1
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
2
|
Paudel S, Sindelar R, Saha M. Calcium Signaling in Vertebrate Development and Its Role in Disease. Int J Mol Sci 2018; 19:E3390. [PMID: 30380695 PMCID: PMC6274931 DOI: 10.3390/ijms19113390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Sudip Paudel
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Regan Sindelar
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Margaret Saha
- College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
3
|
Abstract
Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place. Neurotransmitter switching produces up or down reversals of behavior. It is also observed in response to disease. These findings raise the possibility that neurotransmitter switching contributes to depression, schizophrenia, and other illnesses. Many early discoveries of the single gain or loss of a neurotransmitter may have been harbingers of neurotransmitter switching.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0357;
| |
Collapse
|
4
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Forostyak O, Romanyuk N, Verkhratsky A, Sykova E, Dayanithi G. Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev 2013; 22:1506-21. [PMID: 23294113 PMCID: PMC3653370 DOI: 10.1089/scd.2012.0624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023] Open
Abstract
Human embryonic stem cell-derived neural precursors (hESC NPs) are considered to be a promising tool for cell-based therapy in central nervous system injuries and neurodegenerative diseases. The Ca(2+) ion is an important intracellular messenger essential for the regulation of various cellular functions. We investigated the role and physiology of Ca(2+) signaling to characterize the functional properties of CCTL14 hESC NPs during long-term maintenance in culture (in vitro). We analyzed changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]i) evoked by high K(+), adenosine-5'-triphosphate (ATP), glutamate, γ-aminobutyric acid (GABA), and caffeine in correlation with the expression of various neuronal markers in different passages (P6 through P10) during the course of hESC differentiation. We found that only differentiated NPs from P7 exhibited significant and specific [Ca(2+)]i responses to various stimuli. About 31% of neuronal-like P7 NPs exhibited spontaneous [Ca(2+)]i oscillations. Pharmacological and immunocytochemical assays revealed that P7 NPs express L- and P/Q-type Ca(2+) channels, P2X2, P2X3, P2X7, and P2Y purinoreceptors, glutamate receptors, and ryanodine (RyR1 and RyR3) receptors. The ATP- and glutamate-induced [Ca(2+)]i responses were concentration-dependent. Higher glutamate concentrations (over 100 μM) caused cell death. Responses to ATP were observed in the presence or in the absence of extracellular Ca(2+). These results emphasize the notion that with time in culture, these cells attain a transient period of operative Ca(2+) signaling that is predictive of their ability to act as stem elements.
Collapse
Affiliation(s)
- Oksana Forostyak
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alexei Verkhratsky
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience, Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Govindan Dayanithi
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institut National de la Santé et de la Recherche Médicale, Unité de recherche U710, Université Montpellier 2, Montpellier; and Ecole Pratique des Hautes Etudes, Paris, France
| |
Collapse
|
6
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
7
|
Dulcis D, Spitzer NC. Reserve pool neuron transmitter respecification: Novel neuroplasticity. Dev Neurobiol 2012; 72:465-74. [PMID: 21595049 DOI: 10.1002/dneu.20920] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The identity of the neurotransmitters expressed by neurons has been thought to be fixed and immutable, but recent studies demonstrate that changes in electrical activity can rapidly and reversibly reconfigure the transmitters and corresponding transmitter receptors that neurons express. Induction of transmitter expression can be achieved by selective activation of afferents recruited by a physiological range of sensory input. Strikingly, neurons acquiring an additional transmitter project to appropriate targets prior to transmitter respecification in some cases, indicating the presence of reserve pools of neurons that can boost circuit function. We discuss the evidence for such reserve pools, their likely locations and ways to test for their existence, and the potential clinical value of such circuit-specific neurotransmitter respecification for treatments of neurological disorders.
Collapse
Affiliation(s)
- Davide Dulcis
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California-San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
8
|
Joven A, Morona R, Moreno N, González A. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 2012; 218:969-1003. [PMID: 22843286 DOI: 10.1007/s00429-012-0442-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Collapse
Affiliation(s)
- Alberto Joven
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
For many years it has been assumed that the identity of the transmitters expressed by neurons is stable and unchanging. Recent work, however, shows that electrical activity can respecify neurotransmitter expression during development and in the mature nervous system, and an understanding is emerging of the molecular mechanisms underlying activity-dependent transmitter respecification. Changes in postsynaptic neurotransmitter receptor expression accompany and match changes in transmitter specification, thus enabling synaptic transmission. The functional roles of neurotransmitter respecification are beginning to be understood and appear to involve homeostatic synaptic regulation, which in turn influences behaviour. Activation of this novel form of plasticity by sensorimotor stimuli may provide clinical benefits.
Collapse
|
10
|
Suwabe T, Mistretta CM, Krull C, Bradley RM. Pre- and postnatal differences in membrane, action potential, and ion channel properties of rostral nucleus of the solitary tract neurons. J Neurophysiol 2011; 106:2709-19. [PMID: 21865434 DOI: 10.1152/jn.00178.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is little known about the prenatal development of the rostral nucleus of the solitary tract (rNST) neurons in rodents or the factors that influence circuit formation. With morphological and electrophysiological techniques in vitro, we investigated differences in the biophysical properties of rNST neurons in pre- and postnatal rats from embryonic day 14 (E14) through postnatal day 20. Developmental changes in passive membrane and action potential (AP) properties and the emergence and maturation of ion channels important in neuron function were characterized. Morphological maturation of rNST neurons parallels changes in passive membrane properties. Mean soma size, dendritic branch points, neurite endings, and neurite length all increase prenatally. whereas neuron resting membrane potential, input resistance, and time constant decrease. Dendritic spines, on the other hand, develop after birth. AP discharge patterns alter in pre- and postnatal stages. At E14, neurons generated a single TTX-sensitive, voltage-gated Na(+) AP when depolarized; a higher discharge rate appeared at older stages. AP amplitude, half-width, and rise and fall times all change during development. Responses to current injection revealed a number of voltage-gated conductances in embryonic rNST, including a hyperpolarization-activated inward current and a low-threshold Ca(2+) current that initiated Ca(2+) spikes. A hyperpolarization-activated, transient outward potassium current was also present in the developing neurons. Although the properties of these channels change during development, they are present before synapses form and therefore, can contribute to initial establishment of neural circuits, as well as to the changing electrophysiological properties in developing rNST neurons.
