1
|
Maximov K, Kanold PO. Aging reduces excitatory bandwidth, alters spectral tuning curve diversity, and reduces sideband inhibition in L2/3 of primary auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646797. [PMID: 40236140 PMCID: PMC11996523 DOI: 10.1101/2025.04.02.646797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Presbycusis, or age-related hearing loss, is caused by changes in both the peripheral and the central auditory system. Many of the peripheral structures that degrade with age have been identified and characterized, but there is still a dearth of information pertaining to what changes occur in the aging central auditory pathway that are independent of peripheral degradation. The primary auditory cortex (A1) of aging mice shows reduced suppressive responses and reduced diversity of temporal responses suggesting alteration of inhibitory processing. To gain a better understanding of how tuning features of the auditory cortex change with age, we performed in vivo 2-photon Ca 2+ imaging on L2/3 of the auditory cortex of both adult (n=14, 11-24 weeks old) and aging (n=12, 12-17 months old) mice that retain peripheral hearing in old age. To reveal inhibitory inputs to L2/3 neurons we characterized spectral receptive fields with pure tones and two tone complexes. We find that in contrast to adult mice, L2/3 excitatory neurons from aging mice showed fewer distinct categories of spectral receptive fields, though in a subset of FRA types, we found increased diversity. We also noted a decrease in excitatory bandwidth with age among broadly tuned neurons, but that sideband inhibition became weaker across all FRA types due to a reduced amplitude in inhibitory responses. These results suggest that aging causes changes in circuit organization leading to more homogenous spectrotemporal receptive fields and that the lack of response diversity contributes to a decreased encoding capacity observed in aging A1.
Collapse
|
2
|
Xu Z, Xue B, Kao JPY, Kanold PO. Sex-Specific Age-Related Changes in Excitatory and Inhibitory Intracortical Circuits in Mouse Primary Auditory Cortex. eNeuro 2025; 12:ENEURO.0378-24.2024. [PMID: 39626952 PMCID: PMC11826992 DOI: 10.1523/eneuro.0378-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 02/08/2025] Open
Abstract
A common impairment in aging is age-related hearing loss (presbycusis), which manifests as impaired spectrotemporal processing. Presbycusis can be caused by a dysfunction of the peripheral and central auditory system, and these dysfunctions might differ between the sexes. To date, the circuit mechanisms in the central nervous system responsible for age-related auditory dysfunction remain mostly unknown. In the auditory cortex (ACtx), aging is accompanied by alteration in normal inhibitory (GABA) neurotransmission and changes in excitatory (NMDA and AMPA) synapses, but which circuits are affected has been unclear. Here we investigated how auditory cortical microcircuits change with age and if sex-dependent differences existed. We performed laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from layer (L) 2/3 cells in the primary auditory cortex (A1) in young adult (2-3 months) and aged (older than 18 months) male and female CBA/CaJ mice which have normal peripheral hearing. We found that L2/3 cells in aged male animals display functional hypoconnectivity of inhibitory circuits originating from L2/3 and L4. Compared with cells from young adult mice, cells from aged male mice have weaker excitatory connections from L2/3. We also observed an increased diversity of excitatory and inhibitory inputs. These results suggest a sex-specific reduction and diversification in excitatory and inhibitory intralaminar cortical circuits in aged mice compared with young adult animals. We speculate that these unbalanced changes in cortical circuits contribute to the functional manifestations of age-related hearing loss in both males and females.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
3
|
Selva-Clemente J, Marcos P, González-Fuentes J, Villaseca-González N, Lagartos-Donate MJ, Insausti R, Arroyo-Jiménez MM. Interneurons in the CA1 stratum oriens expressing αTTP may play a role in the delayed-ageing Pol μ mouse model. Mol Cell Neurosci 2024; 130:103960. [PMID: 39179163 DOI: 10.1016/j.mcn.2024.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
Neurodegeneration associated with ageing is closely linked to oxidative stress (OS) and disrupted calcium homeostasis. Some areas of the brain, like the hippocampus - particularly the CA1 region - have shown a high susceptibility to age-related changes, displaying early signs of pathology and neuronal loss. Antioxidants such as α-tocopherol (αT) have been effective in mitigating the impact of OS during ageing. αT homeostasis is primarily regulated by the α-tocopherol transfer protein (αTTP), which is widely distributed throughout the brain - where it plays a crucial role in maintaining αT levels within neuronal cells. This study investigates the distribution of αTTP in the hippocampus of 4- and 24-month-old Pol μ knockout mice (Pol μ-/-), a delayed-ageing model, and the wild type (Pol μ+/+). We also examine the colocalisation in the stratum oriens (st.or) of CA1 region with the primary interneuron populations expressing calcium-binding proteins (CBPs) (calbindin (CB), parvalbumin (PV), and calretinin (CR)). Our findings reveal that αTTP immunoreactivity (-IR) in the st.or of Pol μ mice is significantly reduced. The density of PV-expressing interneurons (INs) increased in aged mice in both Pol μ genotypes (Pol μ-/- and Pol μ+/+), although the density of PV-positive INs was lower in the aged Pol μ-/- mice compared to wild-type mice. By contrast, CR- and CB-positive INs in Pol μ mice remained unchanged during ageing. Furthermore, double immunohistochemistry reveals the colocalisation of αTTP with CBPs in INs of the CA1 st.or. Our study also shows that the PV/αTTP-positive IN population remains unchanged in all groups. A significant decrease of CB/αTTP-positive INs in young Pol μ-/- mice has been detected, as well as a significant increase in CR/αTTP-IR in older Pol μ-/- animals. These results suggest that the differential expression of αTTP and CBPs could have a crucial effect in aiding the survival and maintenance of the different IN populations in the CA1 st.or, and their coexpression could contribute to the enhancement of their resistance to OS-related damage and neurodegeneration associated with ageing.
Collapse
Affiliation(s)
- J Selva-Clemente
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | - P Marcos
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | | | - N Villaseca-González
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain; School of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - M J Lagartos-Donate
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - R Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain
| | - M M Arroyo-Jiménez
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha and CRIB (Regional Centre for Biomedical Research), Albacete, Spain; School of Pharmacy, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
4
|
Shilling-Scrivo K, Mittelstadt J, Kanold PO. Decreased Modulation of Population Correlations in Auditory Cortex Is Associated with Decreased Auditory Detection Performance in Old Mice. J Neurosci 2022; 42:9278-9292. [PMID: 36302637 PMCID: PMC9761686 DOI: 10.1523/jneurosci.0955-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023] Open
Abstract
Age-related hearing loss (presbycusis) affects one-third of the world's population. One hallmark of presbycusis is difficulty hearing in noisy environments. Presbycusis can be separated into two components: the aging ear and the aging brain. To date, the role of the aging brain in presbycusis is not well understood. Activity in the primary auditory cortex (A1) during a behavioral task is because of a combination of responses representing the acoustic stimuli, attentional gain, and behavioral choice. Disruptions in any of these aspects can lead to decreased auditory processing. To investigate how these distinct components are disrupted in aging, we performed in vivo 2-photon Ca2+ imaging in both male and female mice (Thy1-GCaMP6s × CBA/CaJ mice) that retain peripheral hearing into old age. We imaged A1 neurons of young adult (2-6 months) and old mice (16-24 months) during a tone detection task in broadband noise. While young mice performed well, old mice performed worse at low signal-to-noise ratios. Calcium imaging showed that old animals have increased prestimulus activity, reduced attentional gain, and increased noise correlations. Increased correlations in old animals exist regardless of cell tuning and behavioral outcome, and these correlated networks exist over a much larger portion of cortical space. Neural decoding techniques suggest that this prestimulus activity is predictive of old animals making early responses. Together, our results suggest a model in which old animals have higher and more correlated prestimulus activity and cannot fully suppress this activity, leading to the decreased representation of targets among distracting stimuli.SIGNIFICANCE STATEMENT Aging inhibits the ability to hear clearly in noisy environments. We show that the aging auditory cortex is unable to fully suppress its responses to background noise. During an auditory behavior, fewer neurons were suppressed in the old relative to young animals, which leads to higher prestimulus activity and more false alarms. We show that this excess activity additionally leads to increased correlations between neurons, reducing the amount of relevant stimulus information in the auditory cortex. Future work identifying the lost circuits that are responsible for proper background suppression could provide new targets for therapeutic strategies to preserve auditory processing ability into old age.
