1
|
Zhang W, Kim S, Sarazen ML, He M, Chen JG, Lercher JA. Advances and Challenges in Low-Temperature Upcycling of Waste Polyolefins via Tandem Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500559. [PMID: 40082210 DOI: 10.1002/anie.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Polyolefin waste is the largest polymer waste stream that could potentially serve as an advantageous hydrocarbon feedstock. Upcycling polyolefins poses significant challenges due to their inherent kinetic and thermodynamic stability. Traditional methods, such as thermal and catalytic cracking, are straightforward but require temperatures exceeding 400 °C for complete conversion because of thermodynamic constraints. We summarize and critically compare recent advances in upgrading spent polyolefins and model reactants via kinetic (and thermodynamic) coupling of the endothermic C─C bond cleavage of polyolefins with exothermic reactions including hydrogenation, hydrogenolysis, metathesis, cyclization, oxidation, and alkylation. These approaches enable complete conversion to desired products at low temperatures (<300 °C). The goal is to identify challenges and possible pathways for catalytic conversions that minimize energy and carbon footprints.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching, 85747, Germany
| |
Collapse
|
2
|
Liu F, Zhou J, Gao X, Shi R, Guo Z, Tse ECM, Chen Y. Modulating Adsorption Behavior by Single-site Pt on RuO 2 for Efficient Electrosynthesis of Glycolic Acid from Plastic Wastes. Angew Chem Int Ed Engl 2025; 64:e202422183. [PMID: 39985194 DOI: 10.1002/anie.202422183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 02/24/2025]
Abstract
Electrochemical upcycling of polyethylene terephthalate (PET) wastes into valuable glycolic acid (GA) is an ideal solution for resource utilization. However, simultaneously achieving high activity and selectivity remains challenging due to the over-oxidation and C-C cleavage during ethylene glycol (EG) oxidation in PET hydrolysate. Herein, we develop an atomically isolated Pt on RuO2 (Pt1/RuO2) catalyst composed of high-density Pt-Ru interfaces that ensure single-site adsorption of EG, enrich surface *OH coverage and weaken *CO-CH2OH intermediate adsorption, thereby synergistically promoting GA generation. Specifically, Pt1/RuO2 delivers a remarkable mass activity of 8.09 A/mgPt, as well as a high GA Faradaic efficiency (95.3 %) and selectivity (96.9 %). Under membrane electrode assembly conditions, Pt1/RuO2 realizes a stable electrolysis over 500 h at 6 A with a GA yield rate of 4.06 g h-1. In-depth theoretical and in situ spectroscopic investigations reveal the synergy between isolated Pt and oxophilic RuO2 plays a crucial role in high-efficiency EG-to-GA conversion. This study offers valuable insights for the rational design of advanced catalysts for GA synthesis from PET wastes via a single-site doped bimetallic strategy.
Collapse
Affiliation(s)
- Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingtao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xutao Gao
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhengxiao Guo
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Edmund C M Tse
- CAS-HKU Joint Laboratory on New Materials & Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Tufano F, Galotto MV, D'Elia A, Santulli F, Mazzeo M, Lamberti M. Recyclable, Biobased Polycarbonates and Polyesters by Naphthoxy-Imine Zinc and Magnesium Complexes. Chemistry 2025:e202501271. [PMID: 40347219 DOI: 10.1002/chem.202501271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 05/07/2025] [Indexed: 05/12/2025]
Abstract
Naphthoxy-imine pyridine zinc and magnesium complexes were synthesized and fully characterized by nuclear magnetic resonance (NMR). In the presence of an alcohol as initiator, both complexes promoted the ring-opening polymerization (ROP) of L-lactide (L-LA), ε-caprolactone (ε-CL), β-butyrolactone (β-BL), trimethylene carbonate (TMC), and 1-methyl trimethylene carbonate (Me-TMC), which was purposely synthesized from CO2 and the appropriate diol. The zinc complex exhibited notably high activity, particularly in the polymerization of lactide and TMC, and was subsequently employed in the synthesis of polytrimethylene carbonate-based diblock and random copolymers with both ε-CL and L-LA. Furthermore, the zinc complex demonstrated its ability to close the life cycle of the synthesized materials by successfully depolymerizing both polytrimethylene carbonate (PTMC) and its copolymers.
Collapse
Affiliation(s)
- Federica Tufano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Maria Vittoria Galotto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Alfredo D'Elia
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Federica Santulli
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
| | - Mina Mazzeo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Bari, BA, 70126, Italy
| | - Marina Lamberti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Bari, BA, 70126, Italy
| |
Collapse
|
4
|
Swapna B, Barnabas MB, Moni Gogoi P, Bharali P, Madras G, Sudarsanam P. Morphology-tuned MnO x/TiO 2 nanocatalysts for recycling PET plastic waste using biomass-derived ethylene glycol. NANOSCALE 2025; 17:10620-10631. [PMID: 39964310 DOI: 10.1039/d4nr05373g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
This study presents a decisive role of TiO2 morphology on the catalytic activity of MnOx/TiO2 nanomaterials for the chemical recycling of PET waste bottles using biomass-derived ethylene glycol to produce a valuable monomer, bis(2-hydroxyethyl) terephthalate (BHET). Three types of MnOx/TiO2 nanocatalysts were prepared by varying the TiO2 morphology (nanosheets: NS, nanotubes: NT, and nanorods: NR). The combination of MnOx nanoparticles and TiO2 nanorods (MnOx/TiO2-NR) showed significantly enhanced catalytic activity in PET glycolysis, with a 91% isolated yield of BHET at 190 °C in 3 h, whereas 74% and 82% yields of BHET were attained with MnOx/TiO2-NS and MnOx/TiO2-NT nanocatalysts, respectively. The morphology of TiO2 and the uniform dispersion of MnOx on TiO2-NR were confirmed by electron microscopic analysis. The MnOx/TiO2-NR catalyst contains optimum basic sites, which play a key role, along with surface hydroxyl species and Mn3+/Mn2+ species, in activating ethylene glycol and PET/its oligomers towards BHET formation. The excellent stability of the MnOx/TiO2-NR nanocatalyst, as confirmed by the hot-filtration test, good catalytic reusability up to four cycles, non-toxic nature, and the low cost of the MnOx/TiO2 materials indicate the practical feasibility of the developed catalytic protocol for the plastic recycling industry.
Collapse
Affiliation(s)
- Bhattu Swapna
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.
| | - Madam Bobby Barnabas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.
| | - Pragya Moni Gogoi
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India
| | - Giridhar Madras
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India
| | - Putla Sudarsanam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.
| |
Collapse
|
5
|
Bartl I, Chen Y, Rindelaub J, Ladewig S, Thrush S. Benthic ecosystem function responses to plasticizer content in polyester and PVC. MARINE POLLUTION BULLETIN 2025; 214:117713. [PMID: 40009895 DOI: 10.1016/j.marpolbul.2025.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Plastics are ubiquitous contaminants in marine systems with a diverse set of chemical components. While eco-toxicological effects of plastic chemicals provide insights on how marine species respond to plastic exposure, there is lack in ecological understanding of such impacts. In a mesocosm experiment, we measured benthic fluxes to determine ecosystem function responses to polyester netting (low plasticizer concentration) and PVC netting (high plasticizer concentration). Gross primary production rates and ammonium efflux were higher in both plastic treatments compared to the control, but responses were stronger in the polyester treatment. In the PVC treatment we additionally observed a strong response in nitrate fluxes which suggests a disturbance of the benthic N cycle. Our results imply that the concentration of chemical additives in new plastics can be a driver for ecological responses and reduction of plastic emissions needs to remain at the forefront of environmental plastic pollution regulations.
Collapse
Affiliation(s)
- Ines Bartl
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand.
| | - Yuchuan Chen
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| | - Joel Rindelaub
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Samantha Ladewig
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| | - Simon Thrush
- Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Huo Z, Xie X, Tong R. Machine Learning for Developing Sustainable Polymers. Chemistry 2025:e202500718. [PMID: 40266984 DOI: 10.1002/chem.202500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025]
Abstract
Sustainable polymers from renewable resources have been gaining importance due to their recyclability and reduced environmental impact. However, their development through conventional trial-and-error methods remains inefficient and resource-intensive. Machine learning (ML) has emerged as a powerful tool in polymer science, enabling rapid prediction, and discovery of new chemicals and materials. In this review, we examine emerging trends in ML applications for sustainable polymer development, focusing on catalyst discovery, property optimization, and new polymer design. We analyze unique challenges in applying ML to sustainable polymers and evaluate proposed solutions, providing insights for future development in this rapidly evolving field.
