1
|
Chen L, Liu Y. Advances and Prospects of Selective Electrocatalytic Upgrading of 5-Hydroxymethylfurfural to Furan-2,5-Dicarboxylic Acid. CHEM REC 2025; 25:e202400238. [PMID: 40029008 DOI: 10.1002/tcr.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The electrocatalytic upgrading of 5-hydroxymethylfurfural (HMF, 5-(Hydroxymethyl) furan-2-carbaldehyde) has emerged as a renewable and environmentally friendly means for the production of high-value chemicals, with the oxidation product furan-2,5-dicarboxylic acid (FDCA, 2,5-furandicarboxylic acid) possessing economic viability in substituting terephthalic acid in polymer synthesis. This article reviews the recent advancements in the selective electrocatalytic upgrading of HMF to FDCA, including the reaction pathways, mechanisms, as well as activity descriptors of HMF electrocatalytic oxidation reaction (HMFOR), alongside advanced operando characterization techniques. Subsequently, the representative HMFOR catalysts, encompassing noble metal, non-noble metal, transition metal-based catalysts and metal free-based catalysts are presented. Then strategies for regulating HMFOR activity and longevity were introduced, followed by an exploration of the future prospects for the development of HMFOR catalysts.
Collapse
Affiliation(s)
- Lianhua Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Zhang Y, Cui H, Xia H. Recent Advances in the Synthesis of 2-Furoic Acid and 2,5-Furandicarboxylic Acid from Furfural. CHEMSUSCHEM 2025; 18:e202401390. [PMID: 39261279 DOI: 10.1002/cssc.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
2,5-furandicarboxylic acid (FDCA) is an important organic platform compound that has been widely used in the fields of medicine, pesticides, dyes, plastics and resins due to its unique structure and properties. In recent years, with the emphasis on sustainable development and green chemistry, the synthesis of FDCA from biomass has attracted extensive attention. The catalytic conversion of furfural (FF) to FDCA has the advantages of easy availability of the raw material, environmental friendliness, economic feasibility and so on, which is an important direction for FDCA synthesis in the future. This paper mainly reviews the prepare pathways of furoic acid (FA) and FDCA using FF as a starting material, including the selective conversion of FF and FA to target products under different types of catalysts. First, the research progress in the synthesis of FA from FF was summarized, and then the advances in the catalytic conversion of FA to FDCA was reviewed. In addition, the development of efficient and green catalysts and the optimization of existing synthesis protocols are emphasized as key factors to improve the yield and purity of FDCA while reducing production costs. Finally, the opportunities and challenges were discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haowen Cui
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haian Xia
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
3
|
Hao Nguyen T, Dinh Le D, Le Nguyen DA, Liang CF, Bich Phan H, Hoang Tran P. One-Pot Effective Approach to 2,5-Diformylfuran From Carbohydrates Using MoS 2-Decorated Carbonaceous Sugarcane Bagasse. CHEMSUSCHEM 2024; 17:e202400657. [PMID: 38942726 DOI: 10.1002/cssc.202400657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Exploring the transformation of carbohydrates into valuable chemicals offers a promising and eco-friendly method for utilizing renewable biomass resources. Developing a bi-functional, sustainable heterogeneous catalyst is of utmost importance to attain a high level of selectivity for the desired product, 2,5-diformylfuran (DFF), in this direct conversion process. In this study, we developed a highly effective catalytic system to convert diverse carbohydrates into DFF. Our approach involved utilizing a MoS2 catalyst supported by amorphous carbon derived from sulfonated sugarcane biomass. The MoS2@SBG-SO3H composite was successfully synthesized using a facile and highly efficient method. The transformation of fructose into DFF achieved a significant yield of 70 % for 5 h at 160 °C using a one-step and one-pot reaction through dehydration and oxidation with oxygen. The oxidation of 5-hydroxymethylfurfural (HMF) into DFF using MoS2@SBG-SO3H was obtained at 94 % DFF within 5 h; the activation energy was 38.3 kJ . mol-1. The catalyst displayed convenient recovery and reusability. The direct synthesis of DFF from various carbohydrates, such as sucrose, glucose, maltose, and lactose, resulted in favorable yields. Our research provides a quick, green, and efficient process for preparing carbon-based solid acid catalysts and DFF.
Collapse
Affiliation(s)
- Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Diep Dinh Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Dao Anh Le Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Institute of Public Health, Ho Chi Minh City, Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Swoboda A, Zwölfer S, Duhović Z, Bürgler M, Ebner K, Glieder A, Kroutil W. Multistep Biooxidation of 5-(Hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid with H 2O 2 by Unspecific Peroxygenases. CHEMSUSCHEM 2024; 17:e202400156. [PMID: 38568785 DOI: 10.1002/cssc.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
5-(Hydroxymethyl)furfural (HMF) is a key platform chemical derived from renewable biomass sources, holding great potential as starting material for the synthesis of valuable compounds, thereby replacing petrochemical-derived counterparts. Among these valorised compounds, 2,5-furandicarboxylic acid (FDCA) has emerged as a versatile building block. Here we demonstrate the biocatalytic synthesis of FDCA from HMF via a one-pot three-step oxidative cascade performed via two operative steps under mild reaction conditions employing two unspecific peroxygenases (UPOs) using hydrogen peroxide as the only oxidant. The challenge of HMF oxidation by UPOs is the chemoselectivity of the first step, as one of the two possible oxidation products is only a poor substrate for further oxidation. The unspecific peroxygenase from Marasmius oreades (MorUPO) was found to oxidize 100 mM of HMF to 5-formyl-2-furoic acid (FFCA) with 95 % chemoselectivity. In the sequential one-pot cascade employing MorUPO (TON up to 13535) and the UPO from Agrocybe aegerita (AaeUPO, TON up to 7079), 100 mM of HMF were oxidized to FDCA reaching up to 99 % conversion and yielding 861 mg isolated pure crystalline FDCA, presenting the first example of a gram scale biocatalytic synthesis of FDCA involving UPOs.