Collapse
Affiliation(s)
- Kelson Shilling-Scrivo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Jonah Mittelstadt
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
| |
Collapse
|
5
|
DiCola NM, Lacy AL, Bishr OJ, Kimsey KM, Whitney JL, Lovett SD, Burke SN, Maurer AP. Advanced age has dissociable effects on hippocampal CA1 ripples and CA3 high frequency events in male rats. Neurobiol Aging 2022; 117:44-58. [PMID: 35665647 PMCID: PMC9392897 DOI: 10.1016/j.neurobiolaging.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Sharp wave/ripples/high frequency events (HFEs) are transient bursts of depolarization in hippocampal subregions CA3 and CA1 that occur during rest and pauses in behavior. Previous studies have reported that CA1 ripples in aged rats have lower frequency than those detected in young animals. While CA1 ripples are thought to be driven by CA3, HFEs in CA3 have not been examined in aged animals. The current study obtained simultaneous recordings from CA1 and CA3 in young and aged rats to examine sharp wave/ripples/HFEs in relation to age. While CA1 ripple frequency was reduced with age, there were no age differences in the frequency of CA3 HFEs, although power and length were lower in old animals. While there was a proportion of CA1 ripples that co-occurred with a CA3 HFE, none of the age-related differences in CA1 ripples could be explained by alterations in CA3 HFE characteristics. These findings suggest that age differences in CA1 are not due to altered CA3 activity, but instead reflect distinct mechanisms of ripple generation with age.
Collapse
Affiliation(s)
- Nicholas M. DiCola
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Alexa L. Lacy
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Omar J. Bishr
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kathryn M. Kimsey
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jenna L. Whitney
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sarah D. Lovett
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Sara N. Burke
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA,Corresponding author at: University of Florida, Neuroscience, McKnight Brain Institute, P.O. Box 100244, 1149 Newell Dr, RM L1-100G, Gainesville, FL 32610, USA. (S.N. Burke)
| | - Andrew P. Maurer
- Evelyn F. McKnight McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA,Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA,Corresponding author at: McKnight Brain Institute, 1149 Newell Dr, RM L1-100E, University of Florida, Gainesville, FL 32610, USA. (A.P. Maurer)
| |
Collapse
|
6
|
Canatelli-Mallat M, Chiavellini P, Lehmann M, Goya RG, Morel GR. AGE-RELATED LOSS OF RECOGNITION MEMORY AND ITS CORRELATION WITH HIPPOCAMPAL AND PERIRHINAL CORTEX CHANGES IN FEMALE SPRAGUE-DAWLEY RATS. Behav Brain Res 2022; 435:114026. [DOI: 10.1016/j.bbr.2022.114026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
|
7
|
Shilling-Scrivo K, Mittelstadt J, Kanold PO. Altered Response Dynamics and Increased Population Correlation to Tonal Stimuli Embedded in Noise in Aging Auditory Cortex. J Neurosci 2021; 41:9650-9668. [PMID: 34611028 PMCID: PMC8612470 DOI: 10.1523/jneurosci.0839-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a chronic health condition that affects one-third of the world population. One hallmark of presbycusis is a difficulty hearing in noisy environments. Presbycusis can be separated into two components: alterations of peripheral mechanotransduction of sound in the cochlea and central alterations of auditory processing areas of the brain. Although the effects of the aging cochlea in hearing loss have been well studied, the role of the aging brain in hearing loss is less well understood. Therefore, to examine how age-related central processing changes affect hearing in noisy environments, we used a mouse model (Thy1-GCaMP6s X CBA) that has excellent peripheral hearing in old age. We used in vivo two-photon Ca2+ imaging to measure the responses of neuronal populations in auditory cortex (ACtx) of adult (2-6 months, nine male, six female, 4180 neurons) and aging mice (15-17 months, six male, three female, 1055 neurons) while listening to tones in noisy backgrounds. We found that ACtx neurons in aging mice showed larger responses to tones and have less suppressed responses consistent with reduced inhibition. Aging neurons also showed less sensitivity to temporal changes. Population analysis showed that neurons in aging mice showed higher pairwise activity correlations and showed a reduced diversity in responses to sound stimuli. Using neural decoding techniques, we show a loss of information in neuronal populations in the aging brain. Thus, aging not only affects the responses of single neurons but also affects how these neurons jointly represent stimuli.SIGNIFICANCE STATEMENT Aging results in hearing deficits particularly under challenging listening conditions. We show that auditory cortex contains distinct subpopulations of excitatory neurons that preferentially encode different stimulus features and that aging selectively reduces certain subpopulations. We also show that aging increases correlated activity between neurons and thereby reduces the response diversity in auditory cortex. The loss of population response diversity leads to a decrease of stimulus information and deficits in sound encoding, especially in noisy backgrounds. Future work determining the identities of circuits affected by aging could provide new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kelson Shilling-Scrivo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Jonah Mittelstadt
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
8
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Ianov L, De Both M, Chawla MK, Rani A, Kennedy AJ, Piras I, Day JJ, Siniard A, Kumar A, Sweatt JD, Barnes CA, Huentelman MJ, Foster TC. Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment. Front Aging Neurosci 2017; 9:383. [PMID: 29276487 PMCID: PMC5727020 DOI: 10.3389/fnagi.2017.00383] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023] Open
Abstract
The current study employed next-generation RNA sequencing to examine gene expression differences related to brain aging, cognitive decline, and hippocampal subfields. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3, and the dentate gyrus were isolated. Poly-A mRNA was examined using two different sequencing platforms, Illumina, and Ion Proton. The Illumina platform was used to generate seed lists of genes that were statistically differentially expressed across regions, ages, or in association with cognitive function. The gene lists were then retested using the data from the Ion Proton platform. The results indicate hippocampal subfield differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response-related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provide a transcriptomic characterization of the three subfields regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling.