Collapse
Affiliation(s)
- Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
7
|
Edge M, Yadav N, Hmayed AAR, Dove AP, Brandolese A. Continuous Flow Depolymerization of Polycarbonates and Poly(lactic acid) Promoted by Supported Organocatalysts. CHEMSUSCHEM 2025:e2500420. [PMID: 40205974 DOI: 10.1002/cssc.202500420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Mechanical recycling methods are a simple and effective approach to recycling plastics, but they often result in a direct reduction in the quality of the virgin polymer. Alternatively, chemical recycling of plastic waste provides a closed-loop pathway that could offer a solution to the current end-of-life mismanagement of plastics. However, harsh reaction conditions, scalability, and product purification can limit the applicability of this process on a large scale. Here, an organocatalyzed continuous flow depolymerization strategy is proposed for two soluble, commonly used plastics, poly(lactic acid) (PLA) and bisphenol A polycarbonate (BPA-PC). This process used glycolysis to upcycle PLA to alkyl lactate and BPA-PC to bisphenol A and ethylene carbonate under mild reaction conditions (up to 60 °C). The complete depolymerization of both polymers is initially performed under batch conditions, allowing the solvents and catalysts to be screened. The process is further extended under continuous flow to explore catalyst stability and process scalability. Finally, it is demonstrated that alkyl lactate, bisphenol A and ethylene carbonate can be produced from waste polycarbonate and PLA, thus providing safe and economical access to these species through continuous flow depolymerization of plastic waste.
Collapse
Affiliation(s)
- Madeleine Edge
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Neha Yadav
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | | |
Collapse
|
8
|
Ruan J, Cao Q, Li X, Ren Q, Li M, Dong S, Li N, Xu Q, Li H, Lu J, Chen D. Morphology Optimization of Spinel Catalysts for High-Efficiency Photothermal Catalytic Upcycling of Polyethylene Terephthalate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500090. [PMID: 40059490 DOI: 10.1002/adma.202500090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/28/2025] [Indexed: 04/24/2025]
Abstract
Thermocatalytic recycling of plastics is typically constrained by high energy input requirements, resulting in poor economic efficiency and necessitating the utilization of light power. Indeed, photothermal catalysis offers several advantages over traditional photocatalysis and enables more efficient use of light energy. In this study, unique octahedral spinel-structured cobalt manganese oxide (CoMn2O4) catalysts are prepared. CoMn2O4 acts as both a photothermal reagent and catalyst, demonstrating low light intensity requirements, high conversion rates, enhanced reactivity, and superior stability during polyethylene terephthalate (PET) glycolysis via photothermocatalysis. Oxygen vacancies created on CoMn2O4 facilitate PET glycolysis by providing reactive sites that promote nucleophilic addition and subsequent elimination reactions. The spinel structure of CoMn2O4 ensures high thermal stability, while the octahedral configuration enhances the optical absorption coefficient and photothermal conversion efficiency. Under identical conditions, the PET conversion efficiency of CoMn2O4 in photothermal catalysis is 3.1 times higher than under purely thermal conditions, while maintaining high selectivity for high-value monomers. This study presents a new catalyst design approach for highly efficient upcycling of plastics, highlighting its substantial potential in this field.
Collapse
Affiliation(s)
- Juanzhang Ruan
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Cao
- Cangzhou Risun Chemicals Co. Ltd., Cangzhou, Hebei, 061100, P. R. China
| | - Xunxun Li
- Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo, Zhejiang, 315200, P. R. China
| | - Qiuyuan Ren
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Menglong Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Shihong Dong
- Suzhou Shijing Technology Co. Ltd., Suzhou, 215137, P. R. China
| | - Najun Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
9
|
Wang Z, Tang Y, Zhu L, Liu N, Yu G, Xu R, Wang N, Chen B, Dai C. Efficient Decolorization of Recovered Bis(Hydroxyethylterephthalate) from Waste Polyester Textiles by Hydrophobic Deep Eutectic Solvents. CHEMSUSCHEM 2025:e202402593. [PMID: 40019303 DOI: 10.1002/cssc.202402593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Glycolysis is one of the most promising closed-loop recycling technologies for PET textiles; however, its efficiency is compromised by the presence of dyes, which inhibit the repolymerization of the depolymerized monomer, bis(hydroxyethylterephthalate) (BHET), into high-quality recycled PET (rPET). In this study, hydrophobic deep eutectic solvents (DES) were employed as extractants to remove colored impurities from the glycolysis solution (GS) of PET glycolysis. An optimized DES system composed of oleic acid and menthol (Men:OleA) achieved a decolorization ratio of up to 89.4 % in a simulated GS with Disperse Blue 56 doped BHET (BHET-DB56). Kinetic analysis revealed that the dye extraction by Men:OleA DES follows a pseudo-second-order kinetic model. Furthermore, DES successfully decolorized nine different colored PET textile GSs, achieving a maximum decolorization rate of 98.2 % after a secondary extraction process. Even after multiple recycling cycles, Men:OleA DES maintained consistent decolorization performance. Through characterization and quantum chemical calculations, the decolorization process was found to be driven primarily by physical interactions, specifically hydrogen bonding and van der Waals forces between dye molecules and DES. This study seeks to provide an effective method for the decolorization of BHET and proposes a strategy for the closed-loop recycling of colored PET textiles.
Collapse
Affiliation(s)
- Zhanpeng Wang
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Yumei Tang
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Lin Zhu
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Ning Liu
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Gangqiang Yu
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Ruinian Xu
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Ning Wang
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Biaohua Chen
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Chengna Dai
- College of Environmental Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| |
Collapse
|
10
|
van de Moosdijk J, van de Runstraat A, van Someren R, Roelands M. Solvolytic recycling of unsaturated polyester resin-based sheet moulding composites. OPEN RESEARCH EUROPE 2025; 5:44. [PMID: 40046797 PMCID: PMC11880758 DOI: 10.12688/openreseurope.19012.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 04/18/2025]
Abstract
Background New regulations on low emission vehicles has incentivized a push towards reducing the weight of vehicles. While the implementation of lightweight Sheet Moulding Compounds (SMC's) in the automotive industry is taking shape, a recycling strategy that does not downgrade the fibers is not commercially applied yet. This paper investigates a broad scope of reaction conditions for the solvolysis of SMC's based on unsaturated polyester resins (UPR). Methods The Hansen Solubily Parameter theory was used to model and select prospective solvents for the project. A method is disclosed for recovering the glass fibers from SMC's, using base chemicals such as monoethoxyamine (MEA) and potassium hydroxide (KOH), and relatively mild conditions. Tensile testing is used to assess the effect of solvolysis on the fibers. Thermogravimetric analysis was used to determine residual material on the fibers. Results The best solvolysis results were obtained with MEA/KOH at 170 °C. As a result of the mild conditions used, the strength of the fibers is not affected. TGA analysis shows that the removal of fiber sizing depends on the nature of the used catalyst. It also showed that the use of acetophenone as solvent raised the decomposition temperature of the resin. Conclusions An effective and mild method for the solvolysis of UPR based sheet moulding compounds was developed. The removal of the sizing of the fibers can be influenced by choosing an appropriate catalyst. It is postulated that acetophenone reacts with the resin and as a result makes it more thermally stable.
Collapse
Affiliation(s)
- John van de Moosdijk
- TNO, Sustainable Processes and Energy Systems, Kesslerpark 1, Rijswijk, 2288 GS, The Netherlands
| | | | - Richard van Someren
- TNO, Sustainable Processes and Energy Systems, Kesslerpark 1, Rijswijk, 2288 GS, The Netherlands
| | - Mark Roelands
- TNO, Sustainable Processes and Energy Systems, Kesslerpark 1, Rijswijk, 2288 GS, The Netherlands
| |
Collapse
|
11
|
Martin IL, Anderson LB, McAdams DA, Molloy C, Dunne PW, Connon SJ. Neutral hydrolysis of poly(ethylene terephthalate) catalysed by highly active terephthalate-based ionic liquids at low loadings. Chem Commun (Camb) 2025; 61:2750-2753. [PMID: 39835936 DOI: 10.1039/d4cc05909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Novel ionic liquid catalysts comprising terephthalate anions are capable of promoting the neutral hydrolysis of relatively large flake sizes of poly(ethylene terephthalate) at 0.5 mol% loading (200 °C, 4 h, 94% yield) without either attendant product inhibition or product contamination by protonated catalyst. Catalysts with large, lipophilic phosphonium cations outperform more polar variants.