Collapse
Affiliation(s)
- Alexander Swoboda
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Silvie Zwölfer
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Zerina Duhović
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | - Moritz Bürgler
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Katharina Ebner
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Anton Glieder
- Bisy GmbH, Wünschendorf 292, 8200, Hofstätten an der Raab, Austria
| | - Wolfgang Kroutil
- Austrian Center of Industrial Biotechnology (ACIB GmbH), c/o Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| |
Collapse
|
5
|
Cascelli N, Gotor-Fernández V, Lavandera I, Sannia G, Lettera V. Spectrophotometric Assay for the Detection of 2,5-Diformylfuran and Its Validation through Laccase-Mediated Oxidation of 5-Hydroxymethylfurfural. Int J Mol Sci 2023; 24:16861. [PMID: 38069183 PMCID: PMC10706692 DOI: 10.3390/ijms242316861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Modern biocatalysis requires fast, sensitive, and efficient high-throughput screening methods to screen enzyme libraries in order to seek out novel biocatalysts or enhanced variants for the production of chemicals. For instance, the synthesis of bio-based furan compounds like 2,5-diformylfuran (DFF) from 5-hydroxymethylfurfural (HMF) via aerobic oxidation is a crucial process in industrial chemistry. Laccases, known for their mild operating conditions, independence from cofactors, and versatility with various substrates, thanks to the use of chemical mediators, are appealing candidates for catalyzing HMF oxidation. Herein, Schiff-based polymers based on the coupling of DFF and 1,4-phenylenediamine (PPD) have been used in the set-up of a novel colorimetric assay for detecting the presence of DFF in different reaction mixtures. This method may be employed for the fast screening of enzymes (Z' values ranging from 0.68 to 0.72). The sensitivity of the method has been proved, and detection (8.4 μM) and quantification (25.5 μM) limits have been calculated. Notably, the assay displayed selectivity for DFF and enabled the measurement of kinetics in DFF production from HMF using three distinct laccase-mediator systems.
Collapse
Affiliation(s)
- Nicoletta Cascelli
- Biopox srl, Viale Maria Bakunin 12, 80125 Napoli, Italy; (N.C.); (G.S.)
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006 Oviedo, Spain; (V.G.-F.); (I.L.)
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006 Oviedo, Spain; (V.G.-F.); (I.L.)
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006 Oviedo, Spain; (V.G.-F.); (I.L.)
| | - Giovanni Sannia
- Biopox srl, Viale Maria Bakunin 12, 80125 Napoli, Italy; (N.C.); (G.S.)
| | - Vincenzo Lettera
- Biopox srl, Viale Maria Bakunin 12, 80125 Napoli, Italy; (N.C.); (G.S.)
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D, 87036 Cosenza, Italy
| |
Collapse
|
6
|
Zeng D, Wang W, Zhang Y, Wang J, Cui B, Jia T, Li R, Chu H, Zhang L, Wang W. Efficient One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Sugars over Polyoxometalate/Metal-Organic Framework Catalysts. CHEMSUSCHEM 2023; 16:e202300836. [PMID: 37435804 DOI: 10.1002/cssc.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Converting extensive sugars into value-added 2,5-furandicarboxylic acid (FDCA) has been considered to be a promising approach to developing sustainable substitutes for chemicals from fossil resources. The complicated conversion processes involved multiple cascade reactions and intermediates, which made the design of efficient multifunction catalysts challenging. Herein, we developed a catalyst by introducing phosphotungstic acid (PW) and Co sites into the UiO-66, which achieved a one-pot cascade conversion of fructose-to-FDCA with high conversion (>99 %) and yield (94.6 %) based on the controllable Lewis/Brønsted acid sites and redox sites. Controlled experiments and detailed characterizations show that the multifunctional PW/UiO(Zr, Co) catalysts successfully affords the direct synthesis of FDCA from fructose via dehydration and selective oxidation in the one-pot reaction. Additionally, the MOF catalysts could also efficiently convert various sugars into FDCA, which has broad application prospects. This study provides new strategies for designing multifunctional catalysts to achieve efficient production of FDCA from biomass in the one-pot reaction.
Collapse
Affiliation(s)
- Di Zeng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Wenjing Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Juxue Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Bingkun Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Taikang Jia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Ruofan Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Hongxiang Chu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Ling Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
| | - Wenzhong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
7
|
Deshan AK, Moghaddam L, Atanda L, Wang H, Bartley JP, Doherty WO, Rackemann DW. High Conversion of Concentrated Sugars to 5-Hydroxymethylfurfural over a Metal-free Carbon Catalyst: Role of Glucose-Fructose Dimers. ACS OMEGA 2023; 8:40442-40455. [PMID: 37929081 PMCID: PMC10620938 DOI: 10.1021/acsomega.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
To reduce the production cost of chemicals from renewable resources, the feedstock loading must be high and the catalyst must be of low cost and efficient. In this study, at a very short reaction time of 10 min at 125 °C, concentrated sugar solutions (20 wt %, 101 wt % on solvent) were converted to 5-hydroxymethylfurfural (HMF) over a cotton gin trash (CGT)-derived sulfonated carbon catalyst in a 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 2-methyltetrahydrofuran (MeTHF) biphasic system. We report, for the first time, that the presence of glucose either as a covalently bonded monomer in sucrose or in a mixture with fructose achieved yields of HMF up to 62 mol % compared to a value of only 39 mol % obtained with fructose on its own. In the concentrated reaction medium, glucose, fructose, and sucrose molecules produce difructose anhydrides, dimers/reversion products, and sucrose isomers. The glucose-fructose dimers formed in sucrose and glucose/fructose reaction systems play a critical role in the transformation of the sugars to a higher-than-expected HMF yield. Thus, a strategy of using cellulosic glucose, where it is partially converted to fructose content and the high sugar concentration sugar mixture is then converted to HMF, should be exploited for future biorefineries.