Collapse
Affiliation(s)
- Lara Ianov
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matt De Both
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Monica K Chawla
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Asha Rani
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew J Kennedy
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ignazio Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States
| | - Ashley Siniard
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Ashok Kumar
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, United States
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States.,Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Thomas C Foster
- Departments of Neuroscience and Genetics and Genomics Program, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Stover KR, Lim S, Zhou TL, Stafford PM, Chow J, Li H, Sivanenthiran N, Mylvaganam S, Wu C, Weaver DF, Eubanks J, Zhang L. Susceptibility to hippocampal kindling seizures is increased in aging C57 black mice. IBRO Rep 2017; 3:33-44. [PMID: 30135940 PMCID: PMC6084868 DOI: 10.1016/j.ibror.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Abstract
The incidence of seizures increases with old age. Stroke, dementia and brain tumors are recognized risk factors for new-onset seizures in the aging populations and the incidence of these conditions also increased with age. Whether aging is associated with higher seizure susceptibility in the absence of the above pathologies remains unclear. We used classic kindling to explore this issue as the kindling model is highly reproducible and allows close monitoring of electrographic and motor seizure activities in individual animals. We kindled male young and aging mice (C57BL/6 strain, 2-3 and 18-22 months of age) via daily hippocampal CA3 stimulation and monitored seizure activity via video and electroencephalographic recordings. The aging mice needed fewer stimuli to evoke stage-5 motor seizures and exhibited longer hippocampal afterdischarges and more frequent hippocampal spikes relative to the young mice, but afterdischarge thresholds and cumulative afterdischarge durations to stage 5 motor seizures were not different between the two age groups. While hippocampal injury and structural alterations at cellular and micro-circuitry levels remain to be examined in the kindled mice, our present observations suggest that susceptibility to hippocampal CA3 kindling seizures is increased with aging in male C57 black mice.
Collapse
Affiliation(s)
- Kurt R. Stover
- Krembil Research Institute, University Health Network, Canada
| | - Stellar Lim
- Krembil Research Institute, University Health Network, Canada
| | - Terri-Lin Zhou
- Krembil Research Institute, University Health Network, Canada
| | | | - Jonathan Chow
- Krembil Research Institute, University Health Network, Canada
| | - Haoyuan Li
- Krembil Research Institute, University Health Network, Canada
| | | | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Canada
- Departments of Chemistry, University of Toronto, Canada
- Departments of Medicine, University of Toronto, Canada
| | - James Eubanks
- Krembil Research Institute, University Health Network, Canada
- Departments of Surgery, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Canada
- Departments of Medicine, University of Toronto, Canada
- University of Toronto Epilepsy Program, Canada
| |
Collapse
|
11
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
12
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
13
|
Villanueva-Castillo C, Tecuatl C, Herrera-López G, Galván EJ. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol Aging 2016; 49:119-137. [PMID: 27794263 DOI: 10.1016/j.neurobiolaging.2016.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability.
Collapse
Affiliation(s)
| | - Carolina Tecuatl
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México
| | | | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sede Sur, México City, México.
| |
Collapse
|
14
|
Fiuza FP, Silva KDA, Pessoa RA, Pontes ALB, Cavalcanti RLP, Pires RS, Soares JG, Nascimento Júnior ES, Costa MSMO, Engelberth RCGJ, Cavalcante JS. Age-related changes in neurochemical components and retinal projections of rat intergeniculate leaflet. AGE (DORDRECHT, NETHERLANDS) 2016; 38:4. [PMID: 26718202 PMCID: PMC5005876 DOI: 10.1007/s11357-015-9867-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Kayo D A Silva
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Renata A Pessoa
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - André L B Pontes
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rodolfo L P Cavalcanti
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raquel S Pires
- Neuroscience Center, University of São Paulo City, São Paulo, SP, Brazil
| | - Joacil G Soares
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Gray DT, Barnes CA. Distinguishing adaptive plasticity from vulnerability in the aging hippocampus. Neuroscience 2015; 309:17-28. [PMID: 26255677 DOI: 10.1016/j.neuroscience.2015.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/20/2022]
Abstract
Hippocampal circuits are among the best described networks in the mammalian brain, particularly with regard to the alterations that arise during normal aging. Decades of research indicate multiple points of vulnerability in aging neural circuits, and it has been proposed that each of these changes make a contribution to observed age-related cognitive deficits. Another view has been relatively overlooked - namely that some of these changes arise in adaptive response to protect network function in aged animals. This possibility leads to a rather different view on the biological variation of function in the brain of older individuals. Using the hippocampus as a model neural circuit we discuss how, in normally aged animals, some age-related changes may arise through processes of neural plasticity that serve to enhance network function rather than to hinder it. Conceptually disentangling the initial age-related vulnerabilities from changes that result in adaptive response will be a major challenge for the future research on brain aging. We suggest that a reformulation of how normal aging could be understood from an adaptive perspective will lead to a deeper understanding of the secrets behind successful brain aging and our recent cultural successes in facilitating these processes.
Collapse
Affiliation(s)
- D T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States; ARL Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States
| | - C A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States; ARL Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ, United States; Department of Psychology, Neurology, and Neuroscience, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
16
|
Siucinska E, Hamed A, Jasinska M. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning. PLoS One 2014; 9:e110493. [PMID: 25333489 PMCID: PMC4204871 DOI: 10.1371/journal.pone.0110493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.
Collapse
Affiliation(s)
- Ewa Siucinska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| | - Adam Hamed
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
17
|
Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice. Neuroscience 2014; 277:474-85. [PMID: 25088916 DOI: 10.1016/j.neuroscience.2014.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 01/11/2023]
Abstract
Pyramidal neurons in the hippocampal CA3 area interconnect intensively via recurrent axonal collaterals, and such CA3-to-CA3 recurrent circuitry plays important roles in the generation of hippocampal network activities. In particular, the CA3 circuitry is able to generate spontaneous sharp waves (SPWs) when examined in vitro. These in vitro SPWs are thought to result from the network activity of GABAergic inhibitory interneurons as SPW-correlating intracellular activities are featured with strong IPSPs in pyramidal neurons and EPSPs or spikes in GABAergic interneurons. In view of accumulating evidence indicating a decrease in subgroups of hippocampal GABAergic interneurons in aged animals, we test the hypothesis that the intracellular activities related to in vitro SPWs are altered in CA3 pyramidal neurons of aged mice. Hippocampal slices were prepared from adult and aged C57 black mice (ages 3-6 and 24-28months respectively). Population and single-cell activities were examined via extracellular and whole-cell patch-clamp recordings. CA3 SPW frequencies were not significantly different between the slices of adult and aged mice but SPW-correlating intracellular activities featured weaker IPSC components in aged CA3 pyramidal neurons compared to adult neurons. It was unlikely that this latter phenomenon was due to general impairments of GABAergic synapses in the aged CA3 circuitry as evoked IPSC responses and pharmacologically isolated IPSCs were observed in aged CA3 pyramidal neurons. In addition, aged CA3 pyramidal neurons displayed more positive resting potentials and had a higher propensity of burst firing than adult neurons. We postulate that alterations of GABAergic network activity may explain the reduced IPCS contributions to in vitro SPWs in aged CA3 pyramidal neurons. Overall, our present observations are supportive of the notion that excitability of hippocampal CA3 circuitry is increased in aged mice.
