Picciotto MR, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase (STEP) knockout mice have enhanced hippocampal memory. Eur J Neurosci 2011; 33:2288-98. [PMID: 21501258 DOI: 10.1111/j.1460-9568.2011.07687.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STEP in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. Here we report that loss of STEP leads to significantly enhanced performance in hippocampal-dependent learning and memory tasks. In addition, STEP KO mice displayed greater dominance behavior, although they were normal in their motivation, motor coordination, visual acuity and social interactions. STEP KO mice displayed enhanced tyrosine phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2), the NR2B subunit of the N-methyl-D-aspartate receptor (NMDAR) and proline-rich tyrosine kinase (Pyk2), as well as an increased phosphorylation of ERK1/2 substrates. Concomitant with the increased phosphorylation of NR2B, synaptosomal expression of NR1/NR2B NMDARs was increased in STEP KO mice, as was the GluR1/GluR2 containing α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs), providing a potential molecular mechanism for the improved cognitive performance. The data support a role for STEP in the regulation of synaptic strengthening. The absence of STEP improves cognitive performance, and may do so by the regulation of downstream effectors necessary for synaptic transmission.
Collapse
|
36
|
Magnusson KR, Das SR, Kronemann D, Bartke A, Patrylo PR. The effects of aging and genotype on NMDA receptor expression in growth hormone receptor knockout (GHRKO) mice. J Gerontol A Biol Sci Med Sci 2011; 66:607-19. [PMID: 21459761 DOI: 10.1093/gerona/glr024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction enhances N-methyl-D-aspartate (NMDA) receptor binding and upregulates messenger RNA expression of the GluN1 subunit during aging. Old growth hormone receptor knockout mice resemble old calorically restricted rodents in enhanced life span and brain function, as compared with aged controls. This study examined whether aged growth hormone receptor knockout mice also show enhanced expression of NMDA receptors. Six or 23- to 24-month-old male normal-sized control or dwarf growth hormone receptor knockout mice were assayed for NMDA-displaceable [(3)H]glutamate binding (autoradiography) and GluN1 subunit messenger RNA (in situ hybridization). There was slight sparing of NMDA receptor binding densities within aged medial prefrontal and motor cortices, similar to caloric restriction, but there were greater age-related declines in GluN1 messenger RNA in growth hormone receptor knockout versus control mice. These results suggest that some of the functional improvements in aged mice with altered growth hormone signaling may be due to enhancement of NMDA receptors, but not through the upregulation of messenger RNA for the GluN1 subunit.
Collapse
Affiliation(s)
- Kathy Ruth Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
37
|
Shi L, Olson J, D'Agostino R, Linville C, Nicolle MM, Robbins ME, Wheeler KT, Brunso-Bechtold JK. Aging masks detection of radiation-induced brain injury. Brain Res 2011; 1385:307-16. [PMID: 21338580 DOI: 10.1016/j.brainres.2011.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Fractionated partial or whole-brain irradiation (fWBI) is a widely used, effective treatment for primary and metastatic brain tumors, but it also produces radiation-induced brain injury, including cognitive impairment. Radiation-induced neural changes are particularly problematic for elderly brain tumor survivors who also experience age-dependent cognitive impairment. Accordingly, we investigated i] radiation-induced cognitive impairment, and ii] potential biomarkers of radiation-induced brain injury in a rat model of aging. Fischer 344 x Brown Norway rats received fractionated whole-brain irradiation (fWBI rats, 40 Gy, 8 fractions over 4 weeks) or sham-irradiation (Sham-IR rats) at 12 months of age; all analyses were performed at 26-30 months of age. Spatial learning and memory were measured using the Morris water maze (MWM), hippocampal metabolites were measured using proton magnetic resonance spectroscopy ((1)H MRS), and hippocampal glutamate receptor subunits were evaluated using Western blots. Young rats (7-10 months old) were included to control for age effects. The results revealed that both Sham-IR and fWBI rats exhibited age-dependent impairments in MWM performance; fWBI induced additional impairments in the reversal MWM. (1)H MRS revealed age-dependent decreases in neuronal markers, increases in glial markers, but no detectable fWBI-dependent changes. Western blot analysis revealed age-dependent, but not fWBI-dependent, glutamate subunit declines. Although previous studies demonstrated fWBI-induced changes in cognition, glutamate subunits, and brain metabolites in younger rats, age-dependent changes in these parameters appear to mask their detection in old rats, a phenomenon also likely to occur in elderly fWBI patients >70 years of age.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
39
|
Schimanski LA, Barnes CA. Neural Protein Synthesis during Aging: Effects on Plasticity and Memory. Front Aging Neurosci 2010; 2. [PMID: 20802800 PMCID: PMC2928699 DOI: 10.3389/fnagi.2010.00026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/15/2010] [Indexed: 12/13/2022] Open
