1
|
Cover KK, Mathur BN. Axo-axonic synapses: Diversity in neural circuit function. J Comp Neurol 2021; 529:2391-2401. [PMID: 33314077 PMCID: PMC8053672 DOI: 10.1002/cne.25087] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
The chemical synapse is the principal form of contact between neurons of the central nervous system. These synapses are typically configured as presynaptic axon terminations onto postsynaptic dendrites or somata, giving rise to axo-dendritic and axo-somatic synapses, respectively. Beyond these common synapse configurations are less-studied, non-canonical synapse types that are prevalent throughout the brain and significantly contribute to neural circuit function. Among these are the axo-axonic synapses, which consist of an axon terminating on another axon or axon terminal. Here, we review evidence for axo-axonic synapse contributions to neural signaling in the mammalian nervous system and survey functional neural circuit motifs enabled by these synapses. We also detail how recent advances in microscopy, transgenics, and biological sensors may be used to identify and functionally assay axo-axonic synapses.
Collapse
Affiliation(s)
- Kara K. Cover
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD USA 21201
| |
Collapse
|
2
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
3
|
Schuman B, Dellal S, Prönneke A, Machold R, Rudy B. Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. Annu Rev Neurosci 2021; 44:221-252. [PMID: 33730511 DOI: 10.1146/annurev-neuro-100520-012117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.
Collapse
Affiliation(s)
- Benjamin Schuman
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Shlomo Dellal
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Alvar Prönneke
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Robert Machold
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA;
| | - Bernardo Rudy
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; .,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Aru J, Siclari F, Phillips WA, Storm JF. Apical drive-A cellular mechanism of dreaming? Neurosci Biobehav Rev 2020; 119:440-455. [PMID: 33002561 DOI: 10.1016/j.neubiorev.2020.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
Dreams are internally generated experiences that occur independently of current sensory input. Here we argue, based on cortical anatomy and function, that dream experiences are tightly related to the workings of a specific part of cortical pyramidal neurons, the apical integration zone (AIZ). The AIZ receives and processes contextual information from diverse sources and could constitute a major switch point for transitioning from externally to internally generated experiences such as dreams. We propose that during dreams the output of certain pyramidal neurons is mainly driven by input into the AIZ. We call this mode of functioning "apical drive". Our hypothesis is based on the evidence that the cholinergic and adrenergic arousal systems, which show different dynamics between waking, slow wave sleep, and rapid eye movement sleep, have specific effects on the AIZ. We suggest that apical drive may also contribute to waking experiences, such as mental imagery. Future studies, investigating the different modes of apical function and their regulation during sleep and wakefulness are likely to be richly rewarded.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Estonia; Institute of Biology, Humboldt University Berlin, Germany.
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - William A Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - Johan F Storm
- Brain Signalling Group, Section for Physiology, Faculty of Medicine, Domus Medica, University of Oslo, PB 1104 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
5
|
Takahashi H, Shiramatsu TI, Hitsuyu R, Ibayashi K, Kawai K. Vagus nerve stimulation (VNS)-induced layer-specific modulation of evoked responses in the sensory cortex of rats. Sci Rep 2020; 10:8932. [PMID: 32488047 PMCID: PMC7265555 DOI: 10.1038/s41598-020-65745-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Neuromodulation achieved by vagus nerve stimulation (VNS) induces various neuropsychiatric effects whose underlying mechanisms of action remain poorly understood. Innervation of neuromodulators and a microcircuit structure in the cerebral cortex informed the hypothesis that VNS exerts layer-specific modulation in the sensory cortex and alters the balance between feedforward and feedback pathways. To test this hypothesis, we characterized laminar profiles of auditory-evoked potentials (AEPs) in the primary auditory cortex (A1) of anesthetized rats with an array of microelectrodes and investigated the effects of VNS on AEPs and stimulus specific adaptation (SSA). VNS predominantly increased the amplitudes of AEPs in superficial layers, but this effect diminished with depth. In addition, VNS exerted a stronger modulation of the neural responses to repeated stimuli than to deviant stimuli, resulting in decreased SSA across all layers of the A1. These results may provide new insights that the VNS-induced neuropsychiatric effects may be attributable to a sensory gain mechanism: VNS strengthens the ascending input in the sensory cortex and creates an imbalance in the strength of activities between superficial and deep cortical layers, where the feedfoward and feedback pathways predominantly originate, respectively.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Tomoyo I Shiramatsu
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rie Hitsuyu
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Tozaki-Saitoh H, Sasaki I, Yamashita T, Hosoi M, Kato TA, Tsuda M. Involvement of exchange protein directly activated by cAMP and tumor progression locus 2 in IL-1β production in microglial cells following activation of β-adrenergic receptors. J Pharmacol Sci 2020; 143:133-140. [PMID: 32253104 DOI: 10.1016/j.jphs.2020.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022] Open
Abstract
Endogenous noradrenaline (NA) has multiple bioactive functions and, in the central nervous system (CNS), has been implicated in modulating neuroinflammation via β-adrenergic receptors (β-ARs). Microglia, resident macrophages in the CNS, have a central role in the brain immune system and have been reported to be activated by NA. However, intracellular signaling mechanisms of the AR-mediated proinflammatory responses of microglia are not fully understood. Using a rapid and stable in vitro reporter assay system to evaluate IL-1β production in microglial BV2 cells, we found that NA and the β-AR agonist isoproterenol upregulated the IL-1β reporter activity. This effect was suppressed by β-AR antagonists. We further examined the involvement of EPAC (exchange protein directly activated by cAMP) and TPL2 (tumor progression locus 2, MAP3K8) and found that inhibitors for EPAC and TPL2 reduced AR agonist-induced IL-1β reporter activity. These inhibitors also suppressed NA-induced endogenous Il1b mRNA expression and IL-1β protein production. Our results suggest that EPAC and TPL2 are involved in β-AR-mediated IL-1β production in microglial cells, and extend our understanding of its intracellular signaling mechanism.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Izumi Sasaki
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
7
|
Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 2019; 22:1771-1781. [PMID: 31636449 PMCID: PMC6858573 DOI: 10.1038/s41593-019-0511-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023]
Abstract
Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia-neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.
Collapse
|
8
|
Distinct regional patterns in noradrenergic innervation of the rat prefrontal cortex. J Chem Neuroanat 2019; 96:102-109. [PMID: 30630012 DOI: 10.1016/j.jchemneu.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/30/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
The anatomy and functions of the rodent prefrontal cortex (PFC) have been extensively studied. It is now clear that the PFC is at the core of various executive functions and that these functions depend on monoaminergic neuromodulation. The PFC receives extensive projections from monoaminergic nuclei and, in particular, from the locus cœruleus (LC) which is the major source of noradrenaline (NA) in the cortex. Projections of this nucleus have long been considered to act diffusely and uniformly throughout the entire brain. However, recent studies have revealed a separate innervation of prefrontal sub-regions by non-collateralizing LC neurons, suggesting a specific modulation of their functions. Following this idea, we aimed at describing more precisely the pattern of noradrenergic innervation into different orbital (OFC) and medial (mPFC) sub-regions of the PFC. We focused on the lateral (LO), ventral (VO) and medial (MO) portions of the OFC, and on areas 32d (A32d), 32v (A32v) and 25 (A25) in the mPFC. Using Dopamine-β-Hydroxylase as a specific noradrenergic marker, we performed an automatic quantification of noradrenergic fibers and varicosities in each of these sub-regions. The results indicate that noradrenergic innervation is heterogeneous in some prefrontal sub-regions along the rostro-caudal axis. Functional dissociations have been recently reported in prefrontal sub-regions along the rostro-caudal direction. Our findings add neuroanatomical support to this emergent idea.