Collapse
Affiliation(s)
- Takeshi Suwabe
- Dept. of Biologic and Materials Sciences, School of Dentistry, Univ. of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
11
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 910] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
12
|
Calderon DP, Leverkova N, Peinado A. Gq/11-induced and spontaneous waves of coordinated network activation in developing frontal cortex. J Neurosci 2005; 25:1737-49. [PMID: 15716410 PMCID: PMC6725933 DOI: 10.1523/jneurosci.2765-04.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated episodes of spontaneous large-scale neuronal bursting and calcium influx in the developing brain can potentially affect such fundamental processes as circuit formation and gene expression. Between postnatal day 3 (P3) and P7, the immature cortex can express one such form of activation whereby a wave of neuronal activity propagates through cortical networks, generating massive calcium influx. We previously showed that this activity could be triggered by brief stimulation of muscarinic receptors. Here, we show, by monitoring large cortical areas at low magnification, that although all areas respond to muscarinic agonists to some extent, only some areas are likely to generate the coordinated wave-like activation. The waves can be triggered repeatedly in frontal areas where, as we also show, waves occur spontaneously at a low frequency. In parietal and occipital areas, no such waves are seen. This selectivity may be related in part to differences in the cortical distribution of dopaminergic signaling, because we find that activation of dopamine receptors enables the response. Because M1 muscarinic receptors are typically coupled with G-alpha(q)/11, we investigated whether other receptors known to couple with this G-protein (group I glutamate metabotropic receptors, neurotensin type 1) could similarly elicit wave-like activation in responsive cortical areas. Our results suggest that multiple neurotransmitter systems can enable this form of activation in the frontal cortex. The findings suggest that a poorly recognized, developmentally regulated form of strong network activation found predominantly in the frontal cortex could potentially exert a profound influence on brain development.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Action Potentials
- Animals
- Benzazepines/pharmacology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Dopamine/physiology
- Frontal Lobe/growth & development
- Frontal Lobe/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11/drug effects
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Glutamic Acid/pharmacology
- Indans/pharmacology
- Muscarine/pharmacology
- Nerve Tissue Proteins/physiology
- Neurotensin/pharmacology
- Occipital Lobe/growth & development
- Parietal Lobe/growth & development
- Peptide Fragments/pharmacology
- Phenanthridines/pharmacology
- Picrotoxin/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Wistar
- Receptor, Metabotropic Glutamate 5
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/physiology
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/physiology
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
Collapse
Affiliation(s)
- D Paola Calderon
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
13
|
Furlan F, Guasti L, Avossa D, Becchetti A, Cilia E, Ballerini L, Arcangeli A. Interneurons transiently express the ERG K+ channels during development of mouse spinal networks in vitro. Neuroscience 2005; 135:1179-92. [PMID: 16165280 DOI: 10.1016/j.neuroscience.2005.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/06/2005] [Accepted: 06/16/2005] [Indexed: 11/15/2022]
Abstract
During spinal cord maturation neuronal excitability gradually differentiates to meet different functional demands. Spontaneous activity, appearing early during spinal development, is regulated by the expression pattern of ion channels in individual neurons. While emerging excitability of embryonic motoneurons has been widely investigated, little is known about that of spinal interneurons. Voltage-dependent K+ channels are a heterogeneous class of ion channels that accomplish several functions. Recently voltage-dependent K+ channels encoded by erg subfamily genes (ERG channels) were shown to modulate excitability in immature neurons of mouse and quail. We investigated the expression of ERG channels in immature spinal interneurons, using organotypic embryonic cultures of mouse spinal cord after 1 and 2 weeks of development in vitro. We report here that all the genes of the erg family known so far (erg1a, erg1b, erg2, erg3) are expressed in embryonic spinal cultures. We demonstrate for the first time that three ERG proteins (ERG1A, ERG2 and ERG3) are co-expressed in the same neuronal population, and display a spatio-temporal distribution in the spinal slices. ERG immuno-positive cells, representing mainly GABAergic interneurons, were present in large numbers at early stages of development, while declining later, with a ventral to dorsal gradient. Patch clamp recordings confirmed these data, showing that ventral interneurons expressed functional ERG currents only transiently. Similar expression of the erg genes was observed at comparable ages in vivo. The role of ERG currents in regulating neuronal excitability during the earliest phases of spinal circuitry development will be examined in future studies.
Collapse
Affiliation(s)
- F Furlan
- Physiology and Pathology Department, Center for Neuroscience B.R.A.I.N., Psychology Faculty, University of Trieste, via Sant'Anastasio 12, 34134, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Jiang M, Swann JW. A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons. Neuroscience 2005; 135:839-50. [PMID: 16154277 DOI: 10.1016/j.neuroscience.2005.06.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/09/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
While inhibitory interneurons are well recognized to play critical roles in the brain, relatively little is know about the molecular events that regulate their growth and differentiation. Calcium ions are thought to be important in neuronal development and L-type voltage gated Ca(+2) channels have been implicated in activity-dependent mechanisms of early-life. However, few studies have examined the role of these channels in the maturation of interneurons. The studies reported here were conducted in hippocampal slice cultures and indicate that the L-type Ca(+2) channel agonists and antagonists accelerate and suppress respectively the growth of parvalbumin-containing interneurons. The effects of channel blockade were reversible suggesting they are not the result of interneuronal cell death. Results from immunoblotting showed that these drugs have similar effects on the expression of the GABA synthetic enzymes, glutamic acid decarboxylase65, glutamic acid decarboxylase67 and the vesicular GABA transporter. This suggests that L-type Ca(+2) channels regulate not only parvalbumin expression but also interneuron development. These effects are likely mediated by actions on the interneurons themselves since the alpha subunits of L-type channels, voltage-gated calcium channel subunit 1.2 and voltage-gated calcium channel subunit 1.3 were found to be highly expressed in neonatal mouse hippocampus and co-localized with parvalbumin in interneurons. Results also showed that while these interneurons can contain either subunit, voltage-gated calcium channel subunit 1.3 was more widely expressed. Taken together results suggest that an important subset of developing interneurons expresses L-type Ca(+2) channels alpha subunits, voltage-gated calcium channel subunit 1.2 and especially voltage-gated calcium channel subunit 1.3 and that these channels likely regulate the development of these interneurons in an activity-dependent manner.
