1
|
Gugula A, Sambak P, Trenk A, Drabik S, Nogaj A, Soltys Z, Gundlach AL, Blasiak A. Early-life adversity alters adult nucleus incertus neurons: implications for neuronal mechanisms of increased stress and compulsive behavior vulnerability. Neuropsychopharmacology 2025:10.1038/s41386-025-02089-0. [PMID: 40114019 DOI: 10.1038/s41386-025-02089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Early-life stress (ELS) arising from physical and emotional abuse disrupts normal brain development and impairs hypothalamic-pituitary-adrenal axis function, increasing the risk of psychopathological disorders and compulsive behaviors in adulthood. However, the underlying neural mechanisms remain unclear. The brainstem nucleus incertus (NI) is a highly stress-sensitive locus, involved in behavioral activation and stress-induced reward (food/alcohol) seeking, but its sensitivity to ELS remains unexplored. We used neonatal maternal separation stress in rats as a model for ELS and examined its impact on stress-related mRNA and neuropeptide expression in the NI, using fluorescent in situ hybridization and immunohistochemistry, respectively. Using whole-cell, patch-clamp recordings we determined the influence of ELS on the synaptic activity, excitability, and electrophysiological properties of NI neurons. Using c-Fos protein expression we also assessed the impact of ELS on the sensitivity of NI neurons to acute restraint stress in adulthood. ELS weakened the acute stress responsiveness of NI neurons, and caused dendritic shrinkage, impaired synaptic transmission and altered electrophysiological properties of NI neurons in a cell-type-specific manner. Additionally, ELS increased the expression of mRNA encoding corticotropin-releasing hormone receptor type 1 and the nerve-growth factor receptor, TrkA in adult NI. The multiple, cell-type specific changes in the expression of neuropeptides and molecules associated with stress and substance abuse in the NI, as well as impairments in NI neuron morphology and electrophysiology caused by ELS and observed in the adult brain, may contribute to the increased susceptibility to stress and compulsive behaviors observed in individuals with a history of ELS.
Collapse
Affiliation(s)
- Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Sylwia Drabik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Aleksandra Nogaj
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Zbigniew Soltys
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Fothergill LJ, Ringuet MT, Voglsanger LM, Plange WJN, Walker LC, Rivera LR, Lawrence AJ, Gundlach AL, Diwakarla S, Furness JB, Smith CM. Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice. Biochem Pharmacol 2025; 232:116714. [PMID: 39675586 DOI: 10.1016/j.bcp.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice. We identified RXFP3-tdTomato expression in neurons throughout the small and large intestine, in cells in the lamina propria of the colon, and in enteroendocrine cells in the small intestine. We characterised the frequency and phenotype of the RXFP3-tdTomato + enteroendocrine cells in both the duodenum and distal ileum and discovered that the reporter was expressed in populations of cells that co-express 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), secretin, peptide YY (PYY), oxyntomodulin, neurotensin, ghrelin, or glucose-dependent insulinotropic polypeptide (GIP). Faithful co-expression of Cre and RXFP3 mRNA was confirmed in RXFP3-Cre mice using multiplex, fluorescence in situ hybridisation (via RNAscope™). Our results indicate that RXFP3 is expressed by the LIN, X, K, Onecut3, and EC enteroendocrine cell types. In light of the key physiological roles of these cells, this study highlights the potential for relaxin-3 signalling via RXFP3 in enteroendocrine cells to modulate digestion, metabolism, food intake, and inflammatory processes.
Collapse
Affiliation(s)
- Linda J Fothergill
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia; Immunology Division, The Walter and Eliza Hall Institute, Victoria 3052, Australia.
| | - Mitchell T Ringuet
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Wesley J N Plange
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Shanti Diwakarla
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - John B Furness
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
3
|
Richards BK, Ch'ng SS, Simon AB, Pang TY, Kim JH, Lawrence AJ, Perry CJ. Relaxin family peptide receptor 3 (RXFP3) expressing cells in the zona incerta/lateral hypothalamus augment behavioural arousal. J Neurochem 2025; 169:e16217. [PMID: 39233365 PMCID: PMC11658188 DOI: 10.1111/jnc.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
Fear-related psychopathologies, such as post-traumatic stress disorder, are linked to dysfunction in neural circuits that govern fear memory and arousal. The lateral hypothalamus (LH) and zona incerta (ZI) regulate fear, but our understanding of the precise neural circuits and cell types involved remains limited. Here, we examined the role of relaxin family peptide receptor 3 (RXFP3) expressing cells in the LH/ZI in conditioned fear expression and general arousal in male RXFP3-Cre mice. We found that LH/ZI RXFP3+ (LH/ZIRXFP3) cells projected strongly to fear learning, stress, and arousal centres, notably, the periaqueductal grey, lateral habenula, and nucleus reuniens. These cells do not express hypocretin/orexin or melanin-concentrating hormone but display putative efferent connectivity with LH hypocretin/orexin+ neurons and dopaminergic A13 cells. Following Pavlovian fear conditioning, chemogenetically activating LH/ZIRXFP3 cells reduced fear expression (freezing) overall but also induced jumping behaviour and increased locomotor activity. Therefore, the decreased freezing was more likely to reflect enhanced arousal rather than reduced fear. Indeed, stimulating these cells produced distinct patterns of coactivation between several motor, stress, and arousal regions, as measured by Fos expression. These results suggest that activating LH/ZIRXFP3 cells generates brain-wide activation patterns that augment behavioural arousal.
Collapse
Affiliation(s)
- Brandon K. Richards
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Sarah S. Ch'ng
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Ariel B. Simon
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Terence Y. Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Institute of Health and Sports (IHES)Victoria UniversityFootscrayVictoriaAustralia
| | - Jee Hyun Kim
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongVictoriaAustralia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Christina J. Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- School of Psychological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
4
|
de Ávila C, Gugula A, Trenk A, Intorcia AJ, Suazo C, Nolz J, Plamondon J, Khatri D, Tallant L, Caron A, Blasiak A, Serrano GE, Beach TG, Gundlach AL, Mastroeni DF. Unveiling a novel memory center in human brain: neurochemical identification of the nucleus incertus, a key pontine locus implicated in stress and neuropathology. Biol Res 2024; 57:46. [PMID: 39014514 PMCID: PMC11253401 DOI: 10.1186/s40659-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus. METHODS Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR. RESULTS In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons. CONCLUSIONS Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.
Collapse
Affiliation(s)
- Camila de Ávila
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA.
