1
|
Harb H, Surendran Assary R. Systematic improvement of redox potential calculation of Fe(III)/Fe(II) complexes using a three-layer micro-solvation model. Phys Chem Chem Phys 2025; 27:10717-10729. [PMID: 40351129 DOI: 10.1039/d5cp00454c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Electrochemical transformations of metal ions in aqueous media are challenging to model accurately due to the dynamic solvation structure surrounding ions at different charge states. Predictive modeling at the atomistic scale is essential for understanding these solvation architectures but is often computationally prohibitive. In this contribution, we present a simple, fast, and accurate three-layer micro-solvation model to evaluate the redox potential of metal ions in aqueous solutions. Our model, developed and validated for Fe3+/Fe2+ redox potentials, combines the DFT-based geometry optimizations of the octahedral Fe complex with two layers of explicit water molecules to capture solute-solvent interactions and an implicit solvation model to account for bulk solvent effects. This approach yields accurate predictions for Fe3+/Fe2+ redox potentials in water, achieving errors of 0.02 V with ωB97X-V, 0.01 V with ωB97X-D3, 0.04 V with ωB97M-V, and 0.02 V with B3LYP-D3 functionals. We further demonstrate the generality of our model by applying it to additional metal complexes, including the challenging Fe(CN)63-/4- system, where our model successfully achieves close agreement with experimental values, with an error of 0.07 V and an average error of 0.21 V for all five systems. In summary, the presented simple solvation model has broad applicability and potential for enhancing computational efficiency in redox potential predictions across various chemical and industrial processes of metal ions.
Collapse
Affiliation(s)
- Hassan Harb
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | | |
Collapse
|
2
|
Wu M, Liu S, Yuan H, Zhao Z, Qiao L, Ma X. Anisotropy Engineering for Constructing Gradient Electrodes with High-Efficiency Bi/C Catalyst In Situ for Iron-Chromium Flow Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502094. [PMID: 40376865 DOI: 10.1002/adma.202502094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/02/2025] [Indexed: 05/18/2025]
Abstract
Iron-chromium flow batteries (ICFBs) are regarded as one of the most potential large-scale energy storage devices. Nevertheless, the slow dynamics of the Cr3+/Cr2+ redox couples hinder the development of ICFBs. Here, a high-efficiency carbon-loaded bismuth (Bi/C) catalyst is fabricated and introduced on the electrode in situ to improve the dynamics with the assistance of polyvinylpyrrolidone (PVP). To derive the greatest value, we explore the current density anisotropy in ICFB and design a strategy of anisotropy engineering to meet the requirements of the anisotropy for catalysts. In the work, the gradient electrode (G-PBiC/TCF) with a high-efficiency Bi/C catalyst is successfully prepared. In addition, the ICFB assembled with the G-PBiC/TCF(M/m, the side of more catalysts facing the Membrane side) shows excellent battery performance. It can run over 500 cycles with EE of 81.36% at 120 mA cm-2, which is the longest cycle life reported. Furthermore, the catalytic mechanism and the effect of the catalyst distribution on the performance are explained by the DFT calculation and multi-physical field simulation. This work provides a novel pathway to design that catalyst-supported gradient electrode with high performance and low cost.
Collapse
Affiliation(s)
- Min Wu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shumin Liu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haofu Yuan
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zichao Zhao
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lin Qiao
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangkun Ma
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
3
|
Zuo P, Xu T. Constructing Hydrophilic Polymer Membranes with Microporosity for Aqueous Redox Flow Batteries. CHEMSUSCHEM 2025:e202402562. [PMID: 40051092 DOI: 10.1002/cssc.202402562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Ion selective membranes (ISMs) are key components of aqueous redox flow batteries (ARFBs), and their property in selective ion transport largely determines the energy storage efficiency of ARFBs. Traditional ISMs are based on microphase-separated structures and have been advanced for many years, but most of them show poor performance as membrane separators in ARFBs due to their conductivity-selectivity. In recent years, using confined micropores instead of dense hydrophilic regions as ion channels has been demonstrated to effectively break this tradeoff. We here summarize the synthetic strategies for constructing hydrophilic polymer membranes with microporosity and highlight the performance of some typical microporous ISMs in ARFBs. We also propose fundamental issues that remain to be addressed for the further development of ISMs.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
4
|
Chen X, Wu C, Lv Y, Zhang S, Jiang Y, Feng Z, Wang L, Wang Y, Zhu J, Dai L, He Z. Highly active nitrogen-phosphorus co-doped carbon fiber@graphite felt electrode for high-performance vanadium redox flow battery. J Colloid Interface Sci 2025; 677:683-691. [PMID: 39159523 DOI: 10.1016/j.jcis.2024.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Heteroatom-doped electrodes offer promising applications for enhancing the longevity and efficiency of vanadium redox flow battery (VRFB). Herein, we controllably synthesized N, P co-doped graphite fiber electrodes with conductive network structure by introducing protonic acid and combining electrodeposition and high temperature carbonization. H2SO4 and H3PO4 act as auxiliary and dopant, respectively. The synergistic effect between N and P introduces additional defect structures and active sites on the electrodes, thereby enhancing the reaction rate, as confirmed by density functional theory calculations. Furthermore, the conductive network structure of carbon fibers improves electrode-to-electrode connectivity and reduces internal battery resistance. The optimized integration of these strategies enhances VRFB performance significantly. Consequently, the N, P co-doped carbon fiber modified graphite felt electrodes demonstrate remarkably high energy efficiency at 200 mA cm-2, surpassing that of the blank battery by 7.9 %. This integrated approach to in-situ controllable synthesis provides innovative insights for developing high-performance, stable electrodes, thereby contributing to advancements in the field of energy storage.
Collapse
Affiliation(s)
- Xingrong Chen
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Chang Wu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yanrong Lv
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Shupan Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yingqiao Jiang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zemin Feng
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yinhui Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Jing Zhu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
5
|
Dong W, Liu C, Tang Z, Cheng S. Rational Design Toward Advanced Non-Flow Aqueous Zinc-Bromine Systems Boosted by Alkaline-Neutral Decoupling Electrolytes. SMALL METHODS 2024; 8:e2400174. [PMID: 38594890 DOI: 10.1002/smtd.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Non-flow aqueous zinc-bromine batteries (AZBBs) are highly attractive owing to their lightweight construction and largely reduced cost compared with the flow ones. Yet, their development is restricted by the sluggish reaction kinetics of Br2/Br-, the shuttle of soluble polybromide species (Brn -, n is odd), and the poor stability of Zn-based anode. Herein, an effective alkaline-neutral electrolyte decoupling system is constructed to mitigate these issues, where nitrogen-doped carbon felt with high catalytic activity to Br2/Br- reaction is developed for cathode, a cost-effective cation exchange membrane (CEM) of polyethersulfone/sulfonated polyether ether ketone (PES/SPEEK-M) that can stop Brn - is used as separator, and glucose that can inhibit dendrites is introduced as anolyte additive. The constructed flowless AZBB mainly consists of two separate redox couples, including Zn/Zn(OH)4 2- in alkaline anolyte and Br2/Br- in neutral media, where non-cations (e.g. OH-, Zn(OH)4 2-, H2O, and Brn -) can be restricted to their respective chamber by the PES/SPEEK-M while cations can pass by. In the optimized system, good electrochemical performance is achieved, mainly including a surprising discharge voltage of 2.01 V, a high average Coulombic efficiency of 96.7%, and a good cycling life of ≈1000 cycles without obvious capacity decay at a fixed charge capacity of 2 mAh cm-2.