Collapse
|
9
|
Affiliation(s)
- WA Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
10
|
Phillips WA, Bachmann T, Storm JF. Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State. Front Neural Circuits 2018; 12:50. [PMID: 30013465 PMCID: PMC6036169 DOI: 10.3389/fncir.2018.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022] Open
Abstract
It has been argued that general anesthetics suppress the level of consciousness, or the contents of consciousness, or both. The distinction between level and content is important because, in addition to clarifying the mechanisms of anesthesia, it may help clarify the neural bases of consciousness. We assess these arguments in the light of evidence that both the level and the content of consciousness depend upon the contribution of apical input to the information processing capabilities of neocortical pyramidal cells which selectively amplify relevant signals. We summarize research suggesting that what neocortical pyramidal cells transmit information about can be distinguished from levels of arousal controlled by sub-cortical nuclei and from levels of prioritization specified by interactions within the thalamocortical system. Put simply, on the basis of the observations reviewed, we hypothesize that when conscious we have particular, directly experienced, percepts, thoughts, feelings and intentions, and that general anesthetics affect consciousness by interfering with the subcellular processes by which particular activities are selectively amplified when relevant to the current context.
Collapse
Affiliation(s)
- William A. Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom
| | - Talis Bachmann
- Department of Penal Law, University of Tartu, Tartu, Estonia
| | - Johan F. Storm
- IBMS Department of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018; 12:47. [PMID: 29988373 PMCID: PMC6023998 DOI: 10.3389/fncir.2018.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cortical processing is dynamically modulated by different neuromodulators. Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain functions such as perception, attention and learning. However, we do not fully understand how neuromodulatory projections are organized in the cerebral cortex to exert various functions. The basal forebrain (BF) cholinergic projection and the locus coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections to the cortex. Decades of studies have identified anatomical and physiological characteristics of these circuits. While both cholinergic and noradrenergic neurons widely project to the cortex, they exhibit different levels of selectivity. Here, we summarize their anatomical and physiological features, highlighting selectivity and specificity of these circuits to different cortical regions. We discuss the importance of selective modulation by comparing their functions in the cortex. We highlight key features in the input-output circuits and target selectivity of these neuromodulatory projections and their roles in controlling four major brain functions: attention, reinforcement, learning and memory, sleep and wakefulness.
Collapse
Affiliation(s)
- Hee-Jun Rho
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jae-Hyun Kim
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Seung-Hee Lee
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
12
|
Vitrac C, Benoit-Marand M. Monoaminergic Modulation of Motor Cortex Function. Front Neural Circuits 2017; 11:72. [PMID: 29062274 PMCID: PMC5640772 DOI: 10.3389/fncir.2017.00072] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023] Open
Abstract
Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions.
Collapse
Affiliation(s)
- Clément Vitrac
- Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Poitiers, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Marianne Benoit-Marand
- Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM U1084, Poitiers, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| |
Collapse
|
13
|
Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory. J Neurosci 2017; 36:4930-9. [PMID: 27147648 PMCID: PMC4854963 DOI: 10.1523/jneurosci.2933-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/04/2016] [Indexed: 01/22/2023] Open
Abstract
Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.
Collapse
|
14
|
Brodnik ZD, Double M, España RA, Jaskiw GE. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat. Neuropharmacology 2017; 123:159-174. [PMID: 28571714 DOI: 10.1016/j.neuropharm.2017.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated.
Collapse
Affiliation(s)
- Zachary D Brodnik
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - Manda Double
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States
| | - Rodrigo A España
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States
| | - George E Jaskiw
- Medical Research Service, Louis Stokes Cleveland DVAMC, 10701 East Blvd., Cleveland, OH 44106, United States; Dept. of Psychiatry, Case Western University Medical Center at W.O. Walker 10524 Euclid Ave, Cleveland, OH 44133, United States.
| |
Collapse
|
15
|
Phillips WA, Larkum ME, Harley CW, Silverstein SM. The effects of arousal on apical amplification and conscious state. Neurosci Conscious 2016; 2016:niw015. [PMID: 29877512 PMCID: PMC5934888 DOI: 10.1093/nc/niw015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023] Open
Abstract
Neocortical pyramidal cells can integrate two classes of input separately and use one to modulate response to the other. Their tuft dendrites are electrotonically separated from basal dendrites and soma by the apical dendrite, and apical hyperpolarization-activated currents (Ih) further isolate subthreshold integration of tuft inputs. When apical depolarization exceeds a threshold, however, it can enhance response to the basal inputs that specify the cell's selective sensitivity. This process is referred to as apical amplification (AA). We review evidence suggesting that, by regulating Ih in the apical compartments, adrenergic arousal controls the coupling between apical and somatic integration zones thus modifying cognitive capabilities closely associated with consciousness. Evidence relating AA to schizophrenia, sleep, and anesthesia is reviewed, and we assess theories that emphasize the relevance of AA to consciousness. Implications for theories of neocortical computation that emphasize context-sensitive modulation are summarized. We conclude that the findings concerning AA and its regulation by arousal offer a new perspective on states of consciousness, the function and evolution of neocortex, and psychopathology. Many issues worthy of closer examination arise.
Collapse
Affiliation(s)
- W. A. Phillips
- School of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - M. E. Larkum
- Neurocure Cluster of Excellence, Department of Biology, Humboldt University,
Charitéplatz 1, Berlin 10117, Germany
| | - C. W. Harley
- Psychology Department, Memorial University of Newfoundland, St. John's, NL A1C 5S7,
P.O. Box 4200, Canada
| | | |
Collapse
|
16
|
Agster KL, Mejias-Aponte CA, Clark BD, Waterhouse BD. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. J Comp Neurol 2013; 521:2195-207. [PMID: 23184811 PMCID: PMC4529674 DOI: 10.1002/cne.23270] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/10/2022]
Abstract
The brainstem nucleus locus coeruleus (LC) is the sole source of norepinephrine (NE)-containing fibers in the mammalian cortex. Previous studies suggest that the density of noradrenergic fibers in rat is relatively uniform across cortical regions and that cells in the nucleus discharge en masse. This implies that activation of the LC results in equivalent release of NE throughout the cortex. However, it is possible that there could be differences in the density of axonal varicosities across regions, and that these differences, rather than a difference in fiber density, may contribute to the regulation of NE efflux. Quantification of dopamine β-hydroxylase (DβH)-immunostained varicosities was performed on several cortical regions and in the ventral posterior medial (VPM) thalamus by using unbiased sampling methods. The density of DβH varicosities is greater in the prefrontal cortex than in motor, somatosensory, or piriform cortices, greater in superficial than in deep layers of cortex, and greater in the VPM than in the somatosensory cortex. Our results provide anatomical evidence for non-uniform release of NE across functionally discrete cortical regions. This morphology may account for a differential, region-specific, impact of LC output on different cortical areas.