Collapse
Affiliation(s)
- M Jiang
- The Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, 6621 Fannin Street, MC 3-6365, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Andres RH, Ducray AD, Huber AW, Pérez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR. Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 2005; 95:33-45. [PMID: 16045451 DOI: 10.1111/j.1471-4159.2005.03337.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.
Collapse
Affiliation(s)
- R H Andres
- Department of Neurosurgery, University Hospital, Berne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
17
|
Bosch M, Pineda JR, Suñol C, Petriz J, Cattaneo E, Alberch J, Canals JM. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp Neurol 2004; 190:42-58. [PMID: 15473979 DOI: 10.1016/j.expneurol.2004.06.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 06/16/2004] [Accepted: 06/22/2004] [Indexed: 11/22/2022]
Abstract
The implementation of cell replacement therapies for Huntington's disease using multipotent neural stem cells (NSCs) requires the specific differentiation into gamma-aminobutyric acid (GABA) neuronal subtype before transplantation. Here we present an efficient culture procedure that induces stable GABAergic neurons from the immortalized striatal neural stem cell line ST14A. This process requires sequential retinoic acid treatment and KCl depolarization. Initial addition of 10 microM retinoic acid increased cell survival and promoted neuronal differentiation. Subsequent stimulation with 40 mM KCl induced specific differentiation into GABAergic neurons, yielding 74% of total cultured cells. KCl-evoked Ca(2+) influx reduced cell proliferation and nestin expression, and induced neurite outgrowth and GABAergic markers as well as GABA contents, release, and uptake. Characterization of the integration, survival, and phenotype of these predifferentiated GABAergic neurons following transplantation into the adult brain in a model of Huntington's disease revealed long-term survival in quinolinate-lesioned striata. Under these conditions, cells maintained their GABAergic phenotype and elaborated neurite processes with synaptic contacts with endogenous neurons. In conclusion, we have generated a homogeneous population of functional GABAergic neurons from a neural stem cell line, which survive and maintain their acquired fate in vivo. These data may lend support to the possibility of cell replacement therapies for Huntington's disease using neural stem cells.
Collapse
Affiliation(s)
- Miquel Bosch
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
de Lima AD, Opitz T, Voigt T. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity. Eur J Neurosci 2004; 19:2931-43. [PMID: 15182300 DOI: 10.1111/j.0953-816x.2004.03403.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the cerebral cortex of mammals, gamma-aminobutyric acid (GABA)ergic neurons represent 15-25% of all neurons, depending on the species and area being examined. Because converging evidence suggests that activity may play an important role in the neuritic maturation and synaptic function of GABAergic neurons, it is feasible that activity plays a role in the regulation of the proportion of GABAergic neurons. Here we provide direct evidence that early in cortical development activity blockade may deplete the network of a subpopulation of GABA immunoreactive neurons characterized by their small size and late generation in vitro. In a period of time coinciding with the emergence of synchronous network activity, the survival and morphological differentiation of GABAergic neurons was influenced by long-term blockade of synaptic activity. While GABA(A) receptor antagonists had a minor promoting effect on interneuronal survival during the second week in vitro, antagonists of ionotropic glutamate receptors strongly impaired survival and differentiation of immature GABAergic interneurons. Interneuronal loss was more severe when N-methyl-D-aspartate receptors were blocked than after blockade of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)/kainate receptors. The decrease in the density of GABAergic neurons was irreversible, but could be prevented by the simultaneous addition of brain-derived neurotrophic factor (BDNF). These results suggest that there is a narrow time window during neocortical development when glutamatergic activity, and specially NMDA receptor stimulation, is crucial to assure survival and maturation of a subpopulation of late developing GABAergic interneurons.
Collapse
Affiliation(s)
- Ana Dolabela de Lima
- Otto-von-Guericke Universität, Medizinische Fakultät, Institut für Physiologie, 39120 Magdeburg, Germany.
| | | | | |
Collapse
|
19
|
Fitzakerley JL, Schweitzer L. Morphology of neurons cultured from subdivisions of the mouse cochlear nucleus. Cell Tissue Res 2003; 311:145-58. [PMID: 12596035 DOI: 10.1007/s00441-002-0690-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/03/2002] [Indexed: 11/25/2022]
Abstract
This study was designed to characterize the dendritic organization of cochlear nucleus (CN) cells grown in primary cell culture and to assess differences among cultures grown from different regions of CN. Cultures were prepared from postnatal mice and processed using microtubule-associated protein 2 (MAP2) or gamma-aminobutyric acid (GABA) immunohistochemistry. CN neurons were successfully cultured from preparations grown from either the anteroventral subdivision of the nucleus (AVCN), the posterior region [posteroventral (PVCN) and dorsal (DCN) subnuclei], or the whole CN, although the cultured neurons did not exhibit complex dendritic patterns characteristic of CN neurons in vivo. Neurons cultured from the entire nucleus exhibited an increased rate of survival compared to those cultured from either the anterior or posterior regions, although similar types of cells were observed in all preparations. The majority of cultured CN neurons were GABA-positive and had soma areas that were similar to the areas of immature GABAergic neurons measured in CN sections. Small cells (soma areas <or=60 microm(2)) with one to three symmetrically organized dendrites and large non-GABAergic cells (>or=120 microm(2)) were also present in significant numbers. Overall, CN cultures consisted of a heterogeneous population of neurons that had less elaborate dendritic organizations than cells of corresponding size that have been described in adult animals in vivo.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40206, USA.
| | | |
Collapse
|
20
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Spitzer NC. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:73-80. [PMID: 11755785 DOI: 10.1016/s0928-4257(01)00082-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal cord neurons become excitable prior to synapse formation, and generate spontaneous calcium transients that regulate aspects of their differentiation before neuronal networks are established. Calcium spikes, generated by calcium-dependent action potentials and calcium-induced calcium release (CICR), regulate transcription. Growth cone calcium transients, produced by calcium influx through unidentified channels that triggers CICR, control the rate of axon outgrowth in response to environmental cues. Filopodial calcium transients, generated by calcium influx through channels activated by beta1 integrins, signal information about the molecular identity of the substrate and regulate growth cone turning. All three classes of calcium transients appear to use a frequency code to implement their effects. Oscillations of second messengers in embryonic neurons and perhaps more generally in other differentiating cells may behave like a kinetic quilt, demonstrating patchy fluctuations in concentrations that orchestrate the complex processes of development.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section 0357, Division of Biology and Center for Molecular Genetics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA.