Collapse
Affiliation(s)
- Wenju Dong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Chenxu Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Cheng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Kunz S, Bui TT, Emmel D, Janek J, Henkensmeier D, Schröder D. Aqueous Redox Flow Cells Utilizing Verdazyl Cations enabled by Polybenzimidazole Membranes. CHEMSUSCHEM 2024; 17:e202400550. [PMID: 38772010 DOI: 10.1002/cssc.202400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Non-aqueous organic redox flow batteries (RFB) utilizing verdazyl radicals are increasingly explored as energy storage technology. Verdazyl cations in RFBs with acidic aqueous electrolytes, however, have not been investigated yet. To advance the application in aqueous RFBs it is crucial to examine the interaction with the utilized membranes. Herein, the interactions between the 1,3,5-triphenylverdazyl cation and commercial Nafion 211 and self-casted polybenzimidazole (PBI) membranes are systematically investigated to improve the performance in RFBs. The impact of polymer backbones is studied by using mPBI and OPBI as well as different pre-treatments with KOH and H3PO4. Nafion 211 shows substantial absorption of the 1,3,5-triphenylverdazylium cation resulting in loss of conductivity. In contrast, mPBI and OPBI are chemically stable against the verdazylium cation without noticeable absorption. Pre-treatment with KOH leads to a significant increase in ionic conductivity as well as low absorption and permeation of the verdazylium cation. Symmetrical RFB cell tests on lab-scale highlight the beneficial impact of PBI membranes in terms of capacity retention and I-V curves over Nafion 211. With only 2 % d-1 capacity fading 1,3,5-triphenylverdazyl cations in acidic electrolytes with low-cost PBI based membranes exhibit a higher cycling stability compared to state-of-the-art batteries using verdazyl derivatives in non-aqueous electrolytes.
Collapse
Affiliation(s)
- Simon Kunz
- Institute of Physical Chemistry and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Hydrogen ⋅ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Trung Tuyen Bui
- Hydrogen ⋅ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Dominik Emmel
- Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Langer Kamp 19B, 38106, Braunschweig, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry and Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Dirk Henkensmeier
- Hydrogen ⋅ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Daniel Schröder
- Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Langer Kamp 19B, 38106, Braunschweig, Germany
| |
Collapse
|
7
|
Wang C, Gao G, Su Y, Xie J, He D, Wang X, Wang Y, Wang Y. High-voltage and dendrite-free zinc-iodine flow battery. Nat Commun 2024; 15:6234. [PMID: 39043688 PMCID: PMC11266666 DOI: 10.1038/s41467-024-50543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Zn-I2 flow batteries, with a standard voltage of 1.29 V based on the redox potential gap between the Zn2+-negolyte (-0.76 vs. SHE) and I2-posolyte (0.53 vs. SHE), are gaining attention for their safety, sustainability, and environmental-friendliness. However, the significant growth of Zn dendrites and the formation of dead Zn generally prevent them from being cycled at high current density (>80 mA cm-2). In addition, the crossover of Zn2+ across cation-exchange-membrane also limits their cycle stability. Herein, we propose a chelated Zn(P2O7)26- (donated as Zn(PPi)26-) negolyte, which facilitates dendrite-free Zn plating and effectively prevents Zn2+ crossover. Remarkably, the utilization of chelated Zn(PPi)26- as a negolyte shifts the Zn2+/Zn plating/stripping potential to -1.08 V (vs. SHE), increasing cell voltage to 1.61 V. Such high voltage Zn-I2 flow battery shows a promising stability over 250 cycles at a high current density of 200 mA cm-2, and a high power density up to 606.5 mW cm-2.
Collapse
Affiliation(s)
- Caixing Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guoyuan Gao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ju Xie
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dunyong He
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuemei Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanrong Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Romo AIB, Bello L, Pudar S, Ibrahim N, Wang Y, Baran MJ, Wu Q, Ewoldt RH, Helms BA, Sing C, Rodríguez-López J. Controlling Charge Percolation in Solutions of Metal Redox Active Polymers: Implications of Microscopic Polyelectrolyte Dynamics on Macroscopic Energy Storage. J Am Chem Soc 2024; 146:17474-17486. [PMID: 38860830 DOI: 10.1021/jacs.4c05102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Soluble redox-active polymers (RAPs) enable size-exclusion nonaqueous redox flow batteries (NaRFBs) which promise high energy density. Pendants along the RAPs not only store charge but also engage in electron transfer to varying extents based on their designs. Here, we explore these phenomena in Metal-containing Redox Active Polymers (M-RAPs, M = Ru, Fe, Co). We assess by using cyclic voltammetry and chronoamperometry with ultramicroelectrodes the current response to electrolyte concentration spanning 3 orders of magnitude. Currents scaled as Ru-RAP > Fe-RAP ≫ Co-RAP, consistent with electron self-exchange trends in the small molecule analogues of the MII/III redox pair. Varying the ionic strength of the electrolyte also revealed nonmonotonic behavior, evidencing the impact of polyelectrolytic dynamics on M-RAP redox response. We developed a model to account for the behavior by combining kinetic Monte Carlo and Brownian dynamics near a boundary representing an electrode. While 1D pendant-to-pendant charge transfer along the chain is not a strong function of electrolyte concentration, the microstructure of the RAP at different electrolyte concentrations is decisively impacted, yielding qualitative trends to those observed experimentally. M-RAP size-exclusion NaRFBs using a poly viologen as negolyte varied in average potential with ∼1.54 V for Ru-RAP, ∼1.37 V for Fe-RAP, and ∼0.52 V for Co-RAP. Comparison of batteries at their optimal and suboptimal solution conditions as gauged from analytical experiments showed clear correlations in performance. This work provides a blueprint for understanding the factors underpinning charge transfer in solutions of RAPs for batteries and beyond.
Collapse
Affiliation(s)
- Adolfo I B Romo
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Liliana Bello
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Sanja Pudar
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | - Yilin Wang
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Miranda J Baran
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Randy H Ewoldt
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Brett A Helms
- Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Charles Sing
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Joaquín Rodríguez-López
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
9
|
Lan J, Wu H, Yang L, Chen J. The design engineering of nanocatalysts for high power redox flow batteries. NANOSCALE 2024; 16:10566-10577. [PMID: 38738335 DOI: 10.1039/d4nr00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Redox flow batteries (RFBs) are one of the most promising long-term energy storage technologies which utilize the redox reaction of active species to realize charge and discharge. With the decoupled power and energy components, RFBs exhibit high battery pile construction flexibility and long lifespan. However, the inherent slow electrochemical kinetics of the current widely applied redox active species severely impedes the power output of RFBs. Developing high performance electrocatalysts for these redox active species would boost the power output and energy efficiency of RFBs. Here, we present a critical review of nanoelectrocatalysts to improve the sluggish kinetics of different redox active species, mainly including the chemical components, structure and integration methods. The relationship between the physicochemical properties of nanoelectrocatalysts and the power output of RFBs is highlighted. Finally, the future design of nanoelectrocatalysts for commercial RFBs is proposed.
Collapse
Affiliation(s)
- Jinji Lan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Huilei Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Le Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Jiajia Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
10
|
Wang F, Ma Z, Cheng J. Accelerating Computation of Acidity Constants and Redox Potentials for Aqueous Organic Redox Flow Batteries by Machine Learning Potential-Based Molecular Dynamics. J Am Chem Soc 2024; 146:14566-14575. [PMID: 38659097 DOI: 10.1021/jacs.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zebing Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Shen X, Kellamis C, Tam V, Sinclair N, Wainright J, Savinell R. An All-Soluble Fe/Mn-Based Alkaline Redox Flow Battery System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18686-18692. [PMID: 38573309 DOI: 10.1021/acsami.3c15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Redox flow batteries (RFBs) are membrane-separated rechargeable flow cells with redox electrolytes, offering the potential for large-scale energy storage and supporting renewable energy grids. Yet, creating a cost-effective, high-performance RFB system is challenging. In this work, we investigate an Fe/Mn RFB alkaline system based on the [(TEA)Fe-O-Fe(TEA)]3-/4- and MnO4-/2- redox couples with a theoretical cell voltage of ∼1.43 V. This combination has not been systematically studied previously, but it can lead to a very low-cost and sustainable materials for high energy storage. Constant current cycling tests were performed at ±41 mA cm-2 between 20% and 80% SOC over 800 h (400 cycles) with an apparent Coulombic efficiency (CE) approaching 100%, while the voltage efficiency (VE) gradually decreased from ∼75.3% to ∼61.4% due to increasing internal resistances. The voltage efficiency loss can be mitigated through a periodic acid treatment to remove MnO2 deposits from the separator.