Abstract
During aging, many experience a decline in cognitive function that includes memory loss. The encoding of long-term memories depends on new protein synthesis, and this is also reduced during aging. Thus, it is possible that changes in the regulation of protein synthesis contribute to the memory impairments observed in older animals. Several lines of evidence support this hypothesis. For instance, protein synthesis is required for a longer period following learning to establish long-term memory in aged rodents. Also, under some conditions, synaptic activity or pharmacological activation can induce de novo protein synthesis and lasting changes in synaptic transmission in aged, but not young, rodents; the opposite results can be observed in other conditions. These changes in plasticity likely play a role in manifesting the altered place field properties observed in awake and behaving aged rats. The collective evidence suggests a link between memory loss and the regulation of protein synthesis in senescence. In fact, pharmaceuticals that target the signaling pathways required for induction of protein synthesis have improved memory, synaptic plasticity, and place cell properties in aged animals. We suggest that a better understanding of the mechanisms that lead to different protein expression patterns in the neural circuits that change as a function of age will enable the development of more effective therapeutic treatments for memory loss.
Collapse
Affiliation(s)
- Lesley A Schimanski
- Evelyn F. McKnight Brain Institute and Division of Neural Systems, Memory and Aging, Arizona Research Laboratories, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
40
|
Abstract
Alzheimer's disease (AD), the most common cause of dementia among the elderly, may either represent the far end of a continuum that begins with age-related memory decline or a distinct pathobiological process. Although mice that faithfully model all aspects of AD do not yet exist, current mouse models have provided valuable insights into specific aspects of AD pathogenesis. We will argue that transgenic mice expressing amyloid precursor protein should be considered models of accelerated brain aging or asymptomatic AD, and the results of interventional studies in these mice should be considered in the context of primary prevention. Studies in mice have pointed to the roles of soluble beta-amyloid (Abeta) oligomers and soluble tau in disease pathogenesis and support a model in which soluble Abeta oligomers trigger synaptic dysfunction, but formation of abnormal tau species leads to neuron death and cognitive decline severe enough to warrant a dementia diagnosis.
Collapse
Affiliation(s)
- Karen H Ashe
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
41
|
Magnusson KR, Brim BL, Das SR. Selective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging. Front Aging Neurosci 2010; 2:11. [PMID: 20552049 PMCID: PMC2874396 DOI: 10.3389/fnagi.2010.00011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA
| | | | | |
Collapse
|
42
|
Kollen M, Stéphan A, Faivre-Bauman A, Loudes C, Sinet PM, Alliot J, Billard J, Epelbaum J, Dutar P, Jouvenceau A. Preserved memory capacities in aged Lou/C/Jall rats. Neurobiol Aging 2010; 31:129-42. [DOI: 10.1016/j.neurobiolaging.2008.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/10/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
|
43
|
The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci 2009; 29:11572-81. [PMID: 19759304 DOI: 10.1523/jneurosci.0453-09.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) is a hematopoietic growth factor that controls proliferation and differentiation of neural stem cells. Although recent studies have begun to explore G-CSF-related mechanisms of action in various disease models, little is known about its function in the healthy brain. In the present study, the effect of G-CSF deficiency on memory formation and motor skills was investigated. The impact of G-CSF deficiency on the structural integrity of the hippocampus was evaluated by analyzing the generation of doublecortin-expressing cells, the amount of bromodeoxyurine-labeled cells, the dendritic complexity in hippocampal neurons, the binding densities of NMDA and GABA(A) receptors and the induction of long-term potentiation (LTP). G-CSF deficiency caused a disruption in memory formation and in the development of motor skills. These impairments were associated with reduced ligand binding densities of NMDA receptors in hippocampal subfields CA3 and the dentate gyrus. The reduced excitation was potentiated by increased ligand binding densities of GABA(A) receptors resulting in a relative shift in favor of inhibition and impaired behavioral performance. These alterations were accompanied by impaired induction of LTP in the CA1 region. Moreover, G-CSF deficiency led to decreased dendritic complexity in hippocampal neurons in the dentate gyrus and the CA1 region. G-CSF deficiency also caused a reduction of neuronal precursor cells in the dentate gyrus. These findings confirm G-CSF as an essential neurotrophic factor, and point to a role in the proliferation, differentiation and functional integration of neural cells necessary for the structural and functional integrity of the hippocampal formation.
