1
|
McGettigan B, Hernandez-Tejero M, Malhi H, Shah V. Immune Dysfunction and Infection Risk in Advanced Liver Disease. Gastroenterology 2025; 168:1085-1100. [PMID: 39927926 DOI: 10.1053/j.gastro.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 02/11/2025]
Abstract
The risk of microbial infections is increased in cirrhosis and other forms of advanced liver disease such as alcohol-associated hepatitis. Such infections may precipitate new or further decompensation and death, especially in patients with clinical features of acute-on-chronic liver failure. The severe immune dysfunction or "immune paralysis" caused by advanced liver disease is associated with high short-term mortality. However, the pathogenic mechanisms underlying immune dysfunction and immunodeficiency are incompletely understood. Evidence to date suggests a complex, dynamic process that perturbs the physiological roles of the liver as a master regulator of systemic immunity and protector against noxious effects of exogenous molecules in the portal vein flowing from the gut. Thus, in cirrhosis and severe alcohol-associated hepatitis, the ability of hepatocytes and intrahepatic immune cells to balance normal context-dependent dichotomous responses of tolerance vs immune activation is lost. Contributing factors include loss of the gut barrier with translocation of microbial products through the portal vein, culminating in development of functional defects in innate and adaptive immune cells, and generation of immune-regulatory myeloid cells that permit microbial colonization and infection. This review addresses key evidence supporting the paradigm of immune dysfunction as a risk for microbial infections and identifies potential therapeutic targets for intervention. The primary focus is on cirrhosis-associated immune dysfunction and alcohol-associated liver disease, because the bulk of available data are from these 2 conditions.
Collapse
Affiliation(s)
- Brett McGettigan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Hernandez-Tejero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess NAE, Samuel C, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria. Cell Host Microbe 2025; 33:529-544.e9. [PMID: 40168996 DOI: 10.1016/j.chom.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025]
Abstract
Plasmodium parasites undergo development and replication within hepatocytes before infecting erythrocytes and initiating clinical malaria. Although type I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium. Second, guanylate-binding protein (GBP) 1-mediated disruption of the PV activates the caspase-1 inflammasome, inducing pyroptosis to remove infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium, with their pharmacologic or genetic inhibition leading to profound malarial susceptibility in vivo. In addition to identifying IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, our study also extends the understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Carson Bowers
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Cristina Samuel
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Justine C Shiau
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongyu Yuan
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis E Kyle
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA; Yale Systems Biology Institute, West Haven, CT, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Nirgude S, Tichy ED, Liu Z, Kavari SL, Pradieu RD, Byrne M, Yang F, Gil-de-Gómez L, Mamou B, Bernt KM, Yang W, MacFarland S, Xie M, Kalish JM. Single-nucleus multiomic analysis of Beckwith-Wiedemann syndrome liver reveals PPARA signaling enrichment and metabolic dysfunction. Commun Biol 2025; 8:495. [PMID: 40133415 PMCID: PMC11937391 DOI: 10.1038/s42003-025-07961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS may exhibit hepatomegaly, as well as an increased risk of hepatoblastoma. To understand the impact of these 11p15 changes in the liver, we performed a multiomic study [single nucleus RNA-sequencing (snRNA-seq) + single nucleus assay for transposable-accessible chromatin-sequencing (snATAC-seq)] of both BWS-liver and nonBWS-liver tumor-adjacent tissue. Our approach uncovers hepatocyte-specific enrichment of processes related to peroxisome proliferator-activated receptor alpha (PPARA). To confirm our findings, we differentiated a BWS induced pluripotent stem cell model into hepatocytes. Our data demonstrate the dysregulation of lipid metabolism in BWS-liver, which coincides with observed upregulation of PPARA during hepatocyte differentiation. BWS hepatocytes also exhibit decreased neutral lipids and increased fatty acid β-oxidation. We also observe increased reactive oxygen species byproducts in BWS hepatocytes, coinciding with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisia D Tichy
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose D Pradieu
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariah Byrne
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feikun Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis Gil-de-Gómez
- Department of Pediatrics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon Mamou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin M Bernt
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne MacFarland
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Xie
- DBHI, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Huschet LA, Kliem FP, Wienand P, Wunderlich CM, Ribeiro A, Bustos-Martínez I, Barco Á, Wunderlich FT, Lech M, Robles MS. FrozONE: quick cell nucleus enrichment for comprehensive proteomics analysis of frozen tissues. Life Sci Alliance 2025; 8:e202403130. [PMID: 39667914 PMCID: PMC11638322 DOI: 10.26508/lsa.202403130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Subcellular fractionation allows for the investigation of compartmentalized processes in individual cellular organelles. Nuclear enrichment methods commonly employ the use of density gradients combined with ultracentrifugation for freshly isolated tissues. Although it is broadly used in combination with proteomics, this approach poses several challenges when it comes to scalability and applicability for frozen material. To overcome these limitations, we developed FrozONE (Frozen Organ Nucleus Enrichment), a nucleus enrichment and proteomics workflow for frozen tissues. By extensively benchmarking our workflow against alternative methods, we showed that FrozONE is a faster, simpler, and more scalable alternative to conventional ultracentrifugation methods. FrozONE allowed for the study, profiling, and classification of nuclear proteomes in different tissues with complex cellular heterogeneity, ensuring optimal nucleus enrichment from different cell types and quantitative resolution for low abundant proteins. In addition to its performance in healthy mouse tissues, FrozONE proved to be very efficient for the characterization of liver nuclear proteome alterations in a pathological condition, diet-induced nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Lukas A Huschet
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| | - Peter Wienand
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Bustos-Martínez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Alicante, Spain
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Center for Molecular Medicine Cologne (CMMC) and Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Cologne, Germany
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU, Munich, Germany
| |
Collapse
|
5
|
Fu H, Wang X, Yuan M, Wang N, Zhang X. Callistephus A from Callistephus chinensis Nees alleviates concanavalin A-induced immunological liver injury in mice by inhibiting the activation of JAK/STAT1 and MAPK signaling pathways. Int Immunopharmacol 2025; 148:114153. [PMID: 39864226 DOI: 10.1016/j.intimp.2025.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Callistephus chinensis Nees is an herbaceous plant in the Asteraceae family that has various traditional effects, especially in preventing liver disease. Callistephus A (CA) is a sesquiterpene compound with a rare 6/7 ring skeleton, which has been isolated only from the Callistephus chinensis Nees, but whether CA protects the liver is unknown. Immunological liver injury (ILI) is a common liver disease mediated by the immune system. Therefore, this study investigated whether CA had a protective effect on ILI and uncovered its molecular mechanisms. To study the impact, target, and signal pathway of CA in preventing ILI, we hope to find active components from plants to avoid ILI. In this study, CA regulated the differentiation balance of CD4 + T cells (Th1/Th2 and Th17/Treg balance) and the secretion of inflammatory factors (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-17A (IL-17A) and transforming growth factor-β (TGF-β). CA improves liver inflammation by regulating IFN-γ-induced JAK/STAT1 signaling pathways. CA reduced hepatocyte apoptosis by decreasing protein expression of BCL2-associated X (Bax), cleaved caspase-3, and cleaved Poly (ADP-ribose) polymerase 1 (PARP-1), but increased Bcl-2 protein expression, which was achieved by regulating the MAPK pathway. To investigate the role of CA in immune liver injury, we performed in vitro cell experiments using alpha mouse liver 12 (AML12) cells. The cell experiments showed that CA potently inhibited LPS-mediated AML12 cell damage. After adding CA, damaged mitochondria are cleared through mitochondrial autophagy and reduced production of intracellular reactive oxygen species (ROS). Finally, molecular docking results showed that CA had a strong affinity for five essential target proteins (JAK1, JAK2, STAT1, JNK, and p38). CA regulates the differentiation, anti-inflammatory, and anti-apoptosis of CD4 + T cells. The mechanism of CA against ILI is related to inhibiting the activation of JAK/STAT1 and MAPK signaling pathways.