Collapse
Affiliation(s)
- Kara L. Agster
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | | | - Brian D. Clark
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Barry D. Waterhouse
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
17
|
O’Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 2012; 37:2496-512. [PMID: 22717696 PMCID: PMC3548657 DOI: 10.1007/s11064-012-0818-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 12/23/2022]
Abstract
Norepinephrine (NE) is a neuromodulator that in multiple ways regulates the activity of neuronal and non-neuronal cells. NE participates in the rapid modulation of cortical circuits and cellular energy metabolism, and on a slower time scale in neuroplasticity and inflammation. Of the multiple sources of NE in the brain, the locus coeruleus (LC) plays a major role in noradrenergic signaling. Processes from the LC primarily release NE over widespread brain regions via non-junctional varicosities. We here review the actions of NE in astrocytes, microglial cells, and neurons based on the idea that the overarching effect of signaling from the LC is to maximize brain power, which is accomplished via an orchestrated cellular response involving most, if not all cell types in CNS.
Collapse
Affiliation(s)
- John O’Donnell
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Douglas Zeppenfeld
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Evan McConnell
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Salvador Pena
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Walling SG, Brown RA, Miyasaka N, Yoshihara Y, Harley CW. Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice. Front Behav Neurosci 2012; 6:23. [PMID: 22654744 PMCID: PMC3361128 DOI: 10.3389/fnbeh.2012.00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
Abstract
We generated transgenic mice in which a trans-synaptic tracer, wheat germ agglutinin (WGA), was specifically expressed in the locus coeruleus (LC) neurons under the control of the dopamine-β-hydroxylase (DBH) gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase (TH)-positive LC neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells, and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to LC axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by DBH-positive fibers suggest that a majority of the TH-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice implies a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by LC activity.
Collapse
Affiliation(s)
- Susan G Walling
- Department of Psychology, Memorial University of Newfoundland, St. John's NL, Canada
| | | | | | | | | |
Collapse
|
19
|
Aggressive behavior during social interaction in mice is controlled by the modulation of tyrosine hydroxylase expression in the prefrontal cortex. Neuroscience 2010; 171:840-51. [DOI: 10.1016/j.neuroscience.2010.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/06/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
|
20
|
Hökfelt T. Looking at neurotransmitters in the microscope. Prog Neurobiol 2009; 90:101-18. [PMID: 19853008 DOI: 10.1016/j.pneurobio.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/16/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
This review article covers the early period of my career. I first summarize research initiated by the late Nils-Ake Hillarp, after his appointment in 1962 as professor in the Department of Histology at Karolinska Institutet. He only lived for three more years, but during this short period he started up a group of ten students who explored various aspects of the three monoamine transmitters, dopamine, noradrenaline and 5-hydroxytryptamine, using the new formaldehyde fluorescence method developed by Bengt Falck and Hillarp in Lund. This method allowed visualization of the cellular localization in the microscope of these monoamines, which introduced a new discipline in neurobiology-chemical neuroanatomy. I then deal with work aiming at localizing the monoamines at the ultrastructural level, as well as attempts to use radioactively labeled aminoacids, especially gamma-aminobutyric acid (GABA), and autoradiography, to identify, in the microscope, neurons using such transmitters. Finally, our immunohistochemical work together with Kjell Fuxe and the late Menek Goldstein, using antibodies to four monoamine-synthesizing enzymes is summarized, including some aspects on the adrenaline neurons, which had escaped detection with the Falck-Hillarp technique.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
21
|
Sarkey S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D, DonCarlos LL. Classical androgen receptors in non-classical sites in the brain. Horm Behav 2008; 53:753-64. [PMID: 18402960 PMCID: PMC2413135 DOI: 10.1016/j.yhbeh.2008.02.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 02/02/2023]
Abstract
Androgen receptors are expressed in many different neuronal populations in the central nervous system where they often act as transcription factors in the cell nucleus. However, recent studies have detected androgen receptor immunoreactivity in neuronal and glial processes of the adult rat neocortex, hippocampal formation, and amygdala as well as in the telencephalon of eastern fence and green anole lizards. This review discusses previously published findings on extranuclear androgen receptors, as well as new experimental results that begin to establish a possible functional role for androgen receptors in axons within cortical regions. Electron microscopic studies have revealed that androgen receptor immunoreactive processes in the rat brain correspond to axons, dendrites and glial processes. New results show that lesions of the dorsal CA1 region by local administration of ibotenic acid reduce the density of androgen receptor immunoreactive axons in the cerebral cortex and the amygdala, suggesting that these axons may originate in the hippocampus. Androgen receptor immunoreactivity in axons is also decreased by the intracerebroventricular administration of colchicine, suggesting that androgen receptor protein is transported from the perikaryon to the axons by fast axonal transport. Androgen receptors in axons located in the cerebral cortex and amygdala and originating in the hippocampus may play an important role in the rapid behavioral effects of androgens.
Collapse
Affiliation(s)
- Sara Sarkey
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861Fax: +34-913944981 e-mail:
| | | | - Daniel Garcia-Ovejero
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental (assocciated with the Instituto Cajal, CSIC, Madrid, Spain), Hospital Nacional de Parapléjicos, SESCAM, 45071-Toledo, Spain. Tel:+34-925247754; e-mail:
| | - Lydia L. DonCarlos
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
- Department of Cell Biology, Neurobiology and Anatomy, and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| |
Collapse
|
22
|
Pittaluga A, Raiteri L, Longordo F, Luccini E, Barbiero VS, Racagni G, Popoli M, Raiteri M. Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus. Neuropharmacology 2007; 53:27-36. [PMID: 17543354 DOI: 10.1016/j.neuropharm.2007.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/03/2007] [Accepted: 04/08/2007] [Indexed: 11/23/2022]
Abstract
Previous evidences showed that, besides noradrenaline (NA) and 5-hydroxytryptamine (5-HT), glutamate transmission is involved in the mechanism of action of antidepressants (ADs), although the relations between aminergic and glutamatergic systems are poorly understood. The aims of this investigation were to evaluate changes in the function of glutamate AMPA and NMDA receptors produced by acute and chronic administration of the two ADs reboxetine and fluoxetine, selective inhibitors of NA and 5-HT uptake, respectively. Rats were treated acutely (intraperitoneal injection) or chronically (osmotic minipump infusion) with reboxetine or fluoxetine. Isolated hippocampal nerve endings (synaptosomes) prepared following acute/chronic treatments were labelled with [(3)H]NA or [(3)H]5-HT and [(3)H]amine release was monitored during exposure in superfusion to NMDA/glycine, AMPA or K(+)-depolarization. Acute and chronic reboxetine reduced the release of [(3)H]NA evoked by NMDA/glycine or by AMPA. The NMDA/glycine-evoked release of [(3)H]NA was also down-regulated by chronic fluoxetine. Only acute, but not chronic, fluoxetine inhibited the AMPA-evoked release of [(3)H]5-HT. The release of [(3)H]NA and [(3)H]5-HT elicited by K(+)-depolarization was almost abolished by acute reboxetine or fluoxetine, respectively, but recovered during chronic ADs administration. ADs reduced NMDA receptor-mediated releasing effects in noradrenergic terminals after acute and chronic administration, although by different mechanisms. Chronic treatments markedly reduced the expression level of NR1 subunit in synaptic membranes. The noradrenergic and serotonergic release systems seem to be partly functionally interconnected and interact with glutamatergic transmission to down-regulate its function. The results obtained support the view that glutamate plays a major role in AD activity.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mansvelder HD, van Aerde KI, Couey JJ, Brussaard AB. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl) 2006; 184:292-305. [PMID: 16001117 DOI: 10.1007/s00213-005-0070-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 05/09/2005] [Indexed: 02/02/2023]
Abstract
RATIONALE Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies. OBJECTIVES In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices. RESULTS/CONCLUSIONS Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Vizi ES, Zsilla G, Caron MG, Kiss JP. Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 2005; 24:7888-94. [PMID: 15356201 PMCID: PMC6729924 DOI: 10.1523/jneurosci.1506-04.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our aim was to investigate the functional properties of the noradrenergic system in genetically modified mice lacking the norepinephrine transporter (NET). We measured the uptake and release of [(3)H]norepinephrine ([(3)H]NE) from hippocampal and cortical slices of NET(-/-) knock-out (KO) and NET(+/+) wild-type (WT) mice and investigated the presynaptic alpha2-adenoceptor-mediated modulation of NE release in vitro and in vivo. The [(3)H]NE uptake was reduced to 12.6% (hippocampus) and 33.5% (frontal cortex) of WT control in KO mice. The neuronal component of this residual uptake was decreased by 79.4 and 100%, respectively, when a selective serotonin reuptake inhibitor (SSRI) citalopram was present during the loading. The more preserved neuronal release of [(3)H]NE (hippocampus, 28.1%; frontal cortex, 74.4%; compared with WT) almost completely disappeared in both regions (94.1 and 95.3% decrease compared with KO, respectively) in the presence of citalopram, suggesting that [(3)H]NE was taken up and released by serotonergic varicosities. This was further supported by the finding that the release of [(3)H]NE from hippocampal slices of KO mice was not modulated by the alpha2-adrenoceptor antagonist 7,8-(methylenedioxy)-14-alpha-hydroxyalloberbane HCl, whereas the endogenous release of NE measured by microdialysis was even more efficiently enhanced by this drug in NET-deficient mice. These experiments indicate that serotonergic varicosities can accumulate and release NE as a result of the heterologous uptake of transmitters. Because the diffusion of NE may be spatially limited by serotonin transporters, the SSRIs, despite their selectivity, might enhance not only serotonergic but also noradrenergic neurotransmission, which might contribute to their antidepressant action.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary.