Collapse
|
44
|
Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SHR, Dutar P, Epelbaum J, Mothet JP, Billard JM. Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 2009; 32:1495-504. [PMID: 19800712 DOI: 10.1016/j.neurobiolaging.2009.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/25/2009] [Accepted: 09/06/2009] [Indexed: 12/18/2022]
Abstract
To gain insight into the contribution of d-serine to impaired cognitive aging, we compared the metabolic pathway and content of the amino acid as well as d-serine-dependent synaptic transmission and plasticity in the hippocampus of young and old rats of the Wistar and Lou/C/Jall strains. Wistar rats display cognitive impairments with aging that are not found in the latter strain, which is therefore considered a model of healthy aging. Both mRNA and protein levels of serine racemase, the d-serine synthesizing enzyme, were decreased in the hippocampus but not in the cerebral cortex or cerebellum of aged Wistar rats, whereas the expression of d-amino acid oxidase, which degrades the amino acid, was not affected. Consequently, hippocampal levels of endogenous d-serine were significantly lower. In contrast, serine racemase expression and d-serine levels were not altered in the hippocampus of aged Lou/C/Jall rats. Ex vivo electrophysiological recordings in hippocampal slices showed a marked reduction in N-methyl-d-aspartate-receptor (NMDA-R)-mediated synaptic potentials and theta-burst-induced long-term potentiation (LTP) in the CA1 area of aged Wistar rats, which were restored by exogenous d-serine. In contrast, NMDA-R activation, LTP induction and responses to d-serine were not altered in aged Lou/C/Jall rats. These results further strengthen the notion that the serine racemase-dependent pathway is a prime target of hippocampus-dependent cognitive deficits with aging. Understanding the processes that specifically affect serine racemase during aging could thus provide key insights into the treatment of memory deficits in the elderly.
Collapse
Affiliation(s)
- F R Turpin
- Centre de Psychiatrie et Neurosciences, INSERM, UMR 894, Université Paris Descartes, Faculté de Médecine René Descartes, Paris, F-75014, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kwak MJ, Park HJ, Nam MH, Kwon OS, Park SY, Lee SY, Kim MJ, Kim SJ, Paik KH, Jin DK. Comparative study of the effects of different growth hormone doses on growth and spatial performance of hypophysectomized rats. J Korean Med Sci 2009; 24:729-36. [PMID: 19654960 PMCID: PMC2719187 DOI: 10.3346/jkms.2009.24.4.729] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 10/25/2008] [Indexed: 11/23/2022] Open
Abstract
This study was designed to examine the effects of recombinant human growth hormone replacement on somatic growth and cognitive function in hypophysectomized (HYPOX) female Sprague-Dawley rats. Rats (5 per group) were randomized by weight to 3 experimental groups: group 1, administered 200 microg/kg of GH once daily for 9 days; group 2, administered 200 microg/kg of GH twice daily; and group 3, administered saline daily. Somatic growth was evaluated by measurement of body weight daily and of the width of the proximal tibial growth plate of the HYPOX rats. Cognitive function was evaluated using the Morris water maze (MWM) test. The results indicated that GH replacement therapy in HYPOX rats promoted an increase in the body weight and the width of the tibial growth plate in a dose-dependent manner. On the third day of the MWM test, the escape latency in the GH-treated groups 1 and 2 was significantly shorter than that in the control rats (P<0.001 and P=0.032, respectively), suggesting that rhGH improved spatial memory acquisition in the MWM test. Therefore it is concluded that rhGH replacement therapy in HYPOX rats stimulates an increase in somatic growth in a dose-dependent manner and also has beneficial effects on cognitive functions.