| |
Collapse
|
22
|
Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F. Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 2000; 53:635-47. [PMID: 11165799 DOI: 10.1016/s0361-9230(00)00397-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rat is quite immature at birth and a rapid maturation of motor behavior takes place during the first 2 postnatal weeks. Lumbar motoneurons undergo a rapid development during this period. The last week before birth represents the initial stages of motoneuron differentiation, including regulation of the number of cells and the arrival of segmental and first supraspinal afferents. At birth, motoneurons are electrically coupled and receive both appropriate and inappropriate connections from the periphery; the control from supraspinal structures is weak and exerted mainly through polysynaptic connections. During the 1st postnatal week, inappropriate sensori-motor contacts and electrical coupling disappear, the supraspinal control increases gradually and myelin formation is responsible for an increased conduction velocity in both descending and motor axons. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors are transiently overexpressed in the neonatal spinal cord. The contribution of non-NMDA receptors to excitatory amino acid transmission increases with age. Activation of gamma-aminobutyric acid(A) and glycine receptors leads to membrane depolarization in embryonic motoneurons but to hyperpolarization in older motoneurons. The firing properties of motoneurons change with development: they are capable of more repetitive firing at the end of the 1st postnatal week than before birth. However, maturation does not proceed simultaneously in the motor pools innervating antagonistic muscles; for instance, the development of repetitive firing of ankle extensor motoneurons lags behind that of flexor motoneurons. The spontaneous embryonic and neonatal network-driven activity, detected at the levels of motoneurons and primary afferent terminals, may play a role in neuronal maturation and in the formation and refinement of sensorimotor connections.
Collapse
Affiliation(s)
- L Vinay
- CNRS, Développement et Pathologie du Mouvement, Marseille, France.
| | | | | | | | | |
Collapse
|
23
|
Watt SD, Gu X, Smith RD, Spitzer NC. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons. Mol Cell Neurosci 2000; 16:376-87. [PMID: 11085875 DOI: 10.1006/mcne.2000.0871] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous Ca2+ transients expressed prior to synaptogenesis regulate the developmental appearance of GABA in cultured Xenopus spinal neurons. We find that glutamic acid decarboxylase (GAD) immunoreactivity is also Ca(2+)-dependent and parallels the appearance of GABA. We show that xGAD 67 transcripts first appear in the embryonic spinal cord during the period in which these Ca2+ spikes are generated, in a pattern that is temporally and spatially appropriate to account for differentiation of GABAergic interneurons. RNase protection and competitive quantitative RT-PCR demonstrate that transcript levels are approximately threefold greater when neurons are cultured in the presence of extracellular Ca2+ that permits generation of transients than when cultured in its absence. The frequency of spontaneous Ca2+ spikes plays a crucial role in the regulation of transcripts, since reimposition of Ca2+ transients at the frequency generated in cultured neurons rescues normal expression. We conclude that naturally occurring low frequencies of these Ca2+ transients regulate levels of xGAD 67 mRNA in differentiating neurons.
Collapse
Affiliation(s)
- S D Watt
- Department of Biology, University of California at San Diego, La Jolla 92093-0357, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Excitability has long been recognized as the basis for rapid signaling in the mature nervous system, but roles of channels and receptors in controlling slower processes of differentiation have been identified only more recently. Voltage-dependent and transmitter-activated channels are often expressed at early stages of development prior to synaptogenesis, and allow influx of Ca(2+). Here we examine the functions of spontaneous transient elevations of intracellular Ca(2+) in embryonic neurons. These Ca(2+) transients abruptly raise levels of Ca(2+) as much as tenfold, for brief periods, repeatedly, and can be highly localized. Like cloudbursts on the developing landscape, Ca(2+) transients modulate growth and stimulate differentiation, in a frequency-dependent manner, probably by changes in phosphorylation or proteolysis of regulatory and structural proteins in local regions. We review the mechanisms by which Ca(2+) transients are generated and their effects in regulating motility via the cytoskeleton and differentiation via transcription.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology and Center for Molecular Genetics, UCSD, La Jolla, California 92093-0357, USA.
| | | | | | | |
Collapse
|
25
|
Ceranik K, Zhao S, Frotscher M. Development of the entorhino-hippocampal projection: guidance by Cajal-Retzius cell axons. Ann N Y Acad Sci 2000; 911:43-54. [PMID: 10911866 DOI: 10.1111/j.1749-6632.2000.tb06718.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The entorhinal cortex gives rise to a massive projection to the hippocampus and fascia dentata. In the rat, this projection forms early in development with first entorhinal axons reaching the hippocampus around embryonic day (E) 17. From the very beginning, the entorhinal axons recognize their appropriate termination zones in the hippocampus proper and fascia dentata, i.e., stratum lacunosum-moleculare and the outer molecular layer of the dentate. This is remarkable, because at the time of entorhinal fiber ingrowth, the definitive target cells of entorhinal axons, pyramidal cells and granule cells, are not yet fully developed, and the majority of their distal dendritic tips have not yet reached these layers. This raises the question as to the cellular and molecular signals guiding the entorhinal axons to and keeping them in their target layers. Here we hypothesize that early generated Cajal-Retzius (CR) cells located in stratum lacunosum-moleculare and the outer molecular layer of the dentate, and in particular their axons projecting to the entorhinal cortex, provide a template that is used by the entorhinal axons to find their target layers in the hippocampus.