Collapse
Affiliation(s)
- Haonan Fu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaojun Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyuan Yuan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
6
|
Fisher AL, Phillips S, Wang CY, Paulo JA, Xiao X, Xu Y, Moschetta GA, Xue Y, Mancias JD, Babitt JL. The hepcidin-ferroportin axis modulates liver endothelial cell BMP expression to influence iron homeostasis in mice. Blood 2025; 145:625-634. [PMID: 39437541 DOI: 10.1182/blood.2024024795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The liver hormone hepcidin regulates systemic iron homeostasis to provide enough iron for vital processes while limiting toxicity. Hepcidin acts by degrading its receptor ferroportin (encoded by Slc40a1) to decrease iron export to plasma. Iron controls hepcidin production in part by inducing liver endothelial cells (LECs) to produce bone morphogenetic proteins (BMPs) that activate hepcidin transcription in hepatocytes. Here, we used in vitro and in vivo models to investigate whether ferroportin contributes to LEC intracellular iron content to modulate BMP expression and, thereby, hepcidin. Quantitative proteomics of LECs from mice fed different iron diets demonstrated an inverse relationship between dietary iron and endothelial ferroportin expression. Slc40a1 knockdown primary mouse LECs and endothelial Slc40a1 knockout mice exhibited increased LEC iron and BMP ligand expression. Endothelial Slc40a1 knockout mice also exhibited altered systemic iron homeostasis with decreased serum and total liver iron but preserved erythropoiesis. Although endothelial Slc40a1 knockout mice had similar hepcidin expression to control mice, hepcidin levels were inappropriately high relative to iron levels. Moreover, when iron levels were equalized with iron treatment, hepcidin levels were higher in endothelial Slc40a1 knockout mice than in controls. Finally, LEC ferroportin levels were inversely correlated with hepcidin levels in multiple mouse models, and treatment of hepcidin-deficient mice with mini-hepcidin decreased LEC ferroportin expression. Overall, these data show that LEC ferroportin modulates LEC iron and consequently BMP expression to influence hepcidin production. Furthermore, LEC ferroportin expression is regulated by hepcidin, demonstrating a bidirectional communication between LECs and hepatocytes to orchestrate systemic iron homeostasis.
Collapse
Affiliation(s)
- Allison L Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yongqiang Xue
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jodie L Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Li J, Zhang G, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Harnessing nanoparticles for reshaping tumor immune microenvironment of hepatocellular carcinoma. Discov Oncol 2025; 16:121. [PMID: 39909958 PMCID: PMC11799483 DOI: 10.1007/s12672-025-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers, characterized by high morbidity and mortality rates. Recently, immunotherapy has emerged as a crucial treatment modality for HCC, following surgery, locoregional therapies, and targeted therapies. This approach harnesses the body's immune system to target and eliminate cancer cells, potentially resulting in durable antitumor responses. However, acquired resistance and the tumor immunosuppressive microenvironment (TIME) significantly hinder its clinical application. Recently, advancements in nanotechnology, coupled with a deeper understanding of cancer biology and nano-biological interactions, have led to the development of various nanoparticles aimed at enhancing therapeutic efficacy through specific targeting of tumor tissues. These nanoparticles increase the accumulation of immunotherapeutic drugs within the tumor microenvironment, thereby transforming the TIME. In this review, we provide a concise overview of the fundamental principles governing the TIME landscape in HCC and discuss the rationale for and applications of nanoparticles in this context. Additionally, we highlight existing challenges and potential opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Karatayli E, Sadiq SC, Schattenberg JM, Grabbe S, Biersack B, Kaps L. Curcumin and Its Derivatives in Hepatology: Therapeutic Potential and Advances in Nanoparticle Formulations. Cancers (Basel) 2025; 17:484. [PMID: 39941855 PMCID: PMC11816286 DOI: 10.3390/cancers17030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Curcumin, a plant-derived polyphenol, shows promise in hepatology for treating both malignant and non-malignant liver diseases and a subset of extrahepatic cancers. Curcumin has hepatoprotective, anti-inflammatory, antifibrotic, and antiproliferative properties, as is evident in preclinical and clinical studies. This highlights its potential as an adjunct to established cancer therapies, especially in the context of hepatocellular carcinoma and secondary liver malignancies. Curcumin also demonstrates potential in metabolic dysfunction-associated steatotic liver disease (MASLD), owing to its antifibrotic and lipid-lowering effects. However, its clinical use is limited, relating to its poor bioavailability and rapid metabolism. Nanotechnology, including liposomal and polymeric carriers, alongside synthetic curcumin derivatives, offers strategies to enhance the bioavailability and pharmacokinetic properties. We propose to revisit the use of curcumin in nanoparticle preparations in chronic liver disease and summarize current evidence in this review article.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Shifana C. Sadiq
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Jörn M. Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95440 Bayreuth, Germany
| | - Leonard Kaps
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany; (E.K.); (S.C.S.); (J.M.S.)
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany;
| |
Collapse
|
9
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
11
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
12
|
Saha S, Alshammari A, Albekairi NA, Zulfiquar TN, Shakil MS, Mondal KR, Kundu MK, Mondal M, Mubarak MS. Exploring the antioxidant and protective effects of Marsdenia thyrsiflora Hook.f. leaf extract against carbon tetrachloride-induced hepatic damage in rat models. Front Pharmacol 2024; 15:1463922. [PMID: 39502533 PMCID: PMC11534673 DOI: 10.3389/fphar.2024.1463922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Medicinal plants are vital to healthcare, yet many remain unexplored. Marsdenia thyrsiflora Hook.f., from Bangladesh's Bhawal Forest, lacks research on its medicinal properties, especially its antioxidant capacities and protection against CCl4-induced liver toxicity. This study aims to evaluate the antioxidant properties of M. thyrsiflora leaf extract to determine its protective effects on rodents against CCl4-induced liver injury. Methods After extraction, the total phenol, flavonoid content, and antioxidant capacity of the leaf extract were measured using established protocols. Free radical scavenging abilities were evaluated with 2,2'-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) assays. Additionally, reducing power was assessed through cupric-reducing and ferric-reducing assays. Based on the OECD 420 recommendation, acute toxicity was tested on Swiss albino mice to establish an effective and safe dosage. For the hepatoprotective study, Sprague-Dawley rats were pre-treated with M. thyrsiflora leaf methanolic extract (MTLM) at 250 and 500 mg/kg body weight, and CCl4 was administered to induce liver damage. Serum hepatic enzyme levels (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT)), lipid profile (total cholesterol, triglycerides), total bilirubin, and markers of lipid peroxidation (Malondialdehyde (MDA)) were measured. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were also evaluated to assess oxidative stress. Results The results demonstrated that MTLM, rich in phenolic and flavonoid content, exhibits significant antioxidant activities in DPPH and NO radical scavenging assays, as well as in reducing power assays. The acute toxicity study confirmed the safety of MTLM, with no adverse effects observed even at high doses. For the hepatoprotective study, rats were administered CCl4 to induce liver damage, followed by treatment with MTLM. Results showed that MTLM significantly reduces liver damage markers such as elevated serum hepatic enzyme levels, lipid profile, total bilirubin, and lipid peroxidation and improves the activities of GSH and key antioxidant enzymes such as SOD and CAT. Histopathological analysis corroborated these findings, displaying reduced necrosis, inflammation, and edema in liver tissues treated with MTLM. Conclusion MTLM extract exhibits potent antioxidant and hepatoprotective properties. Its ability to attenuate oxidative stress, enhance antioxidant enzyme activities, and facilitate histopathological changes in the liver highlights its potential as a natural therapeutic agent for liver damage. However, further investigation is required to understand its molecular processes, safety profiles, and active component characterization.