| | | | | | | |
Collapse
|
25
|
Vizi ES, Kiss JP, Lendvai B. Nonsynaptic communication in the central nervous system. Neurochem Int 2004; 45:443-51. [PMID: 15186910 DOI: 10.1016/j.neuint.2003.11.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 11/22/2022]
Abstract
Classical synaptic functions are important and suitable to relatively fast and discretely localized processes, but the nonclassical receptorial functions may be providing revolutionary possibilities for dealing at the cellular level with many of the more interesting and seemingly intractable features of neural and cerebral activities. Although different forms of nonsynaptic communication (volume transmission) often appear in different studies, their importance to modulate and mediate various functions is still not completely recognized. To establish the existence and the importance of nonsynaptic communication in the nervous system, here we cite pieces of evidence for each step of the interneuronal communication in the nonsynaptic context including the release into the extracellular space (ECS) and the extrasynaptic receptors and transporters that mediate nonsynaptic functions. We are now faced with a multiplicity of chemical communication. The fact that transmitters can even be released from nonsynaptic varicosities without being coupled to frequency-coded neuronal activity and they are able to diffuse over large distances indicates that there is a complementary mechanism of interneuronal communication to classical synaptic transmission. Nonconventional mediators that are also important part of the nonsynaptic world will also be overviewed.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine; Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary.
| | | | | |
Collapse
|
26
|
Descarries L, Mechawar N, Aznavour N, Watkins KC. Structural determinants of the roles of acetylcholine in cerebral cortex. PROGRESS IN BRAIN RESEARCH 2004; 145:45-58. [PMID: 14650905 DOI: 10.1016/s0079-6123(03)45002-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Laurent Descarries
- Departments of Pathology and Cell Biology and of Physiology, Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montreal, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
27
|
Tanaka KF, Kashima H, Suzuki H, Ono K, Sawada M. Existence of functional beta1- and beta2-adrenergic receptors on microglia. J Neurosci Res 2002; 70:232-7. [PMID: 12271472 DOI: 10.1002/jnr.10399] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the expression and function of beta-adrenergic receptor (beta-AR) subtypes in both isolated primary rat microglia and a rat microglial cell line. RT-PCR analyses revealed that microglia expressed beta(1)- and beta(2)-ARs but not beta(3)-ARs, whereas rat primary peritoneal macrophages expressed only beta(2)-ARs. Stimulation of beta-ARs on microglia by norepinephrine (NE) resulted in an increase in the level of intracellular cAMP and the subsequent expression of interleukin-1beta mRNA. These effects were prevented by propranolol. Similar results were obtained with other selective beta(1)-AR agonists and antagonists. beta(2)-ARs on microglia were also functional. It is possible that noradrenergic innervations participate in the control of microglial functions via beta(1)-ARs on microglia in the brain, because NE has high affinity for beta(1)- and beta(3)-ARs but little or no affinity for beta(2)-ARs. It seems physiologically significant that microglia can be controlled by NE, which predominates over epinephrine in the brain, whereas macrophages in peripheral tissues can be controlled by epinephrine, which is at higher levels in peripheral tissues.
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Agonists
- Adrenergic beta-2 Receptor Agonists
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Microglia/drug effects
- Microglia/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kenji F Tanaka
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Latsari M, Dori I, Antonopoulos J, Chiotelli M, Dinopoulos A. Noradrenergic innervation of the developing and mature visual and motor cortex of the rat brain: a light and electron microscopic immunocytochemical analysis. J Comp Neurol 2002; 445:145-58. [PMID: 11891659 DOI: 10.1002/cne.10156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The noradrenergic (NA) innervation of the developing and adult visual and motor cortex of the rat was examined with light and electron microscopic immunocytochemistry by using antibodies against dopamine-beta-hydroxylase. At birth, NA fibers were present in both cortical areas, appearing as two tangential streams, one above and the other below the cortical plate. During the subsequent weeks, these two streams arborized gradually innervating all cortical layers. The adult pattern of distribution was attained by postnatal day 14, but the density of innervation, which was higher in the motor than in the visual cortex, appeared similar to the adult by the end of the third postnatal week. Electron microscopic analysis revealed that a low proportion of NA varicosities (the highest value was 12% in the adult motor cortex in single sections) were engaged in synaptic contact, throughout development, in both areas examined. The overwhelming majority of these synapses were symmetrical, involving predominantly small or medium dendrites. This evidence suggests that transmission by diffusion is the major mode of NA action in the developing and adult cerebral cortex. Noradrenaline released in the rare synaptic junctions may act mainly to reduce the activity of its cortical targets. The results altogether provide morphologic evidence for an involvement of noradrenaline in the development of the neocortex and, along with earlier data on the serotonergic system, indicate that the monoaminergic systems are endowed with a specific anatomic organization in various areas of the brain.