Collapse
Affiliation(s)
- Athukoralalage
Don K. Deshan
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Lalehvash Moghaddam
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Luqman Atanda
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Hongxia Wang
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - John P. Bartley
- School
of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - William O.S. Doherty
- Faculty
of Science and Engineering, Southern Cross
University, Lismore, New South Wales 2480, Australia
- Doherty
Consulting Services, 3 Lillydale, Place, Calamvale, Brisbane, Queensland 4116, Australia
| | - Darryn W. Rackemann
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
8
|
Chu S, Shao J, Qu H, Wang X, Xiao R, Zhang H. Band Structure Engineering of Polyimide Photocatalyst for Efficient and Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202300886. [PMID: 37498683 DOI: 10.1002/cssc.202300886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Solar-driven high-value utilization of biomass and its derivatives has attracted tremendous attention in replacing fossil sources to generate chemicals. Developing high-performance photocatalysts to selectively catalyze bio-platform molecules remains a challenge. Herein, biomass-based 5-hydroxymethylfurfural (HMF) was efficiently and selectively photooxidized to 2, 5-diformylfuran (DFF) using a metal-free polyimide (PI). PI with moderate photooxidation capacity delivered high DFF selectivity of 91 % and high apparent quantum efficiency of 1.13 %, nearly 7 times higher than that of graphitic carbon nitride. Experimental measurements and theoretical calculations revealed that the band structure and photooxidation capability of PI can be continuously modulated by varying the molar ratio of amine and anhydride. Mechanism analysis depicted that holes and superoxide radicals play crucial roles in the efficient photooxidation of HMF to DFF. This work provides guidance on designing efficient polymeric photocatalysts for oxidating biomass and its derivatives to value-added chemicals.
Collapse
Affiliation(s)
- Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jingjing Shao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hongyu Qu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xintie Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
9
|
Yang L, Shao L, Wu Z, Zhan P, Zhang L. Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers (Basel) 2023; 15:2630. [PMID: 37376276 DOI: 10.3390/polym15122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In the face of the current energy and environmental problems, the full use of biomass resources instead of fossil energy to produce a series of high-value chemicals has great application prospects. 5-hydroxymethylfurfural (HMF), which can be synthesized from lignocellulose as a raw material, is an important biological platform molecule. Its preparation and the catalytic oxidation of subsequent products have important research significance and practical value. In the actual production process, porous organic polymer (POP) catalysts are highly suitable for biomass catalytic conversion due to their high efficiency, low cost, good designability, and environmentally friendly features. Here, we briefly describe the application of various types of POPs (including COFs, PAFs, HCPs, and CMPs) in the preparation and catalytic conversion of HMF from lignocellulosic biomass and analyze the influence of the structural properties of catalysts on the catalytic performance. Finally, we summarize some challenges that POPs catalysts face in biomass catalytic conversion and prospect the important research directions in the future. This review provides valuable references for the efficient conversion of biomass resources into high-value chemicals in practical applications.
Collapse
Affiliation(s)
- Lei Yang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Aerobic oxidation of hydroxymethylfurfural using a homogeneous TEMPO/TBN catalytic system in 3D-printed milli-scale porous reactors. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Efficient Acceptorless Dehydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) over Pt/CdS under Visible Light. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Kumar R, Zhu Z, Chen C, Cai W, Woon-Chung Wong J, Zhao J. Molten Salt-Assisted Synthesis of Co/N-Doped Carbon Hybrids for Aqueous-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202201333. [PMID: 36120725 DOI: 10.1002/cssc.202201333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
A resource-efficient and facile method of synthesizing 2,5-furandicarboxylic acid (FDCA) from biomass-derived platform chemical 5-hydroxymethylfurfural (HMF) was explored using cobalt and nitrogen-doped carbon catalysts (Co/N-C). A molten salts-assisted method proved to be effective in improving the surface area of the catalysts as well as uniformity and dispersibility of the Co species. Detailed investigation of different combinations of precursors revealed that the formation of Co-Nx species was imperative for high FDCA selectivity, and the nitrogen-doped carbon matrix enhanced the catalytic activity by providing good electron mobility. A significant observation was made regarding the change in reaction mechanism with the heating rate of Co/N-C. High HMF conversion of 99 % with 68 % FDCA yield was achieved at 120 °C in water at 24 h. This study shows an eco-friendly and cost-effective method of FDCA production with high yield that overcomes the use of precious metal-based catalysts, organic solvents, and severe reaction conditions.