Collapse
Affiliation(s)
- Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Dhaka, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tasniya Nahiyan Zulfiquar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | | | - Milton Kumar Kundu
- Department of Chemistry, Tennessee State University, Nashville, TN, United States
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
13
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
14
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
15
|
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W. Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:349. [PMID: 39073492 DOI: 10.1007/s10653-024-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.
Collapse
Affiliation(s)
- Feiyu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Yi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Liping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Pengfei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Tianyue Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| | - Wenping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| |
Collapse
|
16
|
Gao B, Zhou P, Wang L, Wang Z, Yi Y, Li X, Zhou J, Fan J, Qiu S, Xu Y. Effects of the subtypes of apolipoprotein E on immune inhibition and prognosis in patients with Hepatocellular Carcinoma. J Cancer Res Clin Oncol 2024; 150:341. [PMID: 38976030 PMCID: PMC11230970 DOI: 10.1007/s00432-024-05856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.
Collapse
Affiliation(s)
- Bowen Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Peiyun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Cancer Centre, Fudan University, Shanghai, 200032, China
| | - Li Wang
- Institutes of Biomedical Science, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhutao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Liu Y, Liang Z, Li Y, Zhu W, Feng B, Xu W, Fu J, Wei P, Luo M, Dong Z. Integrated transcriptome and microRNA analysis reveals molecular responses to high-temperature stress in the liver of American shad (Alosa sapidissima). BMC Genomics 2024; 25:656. [PMID: 38956484 PMCID: PMC11218383 DOI: 10.1186/s12864-024-10567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Fish reproduction, development and growth are directly affected by temperature, investigating the regulatory mechanisms behind high temperature stress is helpful to construct a finer molecular network. In this study, we systematically analyzed the transcriptome and miRNA information of American shad (Alosa sapidissima) liver tissues at different cultivation temperatures of 24 ℃ (Low), 27 ℃ (Mid) and 30 ℃ (High) based on a high-throughput sequencing platform. RESULTS The results showed that there were 1594 differentially expressed genes (DEGs) and 660 differentially expressed miRNAs (DEMs) in the LowLi vs. MidLi comparison group, 473 DEGs and 84 DEMs in the MidLi vs. HighLi group, 914 DEGs and 442 DEMs in the LowLi vs. HighLi group. These included some important genes and miRNAs such as calr, hsp90b1, hsp70, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p. The DEGs were mainly enriched in the protein folding, processing and export pathways of the endoplasmic reticulum; the target genes of the DEMs were mainly enriched in the focal adhesion pathway. Furthermore, the association analysis revealed that the key genes were mainly enriched in the metabolic pathway. Interestingly, we found a significant increase in the number of genes and miRNAs involved in the regulation of heat stress during the temperature change from 24 °C to 27 °C. In addition, we examined the tissue expression characteristics of some key genes and miRNAs by qPCR, and found that calr, hsp90b1 and dre-miR-125b-2-3p were significantly highly expressed in the liver at 27 ℃, while novel-m0481-5p, ssa-miR-125a-3p, ssa-miR-92b-5p, dre-miR-15a-3p and novel-m1018-5p had the highest expression in the heart at 30℃. Finally, the quantitative expression trends of 10 randomly selected DEGs and 10 DEMs were consistent with the sequencing data, indicating the reliability of the results. CONCLUSIONS In summary, this study provides some fundamental data for subsequent in-depth research into the molecular regulatory mechanisms of A. sapidissima response to heat stress, and for the selective breeding of high temperature tolerant varieties.
Collapse
Affiliation(s)
- Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Panpan Wei
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, Rescue Center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
18
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
19
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
20
|
Gao L, Zuo XL, Dong LL, Zhou SF, Wang ZJ, Duan YS, Chen MY, Zhu QX, Zhang JX. Hepatocyte mitochondrial DNA mediates macrophage immune response in liver injury induced by trichloroethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116317. [PMID: 38615641 DOI: 10.1016/j.ecoenv.2024.116317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.
Collapse
Affiliation(s)
- Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xu-Lei Zuo
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Luo-Lun Dong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Si-Fan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhou-Jian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Sheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mu-Yue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qi-Xing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
21
|
Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica MP. Mitochondria: the gatekeepers between metabolism and immunity. Front Immunol 2024; 15:1334006. [PMID: 38464536 PMCID: PMC10920337 DOI: 10.3389/fimmu.2024.1334006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Martínez-Torres D, Maldonado V, Pérez-Gallardo C, Yañez R, Candia V, Kalaidzidis Y, Zerial M, Morales-Navarrete H, Segovia-Miranda F. Phenotypic characterization of liver tissue heterogeneity through a next-generation 3D single-cell atlas. Sci Rep 2024; 14:2823. [PMID: 38307948 PMCID: PMC10837128 DOI: 10.1038/s41598-024-53309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Three-dimensional (3D) geometrical models are potent tools for quantifying complex tissue features and exploring structure-function relationships. However, these models are generally incomplete due to experimental limitations in acquiring multiple (> 4) fluorescent channels in thick tissue sections simultaneously. Indeed, predictive geometrical and functional models of the liver have been restricted to few tissue and cellular components, excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells (KCs). Here, we combined deep-tissue immunostaining, multiphoton microscopy, deep-learning techniques, and 3D image processing to computationally expand the number of simultaneously reconstructed tissue structures. We then generated a spatial single-cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) hepatic morphodynamics from early post-natal development to adulthood, and 2) the effect on the liver's overall structure when changing the hepatic environment after removing KCs. In addition to a complete description of bile canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs results in morphological changes in hepatocytes and HSCs. These findings reveal novel characteristics of liver heterogeneity and have important implications for both the structural organization of liver tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver tissue architecture, opening up avenues for in-depth investigations into tissue structure across both normal and pathological conditions.
Collapse
Affiliation(s)
- Dilan Martínez-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valentina Maldonado
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Cristian Pérez-Gallardo
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Yañez
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valeria Candia
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hernán Morales-Navarrete
- Department of Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Facultad de Ciencias Técnicas, Universidad Internacional Del Ecuador UIDE, Quito, Ecuador.
| | - Fabián Segovia-Miranda
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
23
|
Ángel-Martín A, Vaillant F, Moreno-Castellanos N. Daily Consumption of Golden Berry ( Physalis peruviana) Has Been Shown to Halt the Progression of Insulin Resistance and Obesity in Obese Rats with Metabolic Syndrome. Nutrients 2024; 16:365. [PMID: 38337650 PMCID: PMC10857591 DOI: 10.3390/nu16030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
In a study addressing the high risk of chronic diseases in people with diabetes and obesity linked to metabolic syndrome, the impact of a Golden Berry diet was investigated using a diabetic animal model. Obese rats with diabetic characteristics were fed a diet containing five percent Golden Berry for 16 days. This study focused on various parameters including organ weights, expression of metabolic genes, and urinary biomarkers. Post-Golden Berry intake, there was a notable decrease in the body, liver, pancreas, visceral, and subcutaneous adipose tissue weights in these obese, hyperglycemic rats. In contrast, an increase in brown adipose tissue (BAT) cell mass was observed. This diet also resulted in reduced blood glucose levels and normalized plasma biochemical profiles, including cholesterol, triglycerides, LDL, and HDL levels. Additionally, it modulated specific urinary biomarkers, particularly pipe-colic acid, a primary marker for type 2 diabetes. Bioinformatics analysis linked these dietary effects to improved insulin signaling and adipogenesis. Regular consumption of Golden Berry effectively prevented insulin resistance and obesity in rats, underscoring its significant health benefits and the protective role of an antioxidant-rich diet against metabolic syndrome. These findings offer promising insights for future therapeutic strategies to manage and prevent obesity and related chronic diseases.