Collapse
Affiliation(s)
- Maria Latsari
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, 54006 Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
29
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
30
|
Hwang SJ, Pagliardini S, Boukhelifa M, Parast MM, Otey CA, Rustioni A, Valtschanoff JG. Palladin is expressed preferentially in excitatory terminals in the rat central nervous system. J Comp Neurol 2001. [DOI: 10.1002/cne.1062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Mechawar N, Cozzari C, Descarries L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 2000; 428:305-18. [PMID: 11064369 DOI: 10.1002/1096-9861(20001211)428:2<305::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for determining the length of acetylcholine (ACh) axons and number of ACh axon varicosities (terminals) in brain sections immunostained for choline acetyltransferase (ChAT) was used to estimate the areal and laminar densities of this innervation in the frontal (motor), parietal (somatosensory), and occipital (visual) cortex of adult rat. The number of ACh varicosities per length of axon (4 per 10 microm) appeared constant in the different layers and areas. The mean density of ACh axons was the highest in the frontal cortex (13.0 m/mm(3) vs. 9.9 and 11.0 m/mm(3) in the somatosensory and visual cortex, respectively), as was the mean density of ACh varicosities (5.4 x 10(6)/mm(3) vs. 3.8 and 4.6 x 10(6)/mm(3)). In all three areas, layer I displayed the highest laminar densities of ACh axons and varicosities (e.g., 13.5 m/mm(3) and 5.4 x 10(6)/mm(3) in frontal cortex). The lowest were those of layer IV in the parietal cortex (7.3 m/mm(3) and 2.9 x 10(6)/mm(3)). The lengths of ACh axons under a 1 mm(2) surface of cortex were 26.7, 19.7, and 15.3 m in the frontal, parietal, and occipital areas, respectively, for corresponding numbers of 11.1, 7.7, and 6.4 x 10(6) ACh varicosities. In the parietal cortex, this meant a total of 1.2 x 10(6) synaptic ACh varicosities under a 1 mm(2) surface, 48% of which in layer V alone, according to previous electron microscopic estimates of synaptic incidence. In keeping with the notion that the synaptic component of ACh transmission in cerebral cortex is preponderant in layer V, these quantitative data suggest a role for this innervation in the processing of cortical output as well as input. Extrapolation of particular features of this system in terms of total axon length and number of varicosities in whole cortex, length of axons and number of varicosities per cortically projecting neuron, and concentration of ACh per axon varicosity, should also help in arriving at a better definition of its roles and functional properties in cerebral cortex.
Collapse
Affiliation(s)
- N Mechawar
- Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
32
|
Abstract
Dopamine (DA) afferents to the prefrontal cortex (PFC) play an important role in the cognitive functions subserved by this cortical area. Within the PFC, DA terminals synapse onto the distal dendrites of both local circuit neurons and pyramidal projection cells. We have previously demonstrated in the rat PFC that some of the dendrites and spines postsynaptic to DA terminals arise from pyramidal neurons that project to the nucleus accumbens. However, it is not known whether the pyramidal cells that give rise to callosal intercortical connections of the PFC also receive DA synaptic input. To address this question, retrograde tract tracing using an attenuated strain of pseudorabies virus (PRV-Bartha) was combined with immunocytochemistry for tyrosine hydroxylase (TH) to identify DA terminals in the PFC. Thirty-six to 40 hours following injection of PRV into the contralateral PFC, numerous callosal projection neurons were extensively labeled throughout their dendritic trees, with no evidence of PRV trans-synaptic passage. In tissue prepared for electron microscopy, labeling for PRV was distributed throughout pyramidal cell somata and extended into distal dendrites and dendritic spines. Some PRV-labeled dendrites and spines received symmetric synaptic input from terminals containing peroxidase labeling for TH. These results demonstrate that DA terminals synapse onto the distal dendrites of callosally projecting PFC neurons and suggest substrates through which DA may modulate interhemispheric cortical communication.
Collapse
Affiliation(s)
- D B Carr
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
33
|
Nakahara D, Nakamura M, Furukawa H, Furuno N. Intracranial self-stimulation increases differentially in vivo hydroxylation of tyrosine but similarly in vivo hydroxylation of tryptophan in rat medial prefrontal cortex, nucleus accumbens and striatum. Brain Res 2000; 864:124-9. [PMID: 10793194 DOI: 10.1016/s0006-8993(00)02166-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have examined using microdialysis the effect of intracranial self-stimulation (ICSS) on the in vivo hydroxylation rate of tyrosine and tryptophan in the medial prefrontal cortex (mPFC), nucleus accumbens (NAC) and striatum (STR). A decarboxylase inhibitor NSD-1015 was included in the perfusate, which enabled the simultaneous measurement of 3,4-dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) as an index of the in vivo hydroxylation level of tyrosine and tryptophan. When rats were exposed to 1 h of ICSS at the medial forebrain bundle (MFB), their extracellular levels of DOPA significantly increased in the mPFC, NAC and STR, but with a different magnitude and time course. The same stimulation produced a delayed increase in extracellular 5-HTP, compared to DOPA, in these brain regions. The profile of 5-HTP response demonstrated no apparent difference among the regions. These findings indicate that ICSS of the MFB can increase differentially the in vivo hydroxylation of tyrosine but similarly the in vivo hydroxylation of tryptophan in the mPFC, NAC and STR.
Collapse
Affiliation(s)
- D Nakahara
- Department of Psychology, Hamamatsu University School of Medicine, 3600 Handa-cho, Hamamatsu, Japan.
| | | | | | | |
Collapse
|
34
|
Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens. J Neurosci 2000. [PMID: 10594085 DOI: 10.1523/jneurosci.19-24-11049.1999] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Afferents to the prefrontal cortex (PFC) from dopamine neurons in the ventral tegmental area have been implicated in working memory processes and in the pathogenesis of schizophrenia. Previous anatomical investigations have demonstrated that dopamine terminals synapse on dendritic spines and shafts of pyramidal cells in the PFC. Moreover, neurochemical and physiological studies suggest that dopamine modulates the activity of PFC neurons that project to the nucleus accumbens. However, whether this modulation involves direct synaptic input to cortico-accumbens projection neurons has not been determined. To address this question, retrograde transport of an attenuated strain of pseudorabies virus (PRV) from the nucleus accumbens was combined with immunoperoxidase labeling of tyrosine hydroxylase (TH) to identify dopamine terminals in the PFC. At survival times <48 hr, extensive dendritic distribution of immunogold labeling for PRV was observed in cortico-accumbens neurons. However, evidence consistent with trans-synaptic passage of PRV within this timeframe was observed only rarely. When examined at the electron microscopic level, immunogold labeling for PRV was localized to neuronal somata, proximal and distal dendrites, and dendritic spines. Some of these dendritic processes received symmetric synaptic input from TH-immunoreactive terminals. These data represent the first demonstration of dopamine synaptic contacts onto an identified population of pyramidal cells in the PFC. The findings have important implications for understanding how dopamine modulates cortical outflow to limbic regions in normal brain and pathological states such as schizophrenia.