Collapse
|
18
|
Spiegel AM, Koh MT, Vogt NM, Rapp PR, Gallagher M. Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J Comp Neurol 2014; 521:3508-23. [PMID: 23749483 DOI: 10.1002/cne.23367] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023]
Abstract
Hippocampal interneuron populations are reportedly vulnerable to normal aging. The relationship between interneuron network integrity and age-related memory impairment, however, has not been tested directly. That question was addressed in the present study using a well-characterized model in which outbred, aged, male Long-Evans rats exhibit a spectrum of individual differences in hippocampal-dependent memory. Selected interneuron populations in the hippocampus were visualized for stereological quantification with a panel of immunocytochemical markers, including glutamic acid decarboxylase-67 (GAD67), somatostatin, and neuropeptide Y. The overall pattern of results was that, although the numbers of GAD67- and somatostatin-positive interneurons declined with age across multiple fields of the hippocampus, alterations specifically related to the cognitive outcome of aging were observed exclusively in the hilus of the dentate gyrus. Because the total number of NeuN-immunoreactive hilar neurons was unaffected, the decline observed with other markers likely reflects a loss of target protein rather than neuron death. In support of that interpretation, treatment with the atypical antiepileptic levetiracetam at a low dose shown previously to improve behavioral performance fully restored hilar SOM expression in aged, memory-impaired rats. Age-related decreases in GAD67- and somatostatin-immunoreactive neuron number beyond the hilus were regionally selective and spared the CA1 field of the hippocampus entirely. Together these findings confirm the vulnerability of hippocampal interneurons to normal aging and highlight that the integrity of a specific subpopulation in the hilus is coupled with age-related memory impairment.
Collapse
Affiliation(s)
- Amy M Spiegel
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, 21218
| | | | | | | | | |
Collapse
|
19
|
Takács VT, Freund TF, Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8:e72450. [PMID: 24039767 PMCID: PMC3764118 DOI: 10.1371/journal.pone.0072450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits and behavior.
Collapse
Affiliation(s)
- Virág T. Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Kanak DJ, Rose GM, Zaveri HP, Patrylo PR. Altered network timing in the CA3-CA1 circuit of hippocampal slices from aged mice. PLoS One 2013; 8:e61364. [PMID: 23593474 PMCID: PMC3620228 DOI: 10.1371/journal.pone.0061364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/07/2013] [Indexed: 01/05/2023] Open
Abstract
Network patterns are believed to provide unique temporal contexts for coordinating neuronal activity within and across different regions of the brain. Some of the characteristics of network patterns modeled in vitro are altered in the CA3 or CA1 subregions of hippocampal slices from aged mice. CA3-CA1 network interactions have not been examined previously. We used slices from aged and adult mice to model spontaneous sharp wave ripples and carbachol-induced gamma oscillations, and compared measures of CA3-CA1 network timing between age groups. Coherent sharp wave ripples and gamma oscillations were evident in the CA3-CA1 circuit in both age groups, but the relative timing of activity in CA1 stratum pyramidale was delayed in the aged. In another sample of aged slices, evoked Schaffer collateral responses were attenuated in CA3 (antidromic spike amplitude) and CA1 (orthodromic field EPSP slope). However, the amplitude and timing of spontaneous sharp waves recorded in CA1 stratum radiatum were similar to adults. In both age groups unit activity recorded juxtacellularly from unidentified neurons in CA1 stratum pyramidale and stratum oriens was temporally modulated by CA3 ripples. However, aged neurons exhibited reduced spike probability during the early cycles of the CA3 ripple oscillation. These findings suggest that aging disrupts the coordination of patterned activity in the CA3-CA1 circuit.
Collapse
Affiliation(s)
- Daniel J Kanak
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America.
| | | | | | | |
Collapse
|
21
|
Hippocampal excitability is increased in aged mice. Exp Neurol 2013; 247:710-9. [PMID: 23510762 DOI: 10.1016/j.expneurol.2013.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/22/2022]
Abstract
Aging is known to be associated with a high risk of developing seizure disorders. Currently, the mechanisms underlying this increased seizure susceptibility are not fully understood. Several previous studies have shown a loss of subgroups of GABAergic inhibitory interneurons in the hippocampus of aged rodents, yet the network excitability intrinsic to the aged hippocampus remains to be elucidated. The aim of this study is to examine age-dependent changes of hippocampal network activities in young adult (3-5 months), aging (16-18 months), and aged (24-28 months) mice. We conducted intracranial electroencephalographic (EEG) recordings in free-moving animals and extracellular recordings in hippocampal slices in vitro. EEG recordings revealed frequent spikes in aging and aged mice but only occasionally in young adults. These EEG spikes were suppressed following diazepam administration. Spontaneous field potentials with large amplitudes were frequently observed in hippocampal slices of aged mice but rarely in slices from young adults. These spontaneous field potentials originated from the CA3 area and their generation was dependent upon the excitatory glutamatergic activity. We therefore postulate that hippocampal network excitability is increased in aged mice and that such hyperactivity may be relevant to the increased seizure susceptibility observed in aged subjects.
Collapse
|
22
|
Ouda L, Syka J. Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front Neural Circuits 2012; 6:68. [PMID: 23049499 PMCID: PMC3448074 DOI: 10.3389/fncir.2012.00068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/04/2012] [Indexed: 12/04/2022] Open
Abstract
The inferior colliculus (IC) plays a strategic role in the central auditory system in relaying and processing acoustical information, and therefore its age-related changes may significantly influence the quality of the auditory function. A very complex processing of acoustical stimuli occurs in the IC, as supported also by the fact that the rat IC contains more neurons than all other subcortical auditory structures combined. GABAergic neurons, which predominantly co-express parvalbumin (PV), are present in the central nucleus of the IC in large numbers and to a lesser extent in the dorsal and external/lateral cortices of the IC. On the other hand, calbindin (CB) and calretinin (CR) are prevalent in the dorsal and external cortices of the IC, with only a few positive neurons in the central nucleus. The relationship between CB and CR expression in the IC and any neurotransmitter system has not yet been well established, but the distribution and morphology of the immunoreactive neurons suggest that they are at least partially non-GABAergic cells. The expression of glutamate decarboxylase (GAD) (a key enzyme for GABA synthesis) and calcium binding proteins (CBPs) in the IC of rats undergoes pronounced changes with aging that involve mostly a decline in protein expression and a decline in the number of immunoreactive neurons. Similar age-related changes in GAD, CB, and CR expression are present in the IC of two rat strains with differently preserved inner ear function up to late senescence (Long-Evans and Fischer 344), which suggests that these changes do not depend exclusively on peripheral deafferentation but are, at least partially, of central origin. These changes may be associated with the age-related deterioration in the processing of the temporal parameters of acoustical stimuli, which is not correlated with hearing threshold shifts, and therefore may contribute to central presbycusis.
Collapse
Affiliation(s)
- Ladislav Ouda
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | |
Collapse
|
23
|
Takács VT, Klausberger T, Somogyi P, Freund TF, Gulyás AI. Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocampus 2012; 22:1379-91. [PMID: 21956752 PMCID: PMC4473063 DOI: 10.1002/hipo.20974] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/21/2011] [Indexed: 11/08/2022]
Abstract
The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.