Collapse
Affiliation(s)
- Alberto Ángel-Martín
- Observatorio Epidemiológico de Nutrición y Enfermedades Crónicas, Nutrition School, Health Faculty, Universidad Industrial de Santander, Cra 32 # 29-31, Bucaramanga 680002, Colombia;
| | - Fabrice Vaillant
- Colombian Corporation for Agricultural Research-Agrosavia, La Selva Research Center, Kilometer 7, Vía a Las Palmas, Vereda Llanogrande, Rionegro 054048, Colombia;
- French Center for Agricultural Research for International Development (CIRAD), UMR Qualisud, 34398 Montpellier, France
| | - Natalia Moreno-Castellanos
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| |
Collapse
|
24
|
Liu Y, Li K, Wenren M, Cheng W, Zhou X, Xu D, Chi C, Lü Z, Liu H. Identification, functional characterization and expression pattern of interferon-gamma (IFN-γ) and interferon-gamma receptor 1 (IFNGR1) in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109274. [PMID: 38072135 DOI: 10.1016/j.fsi.2023.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Interferon-gamma (IFN-γ) is an inflammatory cytokine that plays a crucial role in regulating both innate and cell-mediated immune responses by binding to a receptor complex made up of IFNGR1 and IFNGR2. In this study, the complete cDNA of IFN-γ and IFNGR1 from Nibea albiflora were cloned and functionally characterized (named NaIFN-γ and NaIFNGR1), whose complete cDNA sequences were 1593 bp and 2792 bp, encoding 201 and 399 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis showed that the concluded amino acids sequences of NaIFN-γ and NaIFNGR1 shared high identity with their teleost orthologues including the IFN-γ signature and nuclear localization signal (NLS) motif in NaIFN-γ and FN Ⅲ domain in NaIFNGR1. Real-time PCR showed that NaIFN-γ and NaIFNGR1 constitutively expressed in all tested tissues, such as the head-kidney, spleen, liver, kidney, gill, muscle, blood, and intestine with the highest expression of NaIFN-γ and NaIFNGR1 appearing in the liver and gill, respectively. After experiencing stimulation with Polyinosinic-polycytidylic acid (Poly (I:C)), Vibrio alginolyticus (V. alginolyticus) or Vibrio parahaemolyticus (V. parahaemolyticus), NaIFN-γ and NaIFNGR1 mRNA were up-regulated with the time-dependent model. Due to the presence of a nuclear localization signal (NLS), the subcellular localization revealed that NaIFN-γ dispersed throughout the cytoplasm and nucleus. NaIFNGR1, as a member of Cytokine receptor family B, was primarily expressed on the cell membrane. When NaIFN-γ and NaIFNGR1 were co-transfected, their fluorescence signals overlapped on the membrane of HEK 293T cells indicating the potential interaction between IFN-γ and IFNGR1. The GST-pull-down results further showed that NaIFN-γ could directly interact with the extracellular region of NaIFNGR1, further confirming the affinity between IFN-γ and IFNGR1. Taken together, the results firstly demonstrated that the NaIFN-γ ligand-receptor system existed in N.albiflora and played a pivotal part in N.albiflora's immune response against pathogenic bacterial infections, which contributed to the better understanding of the role of IFN-γ in the immunomodulatory mechanisms of teleost.
Collapse
Affiliation(s)
- Yongxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Kaihui Li
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mingming Wenren
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Cheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
25
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
27
|
Ulke J, Schwedler C, Krüger J, Stein V, Geserick P, Kleinridders A, Kappert K. High-fat diet alters N-glycosylation of PTPRJ in murine liver. J Nutr Biochem 2024; 123:109500. [PMID: 37875230 DOI: 10.1016/j.jnutbio.2023.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Protein tyrosine phosphatases (PTPs) regulate multiple signaling pathways. Disruption of tyrosine phosphorylation through imbalanced action between protein tyrosine kinases (RTKs) and PTPs is a hallmark of metabolic disorders, including insulin resistance. A representative member of the receptor-type PTP family, PTPRJ (DEP-1), was previously identified as a negative regulator of insulin signaling and possesses post-translational glycosylation sites. In this regard, it seems of great importance to decipher the structure of PTPRJ's glycosylation, particularly in the context of metabolic disturbances, but this has not been done in detail. Thus, here we aimed at characterizing the glycosylation pattern of PTPRJ in liver. We show that N-glycosylation accounts for up to half of PTPRJ's molecular weight. Applying mass spectrometry, we detected increased levels of high-mannose structures in PTPRJ in liver tissue of obese mice compared to lean littermates. In addition, complex neutral structures without fucose were also elevated in PTPRJ of high-fat diet (HFD) mice. Conversely, complex fucosylated N-glycans as well as sialylated bi- and triantennary N-glycans, were significantly reduced in PTPRJ of HFD-derived liver tissue compared to LFD by ∼two fold (P≤.01, P≤.0001 and P≤.001, respectively). In congruence with these findings, the mannosidase MAN2A1, responsible for the conversion of high-mannose to complex N-glycans, was significantly downregulated under HFD conditions. Here we present for the first time that HFD-induced obesity impacts on the glycosylation pattern of the insulin signaling component PTPRJ in liver. These findings may inspire new research on the glycosylation of PTPs in metabolic diseases and may open up new therapeutic approaches.
Collapse
Affiliation(s)
- Jannis Ulke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Christian Schwedler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Janine Krüger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Vanessa Stein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - Peter Geserick
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Kai Kappert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Berlin, Germany.
| |
Collapse
|
28
|
Guo C, Wang X, Dai D, Kong F, Wang S, Sun X, Li S, Xu X, Zhang L. Effects of alkaline mineral complex supplementation on production performance, serum variables, and liver transcriptome in calves. Front Vet Sci 2023; 10:1282055. [PMID: 38125683 PMCID: PMC10730931 DOI: 10.3389/fvets.2023.1282055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Calf diarrhea causes huge economic losses to livestock due to its high incidence and mortality rates. Alkaline mineral complex water is an alkaline solution containing silicon, sodium, potassium, zinc, and germanium, and has biological benefits and therapeutic effects. This study aimed to evaluate the impact of alkaline mineral complex water supplementation on the health of calves and to investigate the effect of Alkaline mineral complex water supplementation on neonatal calf serum variables and the liver transcriptome. Sixty Holstein calves (age 1.88 ± 0.85 days, weight 36.63 ± 3.34 kg) were selected and randomly divided into two groups: the T group (treatment group with alkaline mineral complex water supplemented during the experiment) and C group (control group without alkaline mineral complex water supplementation). Alkaline mineral complex water supplementation significantly increased the body weight for calves aged 60 d and average daily gain during the experimental period (1-60 d). In addition, Alkaline mineral complex water supplementation could significantly decrease the diarrhea rate for calves aged 16-30 d, enhance the T-AOC, IgG, IGF-1, and IGFBP-2 in concentrations. The results of KEGG enrichment analysis in transcriptomics indicate that Alkaline mineral complex water supplementation inhibited the target IL-1B gene of the NF-kappa B signaling pathway of liver. Alkaline mineral complex water supplementation decreased calf diarrhea and improved partial immune function, anti-inflammatory activity, antioxidant capacity, and health of calves. Alkaline mineral complex is a candidate to replace medicated feed additives. Alkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex waterAlkaline mineral complex water.