Collapse
Affiliation(s)
- Ian L Martin
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| | - Lee B Anderson
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| | - Deirdre A McAdams
- School of Chemistry, Sami Nasser Institute for Advanced Materials, Trinity College Dublin, Dublin 2, Ireland
| | - Conall Molloy
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| | - Peter W Dunne
- School of Chemistry, Sami Nasser Institute for Advanced Materials, Trinity College Dublin, Dublin 2, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., Dublin 2, Ireland.
| |
Collapse
|
12
|
Minami Y, Honobe R, Tsuyuki S, Sato K, Yoshida M. Facile Depolymerization of Thermally Stable Polyetherethersulfone and Polyetheretherketone Using Hydroquinone and Bases. CHEMSUSCHEM 2025; 18:e202401778. [PMID: 39304518 DOI: 10.1002/cssc.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Super engineering plastics such as polyetheretherketone (PEEK) and polyetherethersulfone (PEES) exhibit thermal stability, chemical resistance, and mechanical strength. Such characteristics are attributed to their robust chemical structures composed of stable aryl ethers. These features make chemical recycling difficult. This is because it is necessary to overcome through the stability of the material and then precisely cleave the stable bonds. This study demonstrates the depolymerization of PEES and PEEK by hydroquinone in the presence of sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) solvent at 150 °C. This method effectively provides monomeric products, diphenylsulfone and benzophenone having two 4-hydroxyphenoxy groups at both para positions. DMI solvent was the crucial factor for this transformation, since it enhanced the reactivity of hydroquinone to cleave the aryl ether bonds.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Graduate School of Pure and Applied Science Department, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Rena Honobe
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shunsuke Tsuyuki
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
13
|
Lee JE, Lee D, Lee J, Park YK. Current methods for plastic waste recycling: Challenges and opportunities. CHEMOSPHERE 2025; 370:143978. [PMID: 39701312 DOI: 10.1016/j.chemosphere.2024.143978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The practical use of plastics has rapidly increased owing to their superior physicochemical properties. Despite their excellent physicochemical properties, the short lifespan of plastics has inevitably led to a substantial generation of plastic waste. As such, strategic mitigation of the hazardous potential of plastic waste has been regarded as significant in waste management. In particular, establishing a reliable recycling platform for packaging plastic waste is of great importance considering its massive generation. To identify a strategic means of abating the hazardous potential of plastic waste, legislative enactment for their legal management must also be implemented. This review emphasizes the mechanical and chemical recycling methods for polyethylene, polypropylene, polyethylene terephthalate, polystyrene, and polyvinyl chloride, and discusses a technical platform for converting plastic waste into value-added chemical products. This study also offers a perspective on sustainable valorization as a practical alternative to circular resources.
Collapse
Affiliation(s)
- Jung Eun Lee
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
14
|
Shiraki R, Hsu YI, Uyama H, Tobisu M. Synthesis of Polyamides Bearing Directing Groups and Their Catalytic Depolymerization. Org Lett 2025. [PMID: 39887009 DOI: 10.1021/acs.orglett.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
We report a directing group (DG)-enabled strategy for polyamide depolymerization. Pyridine-based DGs selectively interact with In(III) catalysts, activating amide bonds for catalytic cleavage via alcoholysis. The process achieves efficient depolymerization of DG-introduced polyamides into recyclable monomers, providing a sustainable chemical recycling approach for robust polyamides.
Collapse
Affiliation(s)
- Ryota Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Lopez‐Lorenzo X, Ranjani G, Syrén P. Conformational Selection in Enzyme-Catalyzed Depolymerization of Bio-based Polyesters. Chembiochem 2025; 26:e202400456. [PMID: 39036936 PMCID: PMC11776369 DOI: 10.1002/cbic.202400456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Enzymatic degradation of polymers holds promise for advancing towards a bio-based economy. However, the bulky nature of polymers presents challenges in accessibility for biocatalysts, hindering depolymerization reactions. Beyond the impact of crystallinity, polymer chains can reside in different conformations affecting binding efficiency to the enzyme active site. We previously showed that the gauche and trans chain conformers associated with crystalline and amorphous regions of the synthetic polyethylene terephthalate (PET) display different affinity to PETase, thus affecting the depolymerization rate. However, structural-function relationships for biopolymers remain poorly understood in biocatalysis. In this study, we explored the biodegradation of previously synthesized bio-polyesters made from a rigid bicyclic chiral terpene-based diol and copolymerized with various renewable diesters. Herein, four of those polyesters spanning from semi-aromatic to aliphatic were subjected to enzymatic degradations in concert with induced-fit docking (IFD) analyses. The monomer yield following enzymatic depolymerization by IsPETase S238 A, Dura and LCC ranged from 2 % to 17 % without any further pre-treatment step. The degradation efficiency was found to correlate with the extent of matched substrate and enzyme conformations revealed by IFD, regardless of the actual reaction temperature employed. Our findings demonstrate the importance of conformational selection in enzymatic depolymerization of biopolymers. A straight or twisted conformation of the polymer chain is crucial in biocatalytic degradation by showing different affinities to enzyme ground-state conformers. This work highlights the importance of considering the conformational match between the polymer and the enzyme to optimize the biocatalytic degradation efficiency of biopolymers, providing valuable insights for the development of sustainable bioprocesses.
Collapse
Affiliation(s)
- Ximena Lopez‐Lorenzo
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm100 44Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and HealthScience for Life LaboratoryTomtebodavägen 23Solna171 65Sweden
| | - Ganapathy Ranjani
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm100 44Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and HealthScience for Life LaboratoryTomtebodavägen 23Solna171 65Sweden
| | - Per‐Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and HealthDepartment of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholm100 44Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and HealthScience for Life LaboratoryTomtebodavägen 23Solna171 65Sweden
| |
Collapse
|
16
|
Kiani A, Naddeo M, Santulli F, Volpe V, Mazzeo M, Acocella MR. Mechanochemical Functionalization of Oxidized Carbon Black with PLA. Molecules 2024; 30:94. [PMID: 39795150 PMCID: PMC11722422 DOI: 10.3390/molecules30010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification. At the same time, the influence of f-CB as a nanofiller of residual PLA waste was evaluated using differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), demonstrating its stabilization effect during melt extrusion by preserving the molecular weight of the starting polymer. On the other hand, the dynamic mechanical analysis (DMA) revealed that the addition of f-CB did not negatively affect the mechanical properties of the resulting composite. In conclusion, mechanochemistry was used as a sustainable and unique strategy for the upcycling of waste PLA into a PLA-based composite stabilized by CB functionalized with the waste PLA itself.
Collapse
Affiliation(s)
- Aida Kiani
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy; (M.N.); (F.S.); (M.M.)
| | - Mattia Naddeo
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy; (M.N.); (F.S.); (M.M.)
| | - Federica Santulli
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy; (M.N.); (F.S.); (M.M.)
| | - Valentina Volpe
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy;
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy; (M.N.); (F.S.); (M.M.)
| | - Maria Rosaria Acocella
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy; (M.N.); (F.S.); (M.M.)
| |
Collapse
|
17
|
Eisenhardt K, Fiorentini F, Williams CK. Understanding the Effect of M(III) Choice in Heterodinuclear Polymerization Catalysts. Inorg Chem 2024; 63:23438-23449. [PMID: 39558823 PMCID: PMC11632767 DOI: 10.1021/acs.inorgchem.4c04430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The ring-opening copolymerization (ROCOP) of epoxides with CO2 or anhydrides is a promising strategy to produce sustainable polycarbonates and polyesters. Currently, most catalysts are reliant on scarce and expensive cobalt as the active center, while more abundant aluminum and iron catalysts often suffer from lower activities. Here, two novel heterodinuclear catalysts, featuring abundant Al(III), Fe(III), and K(I) active centers, are synthesized, and their performance in the polymerization of four different monomer combinations is compared to that of their Co(III) analogue. The novel Al(III)K(I) catalyst exhibits outstanding activities in the cyclohexane oxide (CHO)/CO2 ROCOP, and at 1 bar CO2 pressure it is the fastest aluminum-based catalyst reported to date. The M(III) site electronics for all three catalysts, Al(III)K(I), Fe(III)K(I), and Co(III)K(I), are measured using IR and NMR spectroscopy, cyclic voltammetry, and single crystal X-ray diffraction. A correlation between M(III) electron density and catalytic activity is revealed and, based on the established structure-activity relationship, recommendations for the future catalyst design of abundant Al(III)- and Fe(III)-based catalysts are made. The catalytic performances of both Al(III)K(I) and Fe(III)K(I) are further contextualized against the relative elemental abundance and cost. On the balance of performance, abundance, and cost, the Al(III)K(I) complex is the better catalyst for the carbon dioxide/epoxide ROCOP, while Fe(III)K(I) is preferable for anhydride/epoxide ROCOP.
Collapse
Affiliation(s)
- Katharina
H.S. Eisenhardt
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA U.K.
| | - Francesca Fiorentini
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA U.K.
| | - Charlotte K. Williams
- Department Chemistry, University
of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA U.K.
| |
Collapse
|
18
|
Tavşanoğlu ÜN, Koraltan İ, Basaran Kankılıç G, Çırak T, Ertürk Ş, Ürker O, Güçlü P, Ünlü H, Çağan AS, Deniz Yağcıoğlu K, Akyürek Z. Assessing microplastic pollution in a river basin: A multidisciplinary study on circularity, sustainability, and socio-economic impacts. ENVIRONMENTAL RESEARCH 2024; 262:119819. [PMID: 39173820 DOI: 10.1016/j.envres.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Plastic pollution has emerged as a significant environmental challenge worldwide, posing serious threats to ecosystems and human health. This study seeks to explore the interplay among circularity, sustainability, and the release of microplastics within the freshwater ecosystems situated along the western Black Sea coast- Düzce, Türkiye. Employing a multidisciplinary approach that integrates environmental science, economics, and policy analysis, the research examines the current state of plastic pollution in the region, considering diverse land uses and socio-economic lifestyles. Conducted over four different seasons, the current study identifies the prevailing types of microplastics in the region. Fibers dominate, comprising 86.7% in each season, followed by film and fragments at 7.7% and 7.0%, respectively. Notably, polyethylene (PE) and polypropylene (PP) emerges as the primary polymer types. The distribution of polymer types varies across different land uses within the region, emphasizing the influential role of land use in shaping the abundance polymer composition. The comprehensive assessment of pollution, as reflected in the overall pollution load index (PLI) of the Melen River indicating a concerning level of pollution (PLI>1). Finally, the study unveiled the relationship between socio-economic activities as well as the seasonal precipitation patterns, and microplastic contamination in the region. This underscored the importance of site-specific mitigation measures on reducing the amount of microplastics. Lastly, incorporating sustainable practices within the circular economy framework fosters a harmonious balance between economic development and environmental protection in Türkiye.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye.