Collapse
|
35
|
Venator DK, Lewis DA, Finlay JM. Effects of partial dopamine loss in the medial prefrontal cortex on local baseline and stress-evoked extracellular dopamine concentrations. Neuroscience 1999; 93:497-505. [PMID: 10465433 DOI: 10.1016/s0306-4522(99)00131-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A reduction in the activity of mesoprefrontal dopamine neurons has been suggested to play a role in the pathophysiology of schizophrenia. Indeed, a recent study indicates that the density of tyrosine hydroxylase-immunoreactive axons is decreased in the deep layers of the prefrontal cortex of schizophrenic subjects [Akil et al., (1999) Am. J. Psychiatry, in press]. To determine the impact of partial loss of prefrontal dopamine axons on the activity of the remaining dopamine axons, we examined the effects of 6-hydroxydopamine lesions of the medial prefrontal cortex on local extracellular dopamine concentrations in the rat. In rats sustaining an average 63% loss of tyrosine hydroxylase-immunoreactive axons and no loss of dopamine-beta-hydroxylase-immunoreactive axons in the medial prefrontal cortex (smaller lesion), the baseline extracellular dopamine concentration was reduced by 63+/-9%. Thirty minutes of tail pressure increased extracellular dopamine in the medial prefrontal cortex by a maximum of 1.28+/-0.28 pg in control rats, but only 0.74+/-0.18 pg in rats with smaller lesions. In rats sustaining an average 80% loss of tyrosine hydroxylase-immunoreactive axons and 25% loss of dopamine-beta-hydroxylase-immunoreactive axons (larger lesion), the baseline extracellular dopamine concentration in the medial prefrontal cortex did not differ from control values. In addition, the maximum stress-evoked increase in dopamine concentration was also similar to that observed in control rats (+1.04+/-0.28 pg). The stress-induced increase in extracellular dopamine in the medial prefrontal cortex of rats sustaining smaller and larger lesions may occur in the absence of a corresponding increase in dopamine synthesis in mesoprefrontal dopamine neurons. This proposal is supported by our observation that stress did not alter tissue or extracellular 3,4-dihydroxyphenylacetic acid concentrations in the medial prefrontal cortex of lesioned rats. These data suggest that moderate loss of tyrosine hydroxylase-immunoreactive axons in the prefrontal cortex is sufficient to reduce extracellular dopamine concentrations in this brain region. In addition, a further reduction in tyrosine hydroxylase-immunoreactive axons in the medial prefrontal cortex, combined with the loss of dopamine-beta-hydroxylase-immunoreactive axons, results in normal extracellular dopamine concentrations in this area. We propose that the latter effect is due to increased neurochemical activity of remaining mesoprefrontal dopamine axons and/or decreased clearance of extracellular dopamine due to loss of both dopamine and norepinephrine transporters.
Collapse
Affiliation(s)
- D K Venator
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
36
|
Nakahara D, Nakamura M. Differential effect of immobilization stress on in vivo synthesis rate of monoamines in medial prefrontal cortex and nucleus accumbens of conscious rats. Synapse 1999; 32:238-42. [PMID: 10340633 DOI: 10.1002/(sici)1098-2396(19990601)32:3<238::aid-syn9>3.0.co;2-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have used microdialysis to measure the in vivo hydroxylation level of tyrosine and tryptophan in the medial prefrontal cortex and nucleus accumbens of conscious rats that were subjected to immobilization. The brain was perfused with an inhibitor of aromatic L-amino acid decarboxylase, 3-hydroxybenzylhydrazine, and the amount of 3,4-dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) accumulating in the dialysate was measured as an index of the in vivo hydroxylation rate of tyrosine and tryptophan. One hour of immobilization caused a significant increase in extracellular DOPAin the medial prefrontal cortex but not nucleus accumbens. The same manipulation produced a significant and more prolonged elevation in extracellular 5-HTP in the nucleus accumbens as well as medial prefrontal cortex. The observed profile of stress-induced 5-HTP response was comparable in two brain regions. The results suggest that in vivo catecholamine synthesis is heterogenous, whereas in vivo serotonin synthesis is homogenous, with respect to responsiveness to stress in the medial prefrontal cortex and nucleus accumbens.
Collapse
Affiliation(s)
- D Nakahara
- Department of Psychology, Hamamatsu University School of Medicine, Japan.
| | | |
Collapse
|
37
|
Shen PJ, Gundlach AL. Differential spatiotemporal alterations in adrenoceptor mRNAs and binding sites in cerebral cortex following spreading depression: selective and prolonged up-regulation of alpha1B-adrenoceptors. Exp Neurol 1998; 154:612-27. [PMID: 9878196 DOI: 10.1006/exnr.1998.6915] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Noradrenaline, an important transmitter in the CNS, is involved in cerebral plasticity and functional recovery after injury. Experimental brain injury, including KCl application onto the brain surface, induces a slow-moving cortical depolarization/depression wave called cortical spreading depression (CSD). Interestingly, CSD does not produce neuronal damage but can protect cortical neurons against subsequent neurotoxic insults, although the mechanisms involved are unknown. This study examined the status of alpha- and beta-adrenoceptors (ARs) in cerebral cortex following CSD. Anesthetized rats had unilateral CSD induced by a 10-min topical application of KCl to the frontoparietal cortex and were killed at various times thereafter. Levels of alpha1-, alpha2-, beta1-, and beta2-AR mRNA and binding were examined using in situ hybridization histochemistry and radioligand autoradiography. Levels of alpha1b-AR mRNA in the affected neocortex were significantly increased by 20-40% at 1, 2, and 7 days (P </= 0.01) compared with contralateral levels, but were not significantly above control values at 2 and 4 weeks after CSD induction. Cortical alpha1B-AR binding sites were also increased by 45-65% 1 and 2 weeks (P </= 0.01) after CSD in a similar, but delayed, profile to alpha1b-AR mRNA. CSD rapidly increased beta1-AR mRNA by 45% at 1 h (P </= 0.01) and produced a delayed decrease of 25% in alpha2a-AR mRNA at 2 days and 1 week (P </= 0.05), but had no effect on corresponding levels of binding sites. In contrast, CSD had no effect on the remaining AR-subtype mRNAs or binding levels in neocortex under identical conditions. These results reveal a long-term up-regulation of alpha1B-ARs induced by an acute cortical stimulation/depression. Subtype-selective responses of ARs to CSD reflect an important differential regulation of expression of each receptor in vivo and suggest that alpha1B-ARs are particularly likely to be involved in cortical adaptive responses to physical injury at both local and distant locations.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, 3084, Australia
| | | |
Collapse
|
38
|
Swiergiel AH, Palamarchouk VS, Smagin G, Dunn AJ. Cortical catecholamine secretion following intravenous nitroprusside infusion: a voltammetric study. Brain Res Bull 1998; 45:125-9. [PMID: 9443827 DOI: 10.1016/s0361-9230(97)00317-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intravenous administration of sodium nitroprusside (NP) decreases blood pressure and activates noradrenergic neurons in the locus coeruleus (LC). Microdialysis studies have shown that NP infusion is accompanied by increased extracellular concentrations of norepinephrine (NE) in the medial prefrontal cortex. The present study used in vivo voltammetry to obtain a finer temporal analysis of the NP-induced changes in the extracellular concentrations of catecholamine-like compounds in the LC terminal fields in the rat medial prefrontal cortex. Intravenous infusion of rats with NP caused a rapid decrease in blood pressure that lasted for the duration of the infusion but rapidly reversed when the infusion was terminated. After a delay of between about 2 and 8 min (mean 5 min), there was an increase in extracellular concentrations of a NE-like substance. Presumed cortical release of NE lasted for several minutes but had almost returned to baseline by the time the NP infusion was terminated at 15 min. In many cases, the first peak was followed by a second one, usually of smaller amplitude but more prolonged than the first one. There was no clear response to the cessation of infusion of NP. The time course of the initial response is comparable to the previously reported electrophysiological response of LC-NE neurons to NP. In rats treated with DSP-4 to deplete cortical NE, blood pressure was reduced as in untreated rats, but no voltammetric response to NP infusion was observed. These results suggest that activation of the NE-LC neurons by NP results in a delayed synaptic release of NE in the cerebral cortex which attenuates within several minutes.