Collapse
Affiliation(s)
- Cheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaowei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Dongwen Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuo Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaofeng Xu
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lili Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
29
|
Gugsa E, Molla TS, Bekele T, Dejenie TA. Hepatoprotective effect of hydromethanol extract of Otostegia integrifolia benth leaves in isoniazid and rifampicin induced Swiss albino mice. Metabol Open 2023; 20:100255. [PMID: 38115863 PMCID: PMC10728564 DOI: 10.1016/j.metop.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Drug-induced liver injury is the most common cause of acute liver failure. Off-Target effect "hepatotoxicity "frequently detected during clinical examination of patients on anti-Tb medication particularly isoniazid (INH), and rifampin (RMP). However, there is no any treatment option against isoniazid and rifampicin induced hepatotoxicity. It is, therefore, necessary to search for effective affordable and safe drugs from medicinal plants for the prevention of liver toxicity caused by isoniazid and rifampicin. The aim the current study is to evaluate hepatoprotective effect of hydro methanol extract from Otostegia integrifolia leaves in isoniazid and rifampicin-induced hepatotoxicity in Swiss albino mice. Methods O. integrifolia leaves powder was macerated in hydromethanol and thirty Swiss albino mice 29.0-40.6 g were grouped in to five groups. Group I were given 20 ml/kg distilled water, group II were given 100 mg INH and 150 mg RIF per kg body weight. Group III, group IV, and group V were given 200 mg extract, 400 mg extract, and 100 mg of N-acetyl cysteine respectively per kg 1hr before induction with 100 mg INH plus 150 mg RIF per kg. The treatments were followed for 14 days. On the 15th day, all mice were anaesthetized with diethyl ether; blood samples were collected for the assessment liver enzyme and function test. Results Group II mice's serum ALT, AST and total bilirubin levels were significantly increased and serum total protein and albumin levels were significantly decreased as compared with group I mice. The groups of mice treated with O. integrifolia at a dose of 400 mg/kg and N-acetyl cysteine AST, ALT and total bilirubin level were significantly decreased; and total protein and albumin levels were significantly (P < 0.05) increased as compared with group II. The liver index of the group IV showed decreased (P < 0.05) as compared to the group II. Conclusion Evidence from our study revealed that the hydromethanol extract of O. integrifolia has a hepatoprotective effect against isoniazid and rifampicin-induced hepatotoxicity in Swiss Albino mice. This protective effect of O. integrifolia extract may be based on its metal ion reducing power, free radical scavenging activity, and anti-inflammatory activity and could be used as a potential therapeutic option.
Collapse
Affiliation(s)
- Endalkachew Gugsa
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Tewodros Shibabaw Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Tesfahun Bekele
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
30
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
31
|
Sharma P, Arora A. Basic Understanding of Liver Transplant Immunology. J Clin Exp Hepatol 2023; 13:1091-1102. [PMID: 37975047 PMCID: PMC10643508 DOI: 10.1016/j.jceh.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 11/19/2023] Open
Abstract
The liver is a specialized organ and plays an important role in our immune system. The liver constitutes parenchymal cells which are hepatocytes and cholangiocytes (60-80%) and non-parenchymal cells like liver sinusoidal endothelial cells (LSECs), hepatic satellite/Ito cells, Kupffer cells, neutrophils, mononuclear cells, T and B lymphocytes (conventional and non-conventional), natural killer cells, and natural killer T (NKT) cells. The liver mounts a rapid and strong immune response, under unfavorable conditions and acts as an immune tolerance to a variety of non-pathogenic antigens. This delicate and dynamic interaction between different kinds of immune cells in the liver maintains a balance between immune screening and immune tolerance. The liver allografts are privileged immunologically; however, allograft rejection is not uncommon and is classified as cell or antibody-mediated. Advancements in transplant immunology help in the prevention of allografts rejection by immune reactions of the host thus leading to better graft and host survival. Fewer patients may not require immunosuppression due to systemic donor-specific T-cell tolerance. The liver tolerance mechanism is poorly studied, and LSEC and unconventional lymphocytes play an important role that dampens T cell response either by inducing apoptosis of cells or inhibiting co-stimulatory pathways. Newer cell-based therapy based on Treg, dendritic cells, and mesenchymal stromal cells will probably change the future of immunosuppression. Various invasive and non-invasive biomarkers and artificial intelligence have also been investigated to predict graft survival, post-transplant complications, and immunotolerance in the future.
Collapse
Affiliation(s)
- Praveen Sharma
- Department of Gastroenterology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil Arora
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
32
|
Hudry E, Aihara F, Meseck E, Mansfield K, McElroy C, Chand D, Tukov FF, Penraat K. Liver injury in cynomolgus monkeys following intravenous and intrathecal scAAV9 gene therapy delivery. Mol Ther 2023; 31:2999-3014. [PMID: 37515322 PMCID: PMC10556189 DOI: 10.1016/j.ymthe.2023.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatotoxicity associated with intravenous/intrathecal adeno-associated virus (AAV) gene therapy has been observed in preclinical species and patients. In nonhuman primates, hepatotoxicity following self-complementary AAV9 administration varies from asymptomatic transaminase elevation with minimal to mild microscopic changes to symptomatic elevations of liver function and thromboinflammatory markers with microscopic changes consistent with marked hepatocellular necrosis and deteriorating clinical condition. These transient acute liver injury marker elevations occur from 3-4 days post intravenous administration to ∼2 weeks post intrathecal administration. No transaminase elevation or microscopic changes were observed with intrathecal administration of empty capsids or a "promoterless genome" vector, suggesting that liver injury after cerebrospinal fluid dosing in nonhuman primates is driven by viral transduction and transgene expression. Co-administration of prednisolone after intravenous or intrathecal dosing did not prevent liver enzyme or microscopic changes despite a reduction of T lymphocyte infiltration in liver tissue. Similarly, co-administration of rituximab/everolimus with intrathecal dosing failed to block AAV-driven hepatotoxicity. Self-complementary AAV-induced acute liver injury appears to correlate with high hepatocellular vector load, macrophage activation, and type 1 interferon innate virus-sensing pathway responses. The current work characterizes key aspects pertaining to early AAV-driven hepatotoxicity in cynomolgus macaques, highlighting the usefulness of this nonclinical species in that context.