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anthony J Intorcia
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Crystal Suazo
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | - Jennifer Nolz
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | | | - Divyanshi Khatri
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
| | - Lauren Tallant
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - Alexandre Caron
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Andrew L Gundlach
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Diego F Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Tempe, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
5
|
Eraslan IM, Egberts-Brugman M, Read JL, Voglsanger LM, Samarasinghe RM, Hamilton L, Dhar P, Williams RJ, Walker LC, Ch'ng S, Lawrence AJ, Walker AJ, Dean OM, Gundlach AL, Smith CM. Neuroanatomical distribution of fluorophores within adult RXFP3 Cre-tdTomato/YFP mouse brain. Biochem Pharmacol 2024; 225:116265. [PMID: 38714277 DOI: 10.1016/j.bcp.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus. To better determine the utility of these fluorophore-expressing mice for further research, we characterised the neuroanatomical distribution of fluorophores throughout the brain of these mice and compared this to the published distribution of Rxfp3 mRNA (detected by in situ hybridisation) in wildtype mice. Coronal sections of RXFP3-Cre/YFP (n = 8) and RXFP3-Cre/tdTomato (n = 8) mouse brains were imaged, and the density of fluorophore-expressing cells within various brain regions/nuclei was qualitatively assessed. Comparisons with our previously reported RXFP3 mRNA distribution revealed that of 212 brain regions that contained either fluorophore or RXFP3 mRNA, approximately half recorded densities that were within two qualitative measurements of each other (on a 9-point scale), including hippocampal dentate gyrus and amygdala subregions. However, many brain areas with likely non-authentic, false-positive, or false-negative fluorophore expression were also detected, including the cerebellum. Therefore, this study provides a guide to which brain regions should be prioritized for future study of RXFP3 in these mice, to better understand the neuroanatomy and function of this intriguing, neuronal peptide receptor.
Collapse
Affiliation(s)
- Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Monique Egberts-Brugman
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M Samarasinghe
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Poshmaal Dhar
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Richard J Williams
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Sarah Ch'ng
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
6
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
7
|
Hoang KX, Matsuzaki M, Kohsaka T, Sasanami T. Expression of Relaxin Family Peptide Receptors 1 and 3 in the Ovarian Follicle of Japanese Quail. J Poult Sci 2024; 61:2024005. [PMID: 38312373 PMCID: PMC10830672 DOI: 10.2141/jpsa.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
In our previous studies, we demonstrated that the primary source of relaxin 3 (RLN3) in Japanese quail is ovarian granulosa cells. Although several relaxin family peptide (RXFP) receptors have been sequenced, the intricacies of these receptors in avian species remain insufficiently clarified. Therefore, we assessed the expression of RXFP receptors, RXFP1 and 3, in Japanese quail. Using RT-PCR, we found that both RXFP1 and 3 were ubiquitously expressed. The expression level of RXFP1 is significantly higher in the ovarian theca layer, indicating that it is the primary receptor for RLN3 in the ovary. During follicular development, there was an elevation in thecal RXFP1 expression, but it declined after the luteinizing hormone (LH) surge. We found that the protease activity of the 60 kDa band increased after the LH surge, suggesting the involvement of RLN3 signaling in ovulation. These results suggest a paracrine role of RLN3, involving its binding with RXFP1 in ovarian theca cells. This interaction may elicit biological actions, potentially initiating ovulation after the LH surge.
Collapse
Affiliation(s)
- Khoi X. Hoang
- United Graduate
School of Agricultural Science, Gifu University,
1-1 Yanagido, Gifu 501-1193, Japan
| | - Mei Matsuzaki
- Program of Food and
AgriLife Science, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4
Kagamiyama, Higashi-Hiroshima City, Hiroshima
739-8528, Japan
| | - Tetsuya Kohsaka
- Faculty of Health
Science, Butsuryo College of Osaka, 3-33
Otorikita-machi, Sakai, Osaka 593-8328,
Japan
| | - Tomohiro Sasanami
- United Graduate
School of Agricultural Science, Gifu University,
1-1 Yanagido, Gifu 501-1193, Japan
- Department of
Applied Life Sciences, Faculty of Agriculture,
Shizuoka University, 836 Ohya, Shizuoka, Shizuoka
422-8529, Japan
| |
Collapse
|
8
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Van Voorhies KJ, Liu W, Lovelock DF, Lin S, Liu J, Guan D, Gay EA, Jin C, Besheer J. Novel RXFP3 negative allosteric modulator RLX-33 reduces alcohol self-administration in rats. J Neurochem 2023; 167:204-217. [PMID: 37674350 PMCID: PMC10592109 DOI: 10.1111/jnc.15949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.
Collapse
Affiliation(s)
- Kalynn J. Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sophia Lin
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiaqi Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Elaine A. Gay
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Bathgate RAD, Praveen P, Sethi A, Furuya WI, Dhingra RR, Kocan M, Ou Q, Valkovic AL, Gil-Miravet I, Navarro-Sánchez M, Olucha-Bordonau FE, Gundlach AL, Rosengren KJ, Gooley PR, Dutschmann M, Hossain MA. Noncovalent Peptide Stapling Using Alpha-Methyl-l-Phenylalanine for α-Helical Peptidomimetics. J Am Chem Soc 2023; 145:20242-20247. [PMID: 37439676 DOI: 10.1021/jacs.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.
Collapse
Affiliation(s)
- Ross A D Bathgate
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Werner I Furuya
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Rishi R Dhingra
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martina Kocan
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qinghao Ou
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam L Valkovic
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Isis Gil-Miravet
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Mónica Navarro-Sánchez
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Francisco E Olucha-Bordonau
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Andrew L Gundlach
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mathias Dutschmann
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
11
|
Gil-Miravet I, Núñez-Molina Á, Navarro-Sánchez M, Castillo-Gómez E, Ros-Bernal F, Gundlach AL, Olucha-Bordonau FE. Nucleus incertus projections to rat medial septum and entorhinal cortex: rare collateralization and septal-gating of temporal lobe theta rhythm activity. Brain Struct Funct 2023:10.1007/s00429-023-02650-x. [PMID: 37173580 DOI: 10.1007/s00429-023-02650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Nucleus incertus (NI) neurons in the pontine tegmentum give rise to ascending forebrain projections and express the neuropeptide relaxin-3 (RLN3) which acts via the relaxin-family peptide 3 receptor (RXFP3). Activity in the hippocampus and entorhinal cortex can be driven from the medial septum (MS), and the NI projects to all these centers, where a prominent pattern of activity is theta rhythm, which is related to spatial memory processing. Therefore, we examined the degree of collateralization of NI projections to the MS and the medial temporal lobe (MTL), comprising medial and lateral entorhinal cortex (MEnt, LEnt) and dentate gyrus (DG), and the ability of the MS to drive entorhinal theta in the adult rat. We injected fluorogold and cholera toxin-B into the MS septum and either MEnt, LEnt or DG, to determine the percentage of retrogradely labeled neurons in the NI projecting to both or single targets, and the relative proportion of these neurons that were RLN3-positive ( +). The projection to the MS was threefold stronger than that to the MTL. Moreover, a majority of NI neurons projected independently to either MS or the MTL. However, RLN3 + neurons collateralize significantly more than RLN3-negative (-) neurons. In in vivo studies, electrical stimulation of the NI induced theta activity in the MS and the entorhinal cortex, which was impaired by intraseptal infusion of an RXFP3 antagonist, R3(BΔ23-27)R/I5, particularly at ~ 20 min post-injection. These findings suggest that the MS plays an important relay function in the NI-induced generation of theta within the entorhinal cortex.