Collapse
Affiliation(s)
- Virág T Takács
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
24
|
Stanley EM, Fadel JR, Mott DD. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol Aging 2012; 33:431.e1-13. [PMID: 21277654 PMCID: PMC3110542 DOI: 10.1016/j.neurobiolaging.2010.12.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Aging is associated with impairments in learning and memory and a greater incidence of limbic seizures. These changes in the aged brain have been associated with increased excitability of hippocampal pyramidal cells caused by a reduced number of gamma-aminobutyric acid-ergic (GABAergic) interneurons. To better understand these issues, we performed cell counts of GABAergic interneurons and examined GABA efflux and GABAergic inhibition in area CA1 of the hippocampus of young (3-5 months) and aged (26-30 months) rats. Aging significantly reduced high K(+)/Ca(2+)-evoked GABA, but not glutamate efflux in area CA1. Immunostaining revealed a significant loss of GABAergic interneurons, but not inhibitory boutons in stratum oriens and stratum lacunosum moleculare. Somatostatin-immunoreactive oriens-lacunosum moleculare (O-LM) cells, but not parvalbumin-containing interneurons were selectively lost. Oriens-lacunosum moleculare cells project to distal dendrites of CA1 pyramidal cells, providing dendritic inhibition. Accordingly, inhibition of dendritic input to CA1 from entorhinal cortex was selectively reduced. These findings suggest that the age-dependent loss of interneurons impairs dendritic inhibition and dysregulates entorhinal cortical input to CA1, potentially contributing to cognitive impairment and seizures.
Collapse
Affiliation(s)
- Emily M. Stanley
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208 USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208 USA
| | - David D. Mott
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208 USA
| |
Collapse
|
25
|
Kuruba R, Hattiangady B, Parihar VK, Shuai B, Shetty AK. Differential susceptibility of interneurons expressing neuropeptide Y or parvalbumin in the aged hippocampus to acute seizure activity. PLoS One 2011; 6:e24493. [PMID: 21915341 PMCID: PMC3167860 DOI: 10.1371/journal.pone.0024493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022] Open
Abstract
Acute seizure (AS) activity in old age has an increased predisposition for evolving into temporal lobe epilepsy (TLE). Furthermore, spontaneous seizures and cognitive dysfunction after AS activity are often intense in the aged population than in young adults. This could be due to an increased vulnerability of inhibitory interneurons in the aged hippocampus to AS activity. We investigated this issue by comparing the survival of hippocampal GABA-ergic interneurons that contain the neuropeptide Y (NPY) or the calcium binding protein parvalbumin (PV) between young adult (5-months old) and aged (22-months old) F344 rats at 12 days after three-hours of AS activity. Graded intraperitoneal injections of the kainic acid (KA) induced AS activity and a diazepam injection at 3 hours after the onset terminated AS-activity. Measurement of interneuron numbers in different hippocampal subfields revealed that NPY+ interneurons were relatively resistant to AS activity in the aged hippocampus in comparison to the young adult hippocampus. Whereas, PV+ interneurons were highly susceptible to AS activity in both age groups. However, as aging alone substantially depleted these populations, the aged hippocampus after three-hours of AS activity exhibited 48% reductions in NPY+ interneurons and 70% reductions in PV+ interneurons, in comparison to the young hippocampus after similar AS activity. Thus, AS activity-induced TLE in old age is associated with far fewer hippocampal NPY+ and PV+ interneuron numbers than AS-induced TLE in the young adult age. This discrepancy likely underlies the severe spontaneous seizures and cognitive dysfunction observed in the aged people after AS activity.
Collapse
Affiliation(s)
- Ramkumar Kuruba
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bharathi Hattiangady
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- Institute for Regenerative Medicine, Texas A&M Health Science Center at Scott & White, Temple, Texas, United States of America
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vipan K. Parihar
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bing Shuai
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- Institute for Regenerative Medicine, Texas A&M Health Science Center at Scott & White, Temple, Texas, United States of America
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ashok K. Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- Institute for Regenerative Medicine, Texas A&M Health Science Center at Scott & White, Temple, Texas, United States of America
- Research Service, Central Texas Veterans Health Care System, Temple, Texas, United States of America
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Shetty AK, Hattiangady B, Rao MS. Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. J Cell Mol Med 2010. [PMID: 20141618 DOI: 10.1111/j.1582-4934.2008.00675.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hippocampal inhibitory interneurons expressing glutamate decarboxylase-67 (GAD-67) considerably decline in number during old age. Studies in young adult animals further suggest that hippocampal GAD-67+ interneuron population is highly vulnerable to excitotoxic injury. However, the relative susceptibility of residual GAD-67+ interneurons in the aged hippocampus to excitotoxic injury is unknown. To elucidate this, using both adult and aged F344 rats, we performed stereological counting of GAD-67+ interneurons in different layers of the dentate gyrus and CA1 & CA3 sub-fields, at 3 months post-excitotoxic hippocampal injury inflicted through an intracerebroventricular administration of kainic acid (KA). Substantial reductions of GAD-67+ interneurons were found in all hippocampal layers and sub-fields after KA-induced injury in adult animals. Contrastingly, there was no significant change in GAD-67+ interneuron population in any of the hippocampal layers and sub-fields following similar injury in aged animals. Furthermore, the stability of GAD-67+ interneurons in aged rats after KA was not attributable to milder injury, as the overall extent of KA-induced hippocampal principal neuron loss was comparable between adult and aged rats. Interestingly, because of the age-related disparity in vulnerability of interneurons to injury, the surviving GAD-67+ interneuron population in the injured aged hippocampus remained comparable to that observed in the injured adult hippocampus despite enduring significant reductions in interneuron number with aging. Thus, unlike in the adult hippocampus, an excitotoxic injury to the aged hippocampus does not result in significantly decreased numbers of GAD-67+ interneurons. Persistence of GAD-67+ interneuron population in the injured aged hippocampus likely reflects an age-related change in the response of GAD-67+ interneurons to excitotoxic hippocampal injury. These results have implications towards understanding mechanisms underlying the evolution of initial precipitating injury into temporal lobe epilepsy in the elderly population.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
27
|
Shetty AK, Hattiangady B, Rao MS. Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. J Cell Mol Med 2010; 13:2408-23. [PMID: 20141618 DOI: 10.1111/j.1582-4934.2009.00675.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hippocampal inhibitory interneurons expressing glutamate decarboxylase-67 (GAD-67) considerably decline in number during old age. Studies in young adult animals further suggest that hippocampal GAD-67+ interneuron population is highly vulnerable to excitotoxic injury. However, the relative susceptibility of residual GAD-67+ interneurons in the aged hippocampus to excitotoxic injury is unknown. To elucidate this, using both adult and aged F344 rats, we performed stereological counting of GAD-67+ interneurons in different layers of the dentate gyrus and CA1 & CA3 sub-fields, at 3 months post-excitotoxic hippocampal injury inflicted through an intracerebroventricular administration of kainic acid (KA). Substantial reductions of GAD-67+ interneurons were found in all hippocampal layers and sub-fields after KA-induced injury in adult animals. Contrastingly, there was no significant change in GAD-67+ interneuron population in any of the hippocampal layers and sub-fields following similar injury in aged animals. Furthermore, the stability of GAD-67+ interneurons in aged rats after KA was not attributable to milder injury, as the overall extent of KA-induced hippocampal principal neuron loss was comparable between adult and aged rats. Interestingly, because of the age-related disparity in vulnerability of interneurons to injury, the surviving GAD-67+ interneuron population in the injured aged hippocampus remained comparable to that observed in the injured adult hippocampus despite enduring significant reductions in interneuron number with aging. Thus, unlike in the adult hippocampus, an excitotoxic injury to the aged hippocampus does not result in significantly decreased numbers of GAD-67+ interneurons. Persistence of GAD-67+ interneuron population in the injured aged hippocampus likely reflects an age-related change in the response of GAD-67+ interneurons to excitotoxic hippocampal injury. These results have implications towards understanding mechanisms underlying the evolution of initial precipitating injury into temporal lobe epilepsy in the elderly population.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