Collapse
Affiliation(s)
- Eloise Hudry
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | - Fumiaki Aihara
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Emily Meseck
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Cameron McElroy
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | - Deepa Chand
- Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA; Children's Hospital of Illinois, University of Illinois College of Medicine - Peoria, Peoria, IL 63110, USA
| | | | - Kelley Penraat
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Liang Y, Zhu KC, You YZ, Guo HY, Chen HD, Liu BS, Zhang N, Dai YB, Zeng FR, Lin HY, Zhang DC. Molecular characterization of TNF-β and IFN-γ in yellowfin seabream (Acanthopagrus latus, Hottuyn, 1782) and their immune responses to density stress during transport. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104747. [PMID: 37276930 DOI: 10.1016/j.dci.2023.104747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
The inflammatory cytokines TNF-β and IFN-γ are important mediators of the vertebrate inflammatory response and coordinators of the immune system in regard to NF-κB signalling pathways. In this study, the TNF-β and IFN-γ genes of yellowfin seabream, Acanthopagrus latus were identified, and the multiple sequence alignments, evolutionary relationships and gene expressions of the two genes were also determined. AlTNF-β contained a 762 bp open reading frame (ORF) encoding 253 amino acids, while AlIFN-γ contained a 582 bp ORF encoding 193 amino acids. An amino-acid sequence alignment analysis showed that these proteins have highly conserved transmembrane structural domains among teleosts. Moreover, AlTNF-β has a close affinity with TNF-β of yellowfin seabream while AlIFN-γ has a high evolutionary correlation with A. regius and Sparus aurata. In addition, the mRNAs of AlTNF-β and AlIFN-γ are widely expressed in various tissues. AlTNF-β is highly expressed in gill and intestinal tissues, and the mRNA levels of AlIFN-γ are higher in spleen, skin, and gill tissues than in other tissues. Under transportation density stress, the mRNA level of AlTNF-β was significantly elevated in the intestine of the high-density group, while AlTNF-β transcription in the gills did not vary significantly among the density groups. Furthermore, AlIFN-γ expression was increased in liver, intestinal, and gill tissues under high transportation density. The results of this study show that TNF-β and IFN-γ expression in yellowfin seabream is greatly affected by density stress. The density of 125 per bag for 4-5 cm fry or 1200 per bag for 1-2 cm fry is most suitable for the transportation of live fish. These results might provide a reference for further studies on the immunomodulatory response process and auxiliary function of immune stress of TNF and IFN genes in fish under density stress.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Ying-Zhe You
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - He-Dong Chen
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Yan-Bin Dai
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Fan-Rong Zeng
- Zhangzhou Aquatic Technology Promotion Station, 363000, Zhangzhou, Fujian Province, PR China
| | - Huan-Yang Lin
- Zhangzhou Marine Environmental Monitoring Center, 363000, Zhangzhou, Fujian Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
34
|
Handin N, Yuan D, Ölander M, Wegler C, Karlsson C, Jansson-Löfmark R, Hjelmesæth J, Åsberg A, Lauschke VM, Artursson P. Proteome deconvolution of liver biopsies reveals hepatic cell composition as an important marker of fibrosis. Comput Struct Biotechnol J 2023; 21:4361-4369. [PMID: 37711184 PMCID: PMC10498185 DOI: 10.1016/j.csbj.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Human liver tissue is composed of heterogeneous mixtures of different cell types and their cellular stoichiometry can provide information on hepatic physiology and disease progression. Deconvolution algorithms for the identification of cell types and their proportions have recently been developed for transcriptomic data. However, no method for the deconvolution of bulk proteomics data has been presented to date. Here, we show that proteomes, which usually contain less data than transcriptomes, can provide useful information for cell type deconvolution using different algorithms. We demonstrate that proteomes from defined mixtures of cell lines, isolated primary liver cells, and human liver biopsies can be deconvoluted with high accuracy. In contrast to transcriptome-based deconvolution, liver tissue proteomes also provided information about extracellular compartments. Using deconvolution of proteomics data from liver biopsies of 56 patients undergoing Roux-en-Y gastric bypass surgery we show that proportions of immune and stellate cells correlate with inflammatory markers and altered composition of extracellular matrix proteins characteristic of early-stage fibrosis. Our results thus demonstrate that proteome deconvolution can be used as a molecular microscope for investigations of the composition of cell types, extracellular compartments, and for exploring cell-type specific pathological events. We anticipate that these findings will allow the refinement of retrospective analyses of the growing number of proteome datasets from various liver disease states and pave the way for AI-supported clinical and preclinical diagnostics.
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Di Yuan
- Department of Information Technology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE- 41345, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43153, Sweden
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Department of Medi cine, Vestfold Hospital Trust, NO-3103 Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, NO-0318 Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, NO-0316 Oslo, Norway
- Department of Transplanation Medicin, Oslo University Hospital-Rikshospitalet, NO-0424 Oslo, Norway
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
35
|
Mandt T, Bangar A, Sauceda C, Das M, Moderbacher C, Ghani M, Webster N, Newton I. Stimulating Antitumoral Immunity by Percutaneous Cryoablation and Combination Immunoadjuvant Therapy in a Murine Model of Hepatocellular Carcinoma. J Vasc Interv Radiol 2023; 34:1516-1527.e6. [PMID: 37178816 PMCID: PMC10852103 DOI: 10.1016/j.jvir.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE To test the hypothesis that antitumoral immunity can be induced after cryoablation (cryo) of hepatocellular carcinoma (HCC) through coadministration of the immunostimulant CpG and an immune checkpoint (programmed cell death 1 [PD-1]) inhibitor. MATERIALS AND METHODS Sixty-three immunocompetent C57BL/6J mice were generated with 2 orthotopic HCC tumor foci: 1 for treatment and 1 to observe for antitumoral immunity. Tumors were treated with incomplete cryo alone or intratumoral CpG and/or a PD-1 inhibitor. The primary endpoint was death or when the following criteria for sacrifice were met: tumor > 1 cm (determined using ultrasound) or moribund state. Antitumoral immunity was assessed using flow cytometry and histology (tumor and liver) as well as enzyme-linked immunosorbent assay (serum). Analysis of variance was used for statistical comparisons. RESULTS At 1 week, the nonablated satellite tumor growth was reduced by 1.9-fold (P = .047) in the cryo + CpG group and by 2.8-fold (P = .007) in the cryo + CpG + PD-1 group compared with that in the cryo group. Compared with cryo alone, the time to tumor progression to endpoints was also prolonged for cryo + CpG + PD-1 and cryo + CpG mice, with log-rank hazard ratios of 0.42 (P = .031) and 0.27 (P < .001), respectively. Flow cytometry and histology showed increased cytotoxic T-cell infiltration (P = .002) and serum levels of the proinflammatory cytokine interferon-γ (P = .015) in tumors and serum of cryo + CpG mice compared with those in tumors and serum of mice treated with cryo alone. High serum levels of the anti-inflammatory cytokine tumor growth factor-β and the proangiogenesis chemokine C-X-C motif chemokine ligand 1 were correlated with a shorter time to endpoints and faster tumor growth. CONCLUSIONS Cryo combined with the immunostimulant CpG promoted cytotoxic T-cell infiltration into tumors, slowed tumor growth, and prolonged the time to progression to endpoints in an aggressive murine HCC model.
Collapse
Affiliation(s)
- Tyler Mandt
- Health Department of Radiology, University of California San Diego, San Diego
| | - Amandip Bangar
- Health Department of Radiology, University of California San Diego, San Diego
| | - Consuelo Sauceda
- Health Department of Radiology, University of California San Diego, San Diego
| | - Manasi Das
- Health Department of Radiology, University of California San Diego, San Diego
| | | | - Mansur Ghani
- Health Department of Radiology, University of California San Diego, San Diego
| | - Nicholas Webster
- San Diego Veteran's Affairs, University of California San Diego, San Diego
| | - Isabel Newton
- San Diego Veteran's Affairs, University of California San Diego, San Diego.
| |
Collapse
|
36
|
Harada T, Shimomura Y, Nishida O, Maeda M, Kato Y, Nakamura T, Kuriyama N, Komura H. Effects of recombinant human soluble thrombomodulin on neutrophil extracellular traps in the kidney of a mouse model of endotoxin shock. FUJITA MEDICAL JOURNAL 2023; 9:225-230. [PMID: 37554943 PMCID: PMC10405902 DOI: 10.20407/fmj.2022-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Sepsis is a life-threatening condition characterized by multi-organ dysfunction due to host immune system dysregulation in response to an infection. During sepsis, neutrophils release neutrophil extracellular traps (NETs) as part of the innate immune response. However, excessive NETs play a critical role in the development of organ failure during sepsis. Although recombinant human soluble thrombomodulin (rTM) can inhibit NET formation in the lungs and liver of a mouse model of endotoxin shock, its effects on the kidneys are unclear. METHODS The specific effects of NETs and rTM on the renal cortex and renal medulla were examined in a mouse model of endotoxin shock generated by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), followed by i.p. injection of rTM or an identical volume of saline 1 h later. RESULTS LPS injection increased serum creatinine, blood urea nitrogen, and histone H3 levels. However, rTM administration significantly decreased histone H3 and citrullinated histone H3 (citH3) levels. Immunohistochemical analysis revealed no significant changes in citH3 quantity in the renal cortex of any group. However, in the renal medulla, the increase in citH3 induced by LPS was abolished in the LPS+rTM group. CONCLUSIONS Our findings demonstrate that rTM can suppress NETs in the renal medulla of mice with endotoxin-induced acute kidney injury.