Collapse
Grants
- POSDOC/2021/19 Universitat Jaume I
- PREDOC/2021/19 Universitat Jaume I
- UJI-A2017-17 Universitat Jaume I
- POSDOC/2021/19 Universitat Jaume I
- PID2019-107809RB-I00 Ministerio de Ciencia, Innovación y Universidades
- RTI2018-095698-B-I00 Ministerio de Ciencia, Innovación y Universidades
- RTI2018-095698-B-I00 Ministerio de Ciencia, Innovación y Universidades
- RTI2018-095698-B-I00 Ministerio de Ciencia, Innovación y Universidades
- 19I436 Fundación Alicia Koplowitz
- 19I436 Fundación Alicia Koplowitz
- 19I436 Fundación Alicia Koplowitz
- AICO/2021/246 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- AICO/2021/246 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- AICO/2021/246 Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
- 1067522 National Health and Medical Research Council
Collapse
Affiliation(s)
- Isis Gil-Miravet
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, CIBERSAM-ISCIII, S/N 12071, Castellón de la Plana, Spain
| | - Ángel Núñez-Molina
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Navarro-Sánchez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, CIBERSAM-ISCIII, S/N 12071, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, CIBERSAM-ISCIII, S/N 12071, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, CIBERSAM-ISCIII, S/N 12071, Castellón de la Plana, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, CIBERSAM-ISCIII, S/N 12071, Castellón de la Plana, Spain.
| |
Collapse
|
12
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Lv C, Zheng H, Jiang B, Ren Q, Zhang J, Zhang X, Li J, Wang Y. Characterization of relaxin 3 and its receptors in chicken: Evidence for relaxin 3 acting as a novel pituitary hormone. Front Physiol 2022; 13:1010851. [PMID: 36419837 PMCID: PMC9676923 DOI: 10.3389/fphys.2022.1010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2025] Open
Abstract
Mammalian relaxin (RLN) family peptides binding their receptors (RXFPs) play a variety of roles in many physiological processes, such as reproduction, stress, appetite regulation, and energy balance. In birds, although two relaxin family peptides (RLN3 and INSL5) and four receptors (RXFP1, RXFP2, RXFP2-like, and RXFP3) were predicated, their sequence features, signal properties, tissue distribution, and physiological functions remain largely unknown. In this study, using chickens as the experimental model, we cloned the cDNA of the cRLN3 gene and two receptor (cRXFP1 and cRXFP3) genes. Using cell-based luciferase reporter assays, we demonstrate that cRLN3 is able to activate both cRXFP1 and cRXFP3 for downstream signaling. cRXFP1, rather than cRXFP3, is a cognate receptor for cRLN3, which is different from the mammals. Tissue distribution analyses reveal that cRLN3 is highly expressed in the pituitary with lower abundance in the hypothalamus and ovary of female chicken, together with the detection that cRLN3 co-localizes with pituitary hormone genes LHB/FSHB/GRP/CART and its expression is tightly regulated by hypothalamic factors (GnRH and CRH) and sex steroid hormone (E2). The present study supports that cRLN3 may function as a novel pituitary hormone involving female reproduction.
Collapse
Affiliation(s)
- Can Lv
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huilu Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biying Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Xin Zhang
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| |
Collapse
|
14
|
Blasiak A, Gugula A, Gundlach AL, Olucha-Bordonau FE, Aniello F, Donizetti A. Relaxin ligand/receptor systems in the developing teleost fish brain: Conserved features with mammals and a platform to address neuropeptide system functions. Front Mol Neurosci 2022; 15:984524. [PMID: 36277494 PMCID: PMC9580368 DOI: 10.3389/fnmol.2022.984524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
The relaxins (RLNs) are a group of peptide hormone/neuromodulators that can regulate a wide range of physiological processes ranging from reproduction to brain function. All the family members have originated from a RLN3-like ancestor via different rounds of whole genome and gene specific duplications during vertebrate evolution. In mammals, including human, the divergence of the different family members and the emergence of new members led to the acquisition of specific functions for the various relaxin family peptide and associated receptor genes. In particular, in mammals, it was shown, that the role of RLN3 is correlated to the modulation of arousal, stress responses, emotion, social recognition, and other brain functions, positioning this gene/peptide as a potential therapeutic target for neuropsychiatric disorders. This review highlights the evolutionary conservation of relaxin family peptide and receptor gene expression and their associated brain neural circuits. In the zebrafish, the expression pattern of the different relaxin family members has specific features that are conserved in higher species, including a likely similar functional role for the ancestral RLN3-like gene. The use of different model organisms, particularly the zebrafish, to explore the diversification and conservation of relaxin family ligands and receptor systems, provides a relatively high-throughput platform to identify their specific conserved or differential neuromodulatory roles in higher species including human.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L. Gundlach
- Florey Department of Neuroscience and Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Aldo Donizetti,
| |
Collapse
|
15
|
Szlaga A, Sambak P, Gugula A, Trenk A, Gundlach AL, Blasiak A. Catecholaminergic innervation and D2-like dopamine receptor-mediated modulation of brainstem nucleus incertus neurons in the rat. Neuropharmacology 2022; 218:109216. [PMID: 35973599 DOI: 10.1016/j.neuropharm.2022.109216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Nucleus incertus (NI) is a brainstem structure involved in the control of arousal, stress responses and locomotor activity. It was reported recently that NI neurons express the dopamine type 2 (D2) receptor that belongs to the D2-like receptor (D2R) family, and that D2R activation in the NI decreased locomotor activity. In this study, using multiplex in situ hybridization, we observed that GABAergic and glutamatergic NI neurons express D2 receptor mRNA, and that D2 receptor mRNA-positive neurons belong to partially overlapping relaxin-3- and cholecystokinin-positive NI neuronal populations. Our immunohistochemical and viral-based retrograde tract-tracing studies revealed a dense innervation of the NI area by fibers containing the catecholaminergic biosynthesis enzymes, tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH), and indicated the major sources of the catecholaminergic innervation of the NI as the Darkschewitsch, raphe and hypothalamic A13 nuclei. Furthermore, using whole-cell patch clamp recordings, we demonstrated that D2R activation by quinpirole produced excitatory and inhibitory influences on neuronal activity in the NI, and that both effects were postsynaptic in nature. Moreover, the observed effects were cell-type specific, as type I NI neurons were either excited or inhibited, whereas type II NI neurons were mainly excited by D2R activation. Our results reveal that rat NI receives a strong catecholaminergic innervation and suggest that catecholamines acting within the NI are involved in the control of diverse processes, including locomotor activity, social interaction and nociceptive signaling. Our data also strengthen the hypothesis that the NI acts as a hub integrating arousal-related neuronal information.
Collapse
Affiliation(s)
- Agata Szlaga
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
16
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
17
|
Erden S, Nalbant K, Kılınç İ. Investigation of Relaxin-3 Serum Levels in terms of Social Interaction, Communication, and Appetite as a Biomarker in Children with Autism. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:135-142. [PMID: 35078956 PMCID: PMC8813315 DOI: 10.9758/cpn.2022.20.1.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
Objective To investigate the possible relationship between relaxin-3 and autism spectrum disorder (ASD). Methods Serum relaxin-3 was measured in 80 children (50 children diagnosed with ASD and 30 controls). Symptom severity in the ASD group was evaluated by the Childhood Autism Rating Scale (CARS). Behavioral and nutritional problems in the groups were evaluated using the Abnormal Behavior Checklist (ABC) and the Childrenʼs Eating Behavior Questionnaire (CEBQ). Results Our findings showed that serum relaxin-3 levels were higher in children with ASD than in the controls. The listening response sub-scale score of the CARS scale was found to decrease as the level of relaxin-3 increased. However, as relaxin-3 levels increased in children with ASD, it was found that the speech problem sub-scale score on the ABC scale and the desire to drink score on the CEBQ scale increased, but the satiety responsiveness and food fussiness scores decreased. Conclusion This study the first to investigate serum levels of relaxin-3, which has a role in regulating social behavior and nutritional behavior in children with ASD.