| | - İdris Koraltan
- Institute of Natural and Applied Sciences, Akdeniz University, Dumlupınar Avenue, 07258, Antalya, Türkiye
| | | | - Tamer Çırak
- Alternative Energy Sources Technology Program, Aksaray University, Bahçesaray, 68100, Aksaray, Türkiye
| | - Şeyma Ertürk
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye
| | - Okan Ürker
- Department of Environmental Health, Çankırı Karatekin University, Taşmescit Street, 18200, Çankırı, Türkiye
| | - Pembe Güçlü
- Department of Business Administration, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Hülya Ünlü
- Department of Economics, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Ali Serhan Çağan
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye; Wildlife Programme, Kastamonu University, Mehmet Yetkin Street, 37800, Araç, Kastamonu, Türkiye
| | - Kıymet Deniz Yağcıoğlu
- Department of Geology Engineering, Ankara University, Dögol Street, 0600, Ankara, Türkiye
| | - Zuhal Akyürek
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye; Department of Civil Engineering, Üniversiteliler Street, 06800, Ankara, Türkiye Ankara, Türkiye
| |
Collapse
|
19
|
Zhao H, Ye Y, Zhang Y, Yang L, Du W, Wang S, Hou Z. Upcycling of waste polyesters for the development of a circular economy. Chem Commun (Camb) 2024; 60:13832-13857. [PMID: 39504002 DOI: 10.1039/d4cc04780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The rapidly increasing production and widespread application of plastics have brought convenience to our lives, but they have consumed a huge amount of nonrenewable fossil energy, leading to additional CO2 emissions and generation of an enormous amount of plastic waste (also called white pollution). Chemical recycling and upcycling of waste plastic products (also called waste plastic refineries) into recycled monomers and/or valuable chemicals can decrease the dependence on fossil energy and/or reduce the emission of CO2, enabling the full utilization of carbon resources for the development of a circular economy. Polyesters, a vital class of plastics, are ideal feedstocks for chemical recycling due to the easily depolymerizable ester bonds compared to polyolefins. Among them, polyethylene terephthalate (PET) is the most widely used product, making its chemical recycling to a circular carbon resource a hot topic with significant concerns. In this feature article, recent progress in depolymerization of waste polyesters (PET and/or PET-containing materials) and the subsequent upgrading of depolymerized monomers (or intermediates) to valuable chemicals was reviewed and prospected. Newly reported technologies, such as thermal catalysis, photocatalysis, electrocatalysis, and biocatalysis, were discussed. The achievements, challenges, and potential of industrial applications of chemical recycling of polyesters were addressed.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Yingdan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Yibin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Lei Yang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Weichen Du
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Songlin Wang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| |
Collapse
|
20
|
Koch J, Hess Y, Bak CR, Petersen EI, Fojan P. Design of a Novel Peptide with Esterolytic Activity toward PET by Mimicking the Catalytic Motif of Serine Hydrolases. J Phys Chem B 2024; 128:10363-10372. [PMID: 39385493 DOI: 10.1021/acs.jpcb.4c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Serine hydrolases have become increasingly important for recycling PET plastics. However, their properties are inherently constrained by their 3D structure, which in turn limits the conditions for their application. Considering peptides as catalysts for industrial depolymerization processes can help us to escape some of these limitations. In this article, a 25 amino acid thermostable peptide, HSH-25, was designed to depolymerize PET. The peptide incorporates a His-Ser-His motif, inspired by the catalytic triad found in the serine hydrolase family, into a β-hairpin fold. Stability of the fold was investigated by molecular dynamics simulations. Esterolytic activity of the peptide toward model substrates was detected within a pH range from pH 7 to pH 9.5. Degradation of polymeric PET substrates was confirmed by atomic force microscopy imaging on spin-coated PET thin films.
Collapse
Affiliation(s)
- Jacob Koch
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Yan Hess
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Christine R Bak
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Evamaria I Petersen
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Peter Fojan
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
21
|
Ogawa S, Morita H, Hsu YI, Uyama H, Tobisu M. Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis. Chem Sci 2024:d4sc04147j. [PMID: 39386902 PMCID: PMC11457300 DOI: 10.1039/d4sc04147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
To establish a sustainable society, the development of polymer materials capable of reverting into monomers on demand is crucial. Traditional methods rely on breaking labile bonds such as esters in the main chain, which limits applicability to polymers that consist of robust covalent bonds. We found that the integration of directing groups allowed the engineering of resilient polymers with built-in recyclability. Our study showcases phenylene ether-based polymers fortified with directing groups, which can be selectively disassembled under nickel catalysts via selective cleavage of carbon-oxygen bonds. Notably, these polymers exhibit exceptional chemical stability towards acids, bases, and oxidizing agents, while being degradable to well-defined, repolymerizable molecules in the presence of a catalyst. Our findings allow for the development of next-generation polymer materials that are chemically recyclable by design.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroki Morita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
22
|
Becker T, Hermann A, Saritas N, Hoffmann A, Herres-Pawlis S. Open- and Closed-Loop Recycling: Highly Active Zinc Bisguanidine Polymerization Catalyst for the Depolymerization of Polyesters. CHEMSUSCHEM 2024; 17:e202400933. [PMID: 38870083 DOI: 10.1002/cssc.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
In this study, the aliphatic N,N-bisguanidine zinc complex [Zn(DMEG2ch)2](OTf)2 ⋅ THF is introduced as a promising candidate for the chemical recycling of (bio) polyesters. This catalyst is highly active in the ring-opening polymerization (ROP) of lactide (LA) and ϵ-caprolactone (CL). The combination of polymerization and depolymerization activity creates new pathways towards a sustainable circular economy. The catalytic activity of [Zn(DMEG2ch)2](OTf)2 ⋅ THF for the chemical recycling of polylactide (PLA) via alcoholysis was investigated by detailed kinetic and thermodynamic studies. It is shown that various high value-added alkyl lactates can be obtained efficiently under mild reaction conditions. Catalyst recycling was successfully tested using ethanol for the degradation of PLA. In addition, LA can be recovered directly from PLA, enabling either open- or closed-loop recycling. Selective PLA degradation from mixtures with polyethylene terephthalate (PET) and polymer blends are presented. For the first time, a cascade recycling reaction of a PLA/polycaprolactone (PCL) blend is tested with a zinc-based bisguanidine catalyst, whereby PLA is degraded selectively at first and subsequent modification of the reaction conditions leads to efficient degradation of the remaining PCL. The highly active, universally applicable benign zinc catalyst allows the implementation of a circular plastics economy and thus the reduction of plastic pollution in the environment.
Collapse
Affiliation(s)
- Tabea Becker
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - A Hermann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nazik Saritas
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
23
|
Zhou L, Qin E, Huang H, Wang Y, Li M. PET Glycolysis to BHET Efficiently Catalyzed by Stable and Recyclable Pd-Cu/γ-Al 2O 3. Molecules 2024; 29:4305. [PMID: 39339298 PMCID: PMC11434405 DOI: 10.3390/molecules29184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Glycolysis of poly(ethylene terephthalate) (PET) is a prospective way for degradation of PET to its monomer bis(hydroxyethyl) terephthalate (BHET), providing the possibility for a permanent loop recycling. However, most reported glycolysis catalysts are homogeneous, making the catalyst difficult to recover and contaminating the products. Herein, we reported on the Pd-Cu/γ-Al2O3 catalyst and applied it in the glycolysis of PET as catalyst. The formed structure gave Pd-Cu/γ-Al2O3 a high active surface area, which enabled these micro-particles to work more efficiently. The PET conversion and BHET yield reached 99% and 86%, respectively, in the presence of 5 wt% of Pd-Cu/γ-Al2O3 catalyst within 80 min at 160 °C. After the reaction, the catalyst can be quickly separated by filtration, so it can be easily reused without significant loss of reactivity at least five times. Therefore, the Pd-Cu/γ-Al2O3 catalyst may contribute to an economically and environmentally improved large-scale recycling of PET fiber waste.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
- Jiangsu Polyester Synthesis and Renewable Technology Engineering Research Center, Yangzhou 225127, China
| | - Enbo Qin
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
| | - Hao Huang
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
| | - Yuanyou Wang
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
- Jiangsu Polyester Synthesis and Renewable Technology Engineering Research Center, Yangzhou 225127, China
| | - Mingxin Li
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China
- Jiangsu Polyester Synthesis and Renewable Technology Engineering Research Center, Yangzhou 225127, China
| |
Collapse
|
24
|
Ladewig SM, Bartl I, Rindelaub JD, Thrush SF. Rapid effects of plastic pollution on coastal sediment metabolism in nature. Sci Rep 2024; 14:17963. [PMID: 39095589 PMCID: PMC11297177 DOI: 10.1038/s41598-024-68766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
While extensive research has explored the effects of plastic pollution, ecosystem responses remain poorly quantified, especially in field experiments. In this study, we investigated the impact of polyester pollution, a prevalent plastic type, on coastal sediment ecosystem function. Strips of polyester netting were buried into intertidal sediments, and effects on sediment oxygen consumption and polyester additive concentrations were monitored over 72-days. Our results revealed a rapid reduction in the magnitude and variability of sediment oxygen consumption, a crucial ecosystem process, potentially attributed to the loss of the additive di(2-ethylhexyl) phthalate (DEHP) from the polyester material. DEHP concentrations declined by 89% within the first seven days of deployment. However, effects on SOC dissipated after 22 days, indicating a short-term impact and a quick recovery by the ecosystem. Our study provides critical insights into the immediate consequences of plastic pollution on ecosystem metabolism in coastal sediments, contributing to a nuanced understanding of the temporal variation of plastic pollution's multifaceted impacts. Additionally, our research sheds light on the urgent need for comprehensive mitigation strategies to preserve marine ecosystem functionality from plastic pollution impacts.