Collapse
Affiliation(s)
- Xiaochen Shen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christian Kellamis
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Vincent Tam
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicholas Sinclair
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jesse Wainright
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Robert Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Burghoff A, Holubowitch NE. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries. J Am Chem Soc 2024; 146:9728-9740. [PMID: 38535624 DOI: 10.1021/jacs.3c13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A lack of suitable high-potential catholytes hinders the development of aqueous redox flow batteries (RFBs) for large-scale energy storage. Hydrolysis of the charged (oxidized) catholyte typically occurs when its redox potential approaches that of water, with a negative impact on battery performance. Here, we elucidate and address such behavior for a representative iron-based organometallic complex, showing that the associated voltage and capacity losses can be curtailed by several simple means. We discovered that addition of activated carbon cloth (ACC) to the reservoir of low-cost, high-potential [Fe(bpy)3]2+/3+ catholyte-limited aqueous redox flow batteries extends their lifetime and boosts discharge voltage─two typically orthogonal performance metrics. Similar effects are observed when the catholyte's graphite felt electrode is electrochemically oxidized (overcharged) and by modifying the catholyte solution's pH, which was monitored in situ for all flow batteries. Modulation of solution pH alters hydrolytic speciation of the charged catholyte from the typical dimeric species μ-O-[FeIII(bpy)2(H2O)]24+, converting it to a higher-potential μ-dihydroxo form, μ-[FeIII(bpy)2(H2O)(OH)]24+, at lower pH. The existence of free bpyH22+ at low pH is found to strongly correlate with battery degradation. Near-neutral-pH RFBs employing a viologen anolyte, (SPr)2V, in excess with the [Fe(bpy)3]2+/3+ catholyte containing ACC exhibited high-voltage discharge for up to 600 cycles (41 days) with no discernible capacity fade. Correlating pH and voltage data offers powerful fundamental insight into organometallic (electro)chemistry with potential utility beyond battery applications. The findings, with implications toward a host of other "near-neutral" active species, illuminate the critical and underappreciated role of electrolyte pH on intracycle and long-term aqueous flow battery performance.
Collapse
Affiliation(s)
- Alexis Burghoff
- Department of Physical and Environmental Sciences, Texas A&M University─Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Nicolas E Holubowitch
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801, United States
| |
Collapse
|
13
|
Wang S, Ma L, Niu S, Sun S, Liu Y, Cheng Y. A Double-ligand Chelating Strategy to Iron Complex Anolytes with Ultrahigh Cyclability for Aqueous Iron Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202316593. [PMID: 38185795 DOI: 10.1002/anie.202316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Aqueous all-iron flow batteries (AIFBs) are attractive for large-scale and long-term energy storage due to their extremely low cost and safety features. To accelerate commercial application, a long cyclable and reversible iron anolyte is expected to address the critical barriers, namely iron dendrite growth and hydrogen evolution reaction (HER). Herein, we report a robust iron complex with triethanolamine (TEA) and 2-methylimidazole (MM) double ligands. By introducing two ligands into one iron center, the binding energy of the complex increases, making it more stable in the charge-discharge reactions. The Fe(TEA)MM complex achieves reversible and stable redox between Fe3+ and Fe2+ , without metallic iron growth and HER. AIFBs based on this anolyte perform a high energy efficiency of 80.5 % at 80 mA cm-2 and exhibit a record durability among reported AIFBs. The efficiency and capacity retain nearly 100 % after 1,400 cycles. The capital cost of this AIFB is $ 33.2 kWh-1 (e.g., 20 h duration), cheaper than Li-ion battery and vanadium flow battery. This double-ligand chelating strategy not only solves the current problems faced by AIFBs, but also provides an insight for further improving the cycling stability of other flow batteries.
Collapse
Affiliation(s)
- Shaocong Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Long Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shiyang Niu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shibo Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Niu Y, Heydari A, Qiu W, Guo C, Liu Y, Xu C, Zhou T, Xu Q. Machine learning-enabled performance prediction and optimization for iron-chromium redox flow batteries. NANOSCALE 2024; 16:3994-4003. [PMID: 38327210 DOI: 10.1039/d3nr06578b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Iron-chromium flow batteries (ICRFBs) are regarded as one of the most promising large-scale energy storage devices with broad application prospects in recent years. However, transitioning from laboratory-scale development to industrial-scale deployment can be a time-consuming process due to the multitude of complex factors that impact ICRFB stack performance. Herein, a data-driven optimization methodology applying active learning, informed by an extensive survey of the literature encompassing diverse experimental conditions, is proposed to enable exceptional precision in predicting ICRFB system performance considering both operation conditions and key materials selection. Specifically, multitask ML models are trained on experimental data with a high prediction accuracy (R2 > 0.92) to link ICRFB properties to energy efficiency, coulombic efficiency, and capacity. We also interpret the ML models based on Shapley additive explanations and extract valuable insights into the importance of descriptors. It is noted that the operation conditions (current density and cycle number) and the electrode type are the most critical descriptors affecting the voltage efficiency and coulombic efficiency while the electrode size strongly affects the capacity. Moreover, active learning is used to explore the most optimized cases considering the highest energy efficiency and capacity. The versatility and robustness of the approach are demonstrated by the successful validation between ML prediction and our experiments of energy efficiency (±0.15%) and capacity (±0.8%). This work not only affords fruitful data-driven insight into the property-performance relationship, but also unveils the explainability of critical properties on the performance of ICRFBs, which accelerates the rational design of next-generation ICRFBs.
Collapse
Affiliation(s)
- Yingchun Niu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Ali Heydari
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Wei Qiu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Chao Guo
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yinping Liu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Tianhang Zhou
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum (Beijing), Beijing 102249, China.
| |
Collapse
|
15
|
Mansha M, Ayub A, Khan IA, Ali S, Alzahrani AS, Khan M, Arshad M, Rauf A, Akram Khan S. Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects. CHEM REC 2024; 24:e202300284. [PMID: 38010347 DOI: 10.1002/tcr.202300284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
In recent years, aqueous organic redox flow batteries (AORFBs) have attracted considerable attention due to advancements in grid-level energy storage capacity research. These batteries offer remarkable benefits, including outstanding capacity retention, excellent cell performance, high energy density, and cost-effectiveness. The organic electrolytes in AORFBs exhibit adjustable redox potentials and tunable solubilities in water. Previously, various types of organic electrolytes, such as quinones, organometallic complexes, viologens, redox-active polymers, and organic salts, were extensively investigated for their electrochemical performance and stability. This study presents an overview of recently published novel organic electrolytes for AORFBs in acidic, alkaline, and neutral environments. Furthermore, it delves into the current status, challenges, and prospects of AORFBs, highlighting different strategies to overcome these challenges, with special emphasis placed on their design, composition, functionalities, and cost. A brief techno-economic analysis of various aqueous RFBs is also outlined, considering their potential scalability and integration with renewable energy systems.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Asif Ayub
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Ibad Ali Khan
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Arshad
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Abdul Rauf
- Department of Chemistry, Islamia University Bahawalpur, 63100, Punjab, Pakistan
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
16
|
Rana M, Alghamdi N, Peng X, Huang Y, Wang B, Wang L, Gentle IR, Hickey S, Luo B. Scientific issues of zinc-bromine flow batteries and mitigation strategies. EXPLORATION (BEIJING, CHINA) 2023; 3:20220073. [PMID: 38264684 PMCID: PMC10742200 DOI: 10.1002/exp.20220073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 01/25/2024]
Abstract
Zinc-bromine flow batteries (ZBFBs) are promising candidates for the large-scale stationary energy storage application due to their inherent scalability and flexibility, low cost, green, and environmentally friendly characteristics. ZBFBs have been commercially available for several years in both grid scale and residential energy storage applications. Nevertheless, their continued development still presents challenges associated with electrodes, separators, electrolyte, as well as their operational chemistry. Therefore, rational design of these components in ZBFBs is of utmost importance to further improve the overall device performance. In this review, the focus is on the scientific understanding of the fundamental electrochemistry and functional components of ZBFBs, with an emphasis on the technical challenges of reaction chemistry, development of functional materials, and their application in ZBFBs. Current limitations of ZBFBs with future research directions in the development of high performance ZBFBs are suggested.