Collapse
Affiliation(s)
- Semih Erden
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Kevser Nalbant
- Department of Child and Adolescent Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İbrahim Kılınç
- Department of Biochemistry, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
18
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RA, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021; 26:molecules26247511. [PMID: 34946593 PMCID: PMC8709172 DOI: 10.3390/molecules26247511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is therefore implicated as a potential target for treatment of various central nervous system diseases. Since selective agonists of RXFP3 are restricted to relaxin-3 and its analogs, we conducted a high-throughput screening campaign against 32,021 synthetic and natural product-derived compounds using a cyclic adenosine monophosphate (cAMP) measurement-based method. Only one compound, WNN0109-C011, was identified following primary screening, secondary screening and dose-response studies. Although displayed agonistic effect in cells overexpressing the human RXFP3, it also showed cross-reactivity with the human RXFP4. This hit compound may provide not only a chemical probe to investigate the function of RXFP3/4, but also a novel scaffold for the development of RXFP3/4 agonists.
Collapse
Affiliation(s)
- Guangyao Lin
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yang Feng
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
| | - Caihong Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
| | - Lijun Shao
- University of Chinese Academy of Sciences, Beijing 100049, China;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (Y.C.); (Q.Z.)
| | - Linhai Chen
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (Y.C.); (Q.Z.)
| | - Ross A.D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Research Center for Deepsea Bioresources, Sanya 572025, Hainan, China
- Correspondence: (D.Y.); (M.-W.W.)
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (G.L.); (Y.F.); (X.C.); (C.Z.); (L.C.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (Y.C.); (Q.Z.)
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Research Center for Deepsea Bioresources, Sanya 572025, Hainan, China
- Correspondence: (D.Y.); (M.-W.W.)
| |
Collapse
|
20
|
Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021; 131:429-450. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.
Collapse
Affiliation(s)
- Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, United Kingdom
| |
Collapse
|
21
|
Sinaei M, Alaei H, Nazem F, Kargarfard M, Feizi A, Talebi A, Esmaeili A, Nobari H, Pérez-Gómez J. Endurance exercise improves avoidance learning and spatial memory, through changes in genes of GABA and relaxin-3, in rats. Biochem Biophys Res Commun 2021; 566:204-210. [PMID: 34214757 DOI: 10.1016/j.bbrc.2021.05.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Different exercise patterns, neurotransmitters, and some genes have numerous effects on learning and memory. This research aims to investigate the long-term effects of submaximal aerobic exercise on spatial memory (SM), passive avoidance learning (PAL), levels of serum relaxin-3, gamma-aminobutyric acid (GABA), RLN3 gene, and glutamic acid decarboxylase (GAD65/67 genes) in the brainstem of adult male Wistar rats. Fifty male Wistar rats were randomly divided into five groups: aerobic exercise groups, performed on a treadmill running (TR), for 5 weeks (Ex5, n = 10), 10 weeks (Ex10, n = 10), involuntary running wheel group for 5 weeks (IRW5, n = 10), sham (Sh, n = 10) and control (Co, n = 10). Consequently, SM, PAL, serum relaxin-3, GABA, and GAD65/67 and RLN3 genes were measured by ELISA and PCR. Ex5, Ex10 and IRW5 improved significantly SM (p ≤ 0.05), PAL (p ≤ 0.001) and decreased significantly relaxin-3 (p ≤ 0.001). RLN3 in the brain also decreased. However, it was not significant. GABA and GAD65/GAD67 increased significantly (p ≤ 0.05) in Ex5, Ex10 compared to Sh and Co. Aerobic exercise enhanced SM and PAL in Ex compared to Co and Sh. However, duration and type of exercise affected the level of enhancement. The serum relaxin-3 and RLN3 gene displayed reverse functions compared to GABA and GAD65/67 genes in Ex. Therefore, the changes of neurotransmitters in serum relaxin-3, GABA, and their genes: RLN3 and GAD65/67 respectively, influenced learning and memory meaningfully.
Collapse
Affiliation(s)
- Mahnaz Sinaei
- Department of Exercise Physiology, Faculty of Sport Sciences, Islamic Azad University, Boroujerd Branch, Boroujerd, Iran.
| | - Hojatollah Alaei
- Department of Neurophysiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farzad Nazem
- Department of Exercise Physiology, Faculty of School of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health,Cardiac Rehabilitation Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ardeshir Talebi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Hadi Nobari
- Department of Physical Education and Sports, University of Granada, 18010, Granada, Spain.
| | - Jorge Pérez-Gómez
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
22
|
García-Díaz C, Gil-Miravet I, Albert-Gasco H, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat. Front Neuroanat 2021; 15:674649. [PMID: 34239421 PMCID: PMC8258164 DOI: 10.3389/fnana.2021.674649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial learning and memory processes depend on anatomical and functional interactions between the hippocampus and the entorhinal cortex. A key neurophysiological component of these processes is hippocampal theta rhythm, which can be driven from subcortical areas including the pontine nucleus incertus (NI). The NI contains the largest population of neurons that produce and presumably release the neuropeptide, relaxin-3, which acts via the G i/o -protein-coupled receptor, relaxin-family peptide 3 receptor (RXFP3). NI activation induces general arousal including hippocampal theta, and inactivation induces impairment of spatial memory acquisition or retrieval. The primary aim of this study was to map the NI/relaxin-3 innervation of the parahippocampal cortex (PHC), including the medial and lateral entorhinal cortex, endopiriform cortex, perirhinal, postrhinal, and ectorhinal cortex, the amygdalohippocampal transition area and posteromedial cortical amygdala. Retrograde tracer injections were placed in different parts of the medial and lateral entorhinal cortex, which produced prominent retrograde labeling in the ipsilateral NI and some labeling in the contralateral NI. Anterograde tracer injections into the NI and immunostaining for relaxin-3 produced fiber labeling in deep layers of all parahippocampal areas and some dispersed fibers in superficial layers. Double-labeling studies revealed that both hippocampal projecting and calcium-binding protein-positive (presumed GABAergic) neurons received a relaxin-3 NI innervation. Some of these fibers also displayed synaptophysin (Syn) immunoreactivity, consistent with the presence of the peptide at synapses; and relaxin-3-positive fibers containing Syn bouton-like staining were frequently observed in contact with hippocampal-projecting or calcium-binding protein-positive neuronal somata and more distal elements. Finally, in situ hybridization studies revealed that entorhinal neurons in the superficial layers, and to a lesser extent in deep layers, contain RXFP3 mRNA. Together, our data support functional actions of the NI/relaxin-3-parahippocampal innervation on processes related to memory, spatial navigation and contextual analysis.