Collapse
Affiliation(s)
- Tatsuhiko Harada
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yasuyo Shimomura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Munenori Maeda
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Yu Kato
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Tomoyuki Nakamura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Naohide Kuriyama
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| | - Hidefumi Komura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University, School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
37
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
38
|
Yang L, Meng Y, Shi Y, Fang H, Zhang L. Maternal hepatic immunology during pregnancy. Front Immunol 2023; 14:1220323. [PMID: 37457700 PMCID: PMC10348424 DOI: 10.3389/fimmu.2023.1220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver plays pivotal roles in immunologic responses, and correct hepatic adaptations in maternal immunology are required during pregnancy. In this review, we focus on anatomical and immunological maternal hepatic adaptations during pregnancy, including our recent reports in this area. Moreover, we summarize maternal pregnancy-associated liver diseases, including hyperemesis gravidarum; intrahepatic cholestasis of pregnancy; preeclampsia, specifically hemolysis, elevated liver enzymes, and low platelet count syndrome; and acute fatty liver of pregnancy. In addition, the latest information about the factors that regulate hepatic immunology during pregnancy are reviewed for the first time, including human chorionic gonadotropin, estrogen, progesterone, growth hormone, insulin like growth factor 1, oxytocin, adrenocorticotropic hormone, adrenal hormone, prolactin, melatonin and prostaglandins. In summary, the latest progress on maternal hepatic anatomy and immunological adaptations, maternal pregnancy-associated diseases and the factors that regulate hepatic immunology during pregnancy are discussed, which may be used to prevent embryo loss and abortion, as well as pregnancy-associated liver diseases.
Collapse
|
39
|
Ryaboshapkina M, Azzu V. Sample size calculation for a NanoString GeoMx spatial transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver disease. Sci Rep 2023; 13:8943. [PMID: 37268815 DOI: 10.1038/s41598-023-36187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
Sample size calculation for spatial transcriptomics is a novel and understudied research topic. Prior publications focused on powering spatial transcriptomics studies to detect specific cell populations or spatially variable expression patterns on tissue slides. However, power calculations for translational or clinical studies often relate to the difference between patient groups, and this is poorly described in the literature. Here, we present a stepwise process for sample size calculation to identify predictors of fibrosis progression in non-alcoholic fatty liver disease as a case study. We illustrate how to infer study hypothesis from prior bulk RNA-sequencing data, gather input requirements and perform a simulation study to estimate required sample size to evaluate gene expression differences between patients with stable fibrosis and fibrosis progressors with NanoString GeoMx Whole Transcriptome Atlas assay.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Vian Azzu
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
40
|
Zhou S, Zhao Z, Zhong H, Ren Z, Li Y, Wang H, Qiu Y. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14:77. [PMID: 37217620 DOI: 10.1007/s12672-023-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
MDSCs are immature myeloid immune cells, which accumulate in models of liver cancer to reduce effector immune cell activity, contribute to immune escape and treatment resistance. The accumulation of MDSCs suppresses the role of CTL and the killing effects of NK cells, induces the accumulation of Treg cells, and blocks the antigen presentation of DCs, thus promoting the progression of liver cancer. Recently, immunotherapy has emerged a valuable approach following chemoradiotherapy in the therapy of advanced liver cancer. A considerable increasing of researches had proved that targeting MDSCs has become one of the therapeutic targets to enhance tumor immunity. In preclinical study models, targeting MDSCs have shown encouraging results in both alone and in combination administration. In this paper, we elaborated immune microenvironment of the liver, function and regulatory mechanisms of MDSCs, and therapeutic approaches to target MDSCs. We also expect these strategies to supply new views for future immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hao Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Zehao Ren
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuye Li
- Binhai New Area Hospital of TCM, Tianjin, 300451, China.
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
41
|
Chen K, Li Y, Wang B, Yan X, Tao Y, Song W, Xi Z, He K, Xia Q. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol 2023; 14:1101324. [PMID: 37215109 PMCID: PMC10192760 DOI: 10.3389/fimmu.2023.1101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Liver cancer is an aggressive tumor originating in the liver with a dismal prognosis. Current evidence suggests that liver cancer is the fifth most prevalent cancer worldwide and the second most deadly type of malignancy. Tumor heterogeneity accounts for the differences in drug responses among patients, emphasizing the importance of precision medicine. Patient-derived models of cancer are widely used preclinical models to study precision medicine since they preserve tumor heterogeneity ex vivo in the study of many cancers. Patient-derived models preserving cell-cell and cell-matrix interactions better recapitulate in vivo conditions, including patient-derived xenografts (PDXs), induced pluripotent stem cells (iPSCs), precision-cut liver slices (PCLSs), patient-derived organoids (PDOs), and patient-derived tumor spheroids (PDTSs). In this review, we provide a comprehensive overview of the different modalities used to establish preclinical models for precision medicine in liver cancer.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Bingran Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhou Song
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
42
|
Gao Z, Liu X, Zhao H, Xia S, Liu W, Bai H, Lv F, Zheng X, Huang Y, Gu Q, Wang S. Synthesis of easily-processable collagen bio-inks using ionic liquid for 3D bioprinted liver tissue models with branched vascular networks. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
43
|
Zhang D, Liu Z, Zhou Y, Tang L, Hou J, Li Y. Alcohol induces intrahepatic humoral immunity-related suppression and delays the clearance of HBV infection. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
44
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
45
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey.
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
46
|
Liu J, Liu Y, Liu Y, Guo X, Lü Z, Zhou X, Liu H, Chi C. Molecular cloning, expression analysis and immune-related functional identification of tumor necrosis factor alpha (TNFα) in Sepiella japonica under bacteria stress. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108509. [PMID: 36581254 DOI: 10.1016/j.fsi.2022.108509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Tumor necrosis factor α (TNFα), a cytokine mainly secreted by active macrophages and monocytes, causes hemorrhagic necrosis of tumor tissues, kills tumor cells, regulates inflammatory responses, and plays a crucial role in innate immunity. In this study, TNFα of Sepiella japonica (named as SjTNFα) was acquired, whose full-length cDNA was 1206 bp (GenBank accession no. ON357428), containing a 5' UTR of 185 bp, a 3' UTR of 137 bp and an open reading frame (ORF) of 1002bp to encode a putative peptide of 333 amino acids for constructing the transmembrane domain and the cytoplasmic TNF domain. Its predicted pI was 8.69 and the theoretical molecular weight was 44.72 KDa. Multiple sequence alignment and phylogenetic analysis showed that SjTNFα had the highest homology to Octopus sinensis, they fell into a unified branch and further clustered with other animals. Real-time PCR indicated that SjTNFα was widely expressed in all subject tissues, including spleen, pancreas, gill, heart, brain, optic lobe, liver and intestine, and exhibited the highest in the liver and the lowest in the brain. The relative expression of SjTNFα varied at the developmental period of juvenile stage, pre-spawning and oviposition in the squid, with the highest in the liver at the juvenile stage and oviposition, and in the optic lobe of pre-spawning. After being infected with Vibrio parahaemolyticus and Aeromonas hydrophila, the expression of SjTNFα in liver and gill were both upregulated with time, and the highest expression appeared at 24 h and 8 h in liver for different infection, and at 4 h in gill consistently. Cell localization showed that SjTNFα distributed on membrane of HEK293 cells because it was a type II soluble transmembrane protein. When HEK293 cells were stimulated with LPS of different concentrations, the NF-κB pathway was activated in the nucleus and the corresponding mRNA was transferred through the intracellular signal transduction pathway, resulting in the synthesis and release of TNFα, which made the expression of SjTNFα was up-regulated obviously. These findings showed that SjTNFα might play an essential role in the defense of S. japonica against bacteria challenge, which contributed to the understanding of the intrinsic immune signaling pathway of Cephalopoda and the further study of host-pathogen interactions.