Collapse
Affiliation(s)
- Masud Rana
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Norah Alghamdi
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
- School of Chemistry and Molecular BiosciencesFaculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
- Department of Chemistry, Faculty of ScienceImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Yongxin Huang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingP. R. China
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ian R. Gentle
- School of Chemistry and Molecular BiosciencesFaculty of ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Bai E, Zhu H, Sun C, Liu G, Xie X, Xu C, Wu S. A Comparative Study of Nafion 212 and Sulfonated Poly(Ether Ether Ketone) Membranes with Different Degrees of Sulfonation on the Performance of Iron-Chromium Redox Flow Battery. MEMBRANES 2023; 13:820. [PMID: 37887992 PMCID: PMC10608269 DOI: 10.3390/membranes13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
For an iron-chromium redox flow battery (ICRFB), sulfonated poly(ether ether ketone) (SPEEK) membranes with five various degrees of sulfonation (DSs) are studied. To select the SPEEK membrane with the ideal DS for ICRFB applications, the physicochemical characteristics and single-cell performance are taken into consideration. Following all the investigations, it has been determined that the SPEEK membrane, which has a DS of 57% and a thin thickness of 25 μm, is the best option for replacing commercial Nafion 212 in ICRFB. Firstly, it exhibits a better cell performance according to energy efficiency (EE) and coulombic efficiency (CE) at the current density range between 40 mA cm-2 and 80 mA cm-2. Additionally, it has a more stable EE (79.25-81.64%) and lower discharge capacity decay rate (50%) than the Nafion 212 (EE: 76.74-81.45%, discharge capacity decay: 76%) after 50 charge-discharge cycles, which proves its better oxidation stability as well. In addition, the longer self-discharge time during the open-circuit voltage test further demonstrates that this SPEEK membrane could be employed for large-scale ICRFB applications.
Collapse
Affiliation(s)
- Enrui Bai
- Yantai Research Institute, Harbin Engineering University, Yantai 264003, China; (E.B.); (H.Z.)
| | - Haotian Zhu
- Yantai Research Institute, Harbin Engineering University, Yantai 264003, China; (E.B.); (H.Z.)
- School of Chemistry and Chemical Technology, Hubei Polytechnic University, Huangshi 435003, China
| | - Chuanyu Sun
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China;
| | - Guanchen Liu
- Hubei Xinye Energy-Storage Co., Ltd., Huangshi 435100, China;
| | - Xiaoyin Xie
- School of Chemistry and Chemical Technology, Hubei Polytechnic University, Huangshi 435003, China
| | - Chongyang Xu
- Yantai Research Institute, Harbin Engineering University, Yantai 264003, China; (E.B.); (H.Z.)
| | - Sheng Wu
- Yantai Research Institute, Harbin Engineering University, Yantai 264003, China; (E.B.); (H.Z.)
| |
Collapse
|
18
|
Shvidchenko AV, Odinokov AS, Primachenko ON, Gofman IV, Yevlampieva NP, Marinenko EA, Lebedev VT, Kuklin AI, Kulvelis YV. Improving PFSA Membranes Using Sulfonated Nanodiamonds. MEMBRANES 2023; 13:712. [PMID: 37623774 PMCID: PMC10456736 DOI: 10.3390/membranes13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5-2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance.
Collapse
Affiliation(s)
| | - Alexei S. Odinokov
- Russian Research Center of Applied Chemistry, 193232 St. Petersburg, Russia;
| | - Oleg N. Primachenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (I.V.G.); (E.A.M.)
| | - Iosif V. Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (I.V.G.); (E.A.M.)
| | | | - Elena A. Marinenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia; (O.N.P.); (I.V.G.); (E.A.M.)
| | - Vasily T. Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
| | - Yuri V. Kulvelis
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| |
Collapse
|
19
|
Liu Y, Xu J, Lu S, Xiang Y. Titanium Nitride Nanorods Array-Decorated Graphite Felt as Highly Efficient Negative Electrode for Iron-Chromium Redox Flow Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300943. [PMID: 37060221 DOI: 10.1002/smll.202300943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Iron-chromium redox flow batteries have attracted widespread attention because of their low cost. However, the performance of these batteries is still lower than that of vanadium redox flow batteries due to the poor electrochemical activity of Cr3+ /Cr2+ redox couples on graphite felt electrodes. Herein, binder-free TiN nanorods array-decorated 3D graphite felt composite electrode-is demonstrated. The dendrite-like TiN nanorods array increases the specific surface area of the electrode. The nitrogen and oxygen elements on the surface provide more adsorption sites and electrochemically active sites for Cr3+ /Cr2+ . The contact resistance of the composite electrode is effectively reduced and its homogeneity and stability are improved by avoiding the use of a binder and mixing process. A battery prepared using the TiN nanorods array-decorated 3D graphite felt electrode has enabled the maximum power density to be 427 mW·cm-2 , which is 74.0% higher than a battery assembled with TiN nanoparticles bonded to graphite felt. At a current density of 80 mA·cm-2 , the TiN nanorods battery exhibits the highest coulombic efficiency of 93.0%, voltage efficiency of 90.4%, and energy efficiency of 84.1%. Moreover, the battery efficiency and composite electrode structure remains stable during a redox flow battery cycle test.
Collapse
Affiliation(s)
- Yiyang Liu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Jiao Xu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
20
|
Liu C, Li S. Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper. Molecules 2023; 28:molecules28062810. [PMID: 36985780 PMCID: PMC10058001 DOI: 10.3390/molecules28062810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
We developed an integrated gas diffusion layer (GDL) for proton exchange membrane (PEM) fuel cells by growing carbon nanofibers (CNFs) in situ on carbon paper via the electro-polymerization of polyaniline (PANI) on carbon paper followed by a subsequent carbonization treatment process. The CNF/carbon paper showed a microporous structure and a significantly increased pore volume compared to commercial carbon paper. By utilizing this CNF/carbon paper in a PEM fuel cell, it was found that the cell with CNF/carbon paper had superior performance compared to the commercial GDL at both high and low humidity conditions, and its power density was as high as 1.21 W cm-2 at 100% relative humidity, which is 26% higher than that of a conventional gas diffusion layer (0.9 W cm-2). The significant performance enhancement was attributed to a higher pore volume and porosity of the CNF/carbon paper, which improved gas diffusion in the GDL. In addition, the superior performance of the cell with CNF/carbon paper at low relative humidity demonstrated that it had better water retention than the commercial GDL. This study provides a novel and facile method for the surface modification of GDLs to improve the performance of PEM fuel cells. The CNF/carbon paper with a microporous structure has suitable hydrophobicity and lower through-plane resistance, which makes it promising as an advanced substrate for GDLs in fuel cell applications.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Shang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China
| |
Collapse
|
21
|
Yang Y, Wang D, Zheng J, Qin X, Fang D, Wu Y, Jing M. Interionic hydrogen bonds induced high solubility of quinone derivatives and preliminary study on their application properties in all quinone aqueous redox flow battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
22
|
Li S, Peng C, Shen Q, Cheng Y, Wang C, Yang G. Numerical Study on Thermal Stress of High Temperature Proton Exchange Membrane Fuel Cells during Start-Up Process. MEMBRANES 2023; 13:215. [PMID: 36837718 PMCID: PMC9963054 DOI: 10.3390/membranes13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) with phosphoric-doped polybenzimidazole (PBI) membranes have a higher operating temperature compared to the PEMFCs operating below 373.15 K. The fuel cell is first heated from room temperature to the minimum operating temperature to avoid the generation of liquid water. The existence of liquid water can result in the loss of phosphoric acid and then affect the cell performance. In this study, the start-up process of HT-PEMFCs is numerically studied by establishing a three-dimensional non-isothermal mathematical model. Preheated gas is supplied into gas flow channels to heat the fuel cell, and then voltage load is applied to accelerate the start-up process. Effects of voltage (0.9 V, 0.7 V and 0.5 V) and flow arrangement (co-flow and counter flow) on temperature, current density, proton conductivity and stress distributions of fuel cells are examined. It is found that the maximum stress is increased when a lower voltage is adopted, and the counter-flow arrangement provides a more uniform stress distribution than that of co-flow arrangement.