Collapse
Affiliation(s)
- A H Swiergiel
- Department of Pharmacology and Therapeutics, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | |
Collapse
|
39
|
King D, Finlay JM. Loss of dopamine terminals in the medial prefrontal cortex increased the ratio of DOPAC to DA in tissue of the nucleus accumbens shell: role of stress. Brain Res 1997; 767:192-200. [PMID: 9367247 DOI: 10.1016/s0006-8993(97)00534-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined whether dopamine depletion in the medial prefrontal cortex of the rat differentially affects basal and evoked dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) content in the subareas of the neostriatum and nucleus accumbens. Loss of approximately 80% of tissue dopamine content in the medial prefrontal cortex did not significantly alter basal tissue concentrations of dopamine or DOPAC or the DOPAC:dopamine ratio in either the nucleus accumbens core or shell or the medial or lateral neostriatum. However, tail pressure stress significantly increased the DOPAC:dopamine ratio in the nucleus accumbens shell of lesioned rats. Because dorsal and ventral areas of the medial prefrontal cortex preferentially innervate the core and shell, respectively, we sought to determine whether the selective effect of lesions on dopamine terminals in the shell of the nucleus accumbens are paralleled by greater dopamine loss in the ventral medial prefrontal cortex. 6-Hydroxydopamine decreased tissue concentrations of dopamine in both the dorsal (-74%) and ventral medial prefrontal cortex (-68%). In lesioned rats, few tyrosine hydroxylase-immunoreactive fibers remained in the dorsal medial prefrontal cortex whereas a dense innervation remained in the ventralmost area. The present data suggest that the influence of mesocortical dopamine neurons on the dopamine projection to the nucleus accumbens shell is expressed only under conditions of stress. Furthermore, lesion-induced alterations in dopamine neurons projecting to the nucleus accumbens shell are not due to a more extensive loss of dopamine terminals in the ventral than in the dorsal medial prefrontal cortex.
Collapse
Affiliation(s)
- D King
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
40
|
Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 1997; 17:894-904. [PMID: 9290587 DOI: 10.1097/00004647-199708000-00008] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Noradrenaline (NA) has been shown to influence astrocytic and vascular functions related to brain homeostasis, metabolism, local blood flow, and blood-brain barrier permeability. In the current study, we investigate the possible associations that exist between NA-immunoreactive nerve terminals and astrocytes and intraparenchymal blood vessels in the rat frontoparietal cortex, both at the light and electron microscopic levels. As a second step, we sought to determine whether the NA innervation around intracortical microvessels arises from peripheral or central structures by means of injections of N-(2-chloroethyl-N-ethyl-2-bromobenzylamine) (DSP-4), a neurotoxin that specifically destroys NA neurons from the locus ceruleus. At the light microscopic level, 6.8% of all NA-immunoreactive nerve terminals in the frontoparietal cortex were associated with vascular walls, and this perivascular noradrenergic input, together with that of the cerebral cortex, almost completely disappeared after DSP-4 administration. When analyzed at the ultrastructural level in control rats, NA terminals in the neuropil had a mean surface area of 0.53 +/- 0.03 micron2 and were rarely junctional (synaptic incidence close to 7%). Perivascular terminals (located within a 3-micron perimeter from the vessel basal lamina) counted at the electron microscopic level represented 8.8% of the total NA terminals in the cortical tissue. They were smaller (0.29 +/- 0.01 micron2, P < 0.05) than their neuronal counterparts and were located, on average, 1.34 +/- 0.08 microns away from intracortical blood vessels, which consisted mostly of capillaries (65%). None of the perivascular NA terminals engaged in junctional contacts with surrounding neuronal or vascular elements. The primary targets of both neuronal and perivascular NA nerve terminals consisted of dendrites, nerve terminals, astrocytes, and axons, whereas in the immediate vicinity (0.25 micron or less) of the microvessels, astrocytic processes represented the major target. The results of the current study show that penetrating arteries and intracortical microvessels receive a central NA input, albeit parasynaptic in its interaction, originating from the locus ceruleus. Particularly, they point to frequent appositions between both neuronal and perivascular NA terminals and astroglial cells and their processes. Such NA neuronal-glial and neuronal-glial-vascular associations could be of significance in the regulation of local metabolic and vascular functions under normal and pathologic situations.
Collapse
Affiliation(s)
- Z Cohen
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Québec, Canada
| | | | | |
Collapse
|
41
|
Abstract
The piriform cortex (PCx) is a phylogenetically old brain structure which presents characteristics of a content-addressable memory. Taking into account its particular anatomo-functional organization, we hypothesized that this cortex could behave rather as an assembly of different functional units than as a functionally homogeneous structure. This hypothesis was tested by using both anatomical and functional approaches. Immunohistological and tracing experiments demonstrated that both the connections of the PCx with the higher nervous centres, and its monoaminergic and cholinergic modulatory afferents exhibited a heterogeneous distribution. Then, optical monitoring of its neuronal activity with a voltage-sensitive dye pointed out that the PCx is a functionally heterogeneous structure. Electrical stimulations of the olfactory bulb showed that the inhibitory processes which control the cortical responsiveness were not identical in all the PCx area. Two different functional areas at least could be distinguished: in the ventromedial PCx, the afferent activity is privileged since the level of inhibition of disynaptic activation remained large during repetitive stimuli. Contrarily, in the posterior PCx, the disynaptic activity remained unchanged in response to successive stimulations and the responses of neighbouring sites were statistically more synchronized than in its anterior part. Moreover, a late depolarization wave was significantly larger in the posterior PCx. These data are in good agreement with the results provided by computational models of the PCx. In the future, theoretical and experimental investigations of this cortex will be useful for understanding olfactory information processing and as a model of brain functioning at the neocortical level as well.
Collapse
Affiliation(s)
- P Litaudon
- Laboratoire de Neurosciences et Systèmes Sensoriels, CNRS, Université Claude Bernard Lyon I, Villeurbanne, France
| | | | | |
Collapse
|
42
|
Smiałowska M, Obuchowicz E, Turchan J, Herman ZS, Przewłocki R. Clonidine administration increases neuropeptide Y immunoreactivity and neuropeptide Y mRNA in the rat cerebral cortex neurons. Neuropeptides 1997; 31:203-7. [PMID: 9243515 DOI: 10.1016/s0143-4179(97)90049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of alpha 2 adrenoceptor stimulation on neuropeptide Y (NPY) and NPYmRNA expression was studied in the rat cerebral cortex. For receptor stimulation clonidine was used in a dose of 50 micrograms/kg s.c., 3 times at every 8 h; brains were studied 30-40 min after the last dose using radioimmunoassay (RIA), immunocytochemistry and in situ hybridization methods. The RIA of NPY did not show any significant changes in the NPY immunoreactivity (IR) level in the whole cortex, whereas the immunohistochemical analysis demonstrated an increase in the number of NPY-IR neurons in ventral cortical regions, especially in external cortical layers. In situ hybridization histochemistry of NPYmRNA also performed in ventral cortical sections showed that clonidine increased NPY synthesis in some cortical neurons. The obtained results indicate that the alpha 2 adrenoceptor stimulation by clonidine increases the NPY content and synthesis in rat cortical neurons.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | |
Collapse
|
43
|
Micheva KD, Beaulieu C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 1996; 373:340-54. [PMID: 8889932 DOI: 10.1002/(sici)1096-9861(19960923)373:3<340::aid-cne3>3.0.co;2-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The postnatal establishment of cortical connectivity was studied by estimating the number (numerical density, synapse-to-neuron ratio, and total number) of the overall synaptic population and its distribution into gamma-aminobutyric acid (GABA)-immunopositive and GABA-immunonegative synaptic contacts in the developing rat somatosensory cortex. These numerical data were obtained using the unbiased disector method in combination with GABA postembedding immunocytochemistry. The numerical density of both synaptic populations was low in the early postnatal period (postnatal days 5 and 10, P5, P10) after which it abruptly increased between P10 and P15 to approach adult values. However, since cortical volume continues to increase after this age, the number of synapses per neuron and the total number of synapses reached adult values only by P30. There was no evidence of overproduction of either GABA or non-GABA synapses. Direct comparison between the two synaptic populations revealed a similar developmental pattern with the exception of the period around P20 when the production of GABA synapses slowed down. Thus, while the formation of non-GABA synapses proceeded in a continuous manner throughout the first month of life, GABA synapse production was accomplished in two consecutive waves. We suggest that the second delayed wave of GABA synapse formation is related to the great developmental plasticity of the cortical inhibitory system.