Collapse
Affiliation(s)
- Reeti Kumar
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Zhi Zhu
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Changzhou Chen
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Wenfei Cai
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Jun Zhao
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
- Hong Kong Baptist University Institute of Research and Continuing Education Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| |
Collapse
|
13
|
Synthesis of value-added furan compounds from biomass derived glucose via cascade catalysis using functionalized V2O5 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Talukdar H, Sultana SY, Kalita A, Islam NS. Selective and Mild Oxidation of 5‐Hydroxymethylfurfural to 5‐Hydroxymethyl‐2‐furancarboxylic Acid over Organic Polymer‐Supported Peroxidoniobium(V) Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202202374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiya Talukdar
- Department of Chemical Sciences Tezpur university Tezpur 784028 Assam India
| | | | - Arnab Kalita
- Department of Chemical Sciences Tezpur university Tezpur 784028 Assam India
| | - Nashreen S. Islam
- Department of Chemical Sciences Tezpur university Tezpur 784028 Assam India
| |
Collapse
|
15
|
Derflinger C, Kamm B, Paulik C, Meissner G, Spod H. Efficient and Selective Aerobic Oxidation of 5‐hydroxymethylfurfural to 2,5‐diformylfuran at Moderate Reaction Conditions with Design of Experiments Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christoph Derflinger
- Wood K plus - Competence Center for Wood Composites & Wood Chemistry Kompetenzzentrum Holz GmbH Austria
- Institute for Chemical Technology of Organic Materials Johannes Kepler University Linz Altenberger Str., 69 4040 Linz Austria
| | - Birgit Kamm
- Wood K plus - Competence Center for Wood Composites & Wood Chemistry Kompetenzzentrum Holz GmbH Austria
- Brandenburg University of Technology Cottbus-Senftenberg Faculty of Environment and Natural Sciences Cottbus Germany
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials Johannes Kepler University Linz Altenberger Str., 69 4040 Linz Austria
| | - Gisa Meissner
- Heraeus Precious Metals, Heraeus Deutschland GmbH & Co. KG Hanau Germany
| | - Hendrik Spod
- Heraeus Precious Metals, Heraeus Deutschland GmbH & Co. KG Hanau Germany
| |
Collapse
|
16
|
Pal P, Saravanamurugan S. Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200902. [PMID: 35713635 DOI: 10.1002/cssc.202200902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The present study focused on developing a stable basic MnOx support for Ru (RuMn) for the efficient oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) in water in the absence of an external base. A series of MnOx supports, synthesized via hydrothermal approach using urea as precipitant, was prepared by thermal treatment at various temperatures (300-800 °C) before doping with Ru. The RuMn-2 (1 wt % Ru, MnOx calcined at 400 °C) possessed a large number of basic sites (1.72 mmol g-1 ) based on CO2 temperature-programmed desorption analysis, affording an FDCA yield of 87 % with a turnover frequency of 22 h-1 . Transmission electron microscopy energy-dispersive X-ray spectroscopy elemental mapping of RuMn-2 showed a high dispersion of Ru over the surface of MnOx, contributing to the efficient HMF oxidation. Moreover, X-ray diffraction, X-ray photoelectron spectroscopy, and H2 temperature-programmed reduction indicated that the predominant MnO2 phase (ϵ-MnO2 ) played a vital role in HMF oxidation. RuMn-2 was recyclable for up to four runs without significant loss in the activity and retained its structural integrity.
Collapse
Affiliation(s)
- Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81(Knowledge City), Mohali, 140306, Punjab (India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81(Knowledge City), Mohali, 140306, Punjab (India
| |
Collapse
|
17
|
Nguyen QNB, Phan HB, Nguyen TH, Doan VTC, Nguyen LB, Nguyen HT, Tran PH. Direct and low-cost transformation of glucose to 2,5-diformylfuran by AlCl3·6H2O, sulfur, and dimethyl sulfoxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Turkin AA, Makshina EV, Sels BF. Catalytic Hydroconversion of 5-HMF to Value-Added Chemicals: Insights into the Role of Catalyst Properties and Feedstock Purity. CHEMSUSCHEM 2022; 15:e202200412. [PMID: 35348300 DOI: 10.1002/cssc.202200412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is an important bio-derived platform molecule that is generally obtained from hexoses via acid-catalyzed dehydration. It can be effectively transformed into a variety of value-added derivatives, thus being an ideal candidate for fossil replacement. Both HMF oxidation and hydrogenation processes enable the synthesis of numerous chemicals, monomers for polymerization, and biofuel precursors. This Review summarizes the most recent advances in heterogeneous catalytic hydroconversion of HMF into valuable chemicals with strong focus on 2,5-bishydroxymethyl furan (BHMF), 2,5-bishydroxymethyltetrahydrofuran (BHMTHF), and 2,5-dimethyltetrahydrofuran (DMTHF). In addition, multifunctional catalytic systems that enable a tunable production of various HMF derived intermediates are discussed. Within this chemistry, the surprising impact of HMF purity on the catalytic performance, such as selectivity and activity, during its upgrading is highlighted. Lastly, the remaining challenges in the field of HMF hydroconversion to the mentioned chemicals are summarized and discussed, taking into account the knowledge gain of catalyst properties and feedstock purity.