Collapse
|
23
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
24
|
Study on Purging Strategy of Polymer Electrolyte Membrane Fuel Cell under Different Operation Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The commercial proton exchange membrane fuel cell (PEMFC) system needs to be equipped with the capacity to survive a harsh environment, including sub-freezing temperatures. The cold start of PEMFC brings about great technical challenges, mainly due to the ice blockage in the components, which seriously hinders the multi physical transmission process. A multiscale, two-dimensional model was established to explore the gas purging in PEMFC under different electrochemical reaction intensities. The results indicate that the optimal case is obtained by B3-1 with a power density of 0.796 W cm−2, and the power density increases first and then decreases, followed by stoichiometric flow ratio (ξ) changes. It is worth noting that the water mole fraction in the PEM is closely related to the water concentration gradient. However, the differences in the initial water distribution in porous media have little bearing on the condensed water in the gas channel, and the liquid water in the gas diffusion layer (GDL) is preferably carried away ahead of other porous parts. The results also show that the increase in the purge speed and temperature can remove the excess water on GDL and the catalytic layer in a short time. For a nitrogen-based purge, the operating condition in case B3-1 is shown as the best strategy based on the output performance and economic analysis during the shutdown and purge process.
Collapse
|
25
|
Wan CTC, Ismail A, Quinn AH, Chiang YM, Brushett FR. Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1198-1214. [PMID: 36607828 DOI: 10.1021/acs.langmuir.2c03003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox flow batteries (RFBs) are a promising electrochemical technology for the efficient and reliable delivery of electricity, providing opportunities to integrate intermittent renewable resources and to support unreliable and/or aging grid infrastructure. Within the RFB, porous carbonaceous electrodes facilitate the electrochemical reactions, distribute the flowing electrolyte, and conduct electrons. Understanding electrode reaction kinetics is crucial for improving RFB performance and lowering costs. However, assessing reaction kinetics on porous electrodes is challenging as their complex structure frustrates canonical electroanalytical techniques used to quantify performance descriptors. Here, we outline a strategy to estimate electron transfer kinetics on planar electrode materials of similar surface chemistry to those used in RFBs. First, we describe a bottom-up synthetic process to produce flat, dense carbon films to enable the evaluation of electron transfer kinetics using traditional electrochemical approaches. Next, we characterize the physicochemical properties of the films using a suite of spectroscopic methods, confirming that their surface characteristics align with those of widely used porous electrodes. Last, we study the electrochemical performance of the films in a custom-designed cell architecture, extracting intrinsic heterogeneous kinetic rate constants for two iron-based redox couples in aqueous electrolytes using standard electrochemical methods (i.e., cyclic voltammetry, electrochemical impedance, and spectroscopy). We anticipate that the synthetic methods and experimental protocols described here are applicable to a range of electrocatalysts and redox couples.
Collapse
Affiliation(s)
- Charles Tai-Chieh Wan
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Akram Ismail
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Alexander H Quinn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Yet-Ming Chiang
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Fikile R Brushett
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
26
|
Kim J, Hwang S, Jeong YG, Choi YS, Kim K. Cross-Linked Sulfonated Poly(arylene ether sulfone) Membrane Using Polymeric Cross-Linkers for Polymer Electrolyte Membrane Fuel Cell Applications. MEMBRANES 2022; 13:7. [PMID: 36676814 PMCID: PMC9861409 DOI: 10.3390/membranes13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cross-linked membranes for polymer electrolyte membrane fuel cell application are prepared using highly sulfonated poly(arylene ether sulfone) (SPAES) and polymeric cross-linkers having different hydrophilicities by facile in-situ casting and heating processes. From the advantage of the cross-linked structures made with the use of polymeric cross-linkers, a stable membrane can be obtained even though the polymer matrix with a very high degree of sulfonation was used. In particular, hydrophilic cross-linker is found to be effective in improving physicochemical properties of the cross-linked membranes and at the same time showing reasonable proton conductivity. Accordingly, membrane electrode assembly made from the cross-linked membrane prepared by using hydrophilic polymeric cross-linker exhibits outstanding cell performance under high temperature and low relative humidity conditions (e.g., maximum power density of 176.4 mW cm-2 at 120 °C and 40% RH).
Collapse
Affiliation(s)
- Junghwan Kim
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seansoo Hwang
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu-Gyeong Jeong
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Seok Choi
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
27
|
Brunner P, Steyskal EM, Topolovec S, Würschum R. Positronium chemistry of a Fe 2+/3+ solution under electrochemical control. J Chem Phys 2022; 157:234202. [PMID: 36550049 DOI: 10.1063/5.0129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The positronium chemistry of a Fe2+/3+ solution is studied under full electrochemical control. For this novel approach to positronium electrochemistry, a suitable cell setup is used, which allows simultaneously both electrochemical measurements and positron annihilation spectroscopy. For the Fe2+/3+ redox couple, positronium serves as an ideally suited atomic probe owing to the rather different positronium chemistry of Fe2+ (spin conversion) and Fe3+ (total positronium inhibition and oxidation). This enabled the precise in situ monitoring of oxidation and reduction by means of positron lifetime upon slow cycling voltammetry or galvanostatic charging. The variation of the mean positron lifetime with the Fe2+/3+ concentration ratio could be quantitatively described by a reaction rate model for positronium formation and annihilation. An asymmetric behavior of the variation of the mean positron lifetime with applied potential, as compared to the simultaneously recorded symmetric current-potential curve, could be explained by the stronger influence of Fe3+ on the characteristics of positronium formation and annihilation. The highly reversible galvanostatic charging behavior monitored by positron lifetime underlines the attractive application potentials of positronium electrochemistry for in situ studies of iron-based redox-flow battery electrolytes.
Collapse
Affiliation(s)
- Philipp Brunner
- Institute of Materials Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Stefan Topolovec
- Institute of Materials Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, NAWI Graz, Petersgasse 16, 8010 Graz, Austria
| |
Collapse
|
28
|
Kartashova NV, Konev DV, Loktionov PA, Glazkov AT, Goncharova OA, Petrov MM, Antipov AE, Vorotyntsev MA. A Hydrogen-Bromate Flow Battery as a Rechargeable Chemical Power Source. MEMBRANES 2022; 12:1228. [PMID: 36557135 PMCID: PMC9782483 DOI: 10.3390/membranes12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined.
Collapse
Affiliation(s)
- Natalia V. Kartashova
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry V. Konev
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Pavel A. Loktionov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
| | - Artem T. Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga A. Goncharova
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail M. Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly E. Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
29
|
Glazkov A, Pichugov R, Loktionov P, Konev D, Tolstel D, Petrov M, Antipov A, Vorotyntsev MA. Current Distribution in the Discharge Unit of a 10-Cell Vanadium Redox Flow Battery: Comparison of the Computational Model with Experiment. MEMBRANES 2022; 12:1167. [PMID: 36422159 PMCID: PMC9698378 DOI: 10.3390/membranes12111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Shunting currents are among the main problems of all-vanadium redox flow battery stacks since, in addition to capacity losses, they cause negative effects associated with the local destruction of electrodes and bipolar plates. The values of both the shunting currents and their destructive effects on materials can be reduced at the battery development stage by adjusting the resistance of the electrolyte supply channels. The solution to this problem can be found using a calculation model for current distribution based on the current balance in the nodes as well as voltage drops and electromotive force in internal circuits according to Kirchhoff's laws. This paper presents the verification of the model of current distribution in an all-vanadium redox flow battery stack of an original design that allows for the determination of membrane-electrode assembly resistances and electrolyte supply channels via direct measurements. Based on a comparison of the calculated and experimental values of the coulombic efficiency of charge-discharge cycles, the capacity fade associated with the crossover of vanadium compounds through the membrane has been determined.