Collapse
Affiliation(s)
- K D Micheva
- Département de pathologie, Université de Montréal, Canada
| | | |
Collapse
|
44
|
Micheva KD, Beaulieu C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 1996. [DOI: 10.1002/(sici)1096-9861(19960923)373:3%3c340::aid-cne3%3e3.0.co;2-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
45
|
Datiche F, Cattarelli M. Catecholamine innervation of the piriform cortex: a tracing and immunohistochemical study in the rat. Brain Res 1996; 710:69-78. [PMID: 8963680 DOI: 10.1016/0006-8993(95)01279-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to determine the origin of the catecholamine innervation of the rat piriform cortex (PC), we combined retrograde transport of the B subunit of the cholera toxin (CTb) with tyrosine hydroxylase (TH) immunohistochemistry. A substantial number of CTb retrogradely labeled cells was found in the parabrachial pigmented, paranigral and interfascicular nuclei of the ventral tegmental area and the dorsal part of the locus coeruleus, whereas nearly no labeling was noted in the substantia nigra. Following TH immunohistochemistry on the same sections, most if not all of the CTb labeled cells were also TH immunoreactive. Occasional double-labeled cells were also observed in the anterior part of the raphe dorsal nucleus. As visualized with dopamine beta-hydroxylase, dopamine or TH immunohistochemistry, the noradrenaline fibers were homogeneously distributed whereas the dopamine fibers showed rostro-caudal and latero-medial differences. The distribution of TH fibers overlapped both patterns. Our report suggests that the heterogeneous distribution of the DA fibers could support a differential centrifugal modulation of the olfactory information processing throughout the PC.
Collapse
Affiliation(s)
- F Datiche
- Physiologie Neurosensorielle, Université Claude Bernard, Lyon I CNRS URA 180, Villeurbanne, France.
| | | |
Collapse
|
46
|
Micheva KD, Beaulieu C. An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc Natl Acad Sci U S A 1995; 92:11834-8. [PMID: 8524859 PMCID: PMC40497 DOI: 10.1073/pnas.92.25.11834] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to examine the influence of sensory experience on the synaptic circuitry of the cortex. For this purpose, the quantitative distribution of the overall and of the gamma-aminobutyric acid (GABA) population of synaptic contacts was investigated in each layer of the somatosensory barrel field cortex of rats which were sensory deprived from birth by continuously removing rows of whiskers. Whereas there were no statistically significant changes in the quantitative distribution of the overall synaptic population, the number and proportion of GABA-immunopositive synaptic contacts were profoundly altered in layer IV of the somatosensory cortex of sensory-deprived animals. These changes were attributable to a specific loss of as many as two-thirds of the GABA contacts targeting dendritic spines. Thus, synaptic contacts made by GABA terminals in cortical layer IV and, in particular, those targeting dendritic spines represent a structural substrate of experience-dependent plasticity. Furthermore, since in this model of cortical plasticity the neuronal receptive-field properties are known to be affected, we propose that the inhibitory control of dendritic spines is essential for the elaboration of these functional properties.
Collapse
Affiliation(s)
- K D Micheva
- Départment de Pathologie, Université de Montréal, PQ, Canada
| | | |
Collapse
|
47
|
Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 1995; 64:619-28. [PMID: 7715775 DOI: 10.1016/0306-4522(94)00331-x] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have examined the effects of diazepam on the stress-induced increase in extracellular dopamine and norepinephrine in the medial prefrontal cortex using in vivo microdialysis. In naive rats, acute tail pressure (30 min) elicited an increase in the concentrations of dopamine and norepinephrine in extracellular fluid of medial prefrontal cortex (+54 and +50%, respectively). Diazepam (2.5 mg/kg, i.p.) decreased the basal concentration of extracellular dopamine and norepinephrine. Diazepam also attenuated the stress-evoked increase in the absolute concentrations of extracellular dopamine (+17%), but did not alter the stress-induced increase in norepinephrine (+41%). However, when the drug-induced decrease in basal dopamine and norepinephrine concentration was taken into account, the stress-induced net increase in dopamine above the new baseline was equivalent to that obtained in vehicle pretreated rats, whereas the net increase in norepinephrine was almost twice that obtained in control subjects. In rats previously exposed to chronic cold (three to four weeks at 5 degrees C), tail pressure again produced an increase in the concentrations of dopamine and norepinephrine in the medial prefrontal cortex (+42% and +92%, respectively). However, in these chronically stressed rats, diazepam no longer decreased basal dopamine or norepinephrine in extracellular fluid, nor did it affect the stress-induced increase in the concentrations of these catecholamines. These data indicate that diazepam has complex effects on the extracellular concentrations of dopamine and norepinephrine which vary depending upon whether the rat is undisturbed or stressed during the period of drug exposure as well as the rat's prior history of exposure to stress. Moreover, these data raise questions regarding the role of catecholamines in the mechanism by which diazepam exerts its anxiolytic properties.
Collapse
Affiliation(s)
- J M Finlay
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
48
|
Abstract
The concept of non-synaptic diffusion neurotransmission (NDN) is reviewed. Evidence is presented that monoamine neurotransmission is largely by NDN. The role of NDN in pain and sleep is described and its relevance to migraine research is discussed.
Collapse
Affiliation(s)
- P Bach-y-Rita
- Department of Rehabilitation Medicine, University of Wisconsin Medical School, Madison
| |
Collapse
|
49
|
Abstract
The synapse has dominated the conceptual model of neurotransmission; other mechanisms, such as neuromodulation, have been considered to support and complement synaptic transmission. In this commentary, the conceptual framework considers synaptic transmission as one of several mechanisms of neurotransmission. One of these is nonsynaptic diffusion neurotransmission (NDN), which includes both the diffusion of neurotransmitters and other neuroactive substances through the extracellular fluid to reach extrasynaptic receptors, and the diffusion of substances such as nitric oxide through both the extracellular fluid and cellular membranes to act within the cell. The possible roles of NDN in mass, sustained functions such as mood, sleep and brain "tone", as well as in various other functions, such as in long term potentiation, at the retinal, lateral geniculate nucleus and visual cortex levels of the visual system, in recovery from brain damage and in neuropharmacology, are explored.
Collapse
Affiliation(s)
- P Bach-y-Rita
- Department of Rehabilitation Medicine, University of Wisconsin-Madison 53706
| |
Collapse
|
50
|
Garris PA, Collins LB, Jones SR, Wightman RM. Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J Neurochem 1993; 61:637-47. [PMID: 8336146 DOI: 10.1111/j.1471-4159.1993.tb02168.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.
Collapse
Affiliation(s)
- P A Garris
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290
| | | | | | | |
Collapse
|