Collapse
Affiliation(s)
- Aleksei A Turkin
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Ekaterina V Makshina
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert F Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Jaryal A, Venugopala Rao B, Kailasam K. A Light(er) Approach for the Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)furan without External H 2. CHEMSUSCHEM 2022; 15:e202200430. [PMID: 35451567 DOI: 10.1002/cssc.202200430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The selective conversion of 5-hydroxymethyfurfural (HMF), a biomass-derived platform molecule, to value added chemicals can ease the burden on petroleum-based fine chemical synthesis. The active contribution of renewable energy sources along with low cost, environmental friendliness, and a simple reaction system must be adopted for better sustainability. In this context, photocatalytic selective hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved over P25 titania nanoparticles without chemical squander. Simultaneously the photo-oxidation of p-methoxybenzyl alcohol (MeOBA) to p-methoxybenzaldehyde (MeOBaL), similar to biomass-derived vanillin, was carried out, abolishing the need of additional redox reagents. This system put forward the competent employment of photogenerated excitons for the valorization of lignocellulosic biomass to fine chemicals, which is an urgent requirement for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Arpna Jaryal
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Mohali, Sector 81, Mohali, 140306, India
| | - Battula Venugopala Rao
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Mohali, Sector 81, Mohali, 140306, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Mohali, Sector 81, Mohali, 140306, India
| |
Collapse
|
20
|
Hoang Tran P. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. CHEMSUSCHEM 2022; 15:e202200220. [PMID: 35307983 DOI: 10.1002/cssc.202200220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The conversion of biomass into a great variety of valuable chemicals, polymers, and fuels gives a sustainable alternative for the insufficiency of non-renewable fossil fuel resources and reduces environmental pollution. 5-Hydroxymethylfurfural (HMF), converted from sustainable carbohydrates, is a significant building block chemical, and the selective oxidation of HMF into 2,5-diformylfuran (DFF) presents an ongoing challenge. DFF is a versatile platform molecule derived from biomass and has promising application in pharmaceuticals and polymers. This Review provides an overview of the latest developments of efficient catalytic systems for the sustainable conversion of HMF to DFF.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Chen L, Xiong Y, Qin H, Qi Z. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102635. [PMID: 35088547 DOI: 10.1002/cssc.202102635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is identified as an important bio-based platform chemical to bridge petroleum-based and biomass-based resources. It can be obtained through dehydration of various carbohydrates as well as converted to value-added fuels and chemicals. As designer solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) have been widely used in catalytic transformation of biomass derivatives to various chemicals. This Review summarizes recent progress in experimental and theoretical studies on dehydration of carbohydrates such as fructose, glucose, sucrose, cellobiose, chitosan, cellulose, inulin, and even raw biomass to generate HMF using ILs and DESs as catalysts/cocatalysts and/or solvents/cosolvents. It also gives an overview of IL and DES-involved catalytic transformation of HMF to downstream products via oxidation, reduction, esterification, decarboxylation, and so forth. Challenges and prospects of ILs and DESs are also proposed for further production of HMF and HMF derivatives from biomass in green and sustainable processes.
Collapse
Affiliation(s)
- Lifang Chen
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yuhang Xiong
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hao Qin
- Chair for Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106, Magdeburg, Germany
| | - Zhiwen Qi
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
22
|
A. Gomes RF, Ravasco JMJM, Andrade KHS, Coelho JAS, Moreira R, Oliveira R, Nogueira F, Afonso CAM. Tandem Thio-Michael Addition/Remote Lactone Activation of 5-Hydroxymethylfurfural-Derived δ-Lactone-Fused Cyclopentenones. CHEMSUSCHEM 2022; 15:e202102204. [PMID: 35040553 PMCID: PMC9401029 DOI: 10.1002/cssc.202102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Indexed: 06/14/2023]
Abstract
The creation of structurally diverse chemical entities from fairly simple biorefinery products remains a challenge. In this work 5-hydroxymethylfurfural (HMF) was identified as a key synthon for preparing highly complex cyclopentenones (CP) via tandem 1,4-addition/elimination/remote lactone activation to external O- and N-nucleophiles in δ-lactone-fused-CPs hotspots. This scaffold was also reactive enough to be incorporated into model cysteine-peptides in low concentrations, paving the way to a potential translation generating complexity in the synthesis of small peptides. The new enones also exhibited activity against intraerythrocytic Plasmodium falciparum (IC50 =1.32 μm).
Collapse
Affiliation(s)
- Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Késsia H. S. Andrade
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Jaime A. S. Coelho
- Centro de Química Estrutural, Institute of Molecular SciencesFaculdade de CiênciasUniversidade de LisboaCampo Grande1749-016LisboaPortugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| | - Rafael Oliveira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
- Institute of Tropical Medicine and International HealthCharité – Charité-Universitätsmedizin BerlinAugustenburger Platz 1 (Campus Adress: Südring 2–3)13353BerlinGermany
| | - Fátima Nogueira
- Global Health and Tropical MedicineGHTMInstituto de Higiene e Medicina TropicalIHMTUniversidade NOVA de LisboaUNLRua da Junqueira, 101349-008LisboaPortugal
| | - Carlos A. M. Afonso
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama Pinto1649-003LisboaPortugal
| |
Collapse
|
23
|
Liu J, Wen S, Wang F, Zhu X, Zeng Z, Yin D. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Front Chem 2022; 10:853112. [PMID: 35372283 PMCID: PMC8967152 DOI: 10.3389/fchem.2022.853112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
2, 5-Furandicarboxylic acid (FDCA) is an important bio-monomer that can potentially replace terephthalic acid to synthesize degradable polyesters. Efficient selective oxidation of biomass-based 5-hydroxymethylfurfural (HMF) to FDCA has been a significant but challenging work in the past decades. In this study, a novel molybdenum-vanadium oxide (Mo-V-O) catalyst was prepared by a simple method and showed excellent catalytic activity for converting HMF to FDCA. A high FDCA selectivity of 94.5 and 98.2% conversion of HMF were achieved under the optimal conditions with tert-butyl hydroperoxide as the oxidant. FT-IR, SEM, XRD and TG were applied to investigate the properties of Mo-V-O catalyst. After fitting experimental data with the first-order kinetics equation, the evaluated apparent activation energies of HMF oxidation were obtained. The experimental design and study were carried out by response surface methodology (RSM) to test the effects of reaction conditions on the catalytic process.