Collapse
Affiliation(s)
- Artem Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Pavel Loktionov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Dmitry Konev
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Dmitry Tolstel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Mikhail A. Vorotyntsev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
30
|
Kim D, Jang Y, Choi E, Chae JE, Jang S. Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. MEMBRANES 2022; 12:1073. [PMID: 36363628 PMCID: PMC9698217 DOI: 10.3390/membranes12111073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
For further commercializing proton-exchange membrane fuel cells, it is crucial to attain long-term durability while achieving high performance. In this study, a strategy for modifying commercial Nafion membranes by introducing ultrathin multiwalled carbon nanotubes (MWCNTs)/CeO2 layers on both sides of the membrane was developed to construct a mechanically and chemically reinforced membrane electrode assembly. The dispersion properties of the MWCNTs were greatly improved through chemical modification with acid treatment, and the mixed solution of MWCNTs/CeO2 was uniformly prepared through a high-energy ball-milling process. By employing a spray-coating technique, the ultrathin MWCNTs/CeO2 layers were introduced onto the membrane surfaces without any agglomeration problem because the solvent rapidly evaporated during the layer-by-layer stacking process. These ultrathin and highly dispersed MWCNTs/CeO2 layers effectively reinforced the mechanical properties and chemical durability of the membrane while minimizing the performance drop despite their non-ion-conducting properties. The characteristics of the MWCNTs/CeO2 layers and the reinforced Nafion membrane were investigated using various in situ and ex situ measurement techniques; in addition, electrochemical measurements for fuel cells were conducted.
Collapse
Affiliation(s)
- Dongsu Kim
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Yeonghwan Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Eunho Choi
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Ji Eon Chae
- Department of Mobility Power Research, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
31
|
Zhan Z, Song H, Yang X, Jiang P, Chen R, Harandi HB, Zhang H, Pan M. Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. MEMBRANES 2022; 12:membranes12101001. [PMID: 36295760 PMCID: PMC9609320 DOI: 10.3390/membranes12101001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 05/13/2023]
Abstract
Due to the complexity of both material composition and the structure of the catalyst layer (CL) used in the proton-exchange membrane fuel cell (PEMFC), conjugated heat and mass transfer as well as electrochemical processes simultaneously occur through the CL. In this study, a microstructure model of CL was first reconstructed using images acquired by Nano-computed tomography (Nano-CT) of a real sample of CL. Then, the multiphysics dynamic distribution (MPDD) simulation, which is inherently a multiscale approach made of a combination of pore-scale and homogeneous models, was conducted on the reconstructed microstructure model to compute the corresponded heat and mass transport, electrochemical reactions, and water phase-change processes. Considering a computational domain with the size of 4 um and cube shape, this model consisting of mass and heat transport as well as electrochemical reactions reached a stable solution within 3 s as the convergence time. In the presence of sufficient oxygen, proton conduction was identified as the dominant factor determining the strength of the electrochemical reaction. Additionally, it was concluded that current density, temperature, and the distribution of water all exhibit similar distribution trends, which decrease from the interface between CL and the proton-exchange membrane to the interface between CL and the gas-diffusion layer. The present study not only provides an in-depth understanding of the mass and heat transport and electrochemical reaction in the CL microstructure, but it also guides the optimal design and fabrication of CL components and structures, such as improving the local structure to reduce the number of dead pores and large agglomerates, etc.
Collapse
Affiliation(s)
- Zhigang Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Song
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiang Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Panxing Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
- School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Hesam Bazargan Harandi
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Heng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
- Correspondence:
| | - Mu Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
32
|
Precise Control of the Preparation of Proton Exchange Membranes via Direct Electrostatic Deposition. Polymers (Basel) 2022; 14:polym14193975. [PMID: 36235922 PMCID: PMC9571854 DOI: 10.3390/polym14193975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we reported a novel preparation method for a proton exchange membrane (PEM) named, the direct electrostatic deposition method. In theory, any required thickness and size of PEM can be precisely controlled via this method. By direct electrostatic spraying of Nafion solution containing amino modified SiO2 nanoparticles onto a metal collector, a hybrid membrane of 30 μm thickness was fabricated. The DMFC assembled with a prepared ultrathin membrane showed a maximum power density of 124.01 mW/cm2 at 40 °C and 100% RH, which was 95.29% higher than that of Nafion. This membrane formation method provides potential benefits for the preparation of ultrathin PEMs.
Collapse
|
33
|
Petrov M, Chikin D, Abunaeva L, Glazkov A, Pichugov R, Vinyukov A, Levina I, Motyakin M, Mezhuev Y, Konev D, Antipov A. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell. MEMBRANES 2022; 12:912. [PMID: 36295671 PMCID: PMC9607404 DOI: 10.3390/membranes12100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm-2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.
Collapse
Affiliation(s)
- Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Chikin
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Artem Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Vinyukov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Irina Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail Motyakin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
34
|
Analysis of Ionic Domain Evolution on a Nafion-Sulfonated Silica Composite Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy. Polymers (Basel) 2022; 14:polym14183718. [PMID: 36145859 PMCID: PMC9505098 DOI: 10.3390/polym14183718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
It is important to characterize the proton transport mechanisms of proton exchange membranes (PEMs). Electrostatic force microscopy (EFM) is used to characterize the ionic structures of membranes. In this study, we attempted to quantitatively analyze the proton conductivity enhancement of Nafion-sulfonated silica (SSA) composite membranes with variations in the ionic channel distribution. This study involved several steps. The morphology and surface charge distribution of both membranes were measured using EFM. The measured data were analyzed using a numerical approximation model (NAM) that was capable of providing the magnitude and classification of the surface charges. There were several findings of ionic channel distribution variations in Nafion-SSA. First, the mean local ionic channel density of Nafion-SSA was twice as large as that of the pristine Nafion. The local ionic channel density was non-uniform and the distribution of the ionic channel density of Nafion-SSA was 23.5 times larger than that of pristine Nafion. Second, local agglomerations due to SSA were presumed by using the NAM, appearing in approximately 10% of the scanned area. These findings are meaningful in characterizing the proton conductivity of PEMs and imply that the NAM is a suitable tool for the quantitative assessment of PEMs.
Collapse
|
35
|
Primachenko ON, Kulvelis YV, Odinokov AS, Glebova NV, Krasnova AO, Antokolskiy LA, Nechitailov AA, Shvidchenko AV, Gofman IV, Marinenko EA, Yevlampieva NP, Lebedev VT, Kuklin AI. New Generation of Compositional Aquivion ®-Type Membranes with Nanodiamonds for Hydrogen Fuel Cells: Design and Performance. MEMBRANES 2022; 12:827. [PMID: 36135846 PMCID: PMC9504429 DOI: 10.3390/membranes12090827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Compositional proton-conducting membranes based on perfluorinated Aquivion®-type copolymers modified by detonation nanodiamonds (DND) with positively charged surfaces were prepared to improve the performance of hydrogen fuel cells. Small-angle neutron scattering (SANS) experiments demonstrated the fine structure in such membranes filled with DND (0-5 wt.%), where the conducting channels typical for Aquivion® membranes are mostly preserved while DND particles (4-5 nm in size) decorated the polymer domains on a submicron scale, according to scanning electron microscopy (SEM) data. With the increase in DND content (0, 0.5, and 2.6 wt.%) the thermogravimetric analysis, potentiometry, potentiodynamic, and potentiotatic curves showed a stabilizing effect of the DNDs on the operational characteristics of the membranes. Membrane-electrode assemblies (MEA), working in the O2/H2 system with the membranes of different compositions, demonstrated improved functional properties of the modified membranes, such as larger operational stability, lower proton resistance, and higher current densities at elevated temperatures in the extended temperature range (22-120 °C) compared to pure membranes without additives.
Collapse
Affiliation(s)
- Oleg N. Primachenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Yuri V. Kulvelis
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Alexei S. Odinokov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Russian Research Center of Applied Chemistry, 193232 St. Petersburg, Russia
| | | | | | | | | | | | - Iosif V. Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Elena A. Marinenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | | | - Vasily T. Lebedev
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| |
Collapse
|
36
|
Work Efficiency and Economic Efficiency of Actual Driving Test of Proton Exchange Membrane Fuel Cell Forklift. Molecules 2022; 27:molecules27154918. [PMID: 35956869 PMCID: PMC9370390 DOI: 10.3390/molecules27154918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
A 3.5 tonne forklift containing proton exchange membrane fuel cells (PEMFCs) and lithium-ion batteries was manufactured and tested in a real factory. The work efficiency and economic applicability of the PEMFC forklift were compared with that of a lithium-ion battery-powered forklift. The results showed that the back-pressure of air was closely related to the power density of the stack, whose stability could be improved by a reasonable control strategy and membrane electrode assemblies (MEAs) with high consistency. The PEMFC powered forklift displayed 40.6% higher work efficiency than the lithium-ion battery-powered forklift. Its lower use-cost compared to internal engine-powered forklifts, is beneficial to the commercialization of this product.