Collapse
Affiliation(s)
- K Ceranik
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
26
|
Carey MB, Matsumoto SG. Calcium transient activity in cultured murine neural crest cells is regulated at the IP(3) receptor. Brain Res 2000; 862:201-10. [PMID: 10799686 DOI: 10.1016/s0006-8993(00)02128-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a previous study we have shown that cultured neural crest cells exhibit spontaneous calcium transients and that these events are required for neurogenesis. In this study, we examine the mechanism that generates these calcium transients. Extracellular Ca(2+) modulates calcium transient activity. Lanthanum (La(3+)), a general calcium channel antagonist and zero extracellular Ca(2+), reduces the percentage of cells exhibiting calcium transients (26.2 and 40. 5%, respectively) and decreases calcium spiking frequency (4.5 to 1. 0 and 2.5 to 1.0 spikes/30 min, respectively). Intracellular calcium stores also contribute to the generation of calcium transients. Depleting the calcium stores of the endoplasmic reticulum (ER) reduces the percentage of active cells (15.7%) and calcium spiking frequency (2.8 to 1.5 spikes/30 min). Ryanodine (100 microM), which blocks calcium release regulated by the ryanodine receptor (RyR), had no effect on calcium transient activity. Blocking inositol 1,4, 5-triphosphate receptor (IP(3)R)-dependent calcium release, with elevated extracellular Mg(2+) (20 mM), abolished calcium transient activity. Mg(2+) did not block caffeine-sensitive calcium release (RyR-dependent) or voltage dependent calcium channels. Mg(2+) also suppressed thimerosal-induced calcium oscillations (IP(3)R-dependent). Small increases in the intracellular calcium concentration ([Ca(2+)](i)), increases the percentage of active cells and the calcium spiking frequency, while larger increases in [Ca(2+)](i) block the transients. Reducing intracellular IP(3) levels reduces the percentage of active cells and the calcium spiking frequency. We conclude that the mechanism for generating spontaneous calcium transients in cultured neural crest cells fits the model for IP(3)R-dependent calcium excitability of the ER.
Collapse
Affiliation(s)
- M B Carey
- Department of Biological Structure and Function, Oregon Health Sciences University, School of Dentistry, 611 SW Campus Drive, Portland, OR, USA
| | | |
Collapse
|
27
|
Abstract
Growth cones generate spontaneous transient elevations of intracellular Ca(2+) that regulate the rate of neurite outgrowth. Here we report that these Ca(2+) waves inhibit neurite extension via the Ca(2+)-dependent phosphatase calcineurin (CN) in Xenopus spinal neurons. Pharmacological blockers of CN (cyclosporin A and deltamethrin) and peptide inhibitors of CN [the Xenopus CN (xCN) autoinhibitory domain and African swine fever virus protein A238L] block the Ca(2+)-dependent reduction of neurite outgrowth in cultured neurons. Time-lapse microscopy of growing neurites demonstrates directly that the reduction in the rate of outgrowth by Ca(2+) transients is blocked by cyclosporin A. In contrast, expression of a constitutively active form of xCN in the absence of waves results in shorter neurite lengths similar to those seen in the presence of waves. The developmental expression pattern of xCN transcripts in vivo coincides temporally with axonal pathfinding by spinal neurons, supporting a role of CN in regulating Ca(2+)-dependent neurite extension in the spinal cord. Ca(2+) wave frequency and Ca(2+)-dependent expression of GABA are not affected by inhibition or activation of CN. However, phosphorylation of the cytoskeletal element GAP-43, which promotes actin polymerization, is reduced by Ca(2+) waves and enhanced by suppression of CN activity. CN ultimately acts on the growth cone actin cytoskeleton, because disrupting actin microfilaments with cytochalasin D or stabilizing them with jasplakinolide negates the effects of suppressing or activating CN. Destabilization or stabilization of microtubules with colcemide or taxol results in Ca(2+)-independent inhibition of neurite outgrowth. The results identify components of the cascade by which Ca(2+) waves act to regulate neurite extension.
Collapse
|
28
|
Mhyre TR, Maine DN, Holliday J. Calcium-induced calcium release from intracellular stores is developmentally regulated in primary cultures of cerebellar granule neurons. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-4695(200001)42:1<134::aid-neu12>3.0.co;2-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Carey MB, Matsumoto SG. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 1999; 215:298-313. [PMID: 10545239 DOI: 10.1006/dbio.1999.9433] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells.
Collapse
Affiliation(s)
- M B Carey
- Department of Biological Structure and Function, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
30
|
Currie DA, Moody WJ. Time course of ion channel development in Xenopus muscle induced in vitro by activin. Dev Biol 1999; 209:40-51. [PMID: 10208741 DOI: 10.1006/dbio.1999.9225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the process of mesoderm specification in Xenopus embryos, cells of the equatorial region are induced to form mesoderm in response to signals from the underlying endodermal cells. One mesodermal cell type resulting from this in vivo induction is skeletal muscle, which has a very specific and tightly regulated course of electrical and morphological development. Previously, electrical development could be analyzed only after neurulation, once myocytes could be morphologically identified. In vitro, activin triggers a cascade of events leading to the development of specific mesodermal tissues, including skeletal muscle; however, the precise role of activin in vivo is less clear. Much is now known about the mechanism and control of activin action, but very little is known about the subsequent time course of differentiation of activin-induced muscle. Such muscle is routinely identified by the presence of a small number of specific markers which, although they accurately confirm the presence of muscle, give little indication of the time course or quantitative aspects of muscle development. One of the most important functional aspects of muscle development is the acquisition of the complex electrical properties which allow it to function normally. Here we assess the ability of activin to drive in vitro the normal highly regulated sequence of electrical development in skeletal muscle. We find that in most, but not all, respects the normal time course of development of voltage-gated ion currents is well reproduced in activin-induced muscle. This characterization strengthens the case for activin as an agent capable of inducing the detailed developmental program of muscle and now allows for analysis of the regulation of electrical development prior to neurulation.
Collapse
Affiliation(s)
- D A Currie
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
31
|
Abstract
In Xenopus spinal neurons, delayed rectifier type voltage-dependent potassium currents (IKv) are developmentally regulated. These currents play a pivotal role in maturation of the action potential from a long-duration calcium-dependent impulse to a brief sodium-dependent one. Although spinal neurons are heterogeneous, IKv undergoes a synchronized and homogeneous developmental functional up-regulation across this diverse population of motor, sensory, and interneurons. This finding suggested that the diverse population of neurons expressed a common potassium channel. Thus, recent efforts have been directed towards cloning the relevant potassium channel gene. However, these molecular studies reveal an unsuspected heterogeneity in the molecular components of voltage-dependent potassium channels. Further, synchronous differentiation of IKv is achieved via heterogeneous Kv channel gene expression.
Collapse
Affiliation(s)
- A B Ribera
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
32
|
Abstract
Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.