Collapse
Affiliation(s)
- Cristina García-Díaz
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Hector Albert-Gasco
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castellón de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
23
|
Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021; 15:637922. [PMID: 33867946 PMCID: PMC8044989 DOI: 10.3389/fnana.2021.637922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
Telencephalic cognitive and emotional circuits/functions are strongly modulated by subcortical inputs. The main focus of past research on the nature of this modulation has been on the widespread monoamine projections to the telencephalon. However, the nucleus incertus (NI) of the pontine tegmentum provides a strong GABAergic and peptidergic innervation of the hippocampus, basal forebrain, amygdala, prefrontal cortex, and related regions; and represents a parallel source of ascending modulation of cognitive and emotional domains. NI GABAergic neurons express multiple peptides, including neuromedin-B, cholecystokinin, and relaxin-3, and receptors for stress and arousal transmitters, including corticotrophin-releasing factor and orexins/hypocretins. A functional relationship exists between NI neurons and their associated peptides, relaxin-3 and neuromedin-B, and hippocampal theta rhythm, which in turn, has a key role in the acquisition and extinction of declarative and emotional memories. Furthermore, RXFP3, the cognate receptor for relaxin-3, is a Gi/o protein-coupled receptor, and its activation inhibits the cellular accumulation of cAMP and induces phosphorylation of ERK, processes associated with memory formation in the hippocampus and amygdala. Therefore, this review summarizes the role of NI transmitter systems in relaying stress- and arousal-related signals to the higher neural circuits and processes associated with memory formation and retrieval.
Collapse
Affiliation(s)
- Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Hector Albert-Gascó
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
24
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
25
|
Voglsanger LM, Read J, Ch'ng SS, Zhang C, Eraslan IM, Gray L, Rivera LR, Hamilton LD, Williams R, Gundlach AL, Smith CM. Differential Level of RXFP3 Expression in Dopaminergic Neurons Within the Arcuate Nucleus, Dorsomedial Hypothalamus and Ventral Tegmental Area of RXFP3-Cre/tdTomato Mice. Front Neurosci 2021; 14:594818. [PMID: 33584175 PMCID: PMC7873962 DOI: 10.3389/fnins.2020.594818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.
Collapse
Affiliation(s)
- Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Justin Read
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Laura Gray
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee D Hamilton
- Faculty of Health, School of Exercise and Nutritional Science, Deakin University, Waurn Ponds, VIC, Australia
| | - Richard Williams
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
26
|
DeAdder NP, Gillam HJ, Wilson BC. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: an effect mediated by nitric oxide. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of treatment with human relaxins on cell death was studied in oxygen- and glucose-deprived brain slices. In addition, involvement of nitric oxide and the relaxin receptor, RXFP3, was studied. Brain slices ( n = 12–18/group) were cultured under standard conditions for two weeks and then exposed to: ( i) an oxygenated balanced salt solution, ( ii) a deoxygenated, glucose-free balanced salt solution (OGD media), or ( iii) OGD media containing 10−7 mol/L H2 relaxin, 10−7 mol/L H2 relaxin with 50 μmol/L L-NIL, 10−7 mol/L H3 relaxin, or 10−7 mol/L H3 relaxin with 50 μmol/L L-NIL. Cell death was assessed using propidium iodide fluorescence. In a separate experiment, 10−5 mol/L R3 B1-22R (an antagonist of RXFP3) was added to both H2 and H3 relaxin treatments. H2 and H3 relaxin treatment reduced cell damage or death in OGD slices and L-NIL partially attenuated the effect of H3 relaxin. Antagonism of RXFP3 blocked the effect of H3 but not H2 relaxin. These data increase our understanding of the role of relaxin ligands and their receptors in protecting tissues throughout the body from ischemia and reperfusion injury.
Collapse
Affiliation(s)
| | - Hannah J. Gillam
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Brian C. Wilson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
27
|
de Ávila C, Chometton S, Calvez J, Guèvremont G, Kania A, Torz L, Lenglos C, Blasiak A, Rosenkilde MM, Holst B, Conrad CD, Fryer JD, Timofeeva E, Gundlach AL, Cifani C. Estrous Cycle Modulation of Feeding and Relaxin-3/Rxfp3 mRNA Expression: Implications for Estradiol Action. Neuroendocrinology 2021; 111:1201-1218. [PMID: 33333517 DOI: 10.1159/000513830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.
Collapse
Affiliation(s)
- Camila de Ávila
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada,
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark,
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA,
- Department of Psychology, Arizona State University, Tempe, Arizona, USA,
| | - Sandrine Chometton
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Juliane Calvez
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Geneviève Guèvremont
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christophe Lenglos
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA
| | - Elena Timofeeva
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carlo Cifani
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
28
|
Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. eNeuro 2020; 7:ENEURO.0272-20.2020. [PMID: 33055197 PMCID: PMC7643772 DOI: 10.1523/eneuro.0272-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Relaxin-3 (Rln3) is an insulin-family peptide neurotransmitter expressed primarily in neurons of the nucleus incertus (NI) of the pontine tegmentum, with smaller populations located in the deep mesencephalon (DpMe) and periaqueductal gray (PAG). Here, we have used targeted recombination at the Rln3 gene locus to generate an Rln3Cre transgenic mouse line, and characterize the molecular identity and axonal projections of Rln3-expressing neurons. Expression of Cre recombinase in Rln3Cre mice, and the expression of Cre-mediated reporters, accurately reflect the expression of Rln3 mRNA in all brain regions. In the NI, Rln3 mRNA is expressed in a subset of a larger population of tegmental neurons that express the neuropeptide neuromedin-b (NMB). These Rln3-expressing and NMB-expressing neurons also express the GABAergic marker GAD2 but not the glutamatergic marker Slc17a6 (VGluT2). Cre-mediated anterograde tracing with adeno-associated viruses (AAVs) shows that the efferents of the Rln3-expressing neurons in the DpMe and PAG are largely confined to the brain regions in which they originate, while the NI-Rln3 neurons form an extensive ascending system innervating the limbic cortex, septum, hippocampus, and hypothalamus. Viral anterograde tracing also reveals the potential synaptic targets of NI-Rln3 neurons in several brain regions, and the distinct projections of Rln3-expressing and non-expressing neurons in the pontine tegmentum. Rabies virus (RV)-mediated transsynaptic retrograde tracing demonstrates a probable synaptic link between NI-Rln3 neurons and GABAergic neurons in the septum, with implications for the modulation of neural activity in the septo-hippocampal system. Together, these results form the basis for functional studies of the NI-Rln3 system.
Collapse
|
29
|
Melzer S, Monyer H. Diversity and function of corticopetal and corticofugal GABAergic projection neurons. Nat Rev Neurosci 2020; 21:499-515. [PMID: 32747763 DOI: 10.1038/s41583-020-0344-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
It is still widely thought that cortical projections to distant brain areas derive by and large from glutamatergic neurons. However, an increasing number of reports provide evidence that cortical GABAergic neurons comprise a smaller population of 'projection neurons' in addition to the well-known and much-studied interneurons. GABAergic long-range axons that derive from, or project to, cortical areas are thought to entrain distant brain areas for efficient information transfer and processing. Research conducted over the past 10 years has revealed that cortical GABAergic projection neurons are highly diverse in terms of molecular marker expression, synaptic targeting (identity of targeted cell types), activity pattern during distinct behavioural states and precise temporal recruitment relative to ongoing neuronal network oscillations. As GABAergic projection neurons connect many cortical areas unidirectionally or bidirectionally, it is safe to assume that they participate in the modulation of a whole series of behavioural and cognitive functions. We expect future research to examine how long-range GABAergic projections fine-tune activity in distinct distant networks and how their recruitment alters the behaviours that are supported by these networks.