Collapse
|
37
|
Safe Ventilation Methods against Leaks in Hydrogen Fuel Cell Rooms in Homes. ENERGIES 2022. [DOI: 10.3390/en15155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen, which has a high energy density and does not emit pollutants, is considered an alternative energy source to replace fossil fuels. Herein, we report an experimental study on hydrogen leaks and ventilation methods for preventing damage caused by leaks from hydrogen fuel cell rooms in homes, among various uses of hydrogen. This experiment was conducted in a temporary space with a volume of 11.484 m3. The supplied pressure, leak-hole size, and leakage amount were adjusted as the experimental conditions. The resulting hydrogen concentrations, which changed according to the operation of the ventilation openings, ventilation fan, and supplied shutoff valve, were measured. The experimental results showed that the reductions in the hydrogen concentration due to the shutoff valve were the most significant. The maximum hydrogen concentration could be reduced by 80% or more if it is 100 times that of the leakage volume or higher. The shutoff valve, ventilation fan, and ventilation openings were required to reduce the concentrations of the fuel cell room hydrogen in a spatially uniform manner. Although the hydrogen concentration in a small hydrogen fuel cell room for home use can rapidly increase, a rapid reduction in the concentration of hydrogen with an appropriate ventilation system has been experimentally proven.
Collapse
|
38
|
Characteristics of Water Transport of Membrane Electrolyte over Selected Temperature for Proton Exchange Membrane Fuel Cell. Polymers (Basel) 2022; 14:polym14152972. [PMID: 35893936 PMCID: PMC9331710 DOI: 10.3390/polym14152972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The water contents at both the anode and cathode of PEMFCs depend on the water-transport mechanism at the membrane. The humidity at the outside layers of the membrane determines the diffusion of water through it. The operating temperatures and pressures regulate the humidity conditions in the system. Because these parameters are nonlinear, the water-transport mechanism is analyzed via the difference in the water concentration on each side of the membrane. In this work, an experimental configuration is designed to investigate the diffusion mechanism of water through the membrane. A flat membrane module is tested in an isothermal test chamber to test the influence of temperature on the water-absorption and -transport characteristics of Nafion 117 and Nafion 211 membranes. A parametric study is conducted to test the water-transport mechanism at an operating pressure of 1 bar; temperatures of 30 °C, 50 °C, 70 °C and 90 °C; and a relative humidity ranging from 10% to 100%. The results indicate that the water content of Nafion 211 is higher than that of Nafion 117. The water content and diffusion coefficient are proportional to the operating temperature. In addition, the diffusion coefficient reaches its peak at conditions of 1 bar, 100% humidity, and 90 °C for both membrane types.
Collapse
|
39
|
Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives. ENERGIES 2022. [DOI: 10.3390/en15144975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydrogen fuel cell vehicles can complement other electric vehicle technologies as a zero-emission technology and contribute to global efforts to achieve the emission reduction targets. This article spotlights the current deployment status of fuel cells in road transport. For this purpose, data collection was performed by the Advanced Fuel Cells Technology Collaboration Programme. Moreover, the available incentives for purchasing a fuel cell vehicle in different countries were reviewed and future perspectives summarized. Based on the collected information, the development trends in the last five years were analyzed and possible further trends that could see the realization of the defined goals derived. The number of registered vehicles was estimated to be 51,437 units, with South Korea leading the market, with 90% of the vehicles being concentrated in four countries. A total of 729 hydrogen refueling stations were in operation, with Japan having the highest number of these. The analysis results clearly indicate a very positive development trend for fuel cell vehicles and hydrogen refueling stations in 2021, with the highest number of new vehicles and stations in a single year, paralleling the year’s overall economic recovery. Yet, a more ambitious ramp-up in the coming years is required to achieve the set targets.
Collapse
|
40
|
Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems. ENERGIES 2022. [DOI: 10.3390/en15134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Climate change motivated by human activities constitutes one of the main challenges of this century. To cut carbon emissions in order to mitigate carbon’s dangerous effects, the current energy generation mix should be shifted to renewable sources. The main drawback of these technologies is their intermittency, which will require energy storage systems to be fully integrated into the generation mix, allowing them to be more controllable. In recent years, great progress to develop an effective and economically feasible energy storage systems, particularly motivated by the recent rise of demand for electric transportation, has been made. Lithium-ion (Li-ion) battery prices have fallen near 90% over the past decade, making possible the affordability of electric vehicles and transforming the economics of renewable energy. In this work, a study on storage capacity demand previously presented as conference paper is expanded, including a deep analysis of the Spanish generation mix, the evaluation of the energy storage requirements for different low-carbon and carbon-free scenarios in Mainland Spain, and the calculation of the CO2 emissions’ reduction and the associated storage costs.
Collapse
|
41
|
Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems. ENERGIES 2022. [DOI: 10.3390/en15103512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hybrid photovoltaic–regenerative hydrogen fuel cell (PV-RHFC) microgrid systems are considered to have a high future potential in the effort to increase the renewable energy share in the form of solar PV technology with hydrogen generation, storage, and reutilization. The current study provides a comprehensive review of the recent research progress of hybrid PV-RHFC microgrid systems to extract conclusions on their characteristics and future prospects. The different components that can be integrated (PV modules, electrolyzer and fuel cell stacks, energy storage units, power electronics, and controllers) are analyzed in terms of available technology options. The main modeling and optimization methods, and control strategies are discussed. Additionally, various application options are provided, which differentiate in terms of scale, purpose, and further integration with other power generating and energy storage technologies. Finally, critical analysis and discussion of hybrid PV-RHFC microgrid systems were conducted based on their current status. Overall, the commercialization of hybrid PV-RHFC microgrid systems requires a significant drop in the RHFC subsystem capital cost. In addition, it will be necessary to produce complete hybrid PV-RHFC microgrid systems with integrated energy management control capabilities to avoid operational issues and ensure flexibility and reliability of the energy flow in relation to supply, storage, and demand.
Collapse
|
42
|
Poisoning Effects of Cerium Oxide (CeO2) on the Performance of Proton Exchange Membrane Fuel Cells (PEMFCs). CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the poisoning effects of cerium oxide (CeO2) as the contaminant on the performance of proton exchange membrane fuel cells (PEMFCs) are evaluated. An experimental setup was developed to analyze the performance characteristic (I-V) curves in contaminated and non-contaminated conditions. Focused ion-beam scanning electron microscopy (FIB-SEM) cross-section images were obtained as an input for the energy dispersive X-ray (EDX) analysis. The results of the EDX analysis verified the presence of CeO2 in the contaminated membrane electrode assembly (MEA), in addition to fluorine and sulfur. EDX analysis also revealed that as a result of CeO2 contamination, sulfur and fluorine would be distributed all around the MEA, instead of being only in the membrane. The results illustrate that hydrofluoric acid (HF), sulfuric acid (H2SO4), and fluorinated polymer fragments are released, which enhance the crossover of the reactant gases through the membrane, hence reducing the cell’s performance. The I-V characteristic curves proved that the non-contaminated PEMFC setup had double the performance of the contaminated PEMFC.
Collapse
|
43
|
Abstract
The promotion of new electric and hybrid vehicles is a worldwide strategy to reduce carbon emissions for a clean future environment in many countries. In Europe, development of the electric vehicle (EV) industry is a strategic direction of multiple car-producing companies, institutes, and governments, but how sustainable it is to shift fully to electric has yet to be seen. By making use of the statistic reports from the European Union, scientific literature, and mathematical calculation, the author wants to examine if what politicians see will be a matter of reality in the near future. It will be proved that, if all private transport become electric, energy consumption will increase to such a level that is impossible to be satisfied by the actual energy producing companies. While the EV industry is seen as an important step towards achieving environmental goals, and despite some positive assumptions made by few European Governments (e.g., Norway) according to which electrical cars will replace the fossil fuel ones in private transportation, the actual energy market trends are not able to support the demand for the next several decades. The author will focus on one European country, Romania, to provide it as a case study (Romania is a self-sustainable country with regard to energy production, producing roughly 124% of its needs.).