Collapse
Affiliation(s)
- Samantha M Ladewig
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand.
| | - Ines Bartl
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand.
| | - Joel D Rindelaub
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Simon F Thrush
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
25
|
Cao J, Liang H, Yang J, Zhu Z, Deng J, Li X, Elimelech M, Lu X. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nat Commun 2024; 15:6266. [PMID: 39048542 PMCID: PMC11269573 DOI: 10.1038/s41467-024-50702-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Alcoholysis of poly(ethylene terephthalate) (PET) waste to produce monomers, including methanolysis to yield dimethyl terephthalate (DMT) and glycolysis to generate bis-2-hydroxyethyl terephthalate (BHET), is a promising strategy in PET waste management. Here, we introduce an efficient PET-alcoholysis approach utilizing an oxygen-vacancy (Vo)-rich catalyst under air, achieving space time yield (STY) of 505.2 gDMT·gcat-1·h-1 and 957.1 gBHET·gcat-1·h-1, these results represent 51-fold and 28-fold performance enhancements compared to reactions conducted under N2. In situ spectroscopy, in combination with density functional theory calculations, elucidates the reaction pathways of PET depolymerization. The process involves O2-assisted activation of CH3OH to form CH3OH* and OOH* species at Vo-Zn2+-O-Fe3+ sites, highlighting the critical role of Vo-Zn2+-O-Fe3+ sites in ester bond activation and C-O bond cleavage. Moreover, a life cycle assessment demonstrates the viability of our approach in closed-loop recycling, achieving 56.0% energy savings and 44.5% reduction in greenhouse-gas emissions. Notably, utilizing PET textile scrap further leads to 58.4% reduction in initial total operating costs. This research offers a sustainable solution to the challenge of PET waste accumulation.
Collapse
Affiliation(s)
- Jingjing Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Huaxing Liang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jie Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhiyang Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China.
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, Germany.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Lo CY, Koutsoukos KP, Nguyen DM, Wu Y, Angel Trujillo DA, Miller T, Shrestha T, Mackey E, Damani VS, Kanbur U, Opila R, Martin DC, Kaphan D, Kayser LV. Imidazolium-Based Sulfonating Agent to Control the Degree of Sulfonation of Aromatic Polymers and Enable Plastics-to-Electronics Upgrading. JACS AU 2024; 4:2596-2605. [PMID: 39055151 PMCID: PMC11267550 DOI: 10.1021/jacsau.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
The accumulation of plastic waste in the environment is a growing environmental, economic, and societal challenge. Plastic upgrading, the conversion of low-value polymers to high-value materials, could address this challenge. Among upgrading strategies, the sulfonation of aromatic polymers is a powerful approach to access high-value materials for a range of applications, such as ion-exchange resins and membranes, electronic materials, and pharmaceuticals. While many sulfonation methods have been reported, achieving high degrees of sulfonation while minimizing side reactions that lead to defects in the polymer chains remains challenging. Additionally, sulfonating agents are most often used in large excess, which prevents precise control over the degree of sulfonation of aromatic polymers and their functionality. Herein, we address these challenges using 1,3-disulfonic acid imidazolium chloride ([Dsim]Cl), a sulfonic acid-based ionic liquid, to sulfonate aromatic polymers and upgrade plastic waste to electronic materials. We show that stoichiometric [Dsim]Cl can effectively sulfonate model polystyrene up to 92% in high yields, with minimal defects and high regioselectivity for the para position. Owing to its high reactivity, the use of substoichiometric [Dsim]Cl uniquely allows for precise control over the degree of sulfonation of polystyrene. This approach is also applicable to a wide range of aromatic polymers, including waste plastic. To prove the utility of our approach, samples of poly(styrene sulfonate) (PSS), obtained from either partially sulfonated polystyrene or expanded polystyrene waste, are used as scaffolds for poly(3,4-ethylenedioxythiophene) (PEDOT) to form the ubiquitous conductive material PEDOT:PSS. PEDOT:PSS from plastic waste is subsequently integrated into organic electrochemical transistors (OECTs) or as a hole transport layer (HTL) in a hybrid solar cell and shows the same performance as commercial PEDOT:PSS. This imidazolium-mediated approach to precisely sulfonating aromatic polymers provides a pathway toward upgrading postconsumer plastic waste to high-value electronic materials.
Collapse
Affiliation(s)
- Chun-Yuan Lo
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kelsey P. Koutsoukos
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Dan My Nguyen
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | | | - Tabitha Miller
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Tulaja Shrestha
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Ethan Mackey
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Vidhika S. Damani
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Uddhav Kanbur
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Robert Opila
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19716, United States
| | - David Kaphan
- Chemical
Sciences and Engineering Division, Argonne
National Laboratories, Lemont, Illinois 60439, United States
| | - Laure V. Kayser
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
28
|
Aarsen CV, Liguori A, Mattsson R, Sipponen MH, Hakkarainen M. Designed to Degrade: Tailoring Polyesters for Circularity. Chem Rev 2024; 124:8473-8515. [PMID: 38936815 PMCID: PMC11240263 DOI: 10.1021/acs.chemrev.4c00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A powerful toolbox is needed to turn the linear plastic economy into circular. Development of materials designed for mechanical recycling, chemical recycling, and/or biodegradation in targeted end-of-life environment are all necessary puzzle pieces in this process. Polyesters, with reversible ester bonds, are already forerunners in plastic circularity: poly(ethylene terephthalate) (PET) is the most recycled plastic material suitable for mechanical and chemical recycling, while common aliphatic polyesters are biodegradable under favorable conditions, such as industrial compost. However, this circular design needs to be further tailored for different end-of-life options to enable chemical recycling under greener conditions and/or rapid enough biodegradation even under less favorable environmental conditions. Here, we discuss molecular design of the polyester chain targeting enhancement of circularity by incorporation of more easily hydrolyzable ester bonds, additional dynamic bonds, or degradation catalyzing functional groups as part of the polyester chain. The utilization of polyester circularity to design replacement materials for current volume plastics is also reviewed as well as embedment of green catalysts, such as enzymes in biodegradable polyester matrices to facilitate the degradation process.
Collapse
Affiliation(s)
- Celine V Aarsen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Anna Liguori
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rebecca Mattsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
29
|
Ji L, Meng J, Li C, Wang M, Jiang X. From Polyester Plastics to Diverse Monomers via Low-Energy Upcycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403002. [PMID: 38626364 PMCID: PMC11220695 DOI: 10.1002/advs.202403002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/31/2024] [Indexed: 04/18/2024]
Abstract
Polyester plastics, constituting over 10% of the total plastic production, are widely used in packaging, fiber, single-use beverage bottles, etc. However, their current depolymerization processes face challenges such as non-broad spectrum recyclability, lack of diversified high-value-added depolymerization products, and crucially high energy consumption. Herein, an efficient strategy is developed for dismantling the compact structure of polyester plastics to achieve diverse monomer recovery. Polyester plastics undergo swelling and decrystallization with a low depolymerization energy barrier via synergistic effects of polyfluorine/hydrogen bonding, which is further demonstrated via density functional theory calculations. The swelling process is elucidated through scanning electron microscopy analysis. Obvious destruction of the crystalline region is demonstrated through X-ray crystal diffractometry curves. PET undergoes different aminolysis efficiently, yielding nine corresponding high-value-added monomers via low-energy upcycling. Furthermore, four types of polyester plastics and five types of blended polyester plastics are closed-loop recycled, affording diverse monomers with exceeding 90% yields. Kilogram-scale depolymerization of real polyethylene terephthalate (PET) waste plastics is successfully achieved with a 96% yield.