Collapse
Affiliation(s)
- Min Jung Kwak
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Ju Park
- Department of Pediatrics, College of Medicine, Pusan National University, Busan, Korea
| | - Mi Hyun Nam
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - O Suk Kwon
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - So Young Park
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - So Yeon Lee
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Mi Jin Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Su Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Hoon Paik
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Stephens ML, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA. Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol Aging 2009; 32:811-20. [PMID: 19535175 DOI: 10.1016/j.neurobiolaging.2009.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 12/31/2022]
Abstract
The present studies employed a novel microelectrode array recording technology to study glutamate release and uptake in the dentate gyrus, CA3 and CA1 hippocampal subregions in anesthetized young, late-middle aged and aged male Fischer 344 rats. The mossy fiber terminals in CA3 showed a significantly decreased amount of KCl-evoked glutamate release in aged rats compared to both young and late-middle-aged rats. Significantly more KCl-evoked glutamate release was seen from perforant path terminals in the DG of late-middle-aged rats compared young and aged rats. The DG of aged rats developed an increased glutamate uptake rate compared to the DG of young animals, indicating a possible age-related change in glutamate regulation to deal with increased glutamate release that occurred in late-middle age. No age-related changes in resting levels of glutamate were observed in the DG, CA3 and CA1. Taken together, these data support dynamic changes to glutamate regulation during aging in subregions of the mammalian hippocampus that are critical for learning and memory.
Collapse
Affiliation(s)
- Michelle L Stephens
- Department of Anatomy and Neurobiology, Center for Microelectrode Technology, Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | | | | | | | | |
Collapse
|
47
|
The N-methyl-D-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiol Aging 2009; 32:698-706. [PMID: 19446371 DOI: 10.1016/j.neurobiolaging.2009.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 04/03/2009] [Accepted: 04/12/2009] [Indexed: 11/21/2022]
Abstract
NMDA receptor (NMDAR) activity has been strongly implicated in both in vitro and in vivo learning models and the decline in cognitive function associated with aging and is linked to a decrease in NMDAR functional expression. GLYX-13 is a tetrapeptide (Thr-Pro-Pro-Thr) which acts as a NMDAR receptor partial agonist at the glycine site. GLYX-13 was administered to young adult (3 months old) and aged (27-32 months old) Fischer 344 X Brown Norway F1 rats (FBNF1), and behavioral learning tested in trace eye blink conditioning (tEBC), a movable platform version of the Morris water maze (MWM), and alternating t-maze tasks. GLYX-13 (1mg/kg, i.v.) enhanced learning in both young adult and aging animals for MWM and alternating t-maze, and increased tEBC in aging rats. We previously showed optimal enhancement of tEBC in young adult rats given GLYX-13 at the same dose. Of these learning tasks, the MWM showed the most robust age related deficit in learning. In the MWM, GLYX-13 enhancement of learning was greater in the old compared to the young adult animals. Examination of the induction of long-term potentiation (LTP) and depression (LTD) at Schaffer collateral-CA1 synapses in hippocampal slices showed that aged rats showed marked, selective impairment in the magnitude of LTP evoked by a sub-maximal tetanus, and that GLYX-13 significantly enhanced the magnitude of LTP in slices from both young adult and aged rats without affecting LTD. These data, combined with the observation that the GLYX-13 enhancement of learning was greater in old than in young adult animals, suggest that GLYX-13 may be a promising treatment for deficits in cognitive function associated with aging.