Collapse
|
24
|
Chacón‐Huete F, Covone J, Zaroubi L, Forgione P. Efficient Synthesis of Bis(5‐arylfuran‐2‐yl)methane Scaffolds Utilizing Biomass‐Derived Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Franklin Chacón‐Huete
- Chemistry and Biochemistry Department Concordia University 7141 Sherbrooke West Montreal Quebec H4B1R6 Canada
| | - Jason Covone
- Chemistry and Biochemistry Department Concordia University 7141 Sherbrooke West Montreal Quebec H4B1R6 Canada
| | - Liana Zaroubi
- Chemistry and Biochemistry Department Concordia University 7141 Sherbrooke West Montreal Quebec H4B1R6 Canada
| | - Pat Forgione
- Chemistry and Biochemistry Department Concordia University 7141 Sherbrooke West Montreal Quebec H4B1R6 Canada
- Centre in Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal Quebec H3A0B8 Canada
| |
Collapse
|
25
|
Zhang Y, Li W, Cao Y, Chen M, Li W, Zai J, Iqbal A, Qi R, Qian X. Selective Electrosynthesis of 2,5-Diformylfuran in a Continuous-Flow System. CHEMSUSCHEM 2022; 15:e202102596. [PMID: 34927792 DOI: 10.1002/cssc.202102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The gram-scale selective oxidation of biomass-based chemicals, in particular 5-hydroxymethylfurfural (HMF), into value-added 2,5-diformylfuran (DFF) has a high application potential but suffers from high cost, low selectivity, and harsh reaction conditions. Besides, the electrooxidation strategy requires the usage of expensive electrodes and struggles with low selectivity and efficiency, which restricts its further scaled-up application. In this regard, a continuous-flow system was developed through redox mediator I- /I2 for the efficient synthesis of DFF, which could accelerate the mass transfer of I- (I2 ) to aqueous (organic) phase and avoid over-oxidation to achieve high selectivity. After the solvent system, iodine concentration, and reaction time were optimized, highly efficient DFF synthesis (selectivity >99 %) could be achieved in the electrochemical flow system using inexpensive graphite felt (GF) as electrode. Moreover, selective HMF oxidation was paired with the hydrogen evolution reaction with increased efficiency after using in-situ-loaded GF-CoS2 /CoS and GF-Pt electrodes. As a result, the required energy to achieve the gram-scale synthesis of DFF was significantly reduced, demonstrating outstanding potential for large-scale production of the target product.
Collapse
Affiliation(s)
- Yuchi Zhang
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Wenjing Li
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Yucai Cao
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai, P. R. China
| | - Ming Chen
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Wenqian Li
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Jiantao Zai
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai, P. R. China
| | - Asma Iqbal
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Rongrong Qi
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, 200240, Shanghai, P. R. China
| |
Collapse
|
26
|
Jia C, Wang K, Feng Y, Wang X. Efficient aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2, 5‐diformylfuran by Cu
2
V
2
O
7
‐Al
2
O
3
spherical beads. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chuanqi Jia
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Kang Wang
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Yi Feng
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Xitao Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
27
|
Bao X, Liu M, Wang Z, Dai D, Wang P, Cheng H, Liu Y, Zheng Z, Dai Y, Huang B. Photocatalytic Selective Oxidation of HMF Coupled with H2 Evolution on Flexible Ultrathin g-C3N4 Nanosheets with Enhanced N–H Interaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05357] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolei Bao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mu Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
28
|
Lang M, Li H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. CHEMSUSCHEM 2022; 15:e202101531. [PMID: 34716751 DOI: 10.1002/cssc.202101531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Adipic acid (AA) is a key industrial dicarboxylic acid intermediate used in nylon manufacturing. Unfortunately, the traditional process technology is accompanied by serious environmental pollution. Given the growing demand for adipic acid and the desire to reduce its negative impact on the environment, considerable efforts have been devoted to developing more green and friendly routes. This Review is focused on the latest advances in the sustainable preparation of AA from biomass-based platform molecules, including 5-hydroxymethylfufural, glucose, γ-valerolactone, and phenolic compounds, through biocatalysis, chemocatalysis, and the combination of both. Additionally, the development of state-of-the-art catalysts for different catalytic systems systematically is discussed and summarized, as well as their reaction mechanisms. Finally, the prospects for all preparation routes are critically evaluated and key technical challenges in the development of green and sustainable processes for the manufacture of AA are highlighted. It is hoped that the green adipic acid synthesis pathways presented can provide insights and guidance for further research into other industrial processes for the production of nylon precursors in the future.
Collapse
Affiliation(s)
- Man Lang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
29
|
Biradar Tamboli AT, Kirdant SP, Jadhav VH. Metal-free approach towards efficient synthesis of FDCA using a p-toluene sulfonic acid ( p-TSA)-derived heterogeneous solid acid catalyst and oxone over two steps from HMF, fructose and glucose. NEW J CHEM 2022. [DOI: 10.1039/d2nj01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a metal-free approach towards synthesis of 2,5-furandicarboxylic acid (FDCA) from HMF, fructose and glucose is reported over two steps using p-TSA–POM solid acid catalyst in the first step and oxone as an oxidant in the second step.
Collapse
Affiliation(s)
- Asma T. Biradar Tamboli
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnali P. Kirdant
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vrushali H. Jadhav
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
He W, Zhang C, Zhang W, Zhu Y, Fang Z, Zhao L, Guo K. The integration of catalyst design and process intensification in the efficient synthesis of 5-hydroxymethyl-2-furancarboxylic acid from fructose. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Anbu Anjugam Vandarkuzhali S, Karthikeyan G, Pachamuthu M. Efficient oxidation of 5-Hydroxymethylfurfural to 2,5-furandicarboxylic acid over FeNPs@NH2-SBA-15 catalyst in water. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Galkin KI, Ananikov VP. Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. Int J Mol Sci 2021; 22:11856. [PMID: 34769287 PMCID: PMC8584476 DOI: 10.3390/ijms222111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as "platform chemicals" that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a "green" process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.