Collapse
Affiliation(s)
- Lei Ji
- State Key Laboratory of Molecular & Process EngineeringSchool of Chemistry and Molecular EngineeringEast China Normal UniversityNorth Zhongshan Road 3663Shanghai200062China
| | - Jiaolong Meng
- State Key Laboratory of Molecular & Process EngineeringSchool of Chemistry and Molecular EngineeringEast China Normal UniversityNorth Zhongshan Road 3663Shanghai200062China
| | - Chengliang Li
- State Key Laboratory of Molecular & Process EngineeringSchool of Chemistry and Molecular EngineeringEast China Normal UniversityNorth Zhongshan Road 3663Shanghai200062China
| | - Ming Wang
- State Key Laboratory of Molecular & Process EngineeringSchool of Chemistry and Molecular EngineeringEast China Normal UniversityNorth Zhongshan Road 3663Shanghai200062China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular & Process EngineeringSchool of Chemistry and Molecular EngineeringEast China Normal UniversityNorth Zhongshan Road 3663Shanghai200062China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| |
Collapse
|
30
|
Zhang D, Wang X, Zhang Z, Hadjichristidis N. Heteroatom Substitution Strategy Modulates Thermodynamics Towards Chemically Recyclable Polyesters and Monomeric Unit Sequence by Temperature Switching. Angew Chem Int Ed Engl 2024; 63:e202402233. [PMID: 38591713 DOI: 10.1002/anie.202402233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
In this paper, we proposed a heteroatom substitution strategy (HSS) in the δ-valerolactone (VL) system to modulate thermodynamics toward chemically recyclable polyesters. Three VL-based monomers containing different heteroatoms (M1 (N), M2 (S), and M3 (O)), instead of C-5 carbon, were designed and synthesized to verify our proposed HSS. All three monomers undergo organocatalytic living/controlled ROP and controllable depolymerization. Impressively, the resulting P(M1) achieved over 99 % monomer recovery under both mild solution depolymerization and high vacuum pyrolysis conditions without any side reactions, and the recycled monomers can be polymerized again forming new polymers. The systematic study of the relationship between heteroatom substitution and recyclability shows that introducing heteroatoms does change the thermodynamics of the monomers (ΔHp o, ΔSp o and Tc values), thereby adjusting the polymerizability and depolymerizability. DFT calculations found that the introduction of heteroatoms adjusts the ring strain by changing the angular strain of the monomers, and the order of their angular strain (M2>M1>M3) is consistent with the order of the experimentally obtained enthalpy change. Notably, the one-pot/one-step copolymerization of two of each of the three monomers enables the synthesis of sequence-controlled copolymers from gradient to random to block structures, by simply switching the copolymerization temperature.
Collapse
Affiliation(s)
- Da Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xin Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
31
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
32
|
Vicuña L, Jaramillo-Fierro X, Cuenca PE, Godoy-Paucar B, Inga-Lafebre JD, Chavez Torres JL, García JF, Guaya D, Febres JD. Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization-A Case Study. Polymers (Basel) 2024; 16:1151. [PMID: 38675071 PMCID: PMC11053962 DOI: 10.3390/polym16081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the sustainable use of recycled plastics, specifically polypropylene (PP) and high-density polyethylene (HDPE), in the manufacture of geogrids for geotechnical and civil engineering applications. Plastics were collected from a recycling center, specifically targeting containers used for food, cleaning products, and other domestic packaging items. These plastics were sorted according to the Möbius triangle classification system, with HDPE (#2) and PP (#5) being the primary categories of interest. The research methodologically evaluates the mechanical properties of PP/HDPE (0/100, 25/75, 50/50, 75/25 and 100/0% w/w) composites through tensile and flexural tests, exploring various compositions and configurations of geogrids. The results highlight the superiority of pure recycled HDPE processed into 1.3 mm thick laminated yarns and hot air welded for 20 to 30 s, exhibiting a deformation exceeding 60% in comparison to the PP/HDPE composites. Through SolidWorks® Simulation, it was shown that the adoption of a trigonal geogrid geometry optimizes force distribution and tensile strength, significantly improving slope stabilization efficiency. Based on the results obtained, a laboratory-scale prototype geogrid was developed using an extrusion process. The results underscore the importance of careful composite design and yarn configuration selection to achieve the desired mechanical properties and performance in geogrid applications. It emphasizes the potential of recycled plastics as a viable and environmentally friendly solution for stabilizing slopes, contributing to the reduction in plastic waste and promoting sustainable construction practices.
Collapse
Affiliation(s)
- Lenin Vicuña
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (L.V.); (P.E.C.); (J.D.I.-L.); (J.D.F.)
| | - Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (J.F.G.); (D.G.)
| | - Paúl Eduardo Cuenca
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (L.V.); (P.E.C.); (J.D.I.-L.); (J.D.F.)
| | - Brenda Godoy-Paucar
- Carrera de Ingeniería Industrial, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| | - Jorge Daniel Inga-Lafebre
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (L.V.); (P.E.C.); (J.D.I.-L.); (J.D.F.)
| | - Jose Luis Chavez Torres
- Departamento de Ingeniería Civil, Facultad de Ingenierías y Arquitectura, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| | - Juan Fernando García
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (J.F.G.); (D.G.)
| | - Diana Guaya
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (J.F.G.); (D.G.)
| | - Juan Diego Febres
- Departamento de Producción, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador; (L.V.); (P.E.C.); (J.D.I.-L.); (J.D.F.)
| |
Collapse
|
33
|
Hong SG, Oh BM, Kim JH, Lee JU. Textile-Based Adsorption Sensor via Mixed Solvent Dyeing with Aggregation-Induced Emission Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1745. [PMID: 38673102 PMCID: PMC11051475 DOI: 10.3390/ma17081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study demonstrates a novel methodology for developing a textile-based adsorption sensor via mixed solvent dyeing with aggregation-induced emission (AIE) dyes on recycled fabrics. AIE dyes were incorporated into the fabrics using a mixed solvent dyeing method with a co-solvent mixture of H2O and organic solvents. This method imparted unique fluorescence properties to fabrics, altering fluorescence intensity or wavelength based on whether the AIE dye molecules were in an isolated or aggregated state on the fabrics. The precise control of the H2O fraction to organic solvent during dyeing was crucial for influencing fluorescence intensity and sensing characteristics. These dyed fabrics exhibited reactive thermochromic and vaporchromic properties, with changes in fluorescence intensity corresponding to variations in temperature and exposure to volatile organic solvents (VOCs). Their superior characteristics, including a repetitive fluorescence switching property and resistance to photo-bleaching, enhance their practicality across various applications. Consequently, the smart fabrics dyed with AIE dye not only find applications in clothing and fashion design but demonstrate versatility in various fields, extending to sensing temperature, humidity, and hazardous chemicals.
Collapse
Affiliation(s)
- Seong Gyun Hong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Byeong M. Oh
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jong H. Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jea Uk Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
34
|
Ximenis M, Monot J, Gabirondo E, Jeschke J, Martín-Vaca B, Bourissou D, Sardon H. Boosting the Reactivity of Bis-Lactones to Enable Step-Growth Polymerization at Room Temperature. Macromolecules 2024; 57:3319-3327. [PMID: 38616811 PMCID: PMC11008534 DOI: 10.1021/acs.macromol.3c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
The development of new sustainable polymeric materials endowed with improved performances but minimal environmental impact is a major concern, with polyesters as primary targets. Lactones are key monomers thanks to ring-opening polymerization, but their use in step-growth polymerization has remained scarce and challenging. Herein, we report a powerful bis(γ-lactone) (γSL) that was efficiently prepared on a gram scale from malonic acid by Pd-catalyzed cycloisomerization. The γ-exomethylene moieties and the spiro structure greatly enhance its reactivity toward ring-opening and enable step-growth polymerization under mild conditions. Using diols, dithiols, or diamines as comonomers, a variety of regioregular (AB)n copolymers with diverse linkages and functional groups (from oxo-ester to β-thioether lactone and β-hydroxy-lactame) have been readily prepared. Reaction modeling and monitoring revealed the occurrence of an original trans-lactonization process following the first ring-opening of γSL. This peculiar reactivity opens the way to regioregular (ABAC)n terpolymers, as illustrated by the successive step-growth polymerization of γSL with a diol and a diamine.
Collapse
Affiliation(s)
- Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Julien Monot
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Elena Gabirondo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Janna Jeschke
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Blanca Martín-Vaca
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Didier Bourissou
- Laboratoire
Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials/Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Joxe
Mari Korta Center Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
35
|
Clark R, Shaver MP. Depolymerization within a Circular Plastics System. Chem Rev 2024; 124:2617-2650. [PMID: 38386877 PMCID: PMC10941197 DOI: 10.1021/acs.chemrev.3c00739] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.
Collapse
Affiliation(s)
- Robbie
A. Clark
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
36
|
Lou X, Liu F, Li Q, Chu M, Wang G, Chen J, Cao M. Advances in solar-driven, electro/photoelectrochemical, and microwave-assisted upcycling of waste polyesters. Chem Commun (Camb) 2024; 60:2828-2838. [PMID: 38362916 DOI: 10.1039/d3cc05930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Plastic waste in the environment causes significant environmental pollution. The potential of using chemical methods for upcycling plastic waste offers a dual solution to ensure resource sustainability and environmental restoration. This article provides a comprehensive overview of the latest technologies driven by solar-driven, electro/photoelectrochemical-catalytic, and microwave-assisted methods for the conversion of plastics into various valuable chemicals. It emphasizes selective conversion during the plastic transformation process, elucidates reaction pathways, and optimizes product selectivity. Finally, the article offers insights into the future developments of chemical upcycling of polyesters.