Collapse
|
33
|
|
34
|
Gleason EL, Spitzer NC. AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons. J Neurophysiol 1998; 79:2986-98. [PMID: 9636102 DOI: 10.1152/jn.1998.79.6.2986] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N-methyl--aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presence of AMPA and NMDA class receptors and the absence of kainate class receptors with whole cell voltage-clamp recordings from Xenopus embryonic spinal neurons differentiated in vitro. Reversal potential measurements indicate that AMPA receptors are permeable to Ca2+ both in differentiated neurons and at the time they first are expressed. The PCa/Pmonocation of 1.9 is close to that of cloned Ca2+-permeable AMPA receptors expressed in heterologous systems. Ca2+ imaging reveals that Ca2+ elevations are elicited by AMPA or NMDA in the absence of Mg2+. The amplitudes and durations of these agonist-induced Ca2+ elevations are similar to those of spontaneous Ca2+ transients known to act as differentiation signals in these cells. Two sources of Ca2+ amplify AMPA- and NMDA-induced Ca2+ elevations. Activation of voltage-gated Ca2+ channels by AMPA- or NMDA-mediated depolarization contributes approximately 15 or 30% of cytosolic Ca2+ elevations, respectively. Activation of either class of receptor produces elevations of Ca2+ that elicit further release of Ca2+ from thapsigargin-sensitive but ryanodine-insensitive stores, contributing an additional approximately 30% of Ca2+ elevations. Voltage-clamp recordings and Ca2+ imaging both show that these spinal neurons express functional AMPA receptors soon after neurite initiation and before expression of NMDA receptors. The Ca2+ permeability of AMPA receptors, their ability to generate significant elevations of [Ca2+]i, and their appearance before synapse formation position them to play roles in neural development. Spontaneous release of agonists from growth cones is detected with glutamate receptors in outside-out patches, suggesting that spinal neurons are early, nonsynaptic sources of glutamate that can influence neuronal differentiation in vivo.
Collapse
Affiliation(s)
- E L Gleason
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla,California 92093, USA
| | | |
Collapse
|
35
|
Gollasch M, Haase H, Ried C, Lindschau C, Morano I, Luft FC, Haller H. L-type calcium channel expression depends on the differentiated state of vascular smooth muscle cells. FASEB J 1998; 12:593-601. [PMID: 9576486 DOI: 10.1096/fasebj.12.7.593] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite intensive interest in understanding the differentiation of vascular smooth muscle cells (VSMC), no information is available about differential regulation of ion channels in these cells. Since expression of the L-type Ca2+ channel can be influenced by differentiation in other cell types, we tested the hypothesis that the L-type (C class) channel is a specific differentiation marker of VSMC and that expression of these channels depends on the state of cell differentiation. We used rat aortic (A7r5) VSMC, which express functional L-type Ca2+ channels, and induced dedifferentiation by cell culture in different media. Treatment with retinoic acid was used to redifferentiate the VSMC. We characterized the differentiated state of the cells by using immunohistochemistry and Western blot analysis for smooth muscle (SM) alpha-actin and SM-myosin heavy chain (MHC). The number of functional Ca2+ channels was significantly decreased in dedifferentiated VSMC and increased upon differentiation with retinoic acid. Ca2+ channel function was assessed by whole-cell voltage clamp techniques. Using Western blot and dihydropyridine binding analysis, we found that the expression of the Ca2+ channel alpha1 subunit, and to a lesser extent the beta2 subunit, was directly correlated with the expression of SM alpha-actin and SM-MHC. We conclude that expression of L-type Ca2+ channel alpha1 subunits, and thus a functional Ca2+ channel, is highly coordinated with expression of the SM-specific proteins required for specialized smooth muscle cell functions. Furthermore, our results demonstrate that the L-type Ca2+ channel is a novel marker for differentiation of VSMC. The data suggest that regulation of ion channel expression during differentiation may have physiological importance for normal smooth muscle function and may influence VSMC behavior under pathophysiological conditions.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Actins/analysis
- Animals
- Aorta
- Calcium Channel Blockers/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/biosynthesis
- Calcium Channels/physiology
- Calcium Channels, L-Type
- Cell Differentiation/drug effects
- Cell Line
- Culture Media
- Dihydropyridines/metabolism
- Kinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myosin Heavy Chains/analysis
- Nimodipine/pharmacology
- Patch-Clamp Techniques
- Rats
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- M Gollasch
- Franz-Volhard Clinic at the Max-Delbrück Center for Molecular Medicine, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Moody WJ. The development of voltage-gated ion channels and its relation to activity-dependent development events. Curr Top Dev Biol 1998; 39:159-85. [PMID: 9476000 DOI: 10.1016/s0070-2153(08)60455-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spontaneous activity is an essential feature in the development of the nervous system. The patterns of activity and the waveform and ionic dependence of the action potentials that occur during such activity are fine-tuned to carry out certain developmental functions, and are therefore generally not compatible with the mature physiological function of the cell. For this reason, the patterns of ion channel development that create spontaneous activity early in the development of a given cell type are complex and not easily predicted from the mature properties of that same cell. Ion channels are often found that are specific to early stages of development, and that either are not retained in the mature cell or whose properties are greatly changed during later differentiation. The exact significance of such patterns of channel development is just now becoming clear, as we understand more about the mechanisms linking spontaneous activity to later developmental events.