28
|
Bourin M, Hascoët M. Implication of 5-HT2 receptor subtypes in the mechanism of action of the GABAergic compound etifoxine in the four-plate test in Swiss mice. Behav Brain Res 2010; 208:352-8. [DOI: 10.1016/j.bbr.2009.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/24/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
29
|
Thind KK, Yamawaki R, Phanwar I, Zhang G, Wen X, Buckmaster PS. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. J Comp Neurol 2010; 518:647-67. [PMID: 20034063 DOI: 10.1002/cne.22235] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many patients with temporal lobe epilepsy display neuron loss in the dentate gyrus. One potential epileptogenic mechanism is loss of GABAergic interneurons and inhibitory synapses with granule cells. Stereological techniques were used to estimate numbers of gephyrin-positive punctae in the dentate gyrus, which were reduced short-term (5 days after pilocarpine-induced status epilepticus) but later rebounded beyond controls in epileptic rats. Stereological techniques were used to estimate numbers of synapses in electron micrographs of serial sections processed for postembedding GABA-immunoreactivity. Adjacent sections were used to estimate numbers of granule cells and glutamic acid decarboxylase-positive neurons per dentate gyrus. GABAergic neurons were reduced to 70% of control levels short-term, where they remained in epileptic rats. Integrating synapse and cell counts yielded average numbers of GABAergic synapses per granule cell, which decreased short-term and rebounded in epileptic animals beyond control levels. Axo-shaft and axo-spinous GABAergic synapse numbers in the outer molecular layer changed most. These findings suggest interneuron loss initially reduces numbers of GABAergic synapses with granule cells, but later, synaptogenesis by surviving interneurons overshoots control levels. In contrast, the average number of excitatory synapses per granule cell decreased short-term but recovered only toward control levels, although in epileptic rats excitatory synapses in the inner molecular layer were larger than in controls. These findings reveal a relative excess of GABAergic synapses and suggest that reports of reduced functional inhibitory synaptic input to granule cells in epilepsy might be attributable not to fewer but instead to abundant but dysfunctional GABAergic synapses.
Collapse
Affiliation(s)
- Khushdev K Thind
- Department of Comparative Medicine, Stanford University, California 94305, USA
| | | | | | | | | | | |
Collapse
|
30
|
Neuroprotection after status epilepticus by targeting protein interactions with postsynaptic density protein 95. J Neuropathol Exp Neurol 2009; 68:823-31. [PMID: 19535989 DOI: 10.1097/nen.0b013e3181ac6b70] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate essential neuronal excitation, but overactivation of NMDARs results in excitotoxic cell death in a variety of pathologic conditions, including status epilepticus (SE). Although NMDAR antagonists attenuate SE-induced brain injury, undesirable side effects have limited their clinical efficacy. Tat-NR2B9c was designed to disrupt protein interactions involving postsynaptic density protein 95 in the NMDAR signaling complex while not interfering with function of the NMDAR ion channel. We examined the ability of Tat-NR2B9c to provide neuroprotection in the hippocampus of rats after 60 minutes of SE induced by the repeated injection of low doses of pilocarpine (10 mg/kg). Tat-NR2B9c was administered 3hours after the termination of SE, and neuronal densities were assessed 14 days later by stereologic analysis of NeuN-positive cells. After SE, pyramidal cell densities were reduced by 70% in CA1, 34% in CA3, 58% in CA4, and 88% in the piriform cortex. In Tat-NR2B9c-treated rats, neuronal densities in CA1, a subregion of CA3, and CA4 were decreased by only 38%, 4%, and 26%, respectively. Tat-NR2B9c did not reduce cell loss in the posterior piriform cortex. The results indicate that targeted disruption of the NMDAR signaling complex represents a potential therapeutic approach for limiting neuronal cell loss after SE.
Collapse
|
31
|
Mueller SG, Weiner MW. Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields. Hippocampus 2009; 19:558-64. [PMID: 19405132 DOI: 10.1002/hipo.20614] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histopathological studies and animal models suggest that different physiological and pathophysiological processes exert different subfield specific effects on the hippocampus. High-resolution images at 4T depict details of the internal structure of the hippocampus allowing for in vivo volumetry of hippocampal subfields. The aims of this study were (1) to determine patterns of hippocampal subfield volume loss due to normal aging and Apo e4 carrier state, (2) to determine subfield specific volume losses due to preclinical (MCI) and clinical Alzheimer's disease (AD) and their modification due to age and Apo e4 carrier state. One hundred fifty seven subjects (119 cognitively healthy elderly controls, 20 MCI and 18 AD) were studied with a high resolution T2 weighted imaging sequence obtained at 4T aimed at the hippocampus. Apo e4 carrier state was known in 95 subjects (66 controls, 14 MCI, 15 AD). Subiculum (SUB), CA1, CA1-CA2 transition zone (CA1-2 transition), CA3- dentate gyrus (CA3&DG) were manually marked. Multiple linear regression analysis was used to test for effects of age, Apo e4 carrier state and effects of MCI and AD on different hippocampal subfields. Age had a significant negative effect on CA1 and CA3&DG volumes in controls (P < 0.05). AD had significantly smaller volumes of SUB, CA1, CA1-2 transition, and MCI had smaller CA1-2 transition volumes than controls (P < 0.05). Apo e4 carrier state was associated with volume loss in CA3&DG compared to non-Apo e4 carriers in healthy controls and AD. Based on these findings, we conclude that subfield volumetry provides regional selective information that allows to distinguish between different normal and pathological processes affecting the hippocampus and thus for an improved differential diagnosis of neurodegenerative diseases affecting the hippocampus.
Collapse
Affiliation(s)
- Susanne G Mueller
- Center for Imaging of Neurodegenerative Diseases, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | |
Collapse
|
32
|
Nygård M, Palomba M. The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence? Chronobiol Int 2009; 23:427-35. [PMID: 16687316 DOI: 10.1080/07420520500545938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
GABA is the main neurotransmitter of the hypothalamic suprachiasmatic nucleus (SCN) and plays a key role in the function of this master circadian pacemaker. Despite the evidence that disturbances of biological rhythms are common during aging, little is known about the GABAergic network in the SCN of the aging brain. We here provide a brief overview of the GABAergic structures and the role of GABA in the SCN. We also review some age-related changes of the GABAergic system occurring in the brain outside the SCN. Finally, we present preliminary data on the GABAergic system within the SCN comparing young and aging mice. In particular, our study on age-related changes in the SCN focused on the daily expression of the alpha3 subunit of the GABA(A) receptor and on the density of GABAergic axon terminals. Interestingly, our preliminary findings point to alterations of the GABAergic network in the biological clock during senescence.