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
de Ávila C, Chometton S, Ma S, Pedersen LT, Timofeeva E, Cifani C, Gundlach AL. Effects of chronic silencing of relaxin-3 production in nucleus incertus neurons on food intake, body weight, anxiety-like behaviour and limbic brain activity in female rats. Psychopharmacology (Berl) 2020; 237:1091-1106. [PMID: 31897576 DOI: 10.1007/s00213-019-05439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Eating disorders are frequently triggered by stress and are more prevalent in women than men. First signs often appear during early adolescence, but the biological basis for the sex-specific differences is unknown. Central administration of native relaxin-3 (RLN3) peptide or chimeric/truncated analogues produces differential effects on food intake and HPA axis activity in adult male and female rats, but the precise role of endogenous RLN3 signalling in metabolic and neuroendocrine control is unclear. Therefore, we examined the effects of microRNA-induced depletion (knock-down) of RLN3 mRNA/(peptide) production in neurons of the brainstem nucleus incertus (NI) in female rats on a range of physiological, behavioural and neurochemical indices, including food intake, body weight, anxiety, plasma corticosterone, mRNA levels of key neuropeptides in the paraventricular nucleus of hypothalamus (PVN) and limbic neural activity patterns (reflected by c-fos mRNA). Validated depletion of RLN3 in NI neurons of female rats (n = 8) produced a small, sustained (~ 2%) decrease in body weight, an imbalance in food intake and an increase in anxiety-like behaviour in the large open field, but not in the elevated plus-maze or light/dark box. Furthermore, NI RLN3 depletion disrupted corticosterone regulation, increased oxytocin and arginine-vasopressin, but not corticotropin-releasing factor, mRNA, in PVN, and decreased basal levels of c-fos mRNA in parvocellular and magnocellular PVN, bed nucleus of stria terminalis and the lateral hypothalamic area, brain regions involved in stress and feeding. These findings support a role for NI RLN3 neurons in fine-tuning stress and neuroendocrine responses and food intake regulation in female rats.
Collapse
Affiliation(s)
- Camila de Ávila
- Department of Psychiatry and Neuroscience, CRIUCPQ, Faculty of Medicine, Université Laval, Québec, Canada. .,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia. .,NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Sandrine Chometton
- Department of Psychiatry and Neuroscience, CRIUCPQ, Faculty of Medicine, Université Laval, Québec, Canada
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lola Torz Pedersen
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Elena Timofeeva
- Department of Psychiatry and Neuroscience, CRIUCPQ, Faculty of Medicine, Université Laval, Québec, Canada
| | - Carlo Cifani
- Department of Psychiatry and Neuroscience, CRIUCPQ, Faculty of Medicine, Université Laval, Québec, Canada.,Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
32
|
Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020; 8:87. [PMID: 32133341 PMCID: PMC7039932 DOI: 10.3389/fchem.2020.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Relaxin-3 is a neuropeptide with important roles in metabolism, arousal, learning and memory. Its cognate receptor is the relaxin family peptide-3 (RXFP3) receptor. Relaxin-3 agonist and antagonist analogs have been shown to be able to modulate food intake in rodent models. The relaxin-3 B-chain is sufficient for receptor interactions, however, in the absence of a structural support, linear relaxin-3 B-chain analogs are rapidly degraded and thus unsuitable as drug leads. In this study, two different disulfide-stabilized scaffolds were used for grafting of important relaxin-3 B-chain residues to improve structure and stability. The use of both Veronica hederifolia Trypsin inhibitor (VhTI) and apamin grafting resulted in agonist and antagonist analogs with improved helicity. VhTI grafted peptides showed poor binding and low potency at RXFP3, on the other hand, apamin variants retained significant activity. These variants also showed improved half-life in serum from ~5 min to >6 h, and thus are promising RXFP3 specific pharmacological tools and drug leads for neuropharmacological diseases.
Collapse
Affiliation(s)
- Han Siean Lee
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Postan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Angela Song
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ross A D Bathgate
- Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Linda M Haugaard-Kedström
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Gewiss C, Hagel C, Krajewski K. Cerebral cavernomas in adults and children express relaxin. J Neurosurg Pediatr 2020; 25:144-150. [PMID: 31756710 DOI: 10.3171/2019.9.peds19333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To shed light on the role of relaxin in cerebral cavernous malformations (CCMs) in adults and children, the authors investigated endothelial cell (EC) expression of relaxin 1, 2, and 3; vascular endothelial growth factor receptor-1 and -2 (VEGFR-1 and -2); Ki-67; vascular geometry; and hemorrhage, as well as the clinical presentation of 32 patients with surgically resected lesions. METHODS Paraffin-embedded sections of 32 CCMs and 5 normal nonvascular lesion control (NVLC) brain tissue samples were immunohistochemically stained with antibodies to relaxin 1, 2, and 3; angiogenesis growth factor receptors Flt-1 (VEGFR-1) and Flk-1 (VEGFR-2); and proliferation marker Ki-67. For morphometric analysis, Elastica van Gieson stain was used, and for hemorrhage demonstration, Turnbull stain was used. Data from the pediatric and adult CCMs were compared with each other and with those obtained from the NVLCs. Statistical analyses were performed with Fisher's exact test, the chi-square test, the phi correlation coefficient, and the Student t-test. A p value < 0.05 was considered significant. RESULTS Pediatric and adult cavernoma vessels did not significantly differ in diameter. Hemorrhage was observed in CCMs but not in NVLC samples (p < 0.05). There was no difference in expression of Ki-67, VEGFR-1 and -2, and relaxin 1, 2, and 3 in the ECs of pediatric and adult CCMs. The ECs of CCMs were largely negative for relaxin 3 compared to NVLCs (p < 0.05), whereas CCMs, compared to control brain tissue samples, more frequently expressed Flt-1 and relaxin 2 (p < 0.05). Ki-67 was not expressed in the NVLCs, but the difference was not statistically significant. Relaxin 1 and 2 expression and increased expression of VEGFR-1 were associated with a supra- versus infratentorial location (p < 0.05). CONCLUSIONS Relaxin 1 and 2 and VEGFR-1 play a role in supratentorial cavernomas. Relaxin 3 may play a physiological role in normal brain vasculature. Relaxin 1 and 3 are also found in normal cerebral vasculature. Relaxin 1, 2, and 3 are associated with increased VEGFR-1 expression.
Collapse
Affiliation(s)
- Caroline Gewiss
- 1Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg; and
| | - Christian Hagel
- 1Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg; and
| | - Kara Krajewski
- 2Department of Neurosurgery, University of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
34
|
Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2019; 8:1-10. [PMID: 31890981 PMCID: PMC6928288 DOI: 10.1016/j.ibror.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive, ascending relaxin-3-containing neural networks are present throughout the rat forebrain. Relaxin-3 signalling modulates complex behaviours and cognitive processes including feeding, anxiety and memory. We tested a 1736 bp promoter sequence for specific transgene expression in relaxin-3 neurons of rat nucleus incertus (NI). This promoter restricted m-Cherry marker expression to NI relaxin-3 neurons with 98% specificity. This targeted transgene delivery offers a versatile method for ongoing preclinical studies of relaxin-3 circuitry.