Collapse
Affiliation(s)
- Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Yongxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xiaoxian Guo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
47
|
Chung S, Lee CM, Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. NANOSCALE HORIZONS 2022; 8:10-28. [PMID: 36260016 PMCID: PMC11144305 DOI: 10.1039/d2nh00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The liver is a vital organ that functions to detoxify the body. Liver cancer and infectious diseases such as influenza and malaria can fatally compromise liver function. mRNA delivery is a relatively new means of therapeutic treatment which enables expression of tumor or pathogenic antigens, and elicits immune responses for therapeutic or prophylactic effect. Novel nanoparticles with unique biological properties serving as mRNA carriers have allowed mRNA-based therapeutics to become more clinically viable and relevant. In this review, we highlight recent progress in development of nanoparticle-based mRNA delivery systems for treatment of various liver diseases. First, we present developments in nanoparticle systems used to deliver mRNAs, with specific focus on enhanced cellular uptake and endosomal escape achieved through the use of these nanoparticles. To provide context for diseases that target the liver, we provide an overview of the function and structure of the liver, as well as the role of the immune system in the liver. Then, mRNA-based therapeutic approaches for addressing HCC are highlighted. We also discuss nanoparticle-based mRNA vaccines for treating hepatotropic infectious diseases. Finally, we present current challenges in the clinical translation of nanoparticle-based mRNA delivery systems and provide outlooks for their utilization in treating liver-related diseases.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Chan Mi Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
48
|
Relationship between absorbed dose and changes in liver volume after chemoradiotherapy for esophageal cancer. Jpn J Radiol 2022; 41:561-568. [PMID: 36538162 DOI: 10.1007/s11604-022-01375-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The liver is the largest organ in the abdomen and is often irradiated in radiotherapy for non-hepatic malignancies. As most of the studies on changes in liver volume are on hepatocellular carcinoma based on liver dysfunction, there are few studies on healthy liver. In this study, we investigated the relationship between absorbed dose and changes in liver volume after chemoradiotherapy for esophageal cancer in patients without apparent pre-treatment liver dysfunction. MATERIALS AND METHODS Liver volume was compared between pre-treatment, acute (< 4 months) and late post-treatment (≥ 4 and < 13 months) phases in 12 patients using abdominal plain CT images. Volume changes were evaluated separately for the right and left lobes. We investigated the relationship between the volume change and VxGy (percentage of volume received x Gy or more dose). In addition, volume change for each absorbed dose was investigated using deformable image registration. RESULTS The volume of the left lobe showed a significant decrease between pre-treatment and acute post-treatment phases (p < 0.001), while the volume of right lobe and between acute and late post-treatment phase of left lobe did not. The mean value of the volume reduction rate of the left lobe was 51.1% and equivalent to the mean value of V30Gy. As a result of the volume change for each absorbed dose, the volume reduction rate increased as the absorbed dose increased, and a significant volume loss was observed at doses above 11 Gy. CONCLUSION Volume of the liver significantly decreased only in the acute phase after chemoradiotherapy for esophageal cancer. The tolerable dose for a healthy liver is generally considered to be 30 Gy, but attention should be paid to lower doses to avoid radiation-induced liver injury.
Collapse
|
49
|
Álvarez-Fernández García R, Gutiérrez Romero L, Bettmer J, Montes-Bayón M. Capabilities of Single Cell ICP-MS for the Analysis of Cell Suspensions from Solid Tissues. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:12. [PMID: 36615921 PMCID: PMC9823448 DOI: 10.3390/nano13010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Single cell elemental (SC) analysis of isogenic cell cultures can be done using inductively coupled plasma (ICP-MS) detection. However, 2D cell cultures are just models to simplify the complexity of real tissue samples. Here, we show for the first time the capabilities of the technique (SC-ICP-MS) to analyze single cell suspensions of isolated cells from tissues. An optimized cocktail of proteolytic and collagenolytic enzymes was applied in a single preparation step with cellular yields up to 28% using 0.5 g of fresh rat spleen and liver, respectively. The retrieved cells revealed adequate morphology and stability to be examined by SC-ICP-MS. Quantitative elemental analysis of P, S, Cu, and Fe from disaggregated cells from rat spleen and liver tissues revealed levels of Fe of 7-16 fg/cell in the spleen and 8-12 fg/cell in the liver, while Cu was about 3-5 fg/cell in the spleen and 1.5-2.5 fg/cell in the liver. Evaluation of the transmembrane protein transferrin receptor 1 (TfR1) expression levels in disaggregated cells was also conducted by using a Nd-labelled antibody against this cell surface biomarker. Quantitative results showed significantly lower expression in the disaggregated cells than in the cell model HepG2, in agreement with the overexpression of this biomarker in tumor cells. In this proof of concept study, the tissue disaggregation protocol has shown to maintain the elemental intracellular content of cells as well as the presence of relevant antigens. This opens a completely new area of research for SC-ICP-MS in tissue samples as a complementary strategy with validation capabilities.
Collapse
Affiliation(s)
- Roberto Álvarez-Fernández García
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
| | - Lucía Gutiérrez Romero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
| | - Jörg Bettmer
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
| | - Maria Montes-Bayón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
50
|
Hassan HM, Onabote O, Isovic M, Passos DT, Dick FA, Torchia J. Regulation of Chromatin Accessibility by the Farnesoid X Receptor Is Essential for Circadian and Bile Acid Homeostasis In Vivo. Cancers (Basel) 2022; 14:cancers14246191. [PMID: 36551676 PMCID: PMC9777377 DOI: 10.3390/cancers14246191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The Farnesoid X Receptor (FXR) belongs to the nuclear receptor superfamily and is an essential bile acid (BA) receptor that regulates the expression of genes involved in the metabolism of BAs. FXR protects the liver from BA overload, which is a major etiology of hepatocellular carcinoma. Herein, we investigated the changes in gene expression and chromatin accessibility in hepatocytes by performing RNA-seq in combination with the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) using a novel FXR knockout mouse model (Fxrex5Δ: Nr1h4ex5Δ/ex5Δ) generated through CRISPR/Cas9. Consistent with previous Fxr knockout models, we found that Fxrex5Δ mice develop late-onset HCC associated with increased serum and hepatic BAs. FXR deletion was associated with a dramatic loss of chromatin accessibility, primarily at promoter-associated transcription factor binding sites. Importantly, several genes involved in BA biosynthesis and circadian rhythm were downregulated following loss of FXR, also displayed reduced chromatin accessibility at their promoter regions. Altogether, these findings suggest that FXR helps to maintain a transcriptionally active state by regulating chromatin accessibility through its binding and recruitment of transcription factors and coactivators.
Collapse
Affiliation(s)
- Haider M. Hassan
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Oladapo Onabote
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Majdina Isovic
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Daniel T. Passos
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Frederick A. Dick
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Joseph Torchia
- Department of Biochemistry, Western University, London, ON N6A 5C1, Canada
- Department of Oncology, London Regional Cancer Program and the Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +519-685-8692
| |
Collapse
|