Collapse
Affiliation(s)
- Xiangxi Lou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Fangyue Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qingye Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
37
|
Jiang M, Wang X, Xi W, Yang P, Zhou H, Duan J, Ratova M, Wu D. Chemical catalytic upgrading of polyethylene terephthalate plastic waste into value-added materials, fuels and chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169342. [PMID: 38123093 DOI: 10.1016/j.scitotenv.2023.169342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The substantial production of polyethylene terephthalate (PET) products, coupled with high abandonment rates, results in significant environmental pollution and resource wastage. This has prompted global attention to the development of rational strategies for PET waste treatment. In the context of renewability and sustainability, catalytic chemical technology provides an effective means to recycle and upcycle PET waste into valuable resources. In this review, we initially provide an overview of strategies employed in the thermocatalytic process to recycle PET waste into valuable carbon materials, fuels and typical refined chemicals. The effect of catalysts on the quality and quantity of specific products is highlighted. Next, we introduce the development of renewable-energy-driven electrocatalytic and photocatalytic systems for sustainable PET waste upcycling, focusing on rational catalysts, innovative catalytic system design, and corresponding underlying catalytic mechanisms. Moreover, we discuss advantages and disadvantages of three chemical catalytic strategies. Finally, existing limitations and outlook toward controllable selectivity and yield enhancement of value-added products and PET upvaluing technology for scale-up applications are proposed. This review aims to inspire the exploration of waste-to-treasure technologies for renewable-energy-driven waste management toward a circular economy.
Collapse
Affiliation(s)
- Mingkun Jiang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Xiali Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Wanlong Xi
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Peng Yang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Hexin Zhou
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Junyuan Duan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China
| | - Marina Ratova
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Dan Wu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| |
Collapse
|
38
|
Minami Y, Imamura S, Matsuyama N, Nakajima Y, Yoshida M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon-oxygen main chain cleavages. Commun Chem 2024; 7:37. [PMID: 38378901 PMCID: PMC10879179 DOI: 10.1038/s42004-024-01120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
As the effective use of carbon resources has become a pressing societal issue, the importance of chemical recycling of plastics has increased. The catalytic chemical decomposition for plastics is a promising approach for creating valuable products under efficient and mild conditions. Although several commodity and engineering plastics have been applied, the decompositions of stable resins composed of strong main chains such as polyamides, thermoset resins, and super engineering plastics are underdeveloped. Especially, super engineering plastics that have high heat resistance, chemical resistance, and low solubility are nearly unexplored. In addition, many super engineering plastics are composed of robust aromatic ethers, which are difficult to cleave. Herein, we report the catalytic depolymerization-like chemical decomposition of oxyphenylene-based super engineering plastics such as polyetheretherketone and polysulfone using thiols via selective carbon-oxygen main chain cleavage to form electron-deficient arenes with sulfur functional groups and bisphenols. The catalyst combination of a bulky phosphazene base P4-tBu with inorganic bases such as tripotassium phosphate enabled smooth decomposition. This method could be utilized with carbon- or glass fiber-enforced polyetheretherketone materials and a consumer resin. The sulfur functional groups in one product could be transformed to amino and sulfonium groups and fluorine by using suitable catalysts.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Sae Imamura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Matsuyama
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
39
|
Madej-Kiełbik L, Jóźwik-Pruska J, Dziuba R, Gzyra-Jagieła K, Tarzyńska N. The Impact of the COVID-19 Pandemic on the Amount of Plastic Waste and Alternative Materials in the Context of the Circular Economy. SUSTAINABILITY 2024; 16:1555. [DOI: 10.3390/su16041555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The COVID-19 pandemic was first reported on 31 December 2019, in Wuhan. Since then, the rapid spread of the virus has directly impacted various aspects of people’s lives, including culture, society, education, and the economy. The environment has also been affected, as the disposal of thousands of tons of single-use personal protective equipment has resulted in a significant increase in waste. The challenge was to create environmentally friendly materials for personal protective equipment. One of the alternatives to polypropylene materials is a biodegradable nonwoven produced using spun-bonded technology. The article discusses various physical and mechanical parameters, the biodegradation process, and the distribution of molar masses during the weeks of nonwoven biodegradation. Additionally, the paper presents the results of in vitro cytotoxicity tests conducted on the material. Biodegradable materials are a viable solution to the challenges posed by a circular economy.
Collapse
Affiliation(s)
- Longina Madej-Kiełbik
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Jagoda Jóźwik-Pruska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
| | - Radosław Dziuba
- Department of World Economy and European Integration, University of Lodz, 41/43 Rewolucji 1905 Str., 90-214 Lodz, Poland
| | - Karolina Gzyra-Jagieła
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Textile Institute, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| | - Nina Tarzyńska
- Lukasiewicz Research Network—Lodz Institute of Technology, 19/27 M. Sklodowskiej-Curie Str., 90-570 Lodz, Poland
- Textile Institute, Lodz University of Technology, 116 Żeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
40
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Brehmer MS, de Oliveira PZ, Binod P, Sindhu R, Soccol CR. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 393:130078. [PMID: 37993072 DOI: 10.1016/j.biortech.2023.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Mateus Seleme Brehmer
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
41
|
Fu Z, Zhang YS, Ji G, Li A. Experimental analysis on products distribution, characterization and mechanism of waste polypropylene (PP) and polyethylene terephthalate (PET) degradation in sub-/supercritical water. CHEMOSPHERE 2024; 350:141045. [PMID: 38154671 DOI: 10.1016/j.chemosphere.2023.141045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Supercritical water (SCW) treatment of plastics is a clean technology in the 'waste-to-energy' path. In this work, PP and PET plastics were processed by sub-/supercritical water. The results showed that temperature was the most important factor of the PP and PET degradation. The influence of factors on the degradation of plastics follows the following order: temperature > residence time > plastic/water ratio. These factors influenced the yield of gas products by promoting or inhibiting various reactions (such as reverse water gas shift reaction, methylation reaction, and Fischer-Tropsch synthesis reaction). Besides, the composition of liquid oil was also analyzed. The main composition of the liquid oil produced by PET was benzoic acid and acetaldehyde, which were generated from the decarboxylation of terephthalic acid (TPA) and dehydration reaction of ethylene glycol (EG). The liquid oil from PP was mainly long-chain olefins, long-chain alkanes, cycloalkanes, etc., which were formed by the interaction of various methyl, alkyl, hydroxyl, and other free radicals. This study could build fundamental theories of plastic mixture treatment.
Collapse
Affiliation(s)
- Zegang Fu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ye Shui Zhang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Guozhao Ji
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China.