Modern neuroscience utilizes transgenic techniques extensively to study the activity and function of brain neural networks. A key feature of this approach is its compatibility with molecular methods for selective transgene expression in neuronal circuits of interest. Until now, such targeted transgenic approaches have not been applied to the extensive circuitry involving the neuropeptide, relaxin-3. Pharmacological and gene knock-out studies have revealed relaxin-3 signalling modulates interrelated behaviours and cognitive processes, including stress and anxiety, food and alcohol consumption, and spatial and social memory, highlighting the potential of this system as a therapeutic target. In the present study, we aimed to identify a promoter sequence capable of regulating cell-type specific transgene expression from an adeno-associated viral (AAV) vector in relaxin-3 neurons of the rat nucleus incertus (NI). In parallel to relaxin-3 promoter sequences, we also tested an AAV vector containing promoter elements for the tropomyosin receptor kinase A (TrkA) gene, as TrkA is co-expressed with relaxin-3 in rat NI neurons. Stereotaxic injection of an mCherry-expressing AAV vector revealed widespread non-specific TrkA promoter (880 bp) activity in and adjacent to the NI at 8 weeks post-treatment. In contrast, mCherry expression was successfully restricted to relaxin-3 NI neurons with 98% specificity using a 1736 bp relaxin-3 promoter. In addition to detailed anatomical mapping of NI relaxin-3 networks, illustrated here in association with GABAergic medial septum neurons, this method for targeted transgene delivery offers a versatile tool for ongoing preclinical studies of relaxin-3 circuitry.
Collapse
Affiliation(s)
- Alexander D Wykes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
35
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
36
|
Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019; 176:3899-3923. [PMID: 31220339 PMCID: PMC6811745 DOI: 10.1111/bph.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Depression and anxiety are common causes of disability, and innovative tools and potential pharmacological targets are actively sought for prevention and treatment. Therapeutic strategies targeting the relaxin‐3 peptide or its primary endogenous receptor, RXFP3, for the treatment of major depression and anxiety disorders have been limited by a lack of compounds with drug‐like properties. We proposed that a hydrocarbon‐stapled mimetic of relaxin‐3, when administered intranasally, might be uniquely applicable to the treatment of these disorders. Experimental Approach We designed a series of hydrocarbon‐stapled relaxin‐3 mimetics and identified the most potent compound using in vitro receptor binding and activation assays. Further, we assessed the effect of intranasal delivery of relaxin‐3 and the lead stapled mimetic in rat models of anxiety and depression. Key Results We developed an i,i+7 stapled relaxin‐3 mimetic that manifested a stabilized α‐helical structure, proteolytic resistance, and confirmed agonist activity in receptor binding and activation in vitro assays. The stapled peptide agonist enhanced food intake after intracerebral infusion in rats, confirming in vivo activity. We showed that intranasal delivery of the lead i,i+7 stapled peptide or relaxin‐3 had orexigenic effects in rats, indicating a potential clinically translatable route of delivery. Further, intranasal administration of the lead i,i+7 stapled peptide exerted anxiolytic and antidepressant‐like activity in anxiety‐ and depression‐related behaviour paradigms. Conclusions and Implications Our preclinical findings demonstrate that targeting the relaxin‐3/RXFP3 receptor system via intranasal delivery of an i,i+7 stapled relaxin‐3 mimetic may represent an effective treatment approach for depression, anxiety, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Norrapat Shih
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
37
|
Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci 2019; 50:3732-3749. [PMID: 31374129 PMCID: PMC6972656 DOI: 10.1111/ejn.14534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
Abstract
γ‐Aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA) provide local inhibitory control of dopamine neuron activity and send long‐range projections to several target regions including the nucleus accumbens. They play diverse roles in reward and aversion, suggesting that they be comprised of several functionally distinct sub‐groups, but our understanding of this diversity has been limited by a lack of molecular markers that might provide genetic entry points for cell type‐specific investigations. To address this, we conducted transcriptional profiling of GABA neurons and dopamine neurons using immunoprecipitation of tagged polyribosomes (RiboTag) and RNAseq. First, we directly compared these two transcriptomes in order to obtain a list of genes enriched in GABA neurons compared with dopamine neurons. Next, we created a novel bioinformatic approach, that used the PANTHER (Protein ANalysis THrough Evolutionary Relationships) gene ontology database and VTA gene expression data from the Allen Mouse Brain Atlas, from which we obtained 6 candidate genes: Cbln4, Rxfp3, Rora, Gpr101, Trh and Nrp2. As a final step, we verified the selective expression of these candidate genes in sub‐groups of GABA neurons in the VTA (and neighbouring substantia nigra pars compacta) using immunolabelling. Taken together, our study provides a valuable toolbox for the future investigation of GABA neuron sub‐groups in the VTA.
Collapse
Affiliation(s)
- Eleanor J Paul
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
38
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
39
|
Szőnyi A, Sos KE, Nyilas R, Schlingloff D, Domonkos A, Takács VT, Pósfai B, Hegedüs P, Priestley JB, Gundlach AL, Gulyás AI, Varga V, Losonczy A, Freund TF, Nyiri G. Brainstem nucleus incertus controls contextual memory formation. Science 2019; 364:eaaw0445. [PMID: 31123108 PMCID: PMC7210779 DOI: 10.1126/science.aaw0445] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022]
Abstract
Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.
Collapse
Affiliation(s)
- András Szőnyi
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Rita Nyilas
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Dániel Schlingloff
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Andor Domonkos
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Virág T Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Pósfai
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Panna Hegedüs
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - James B Priestley
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Viktor Varga
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Losonczy
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
40
|
Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019; 487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
The goal of this paper is to establish Japanese medaka (Oryzias latipes) as a model for relaxin family peptide research, particularly for studying the functions of RLN3 and INSL5, hormones playing roles in neuroendocrine regulation. Medaka, like other teleosts, retained duplicate copies of rln3, insl5 and their rxfp3/4-type receptors following fish-specific whole genome duplication (WGD) and paralogous copies of these genes may have sub-functionalised providing an intuitive model for teasing apart the pleiotropic roles of the corresponding genes in mammals. To this end, we provide experimental evidence for the expression of the relaxin family genes in medaka that had previously only been identified in-silico, confirm the gene structure of five of the ligand genes, characterise gene expression across multiple tissues and during embryonic development, perform in situ hybridization with anti-sense insl5a on embryos and in adult brain and intestinal samples, and compare these results to the data available in zebrafish. We find broad similarities but also some differences in the expression of relaxin family genes in zebrafish versus medaka, and find support for the hypothesis that the rln3a/rln3b and insl5a/insl5b paralogues have been subfunctionalized. Given that medaka has a suite of relaxin family genes more similar to other teleosts, and has retained the gene for rxfp4 (which is lost in zebrafish), our results suggest that O. latipes may be a good model for delineating the ancestral function of the relaxin family genes involved in neuroendocrine regulation.