Collapse
Affiliation(s)
- W J Moody
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
37
|
Murata Y, Kumamoto E, Masuko S. Phenotypic characterization of septal neurons in culture: immunohistochemistry of GABA, calbindin D-28k and choline acetyltransferase, and histochemistry of acetylcholinesterase. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-3806(97)00143-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Jiang M, Swann JW. Expression of calretinin in diverse neuronal populations during development of rat hippocampus. Neuroscience 1997; 81:1137-54. [PMID: 9330374 DOI: 10.1016/s0306-4522(97)00231-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The prenatal and postnatal expression of calretinin was studied in hippocampus of the rat using immunohistochemical procedures. Calretinin was detected as early as embryonic day 15 in the primordial hippocampus where calretinin-containing neurons and fibres were localized to the primitive plexiform layer. Upon emergence of the hippocampal plate (the prospective stratum pyramidale), large numbers of immunopositive multipolar cells were observed in the marginal zone. Fewer cells with fusiform cell bodies were observed bordering the hippocampal plate and subplate. During the perinatal period (embryonic day 20 to postnatal day 0), large numbers of immunoreactive pyramidal-like neurons were observed at the margin of the hippocampal plate with the subplate. At this same time, many calretinin-containing neurons with irregularly shaped dendrites were observed in stratum radiatum. Soon after birth (postnatal day 3), the calretinin immunoreactivity of both these later cell types rapidly declined and a new population of calretinin-immunopositive cells emerged, the Cajal-Retzius cells of stratum lacunosum-moleculare and the dentate gyrus. The Cajal-Retzius cells rapidly matured but disappeared by the second postnatal week. During the second postnatal week, calretinin interneurons of the adult hippocampal formation began to appear. Their immunoreactivity increased by postnatal day 15, when the number of calretinin-immunopositive interneurons in area CA1 and stratum radiatum of CA3 exceeded that of the adult. At this time, the soma and proximal dendrites of many calretinin interneurons were found to contact each other. The frequency of such cellular appositions decreased in adulthood. The results presented here show that calretinin immunohistochemistry can be very useful in recording the development of subpopulations of hippocampal neurons that are present during distinct embryonic and postnatal periods. Although some neuronal types may exist only briefly during hippocampal development, others appear to express calretinin transiently during restricted phases of neuronal differentiation. Surprisingly, this includes some hippocampal pyramidal cells. However, even as the adult pattern of immunostaining emerges in week 2, morphological refinement of interneurons continues to take place, which eventually leads to the population of calretinin-containing interneurons of the mature hippocampus.
Collapse
Affiliation(s)
- M Jiang
- Cain Foundation Laboratories, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
39
|
Widmer H, Amerdeil H, Fontanaud P, Desarménien MG. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials. J Neurophysiol 1997; 77:260-71. [PMID: 9120568 DOI: 10.1152/jn.1997.77.1.260] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Action potentials and voltage-gated currents were studied in acutely dissociated neurosecretory cells from the rat supraoptic nucleus during the first three postnatal weeks (PW1-PW3), a period corresponding to the final establishment of neuroendocrine relationships. Action potential duration (at half maximum) decreased from 2.7 to 1.8 ms; this was attributable to a decrease in decay time. Application of cadmium (250 microM) reduced the decay time by 43% at PW1 and 21% at PW3, indicating that the contribution of calcium currents to action potentials decreased during postnatal development. The density of high-voltage-activated calcium currents increased from 4.4 to 10.1 pA/pF at postnatal days 1-5 and 11-14, respectively. The conductance density of sustained potassium current, measured at +20 mV, increased from 0.35 (PW1) to 0.53 (PW3) nS/pF. The time to half-maximal amplitude did not change. Conductance density and time- and voltage-dependent inactivation of the transient potassium current were stable from birth. At PW1, the density and time constant of decay (measured at 0 mV) were 0.29 nS/pF (n = 12) and 17.9 ms (n = 10), respectively. Voltage-dependent properties and density (1.1 nS/pF) of the sodium current did not change postnatally. During PW1, fitting the mean activation data with a Boltzmann function gave a half-activation potential of -25 mV. A double Boltzman equation was necessary to adequately fit the inactivation data, suggesting the presence of two populations of sodium channels. One population accounted for approximately 14% of the channels, with a half-inactivation potential of -86 mV; the remaining population showed a half-inactivation potential of -51 mV. A mathematical model, based on Hodgkin-Huxley equations, was used to assess the respective contributions of individual currents to the action potential. When the densities of calcium and sustained potassium currents were changed from immature to mature values, the decay time of the action potentials generated with the model decreased from 2.85 to 1.95 ms. A similar reduction was obtained when only the density of the potassium current was increased. Integration of the calcium currents generated during mature and immature action potentials demonstrated a significant decrease in calcium entry during development. We conclude that the developmental reduction of the action potential duration 1) is a consequence of the developmentally regulated increase in a sustained potassium current and 2) leads to a reduction of the participation of calcium currents in the action potential, resulting in a decreased amount of calcium entering the cell during each action potential.
Collapse
Affiliation(s)
- H Widmer
- Centre National de la Recherche Scientifique Unité Propre de Recherche 9055, Montpellier, France
| | | | | | | |
Collapse
|
40
|
Onset of electrical excitability during a period of circus plasma membrane movements in differentiating Xenopus neurons. J Neurosci 1996. [PMID: 8756441 DOI: 10.1523/jneurosci.16-16-05117.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living neurons are usually first identifiable in primary cultures at the time of neurite initiation, and studies of excitability have been restricted largely to the subsequent period. A morphological early marker is described that identifies neurons for whole-cell voltage-clamp recordings before neurite initiation. Video time-lapse recordings of cultured cells dissociated from neurectoderm of Xenopus neural plate stage embryos reveal cells demonstrating circus movements, in which blebs of plasma membrane propagate around the cell circumference within a period of several minutes. All neurons demonstrate circus movements before morphological differentiation; the fraction of cells exhibiting circus movements that differentiate morphologically depends on the substrate on which they are cultured. Blockade of circus activity with cytochalasin B does not prevent neuronal differentiation. Circus movements are not neurectoderm-specific because they similarly predict differentiation of myocytes developing in mesodermal cultures. Initially inexcitable, neurons develop voltage-dependent K+, Na+, and Ca2+ currents during the period of several hours in which they exhibit circus movements. The early development of depolarization-induced elevations of [Ca2+]i several hours before morphological differentiation corresponds to the previously described onset of functionally significant spontaneous elevations of [Ca2+]i in these neurons and demonstrates a role for early expression of voltage-dependent ion channels.
Collapse
|
41
|
Cesare CM, Smith KL, Rice FL, Swann JW. Anatomical properties of fast spiking cells that initiate synchronized population discharges in immature hippocampus. Neuroscience 1996; 75:83-97. [PMID: 8923525 DOI: 10.1016/0306-4522(96)00231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Minislices of the CA3 hippocampal subfield were prepared from 10- to 15-day-old rats and exposed to penicillin, a GABAA receptor antagonist. Synchronized population discharges occurred spontaneously but could also be entrained by action potentials in single, fast spiking cells. This was unexpected, since fast spiking cells in the hippocampus are normally thought to be inhibitory interneurons. Experiments were thus undertaken to determine the anatomical identity of these cells. Biocytin injections showed that these cells had the anatomical feature of inhibitory interneurons. Two classes of cells were identified: basket cells (including cells with pyramidal or multipolar dendritic arbors) and bistratified cells. Basket cells had characteristic dense axonal arbors in the stratum pyramidale. They also possessed wide ranging axons in strata radiatum and oriens. The axons of bistratified cells avoided the cell body layer and produced a web-like plexus of axons in strata radiatum and oriens. In the majority of minislices, dye coupling was also observed. Interneurons were preferentially dye-coupled to other interneurons. We speculate that, in early life, hippocampal interneurons may have dualistic synaptic properties. Normally, they inhibit nearby pyramidal cells; however, when GABAA receptors are suppressed a secondary excitatory property of these cells is uncovered.