| |
Collapse
|
42
|
Zhang Q, Hu C, Pang X, Chen X. Multi-Functional Organofluoride Catalysts for Polyesters Production and Upcycling Degradation. CHEMSUSCHEM 2024; 17:e202300907. [PMID: 37735092 DOI: 10.1002/cssc.202300907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The production and degradation of polyesters are two crucial processes in polyester materials' life cycle. In this work, multi-functional organocatalysts based on fluorides for both processes are described. Organofluorides were developed as catalysts for ring-opening polymerization of lactide (lactone). Compared with a series of organohalides, organofluoride performed the best catalytic reactivity because of the hydrogen bond interaction between F- and alcohol initiator. The Mn values of polyester products could be up to 72 kg mol-1 . With organofluoride catalysts, the ring-opening copolymerization between various anhydrides and epoxides could be established. Furthermore, terpolymerization of anhydride, epoxide, and lactide could be constructed by the self-switchable organofluoride catalyst to yield a block polymer with a strictly controlled polymerization sequence. Organofluorides were also efficient catalysts for upcycling polyester plastic wastes via alcoholysis. Mixed polyester materials could also be hierarchically recycled.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| |
Collapse
|
43
|
Zhang Q, Hu C, Li PY, Bai FQ, Pang X, Chen X. Solvent-Promoted Catalyst-Free Recycling of Waste Polyester and Polycarbonate Materials. ACS Macro Lett 2024:151-157. [PMID: 38227974 DOI: 10.1021/acsmacrolett.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polymeric materials are indispensable in our daily lives. However, the generation of vast amounts of waste polymers poses significant environmental and ecological challenges. Instead of resorting to landfilling or incineration, strategies for polymer recycling offer a promising approach to mitigate environmental pollution. Pioneering studies have demonstrated the alcoholysis of waste polyesters and polycarbonates; however, these processes typically require the use of catalysts. Moreover, the development of strategies for catalyst removal and recycling is crucial, particularly in some industrial applications. In contrast, we present a catalyst-free method for the alcoholysis of common polyester and polycarbonate materials into small organic molecules. Certain polar organic solvents exhibit remarkable efficiency in polymer degradation under catalyst-free conditions. Employing these polar solvents, both polymer resins and commercially available products could be effectively degraded via alcoholysis. Our design contributes a straightforward route for recycling waste polymeric materials.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peng-Yuan Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
44
|
Jiang H, Li Z, Dai Y, Ling Y, Mei S, Wang H, Mou Z. Synthesis of Poly(δ-caprolactone) via Bis(phenolate) Rare-Earth Metal Complexes Mediated Ring-Opening Polymerization and Its Chemical Recycling. Inorg Chem 2024; 63:441-450. [PMID: 38149999 DOI: 10.1021/acs.inorgchem.3c03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
New amine-amino-bis(phenolate) ligands (H2LtBu and H2LCl) with a cyclic tertiary amine (pyrrolidine) as a side arm and tBu or Cl group on the phenolate ring have been prepared. The alkane elimination reaction between these free ligands and rare-earth tris(alkyl)s Ln(CH2SiMe3)3(THF)2 afforded the corresponding silylalkyl complexes LtBuLnCH2SiMe3(THF) (Ln = Y (1), Lu (2)) and LClYCH2SiMe3(THF) (3), where the solid-state structure of complex 1 was unambiguously confirmed by X-ray diffraction (XRD) analysis. These rare-earth metal complexes have been utilized as catalysts for the ring-opening polymerization (ROP) of biobased δ-caprolactone (δCL), either in the absence or presence of alcohols, to give poly(δ-caprolactone) (PδCL) with controlled molecular weight and narrow distribution (Đ < 1.2). The polymerization kinetics of δCL in toluene with yttrium complexes 1 and 3 were investigated. Oligomers prepared with complex 3 alone and the 3/PhCHMeOH binary catalyst system were well characterized with 1H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). Moreover, chemical recycling of the resultant PδCL was achieved with high yield in a solution at ambient temperature (>92%) or in bulk at 130 °C (>82%) by using commercial KOtBu as a promotor.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Dai
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yidong Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shiqing Mei
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118 China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
45
|
Weng Y, Hong CB, Zhang Y, Liu H. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling. GREEN CHEMISTRY 2024; 26:571-592. [DOI: 10.1039/d3gc04174c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling
Collapse
Affiliation(s)
- Yujing Weng
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Cheng-Bin Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
46
|
Chiba Y, Kawatani R, Kohsaka Y. Chemically Recyclable Vinyl Polymers by Free Radical Polymerization of Cyclic Styrene Derivatives. ACS Macro Lett 2023; 12:1672-1676. [PMID: 38010412 DOI: 10.1021/acsmacrolett.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To achieve a sustainable society supported by resource circulation, vinyl monomers that can radically polymerize and be recovered from vinyl polymers (VPs) are desirable. However, the chemical recycling of VPs remains challenging because of the difficulty in quantitative and selective main-chain scission or depolymerization. In this study, VPs of cyclic styrene derivatives, such as 3-methylene phthalide, were investigated to be chemically recyclable. The ring-opening of the pendant groups by saponification enhanced the steric hindrance of the pendants, which resulted in main-chain scission and depolymerization to the monomer precursors. Highly efficient chemical recycling was achieved by suspending the polymer in aqueous KOH. These results facilitate resource circulation toward achieving a sustainable society.
Collapse
Affiliation(s)
- Yota Chiba
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Ryo Kawatani
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
47
|
Ogiwara Y, Nomura K. Chemical Upcycling of PET into a Morpholine Amide as a Versatile Synthetic Building Block. ACS ORGANIC & INORGANIC AU 2023; 3:377-383. [PMID: 38075447 PMCID: PMC10704573 DOI: 10.1021/acsorginorgau.3c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 04/06/2025]
Abstract
A catalytic chemical upcycling methodology for polyesters has been developed. Commodity polyesters, such as polyethylene terephthalate (PET), are depolymerized with morpholine by using a Cp*TiCl3 catalyst under ambient pressure without any additives, which provides morpholine amides exclusively. The method can also apply to other polyesters, polybutylene terephthalate (PBT), polyethylene adipate (PEA), polybutylene adipate (PBA), and polybutylene succinate (PBS), as well as an actual PET waste of a 50 g postconsumer beverage bottle. The product, morpholine amide, is a versatile building block in organic chemistry, and the synthetic utility has thus been demonstrated by further transformations, such as hydrolysis, selective reductive conversions, and Grignard reaction.
Collapse
Affiliation(s)
- Yohei Ogiwara
- Department of Chemistry, Graduate School
of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Graduate School
of Science, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
48
|
Wei J, Zhu M, Liu B, Wang N, Liu J, Tomishige K, Liu S, Liu G. Hydrodeoxygenation of Oxygen-Containing Aromatic Plastic Wastes to Liquid Organic Hydrogen Carriers. Angew Chem Int Ed Engl 2023; 62:e202310505. [PMID: 37534570 DOI: 10.1002/anie.202310505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
To address the global plastic pollution issues and the challenges of hydrogen storage and transportation, we report a system, based on the hydrodeoxygenation (HDO) of oxygen-containing aromatic plastic wastes, from which organic hydrogen carriers (LOHCs) can be derived. We developed a catalytic system comprised of Ru-ReOx /SiO2 +HZSM-5 for direct HDO of polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene oxide (PPO), and their mixtures, to cycloalkanes as LOHCs, with high yields up to 99 %, under mild reaction conditions. The theoretical hydrogen storage capacity reaches ca. 5.74 wt%. The reaction pathway involves depolymerization of PC into C15 aromatics and C15 monophenols by direct hydrogenolysis of the C-O bond between the benzene ring and ester group, and subsequent parallel hydrogenation of C15 aromatics and HDO of C15 monophenols. HDO of cyclic alcohol is the rate-determining step. The active site is Ru metallic nanoparticles with partially covered ReOx species. The excellent performance is attributed to the synergetic effect of oxophilic ReOx species and Ru metallic sites for C-O hydrogenolysis and hydrogenation, and the promotion effect of HZSM-5 for dehydration of cyclic alcohol. The highly efficient and stable dehydrogenation of cycloalkanes over Pt/γ-Al2 O3 confirms that HDO products can act as LOHCs.
Collapse
Affiliation(s)
- Junde Wei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Mengmeng Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Ben Liu
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Nan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Jieyi Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Haihe Lab of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin, 300072, China
- Haihe Lab of Sustainable Chemical Transformations, Tianjin, 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
49
|
Qu Z, Chen K, Zhang L, Sun Y. Computation-Based Design of Salt Bridges in PETase for Enhanced Thermostability and Performance for PET Degradation. Chembiochem 2023; 24:e202300373. [PMID: 37639367 DOI: 10.1002/cbic.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Polyethylene terephthalate (PET) is one of the most widely used plastics, and the accumulation of PET poses a great threat to the environment. IsPETase can degrade PET rapidly at moderate temperatures, but its application is greatly limited by the low stability. Herein, molecular dynamics (MD) simulations combined with a sequence alignment strategy were adopted to introduce salt bridges into the flexible region of IsPETase to improve its thermal stability. In the designed variants, the Tm values of IsPETaseI168R/S188D and IsPETaseI168R/S188E were 7.4 and 8.7 °C higher than that of the wild type, respectively. The release of products degraded by IsPETaseI168R/S188E was 4.3 times that of the wild type. Tertiary structure characterization demonstrated that the structure of the variants IsPETaseI168R/S188D and IsPETaseI168R/S188E became more compact. Extensive MD simulations verified that a stable salt bridge was formed between the residue R168 and D186 in IsPETaseI168R/S188D , while in IsPETaseI168R/S188E an R168-D186-E188 salt bridge network was observed. These results confirmed that the proposed computation-based salt bridge design strategy could efficiently generate variants with enhanced thermal stability for the long-term degradation of PET, which would be helpful for the design of enzymes with improved stability.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Lin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
50
|
Wang Z, Cui F, Sui Y, Yan J. Radical chemistry in polymer science: an overview and recent advances. Beilstein J Org Chem 2023; 19:1580-1603. [PMID: 37915554 PMCID: PMC10616707 DOI: 10.3762/bjoc.19.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Radical chemistry is one of the most important methods used in modern polymer science and industry. Over the past century, new knowledge on radical chemistry has both promoted and been generated from the emergence of polymer synthesis and modification techniques. In this review, we discuss radical chemistry in polymer science from four interconnected aspects. We begin with radical polymerization, the most employed technique for industrial production of polymeric materials, and other polymer synthesis involving a radical process. Post-polymerization modification, including polymer crosslinking and polymer surface modification, is the key process that introduces functionality and practicality to polymeric materials. Radical depolymerization, an efficient approach to destroy polymers, finds applications in two distinct fields, semiconductor industry and environmental protection. Polymer chemistry has largely diverged from organic chemistry with the fine division of modern science but polymer chemists constantly acquire new inspirations from organic chemists. Dialogues on radical chemistry between the two communities will deepen the understanding of the two fields and benefit the humanity.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Feichen Cui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Yang Sui
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| | - Jiajun Yan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 201210, China
| |
Collapse
|