Collapse
|
48
|
The effects of aging on N-methyl-D-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience 2009; 162:933-45. [PMID: 19446010 DOI: 10.1016/j.neuroscience.2009.05.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/22/2009] [Accepted: 05/08/2009] [Indexed: 11/23/2022]
Abstract
There are declines in the protein expression of the NR2B (mouse epsilon2) and NR1 (mouse zeta1) subunits of the N-methyl-D-aspartate (NMDA) receptor in the cerebral cortex and hippocampus during aging in C57BL/6 mice. This study was designed to determine if there is a greater effect of aging on subunit expression and a stronger relationship between long-term spatial memory and subunit expression within the synaptic membrane than in the cell as a whole. Male, C57BL/6JNIA mice (4, 11 and 26 months old) were tested for long-term spatial memory in the Morris water maze. Frontal cortex, including prefrontal regions, and hippocampus were homogenized and fractionated into light and synaptosomal membrane fractions. Western blots were used to analyze protein expression of NR2B and NR1 subunits of the NMDA receptor. Old mice performed significantly worse than other ages in the spatial task. In the frontal cortex, the protein levels of the NR2B subunit showed a greater decline with aging in the synaptic membrane fraction than in the whole homogenate, while in the hippocampus a similar age-related decline was observed in both fractions. There were no significant effects of aging on the expression of the NR1 subunit. Within the middle-aged mouse group, higher expression of both NR2B and NR1 subunits in the synaptic membrane of the hippocampus was associated with better memory. In the aged mice, however, higher expression of both subunits was associated with poorer memory. These results indicate that aging could be altering the localization of the NR2B subunit to the synaptic membrane within the frontal cortex. The correlational results suggest that NMDA receptor functions, receptor subunit composition, and/or the environment in which the receptor interacted in the hippocampus were not the same in the old animals as in younger mice and this may have contributed to memory declines during aging.
Collapse
|
49
|
Kalev-Zylinska ML, Symes W, Young D, During MJ. Knockdown and overexpression of NR1 modulates NMDA receptor function. Mol Cell Neurosci 2009; 41:383-96. [PMID: 19394426 DOI: 10.1016/j.mcn.2009.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/24/2009] [Accepted: 04/17/2009] [Indexed: 01/17/2023] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is critically involved in learning and memory, neuronal survival, as well as neuroexcitotoxicity and seizures. We hypothesize that even mild reductions in the numbers of hippocampal NMDARs could impair learning and memory, whereas increasing receptor activity would facilitate learning but reduce seizure threshold. We developed novel gene transfer strategies assisted by an adeno-associated viral vector 1/2 to bi-directionally modulate expression levels of the NR1 protein in rat hippocampus. Functional consequences of the altered NR1 expression were examined in the acute seizure model, and on normal processes of fear memory and neurogenesis. We found that knocking down NR1 protected against seizures at the expense of impaired learning, as predicted. Paradoxically, NR1 overexpression not only increased fear memory and neurogenesis, but also delayed onset of more severe seizures. In conclusion, the observed consequences of NR1 knockdown and overexpression underscore NMDAR requirement for neuronal plasticity, and are in agreement with its dichotomous functions.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
50
|
Schober ME, McKnight RA, Yu X, Callaway CW, Ke X, Lane RH. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 2009; 296:R681-92. [DOI: 10.1152/ajpregu.90396.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uteroplacental insufficiency (UPI), the major cause of intrauterine growth restriction (IUGR) in developed nations, predisposes to learning impairment. The underlying mechanism is unknown. Neuronal N-methyl-d-aspartate receptors (NMDARs) are critical for synaptogenesis and learning throughout life. We hypothesized that UPI-induced IUGR alters rat hippocampal NMDAR NR2A/NR2B subunit ratio and/or NR1 mRNA isoform expression and synaptic density at day 21 (P21). To test this hypothesis, IUGR was induced by bilateral uterine artery ligation of the late-gestation Sprague-Dawley dam. At P21, hippocampal NMDAR subunit mRNA and protein were measured, as were levels of synaptophysin. Neuronal, synaptic, and glial density in CA1, CA3, and dentate gyrus (DG) was assessed by immunofluorescence. IUGR increased NR1 mRNA isoform NR1-3a and 1-3b expression in both sexes. In P21 males, IUGR increased protein levels of NR1 C2′ and decreased NR1 C2, NR2A, and the NR2A-to-NR2B ratio, whereas in females, IUGR increased NR2B protein. In males, IUGR was associated with decreased myelin basic protein-to-neuronal nuclei ratio in CA1, CA3, and DG. We conclude that IUGR has sex-specific effects and that neither neuronal loss nor decreased synaptic density appears to account for the changes in NMDAR subunits. Rather, it is possible that synaptic NMDAR subunit composition is altered. Our results suggest that apparent recovery in the IUGR hippocampus may be associated with synaptic hyperexcitability. We speculate that the NMDAR plays an important role in IUGR-associated cognitive impairment.
Collapse
|