Collapse
Affiliation(s)
- Mikael Nygård
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
33
|
The hippocampal rate code: anatomy, physiology and theory. Trends Neurosci 2009; 32:329-38. [PMID: 19406485 DOI: 10.1016/j.tins.2009.01.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Since the days of Cajal, the CA1 pyramidal cell has arguably received more attention than any other neuron in the mammalian brain. Hippocampal CA1 pyramidal cells fire spikes with remarkable spatial and temporal precision, giving rise to the hippocampal rate and temporal codes. However, little is known about how different inputs interact during spatial behavior to generate such robust firing patterns. Here, we review the properties of the rodent hippocampal rate code and synthesize work from several disciplines to understand the functional anatomy and excitation-inhibition balance that can produce the rate-coded outputs of the CA1 pyramidal cell. We argue that both CA3 and entorhinal inputs are crucial for the formation of sharp, sparse CA1 place fields and that precisely timed and dominant inhibition is an equally important factor.
Collapse
|
34
|
Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 2009; 44:161-9. [DOI: 10.1016/j.exger.2008.09.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/22/2008] [Accepted: 09/29/2008] [Indexed: 11/22/2022]
|
35
|
Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta Mol Basis Dis 2008; 1792:444-53. [PMID: 19022375 DOI: 10.1016/j.bbadis.2008.10.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/10/2008] [Accepted: 10/21/2008] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining more acceptance and attention. Recent evidence suggests morphological, electrophysiological and cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS changes observed in diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal aging. The central commonalities between diabetes-induced and age-related CNS changes have led to the theory of advanced brain aging in diabetic patients. This review summarizes the findings of the literature as they relate to the relationship between diabetes and dementia and discusses some of the potential contributors to diabetes-induced CNS impairments.
Collapse
Affiliation(s)
- Shayna A Wrighten
- Department of Pharmacology, Physiology and Neuroscience University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
36
|
Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms 2008; 23:220-31. [PMID: 18487414 DOI: 10.1177/0748730408316998] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms, and especially the sleep/wake cycle, are frequently disrupted during senescence. This draws attention to the study of aging-related changes in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker. The authors here compared the SCN of young and old mice, analyzing presynaptic terminals, including the gamma-aminobutyric acid (GABA)ergic network, and molecules related to the regulation of GABA, the main neurotransmitter of SCN neurons. Transcripts of the alpha3 subunit of the GABAA receptor and the GABA-synthesizing enzyme glutamic acid decarboxylase isoform 67 (GAD67) were analyzed with real-time RT-PCR and GAD67 protein with Western blotting. These parameters did not show significant changes between the 2 age groups. Presynaptic terminals were identified in confocal microscopy with synaptophysin immunofluorescence, and the GABAergic subset of those terminals was revealed by the colocalization of GAD67 and synaptophysin. Quantitative analysis of labeled synaptic endings performed in 2 SCN subregions, where retinal afferents are known to be, respectively, very dense or very sparse, revealed marked aging-related changes. In both subregions, the evaluated parameters (the number of and the area covered by presynaptic terminals and by their GABAergic subset) were significantly decreased in old versus young mice. No significant differences were found between SCN tissue samples from animals sacrificed at different times of day, in either age group. Altogether, the data point out marked reduction in the synaptic network of the aging biological clock, which also affects GABAergic terminals. Such alterations could underlie aging-related SCN dysfunction, including low-amplitude output during senescence.
Collapse
Affiliation(s)
- Maria Palomba
- Department of Morphological and Biomedical Sciences, University of Verona, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Ouda L, Druga R, Syka J. Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp Gerontol 2008; 43:782-9. [DOI: 10.1016/j.exger.2008.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/21/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
38
|
Shi L, Molina DP, Robbins ME, Wheeler KT, Brunso-Bechtold JK. Hippocampal neuron number is unchanged 1 year after fractionated whole-brain irradiation at middle age. Int J Radiat Oncol Biol Phys 2008; 71:526-32. [PMID: 18474312 PMCID: PMC2805196 DOI: 10.1016/j.ijrobp.2008.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/08/2008] [Accepted: 02/13/2008] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. METHODS AND MATERIALS Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of (137)Cs gamma rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. RESULTS No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. CONCLUSIONS Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
39
|
Canas PM, Duarte JMN, Rodrigues RJ, Köfalvi A, Cunha RA. Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol Aging 2008; 30:1877-84. [PMID: 18304697 DOI: 10.1016/j.neurobiolaging.2008.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/29/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Different presynaptic neuromodulation systems have been explored as possible targets to manage neurodegenerative diseases. However, most studies used young adult animals whereas neurodegenerative diseases are prevalent in the elderly. Thus, we now explored by Western blot analysis how the density of different presynaptic markers and receptors changes with aging in rat hippocampal synaptosomes (purified nerve terminals). Compared to synaptosomal membranes from 2-month-old rats, the density of presynaptic proteins (synaptophysin or SNAP-25) decreased at 18-24 months. In parallel, markers of glutamatergic terminals (vGluT1 or vGluT2) and cholinergic terminal markers (vAChT) constantly decreased with aging from 12 to 18 months onwards, whereas the densities of GABAergic (vGAT) only decreased after 24 months. Inhibitory A(1) and CB(1) receptor density tended to decrease with aging, whereas facilitatory mGluR5 and P2Y1 receptor density was roughly constant and facilitatory A(2A) receptor density increased at 18-24 months. Thus aging causes an imbalance of excitatory versus inhibitory nerve terminal markers and causes a predominant decrease of inhibitory rather than facilitatory presynaptic modulation systems.
Collapse
Affiliation(s)
- Paula M Canas
- Centre for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
40
|
Hwang IK, Li H, Yoo KY, Choi JH, Lee CH, Chung DW, Kim DW, Seong JK, Yoon YS, Lee IS, Won MH. Comparison of glutamic acid decarboxylase 67 immunoreactive neurons in the hippocampal CA1 region at various age stages in dogs. Neurosci Lett 2007; 431:251-5. [PMID: 18166269 DOI: 10.1016/j.neulet.2007.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The hippocampus is a main brain region concerning learning and memory processes. It is imperative to determine the extent of alterations in number and function of inhibitory GABAergic interneurons in the hippocampus as a function of age. We examined changes in GABAergic neurons in the hippocampal CA1 region at various ages of dogs using glutamic acid decarboxylase 67 (GAD67), which is a rate-limiting enzyme for GABA synthesis. We found only one band in the brain homogenates in dogs as well as mice and rats. GAD67 immunoreactive neurons in 1-year-old dogs were mainly detected in the stratum oriens. In the 6-year-old group, GAD67 immunoreactive neurons were evenly distributed in the CA1 region, and numbers of the neurons were highest among all experimental groups. Thereafter, GAD67 immunoreactive neurons were significantly decreased region with age: GAD67 immunoreactive neurons were scarcely found in the CA1 region in 10-year-old dogs. The reduction of GAD67 immunoreactive neurons in the hippocampal CA1 region may be closely related to highly susceptibility to memory loss in old aged dogs.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jinno S, Kosaka T. Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 2006; 56:229-45. [DOI: 10.1016/j.neures.2006.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/27/2006] [Accepted: 07/19/2006] [Indexed: 12/29/2022]
|
42
|
Wilson IA, Gallagher M, Eichenbaum H, Tanila H. Neurocognitive aging: prior memories hinder new hippocampal encoding. Trends Neurosci 2006; 29:662-70. [PMID: 17046075 PMCID: PMC2614702 DOI: 10.1016/j.tins.2006.10.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/26/2006] [Accepted: 10/04/2006] [Indexed: 02/07/2023]
Abstract
Normal aging is often accompanied by impairments in forming new memories, and studies of aging rodents have revealed structural and functional changes to the hippocampus that might point to the mechanisms behind such memory loss. In this article, we synthesize recent neurobiological and neurophysiological findings into a model of the information-processing circuit of the aging hippocampus. The key point of the model is that small concurrent changes during aging strengthen the auto-associative network of the CA3 subregion at the cost of processing new information coming in from the entorhinal cortex. As a result of such reorganization in aged memory-impaired individuals, information that is already stored would become the dominant pattern of the hippocampus to the detriment of the ability to encode new information.