Collapse
Affiliation(s)
- Hend Alnafea
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Brett Vahkal
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - C Kellie Zelmer
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Sergey Yegorov
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Sara V Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada; Department of Biology, The University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
41
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 2019; 29:905-920. [PMID: 30891856 DOI: 10.1002/hipo.23089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/24/2022]
Abstract
Anxiety disorders are highly prevalent in modern society and better treatments are required. Key brain areas and signaling systems underlying anxiety include prefrontal cortex, hippocampus, and amygdala, and monoaminergic and peptidergic systems, respectively. Hindbrain GABAergic projection neurons that express the peptide, relaxin-3, broadly innervate the forebrain, particularly the septum and hippocampus, and relaxin-3 acts via a Gi/o -protein-coupled receptor known as the relaxin-family peptide 3 receptor (RXFP3). Thus, relaxin-3/RXFP3 signaling is implicated in modulation of arousal, motivation, mood, memory, and anxiety. Ventral hippocampus (vHip) is central to affective and cognitive processing and displays a high density of relaxin-3-positive nerve fibers and RXFP3 binding sites, but the identity of target neurons and associated effects on behavior are unknown. Therefore, in adult, male rats, we assessed the neurochemical nature of hippocampal RXFP3 mRNA-expressing neurons and anxiety-like and social behavior following chronic RXFP3 activation in vHip by viral vector expression of an RXFP3-selective agonist peptide, R3/I5. RXFP3 mRNA detected by fluorescent in situ hybridization was topographically distributed across the hippocampus in somatostatin- and parvalbumin-mRNA expressing GABA neurons. Chronic RXFP3 activation in vHip increased anxiety-like behavior in the light-dark box and elevated-plus maze, but not the large open-field test, and reduced social interaction with a conspecific stranger. Our data reveal disruptive effects of persistent RXFP3 signaling on hippocampal GABA networks important in anxiety; and identify a potential therapeutic target for anxiety disorders that warrants further investigation in relevant preclinical models.
Collapse
Affiliation(s)
- Valeria Rytova
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Despina E Ganella
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - David Hawkes
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Ross A D Bathgate
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherie Ma
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- Discovery Science, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019; 13:30. [PMID: 30906254 PMCID: PMC6419585 DOI: 10.3389/fnana.2019.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 loxP/loxP mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV(1/2)-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kimberly Tin
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Mohsen Nategh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - João Covita
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alexander D. Wykes
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jake Rogers
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
45
|
Lawther AJ, Flavell A, Ma S, Kent S, Lowry CA, Gundlach AL, Hale MW. Involvement of Serotonergic and Relaxin-3 Neuropeptide Systems in the Expression of Anxiety-like Behavior. Neuroscience 2018; 390:88-103. [DOI: 10.1016/j.neuroscience.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
|
46
|
Wong LLL, Scott DJ, Hossain MA, Kaas Q, Rosengren KJ, Bathgate RAD. Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor. J Biol Chem 2018; 293:15777-15789. [PMID: 30131340 DOI: 10.1074/jbc.ra118.002645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/09/2018] [Indexed: 12/22/2022] Open
Abstract
The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1-22R, which does not contain Trp27, used a non-native Arg23 residue to form cation-π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.
Collapse
Affiliation(s)
| | - Daniel James Scott
- From the Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Mohammed Akhter Hossain
- From the Florey Institute of Neuroscience and Mental Health.,School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia and
| | | | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ross A D Bathgate
- From the Florey Institute of Neuroscience and Mental Health, .,Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
47
|
van der Peet PL, Gunawan C, Abdul-Ridha A, Ma S, Scott DJ, Gundlach AL, Bathgate RAD, White JM, Williams SJ. Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs. MethodsX 2018; 5:257-267. [PMID: 30038895 PMCID: PMC6053635 DOI: 10.1016/j.mex.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Chemogenetics uses engineered proteins that are controlled by small molecule actuators, allowing in vivo functional studies of proteins with temporal and dose control, and include Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). One major class of DREADDs are mutated muscarinic receptors that are unresponsive to acetylcholine, and are activated by administration of clozapine N-oxide (CNO). However, CNO is available in only small amounts and large scale studies involving animals and multiple cohorts are prohibitively expensive for many investigators. The precursor, clozapine, is also expensive when purchased from specialist suppliers. Here we report: A simple extraction method of clozapine from commercial tablets; A simple preparation of CNO from clozapine, and for the first time its single-crystal X-ray structure; and That the CNO prepared by this method specifically activates the DREADD receptor hM3Dq in vivo.
This method provides large quantities of CNO suitable for large-scale DREADD applications that is identical to commercial material.
Collapse
Affiliation(s)
- Phillip L van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Christian Gunawan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Wang JH, Hu MJ, Shao XX, Wei D, Liu YL, Xu ZG, Guo ZY. Cholesterol modulates the binding properties of human relaxin family peptide receptor 3 with its ligands. Arch Biochem Biophys 2018; 646:24-30. [PMID: 29601823 DOI: 10.1016/j.abb.2018.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/10/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
Abstract
Relaxin family peptide receptor 3 (RXFP3) is implicated in the regulation of food intake and stress response upon activation by its cognate agonist relaxin-3. As an A-class G protein-coupled receptor, RXFP3 is an integral plasma membrane protein with seven transmembrane domains, yet influence of the membrane lipids on its function remains unknown. In the present study, we disclosed that cholesterol, an essential membrane lipid for mammalian cells, modulated the binding properties of human RXFP3 with its ligands. We first demonstrated that depletion of cholesterol from host human embryonic kidney (HEK) 293T cells by methyl-β-cyclodextrin altered ligand-binding properties of the overexpressed human RXFP3, such as increasing its binding potency with some antagonists and decreasing its binding affinity with a NanoLuc-conjugated R3/I5 tracer. Thereafter, we demonstrated that two B-chain residues, B5Tyr and B12Arg, were primarily responsible for the increased binding potency of these antagonists with human RXFP3 under the cholesterol depletion condition. Our results suggest that cell membrane cholesterol interacts with human RXFP3 and modulates its ligand-binding properties, providing new insights into the influence of membrane lipids on RXFP3 function.
Collapse
Affiliation(s)
- Jia-Hui Wang
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng-Jun Hu
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dian Wei
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Centre for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
49
|
Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018; 24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
The nucleus incertus (NI) in the pontine tegmentum sends ascending projections to the midbrain, hypothalamus, amygdala, basal forebrain, hippocampus, and prefrontal cortex, and has a postulated role in modulating several forebrain functions. A substantial population of GABAergic NI neurons expresses the neuropeptide, relaxin-3, which acts via the Gi/o -protein-coupled receptor, RXFP3, present throughout the forebrain target regions. Broad and specific manipulations of these systems by activation or inhibition of the NI or modulating RXFP3 signaling have revealed key insights into the likely influence of the NI/relaxin-3/RXFP3 system on modalities including arousal, feeding, stress responses, anxiety and addiction, and attention and memory. This range of actions corresponds to a likely impact of NI/(relaxin-3) projections on multiple integrated circuits, but makes it difficult to draw conclusions about a generalized function for this network. This review will focus on the key physiological process of oscillatory theta rhythm and the neural circuits that promote it during behavioral activation, highlighting the ability of NI and relaxin-3/RXFP3 signaling systems to modulate these circuits. A better understanding of these mechanisms may provide a way to therapeutically adjust malfunction of forebrain activity present in several pathological conditions.
Collapse
Affiliation(s)
| | - Héctor Albert-Gascó
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Valeria Rytova
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Emma K E Ong-Pålsson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Ana M Sánchez-Pérez
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| |
Collapse
|
50
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|