Collapse
Affiliation(s)
- C M Cesare
- Department of Anatomy, Cell Biology and Neurobiology, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Waves of spontaneous electrical activity and calcium transients occur in the retina during its development. Recent work raises the question of how these waves are produced and propagated.
Collapse
Affiliation(s)
- M Catsicas
- Department of Physiology, University College London, UK
| | | |
Collapse
|
43
|
Gu X, Spitzer NC. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 1995; 375:784-7. [PMID: 7596410 DOI: 10.1038/375784a0] [Citation(s) in RCA: 432] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stimulation of transient increases in intracellular calcium (Cai2+) activates protein kinases, regulates transcription and influences motility and morphology. Developing neurons generate spontaneous Cai2+ transients, but their role in directing neuronal differentiation and the way in which they encode information are unknown. Here we image Ca2+ in spinal neurons throughout an extended period of early development, and find that two types of spontaneous events, spikes and waves, are expressed at distinct frequencies. Neuronal differentiation is altered when they are eliminated by preventing Ca2+ influx. Reimposing different frequency patterns of Ca2+ elevation demonstrates that natural spike activity is sufficient to promote normal neurotransmitter expression and channel maturation, whereas wave activity is sufficient to regulate neurite extension. Suppression of spontaneous Ca2+ elevations by BAPTA loaded intracellularly indicates that they are also necessary for differentiation. Ca2+ transients appear to encode information in their frequency, like action potentials, although they are 10(4) times longer in duration and less frequent, and implement an intrinsic development programme.
Collapse
Affiliation(s)
- X Gu
- Department of Biology, University of California, San Diego, La Jolla 92093-0357, USA
| | | |
Collapse
|
44
|
Leclerc C, Duprat AM, Moreau M. In vivo labelling of L-type Ca2+ channels by fluorescent dihydropyridine: correlation between ontogenesis of the channels and the acquisition of neural competence in ecotderm cells from Pleurodeles waltl embryos. Cell Calcium 1995; 17:216-24. [PMID: 7542570 DOI: 10.1016/0143-4160(95)90036-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of the ectodermal cells to be induced and to differentiate toward neural tissue, called neural competence, is acquired shortly before gastrulation and lost during late gastrula stages in Pleurodeles waltl embryos. We have examined ectodermal cells' neural competence in relation to the evolution of the density of L-type calcium channels using the fluorescent labelled dihydropyridine probe (STBodipy-DHP). We find that the appearance of dihydropyridine sensitive calcium channels (L-type Ca2+ channels) is correlated with the acquisition of neural competence by the ectoderm cells. The highest density of these channels is reached when competence of the ectoderm is optimal. Conversely, the decrease of L-type Ca2+ channel density occurs simultaneously with the normal loss of competence. In addition, we show that these channels are functional since stimulation by S(-)-Bay K 8644 triggered an increase in [Ca2+]i revealed by fluorescence measurements using Fluo-3. This increase in [Ca2+]i is a function of the L-type Ca2+ channels' density. We propose that the molecular basis of the gain and loss of neural competence is linked to the presence of L-type Ca2+ channels in ectodermal cell membranes of Pleurodeles waltl embryos.
Collapse
Affiliation(s)
- C Leclerc
- Centre de Biologie du Développment UMR 9925, CNRS/Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
45
|
Spitzer NC, Olson E, Gu X. Spontaneous calcium transients regulate neuronal plasticity in developing neurons. JOURNAL OF NEUROBIOLOGY 1995; 26:316-24. [PMID: 7775965 DOI: 10.1002/neu.480260304] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 10(4) times slower than that of action potentials.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
46
|
Hammerschlag R. Is the intrasomal phase of fast axonal transport driven by oscillations of intracellular calcium? Neurochem Res 1994; 19:1431-7. [PMID: 7534877 DOI: 10.1007/bf00972472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An hypothesis is presented suggesting that the delivery of vesicle-packaged protein from the neuronal soma to the axonal transport system is physiologically coupled to spontaneous fluctuations of intracellular calcium (Cai). Evidence is reviewed that oscillations of Cai, commonly detected as agonist- or voltage-triggered waves and spikes propagating through the cytosol, also occur as spontaneous events. Endogenously-generated oscillations are examined since intrasomal transport persists in the absence of extracellular signals or nerve impulse activity. Vesicle budding from the endoplasmic reticulum (ER) may be a key step at which anterograde transport is regulated by events related to the release and reuptake of ER stores of Ca2+.
Collapse
Affiliation(s)
- R Hammerschlag
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| |
Collapse
|
47
|
Spitzer NC. Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. Trends Neurosci 1994; 17:115-8. [PMID: 7515527 DOI: 10.1016/0166-2236(94)90120-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many excitable cells are specialized to promote Ca2+ influx at early stages of development. This article focuses on spontaneous fluctuations of intracellular Ca2+ that are observed during this period. Removal of Ca2+ or suppression of influx alters subsequent differentiation. Thus these signals appear to regulate aspects of early maturation.
Collapse
Affiliation(s)
- N C Spitzer
- Dept of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
48
|
Spitzer NC, Gu X, Olson E. Action potentials, calcium transients and the control of differentiation of excitable cells. Curr Opin Neurobiol 1994; 4:70-7. [PMID: 7513567 DOI: 10.1016/0959-4388(94)90034-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calcium influx via action potentials in differentiating nerve and muscle is regulated principally by the expression of potassium currents. Transient elevations of intracellular calcium in spontaneously active cells are necessary for normal neuronal development. The mechanisms that connect calcium elevations to long term developmental change are likely to be utilized in the mature nervous system.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
49
|
Spitzer NC. Development of voltage-dependent and ligand-gated channels in excitable membranes. PROGRESS IN BRAIN RESEARCH 1994; 102:169-79. [PMID: 7528434 DOI: 10.1016/s0079-6123(08)60538-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|