Collapse
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
- Laboratory of Functional Composite Materials, Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
| |
Collapse
|
34
|
Sudarsanam P, Gupta NK, Mallesham B, Singh N, Kalbande PN, Reddy BM, Sels BF. Supported MoO x and WO x Solid Acids for Biomass Valorization: Interplay of Coordination Chemistry, Acidity, and Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Putla Sudarsanam
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Baithy Mallesham
- Chemical Engineering Department, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Pavan Narayan Kalbande
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Benjaram M. Reddy
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
35
|
Li C, Li J, Qin L, Yang P, Vlachos DG. Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02551] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Ling Qin
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| |
Collapse
|
36
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
37
|
Jaiswal R, Ranganath KVS. Carbon Nanoparticles on Magnetite: A New Heterogeneous Catalyst for the Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Diformoylfuran (DFF). J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02062-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Wang Q, Li Y, Guan H, Yu H, Wang X. Hydroxyapatite-Supported Polyoxometalates for the Highly Selective Aerobic Oxidation of 5-Hydroxymethylfurfural or Glucose to 2,5-Diformylfuran under Atmospheric Pressure. Chempluschem 2021; 86:997-1005. [PMID: 34232576 DOI: 10.1002/cplu.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/27/2021] [Indexed: 11/07/2022]
Abstract
(NH4 )5 H6 PV8 Mo4 O40 supported on hydroxyapatite (HAP) (PMo4 V8 /HAP (n)) was prepared through the ion exchange of hydroxy groups. This ion exchange favored the oxidative conversion of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF) in a one-pot cascade reaction with 96.0 % conversion and 83.8 % yield under 10 mL/min of O2 flow. PMo4 V8 /HAP (31) was used to explore the production of DFF directly from glucose with the highest yield of 47.9 % so far under atmospheric oxygen, whereas the yield of DFF increased to 54.7 % in a one-pot and two-step reaction. These results indicated that the active sites in PMo4 V8 /HAP (31) retained their activities without any interference toward one another, which enabled the production of DFF in a more cost-saving way by only using oxygen and one catalyst in a one-step reaction. Meanwhile, the rigid structure of HAP and strong interaction in PMo4 V8 /HAP (31) allowed this catalyst to be reused for at least six times with high stability and duration.
Collapse
Affiliation(s)
- Qiwen Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hongyu Guan
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangdong, 510006, P. R. China
| | - Hang Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaohong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
39
|
Liu H, Jia W, Yu X, Tang X, Zeng X, Sun Y, Lei T, Fang H, Li T, Lin L. Vitamin C-Assisted Synthesized Mn–Co Oxides with Improved Oxygen Vacancy Concentration: Boosting Lattice Oxygen Activity for the Air-Oxidation of 5-(Hydroxymethyl)furfural. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04503] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huai Liu
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Wenlong Jia
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Xin Yu
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Xing Tang
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Xianhai Zeng
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Tingzhou Lei
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213000, China
| | - Huayu Fang
- Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.), Putian 351152, Fujian, China
| | - Tianyuan Li
- Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.), Putian 351152, Fujian, China
| | - Lu Lin
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| |
Collapse
|
40
|
Feng Y, Long S, Yan G, Jia W, Sun Y, Tang X, Zhang Z, Zeng X, Lin L. Highly dispersed Co/N-rich carbon nanosheets for the oxidative esterification of biomass-derived alcohols: Insights into the catalytic performance and mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2021.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Shao Y, Ding Y, Dai J, Long Y, Hu ZT. Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
42
|
Ali H, Kansal SK, Saravanamurugan S. Alumina‐Supported Alkali and Alkaline Earth Metal‐Based Catalyst for Selective Decarboxylation of Itaconic Acid to Methacrylic Acid. ChemistrySelect 2021. [DOI: 10.1002/slct.202100572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hadi Ali
- Laboratory of Bioproduct Chemistry Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge city) Mohali India
| | - Sushil Kumar Kansal
- Department of Chemical Engineering and Technology Panjab University Chandigarh India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry Center of Innovative and Applied Bioprocessing, Sector-81 (Knowledge city) Mohali India
| |
Collapse
|
43
|
Wang H, Shi F. Towards Economic and Sustainable Amination with Green and Renewable Feedstocks. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| |
Collapse
|
44
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Khan A, Goepel M, Kubas A, Łomot D, Lisowski W, Lisovytskiy D, Nowicka A, Colmenares JC, Gläser R. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by Visible Light-Driven Photocatalysis over In Situ Substrate-Sensitized Titania. CHEMSUSCHEM 2021; 14:1351-1362. [PMID: 33453092 PMCID: PMC7986172 DOI: 10.1002/cssc.202002687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Solar energy-driven processes for biomass valorization are priority for the growing industrialized society. To address this challenge, efficient visible light-active photocatalyst for the selective oxidation of biomass-derived platform chemical is highly desirable. Herein, selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) was achieved by visible light-driven photocatalysis over titania. Pristine titania is photocatalytically inactive under visible light, so an unconventional approach was employed for the visible light (λ=515 nm) sensitization of titania via a formation of a visible light-absorbing complex of HMF (substrate) on the titania surface. Surface-complexation of HMF on titania mediated ligand-to-metal charge transfer (LMCT) under visible light, which efficiently catalyzed the oxidation of HMF to DFF. A high DFF selectivity of 87 % was achieved with 59 % HMF conversion after 4 h of illumination. The apparent quantum yield obtained for DFF production was calculated to be 6.3 %. It was proposed that the dissociative interaction of hydroxyl groups of HMF and the titania surface is responsible for the surface-complex formation. When the hydroxyl groups of titania were modified via surface-fluorination or calcination the oxidation of HMF was inhibited under visible light, signifying that hydroxyl groups are decisive for photocatalytic activity.