Collapse
Affiliation(s)
- Iain A Wilson
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio 70211, Finland.
| | | | | | | |
Collapse
|
43
|
Siucinska E. GAD67-positive puncta: contributors to learning-dependent plasticity in the barrel cortex of adult mice. Brain Res 2006; 1106:52-62. [PMID: 16828715 DOI: 10.1016/j.brainres.2006.05.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/10/2006] [Accepted: 05/19/2006] [Indexed: 11/25/2022]
Abstract
We have previously shown that a classical aversive conditioning paradigm involving stimulation of a row of facial vibrissae (whiskers) in the mouse produced expansion of the cortical representation of the activated vibrissae ("trained row"). This was demonstrated by labeling with 2-deoxyglucose (2DG) in layer IV of the barrel cortex. We have also shown that functional reorganization of the S1 cortex is accompanied by increases in the density of small GABAergic cells, and in GAD67 mRNA in the hollows of barrels representing the "trained row". The aim of this study was to determine whether GAD67-positive puncta (boutons) are affected by learning. Unbiased optical disector counting was applied to sections from the mouse barrel cortex that had been immunostained using a polyclonal antibody against GAD67. Quantification of the numerical density of GAD67-positive boutons was performed for four groups of mice: those that had been given aversive conditioning, pseudoconditioned mice with random application of the unconditioned stimulus, mice that had received only whisker stimulation, and naive animals. This study is the first to demonstrate that learning-dependent modification of mature somatosensory cortex is associated with a 50% increase in GAD67-positive boutons in the hollows of "trained" barrels compared with those of control barrels. Sensory learning seems to mobilize the activity of the inhibitory transmission system in the cortical region where plastic changes were previously detected by 2DG labeling.
Collapse
Affiliation(s)
- Ewa Siucinska
- Dept. of Molecular and Cellular Neurobiology, Nencki Institute, 3 Pasteur st., 02-093 Warsaw, Poland.
| |
Collapse
|
44
|
Mueller S, Stables L, Du A, Schuff N, Truran D, Cashdollar N, Weiner M. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol Aging 2006; 28:719-26. [PMID: 16713659 PMCID: PMC1820772 DOI: 10.1016/j.neurobiolaging.2006.03.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 02/13/2006] [Accepted: 03/09/2006] [Indexed: 11/22/2022]
Abstract
Histological studies suggest that hippocampal subfields are differently affected by aging and Alzheimer's disease (AD). The aims of this study were: (1) To test if hippocampal subfields can be identified and marked using anatomical landmarks on high resolution MR images obtained on a 4T magnet. (2) To test if age-specific volume changes of subfields can be detected. Forty-two healthy controls (21-85 years) and three AD subjects (76-86 years) were studied with a high resolution T2 weighted fast spin echo sequence. The entorhinal cortex (ERC), subiculum, CA1, CA2 and CA3/4 and dentate were marked. A significant correlation between age and CA1 (r=-0.51, p=0.0002) which was most pronounced in the seventh decade of life was found in healthy controls. In AD subjects, CA1 and subiculum were smaller than in age-matched controls. These preliminary findings suggest that measurement of hippocampal subfields may be helpful to distinguish between normal aging and AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M.W. Weiner
- * Corresponding author. Tel.: +1 415 221 4810x3642; fax: +1 415 668 2864. E-mail address: (M.W. Weiner)
| |
Collapse
|
45
|
Golan H, Stilman M, Lev V, Huleihel M. Normal aging of offspring mice of mothers with induced inflammation during pregnancy. Neuroscience 2006; 141:1909-18. [PMID: 16806718 DOI: 10.1016/j.neuroscience.2006.05.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/12/2006] [Accepted: 05/13/2006] [Indexed: 12/01/2022]
Abstract
Intrauterine inflammation is a major risk for offspring neurodevelopmental brain damage and may result in cognitive limitations and poor cognitive and perceptual outcomes. In the present study we tested the possibility that prenatal exposure to a high level of inflammatory factors may increase the risk for neurodegeneration in aging. The effect of systemic maternal inflammation (MI), induced by lipopolysaccharide (LPS) on offspring brain aging, was examined in 8 month old (adult) and 20 month old (aged) offspring mice. A significant effect of age was found in the distance and velocity of exploration in the open field in both groups. In addition, MI aged offspring covered longer distances and enter frequently to the center of the field compared with the aged control group. Although only little difference was found in the aged MI offspring compared with the control offspring, the overall profile of behavior of these mice differs from that of the control group, as detected by clustering analysis. The expression of the death-associated protein FAS-ligand and the amount of apoptotic cell death were examined in the brains of aged offspring. Similar levels of FAS-ligand expression and parallel density of apoptotic cells were detected in the brains of aged mice of control and MI groups. Altogether, moderate systemic MI was not found to increase the risk for cell death in the aged offspring; limited effect was found in mice profile of behavior.
Collapse
Affiliation(s)
- H Golan
- Department of Developmental Molecular Genetics and Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105.
| | | | | | | |
Collapse
|
46
|
Hwang IK, Kim DW, Jung JY, Yoo KY, Cho JH, Kwon OS, Kang TC, Choi SY, Kim YS, Won MH. Age-dependent changes of pyridoxal phosphate synthesizing enzymes immunoreactivities and activities in the gerbil hippocampal CA1 region. Mech Ageing Dev 2005; 126:1322-30. [PMID: 16207494 DOI: 10.1016/j.mad.2005.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
In the present study, age-related changes of pyridoxal 5'-phosphate (PLP) synthesizing enzymes, pyridoxal kinase (PLK) and pyridoxine 5'-phosphate oxidase (PNPO), their protein contents and activities were examined in the gerbil hippocampus proper. Significant age-dependent changes in PLK and PNPO immunoreactivities were found in the CA1 region, but not in the CA2/3 region. In the postnatal month 1 (PM 1) group, PLK and PNPO immunoreactivities were detected mainly in the stratum pyramidale of the CA1 region. PLK and PNPO immunoreactivities and their protein contents were highest in the PM 6 group, showing that many CA1 pyramidal cells had strong PLK and PNPO immunoreactivities. Thereafter, PLK and PNPO immunoreactivities started to decrease and were very low at PM 24. Alterations in the change patterns in protein contents and total activities of PLK and PNPO corresponded to the immunohistochemical data, but their specific activities were not altered in any experimental group. Based on double immunofluorescence study, PLK and PNPO immunoreactive cells in the strata oriens and radiatum were identified as GABAergic cells. Therefore, decreases of PLK and PNPO in the hippocampal CA1 region of aged brains may be involved in aging processes related with gamma-aminobutyric acid (GABA) function.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|