Collapse
|
44
|
TiO 2 Containing Hybrid Composite Polymer Membranes for Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:polym14081617. [PMID: 35458366 PMCID: PMC9026947 DOI: 10.3390/polym14081617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, vanadium redox flow batteries (VRFB) have captured immense attraction in electrochemical energy storage systems due to their long cycle life, flexibility, high-energy efficiency, time, and reliability. In VRFB, polymer membranes play a significant role in transporting protons for current transmission and act as barriers between positive and negative electrodes/electrolytes. Commercial polymer membranes (such as Nafion) are the widely used IEM in VRFBs due to their outstanding chemical stability and proton conductivity. However, the membrane cost and increased vanadium ions permeability limit its commercial application. Therefore, various modified perfluorinated and non-perfluorinated membranes have been developed. This comprehensive review primarily focuses on recent developments of hybrid polymer composite membranes with inorganic TiO2 nanofillers for VRFB applications. Hence, various fabrications are performed in the membrane with TiO2 to alter their physicochemical properties for attaining perfect IEM. Additionally, embedding the -SO3H groups by sulfonation on the nanofiller surface enhances membrane proton conductivity and mechanical strength. Incorporating TiO2 and modified TiO2 (sTiO2, and organic silica modified TiO2) into Nafion and other non-perfluorinated membranes (sPEEK and sPI) has effectively influenced the polymer membrane properties for better VRFB performances. This review provides an overall spotlight on the impact of TiO2-based nanofillers in polymer matrix for VRFB applications.
Collapse
|
45
|
Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges. ENERGIES 2022. [DOI: 10.3390/en15072611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial electrolysis cells (MECs) have been explored for various applications, including the removal of industrial pollutants, wastewater treatment chemical synthesis, and biosensing. On the other hand, MEC technology is still in its early stages and faces significant obstacles regarding practical large-scale implementations. MECs are used for energy generation and hydrogen peroxide, methane, hydrogen/biohydrogen production, and pollutant removal. This review aimed to investigate the aforementioned uses in order to better understand the different applications of MECs in the following scenarios: MECs for energy generation and recycling, such as hydrogen, methane, and hydrogen peroxide; contaminant removal, particularly complex organic and inorganic contaminants; and resource recovery. MEC technology was examined in terms of new concepts, configuration optimization, electron transfer pathways in biocathodes, and coupling with other technologies for value-added applications, such as MEC anaerobic digestion, combined MEC–MFC, and others. The goal of the review was to help researchers and engineers understand the most recent developments in MEC technologies and applications.
Collapse
|
46
|
Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery. ENERGIES 2022. [DOI: 10.3390/en15072454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glucose, sucrose, D(+)-xylose and α-lactose monohydrate are selected as additives relative to the negative electrolyte of Vanadium Redox Flow Battery (VRFB), with the aim of reducing vanadium permeation and improving electrochemical performance to mitigate capacity decay. The results of a charge–discharge test show that the cell with α-Lactose monohydrate in the negative electrolyte exhibits the best capacity retention. The capacity retention of a single cell employing 1 wt% α-Lactose monohydrate in the negative electrolyte was 71% after 30 cycles, which is 41.5% higher than 29.5% of the control group. Correspondingly, adding α-Lactose monohydrate into the negative electrolyte also significantly inhibits vanadium crossover and water transfer. Furthermore, the effects of additives on the performance of the negative electrolyte are studied by thermal stability experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The stability experiments indicate that the introduction of 1 wt% α-Lactose monohydrate can elevate the stability of the negative electrolyte at low temperatures. The electrochemical measurements indicate that V(III) electrolyte with 1 wt% α-Lactose monohydrate obtains superior electrochemical activity and reversibility, which can be ascribed to the fact that the hydroxyl group carried by the additive provides more active sites for the redox reaction. Herein, the study provides a meaningful reference for mitigating the capacity decay of VRFB.
Collapse
|
47
|
Enhanced OH− Conductivity for Fuel Cells with Anion Exchange Membranes, Based on Modified Terpolymer Polyketone and Surface Functionalized Silica. ENERGIES 2022. [DOI: 10.3390/en15051953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Several modified terpolymer polyketones (MPK) with N-substituted pyrrole moieties in the main chain and quaternized amine in the side group were synthesized for use as anion exchange membranes for fuel cells. The moieties were carried by SiO2 nanoparticles through surface functionalization (Si–N), which were added to the membranes to enhance their overall properties. On increasing the amount of modified silica from 10% to 60% wt/of MPK, there was an increase in Si–N and a corresponding threefold increase in the hydroxide conductivity of the membrane. The MPK–SiN (60%) exhibited a superior ionic conductivity of 1.05 × 10−1 S.cm−1 at 120 °C, a high mechanical stability, with a tensile strength of 46 MPa at 80 °C. In strongly alkaline conditions (1 M KOH, 216 h at 80 °C), the membranes maintained about 70% of the conductivity measured in a usual environment. Fuel cell performance at 80 °C showed a peak power density of 133 mW·cm−2, indicating that using surface-functionalized SiO2 is a simple and effective way to enhance the overall performance of anion exchange membranes in fuel cell applications.
Collapse
|
48
|
Preparation and Electrocatalytic Activity of a Cobalt Mixed Nitrogen 3D Carbon Nanostructure @ Carbon Felt toward an All-Vanadium Redox Flow Battery. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All-vanadium redox flow batteries (VRFBs), with good operation flexibility and scalability, have been regarded as one of the most competitive substitutes for large-scale energy storage. However, because of the low electrochemical activities of traditional electrodes such as carbon felt and graphite felt, they will impede the interfacial charge transfer processes and decrease the efficiencies of VRFBs. In this work, Co-MOF (ZIF-67) was prepared as a precursor, and a cobalt mixed nitrogen 3D carbon nanostructure and carbon felt (Co-CN@CF) was prepared by chemical reaction and used in VRFBs as electrodes. With the unique structure and high efficiency catalyst on the carbon felt, the Co-CN@CF exhibited excellent electrochemical activity toward the VO2+/VO2+ redox couple in the VRFB, with an average cell voltage efficiency (VE) of 86% and an energy efficiency (EE) of 82% at 80 mA cm−2, which was increased by more than 10% compared with the traditional carbon felt. VRFBs with a Co-CN@CF electrode also showed much better long-term stability (over 1000 cycles) compared with the battery with a pristine CF electrode.
Collapse
|
49
|
Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal. Polymers (Basel) 2022; 14:polym14040845. [PMID: 35215758 PMCID: PMC8963014 DOI: 10.3390/polym14040845] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/22/2023] Open
Abstract
Although regarded as environmentally stable, bioelectrochemical fuel cells or, microbial fuel cells (MFCs) continue to face challenges with sustaining electron transport. In response, we examined the performance of two graphene composite-based anode electrodes—graphene oxide (GO) and GO–polymer–metal oxide (GO–PANI–Ag)—prepared from biomass and used in MFCs. Over 7 days of operation, GO energy efficiency peaked at 1.022 mW/m2 and GO–PANI–Ag at 2.09 mW/m2. We also tested how well the MFCs could remove heavy metal ions from synthetic wastewater, a secondary application of MFCs that offers considerable benefits. Overall, GO–PANI–Ag had a higher removal rate than GO, with 78.10% removal of Pb(II) and 80.25% removal of Cd(II). Material characterizations, electrochemical testing, and microbial testing conducted to validate the anodes performance confirmed that using new materials as electrodes in MFCs can be an attractive approach to improve the electron transportation. When used with a natural organic substrate (e.g., sugar cane juice), they also present fewer challenges. We also optimized different parameters to confirm the efficiency of the MFCs under various operating conditions. Considering those results, we discuss some lingering challenges and potential possibilities for MFCs.
Collapse
|