Collapse
Affiliation(s)
- Ayesha Khan
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Michael Goepel
- Institute of Chemical TechnologyLeipzig UniversityLeipzig04103Germany
| | - Adam Kubas
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Dariusz Łomot
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Wojciech Lisowski
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Dmytro Lisovytskiy
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Ariadna Nowicka
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | | | - Roger Gläser
- Institute of Chemical TechnologyLeipzig UniversityLeipzig04103Germany
| |
Collapse
|
46
|
Phan HB, Thi Nguyen QB, Luong CM, Tran KN, Tran PH. A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Heo JB, Lee YS, Chung CH. Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products. Crit Rev Biotechnol 2021; 41:902-917. [PMID: 33648387 DOI: 10.1080/07388551.2021.1892580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Today, sustainable chemistry is a key trend in the chemical manufacturing industry due mainly to concerns over the global environment and resource security. In sustainable chemical manufacture, the choice of a bio-based feedstock plays a pivotal pillar. In terms of feedstock utilization for producing HMF, which is a multivalent platform intermediate easily convertible to valuable chemical products; biopolymers, biofuels, and other important chemicals, seagrass biomasses can be more favorable feedstocks compared with land plant resources due primarily to easy availability and no systematic farming. Moreover, seagrass feedstocks could contribute cost-effectively and sustainably producing HMF by exploiting the beach-cast seagrasses on seagrass-prairies with no feedstock cost, indicating that seagrass biomasses could be a most promising biofeedstock source for sustainable HMF production. We afford a platform bioprocessing technology that has not been attempted before for sustainable HMF production using raw seagrass biomass. This bioprocess can be operated by simple reaction conditions using inorganic Brønsted acids (mainly HCl) and ionic liquid solvents at relatively low temperatures (120-130 °C). In addition, some bioengineering strategies for improving the growth of seagrass biomass and the quantity/quality of nonstructural carbohydrates (starch, sucrose) that can be used as the feeding substrates for HMF production are also discussed. The main aim of this review is to provide some important information about breakthrough bio/technologies conducive to cost-effective and sustainable HMF production.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
48
|
Zhu J, Yao C, Maity A, Xu J, Zhan T, Liu W, Sun M, Wang S, Polshettiwar V, Tan H. Nitrogen doped carbon spheres with wrinkled cages for the selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid. Chem Commun (Camb) 2021; 57:2005-2008. [PMID: 33528466 DOI: 10.1039/d0cc07856e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitrogen doped carbon spheres with wrinkled cages (NCSWCs), which were used for the first time as metal-free catalysts, exhibited high catalytic activity and selectivity in the oxidation of 5-hydroxymethylfurfural (HMF) to 5-formyl-2-furancarboxylic acid (FFCA) under base-free conditions using tert-butyl hydroperoxide (TBHP) as the oxidant. The mechanistic studies found that this reaction was catalyzed by the synergy between NCSWCs and TBHP. The density functional theory (DFT) calculations further suggested that the hydroperoxyl radicals from TBHP adsorbed on the carbon atoms adjacent to the graphitic N atoms are the active sites.
Collapse
Affiliation(s)
- Jiaping Zhu
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shao Y, Lu W, Meng Y, Zhou D, Zhou Y, Shen D, Long Y. The formation of 5-hydroxymethylfurfural and hydrochar during the valorization of biomass using a microwave hydrothermal method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142499. [PMID: 33039887 DOI: 10.1016/j.scitotenv.2020.142499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
5-Hydroxymethylfurfural (HMF) and levulinic acid (LA) are regarded as value-added platform chemicals that can be derived from biomass waste. However, humins are inevitably produced during valorization processes, reducing the product yields. Previous studies indicated that microwave heating combined with acidic seawater as a reaction medium promotes HMF formation. The present work therefore investigated the relationship between the production of HMF and LA in the liquid phase and that of insoluble humins (that is, hydrochar) under microwave heating in acidic seawater. The selectivities for HMF and LA were found to decrease as the reaction time was increased, as a result of hydrochar formation, and both dehydration and decarboxylation evidently dominated the production of hydrochar in succession. HMF evidently played the most important role in hydrochar formation, and was consumed approximately seven times more rapidly than either fructose or LA. The hydrochar formation mechanism reported herein may be applicable to other similar hydrothermal processes.
Collapse
Affiliation(s)
- Yuchao Shao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanjun Meng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Instrumental Analysis Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
50
|
Cai C, Wang H, Xin H, Zhu C, Wang C, Zhang Q, Liu Q, Ma L. Recent Progress in 5-Hydroxymethylfurfural Catalytic Oxidation to 2,5-Furandicarboxylic Acid. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210192104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomass has attracted much attention because of its clean and renewable characteristics.
The conversion of biomass into various fine chemicals and high value-added fuels is
one of the important ways to solve the energy shortage and environmental pollution. 2,5-furan
dicarboxylic acid (FDCA), a kind of important and promising new bio-based monomer, has
attracted the attention of many researchers due to its wide applications in different industries.
Therefore, many efforts have been made over various metal catalysts for FDCA production
from this biomass-derived platform chemical, 5hydroxymethylfurfural (HMF). In this review,
we introduced the reaction pathways of the aerobic oxidation of HMF to FDCA and summarized
the recent progress of different catalysts and catalysis for HMF aerobic oxidation. Catalytic
performance and reaction pathways are discussed in detail. Finally, conclusions and the
remaining challenges are proposed and further prospects are presented in view of the technical aspects.
Collapse
Affiliation(s)
- Chiliu Cai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 510640 Guangzhou, China
| |
Collapse
|