1
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
2
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
3
|
Crucial Convolution: Genetic and Molecular Mechanisms of Coiling during Epididymis Formation and Development in Embryogenesis. J Dev Biol 2022; 10:jdb10020025. [PMID: 35735916 PMCID: PMC9225329 DOI: 10.3390/jdb10020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain–hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.
Collapse
|
4
|
Shewale B, Dubois N. Of form and function: Early cardiac morphogenesis across classical and emerging model systems. Semin Cell Dev Biol 2021; 118:107-118. [PMID: 33994301 PMCID: PMC8434962 DOI: 10.1016/j.semcdb.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
The heart is the earliest organ to develop during embryogenesis and is remarkable in its ability to function efficiently as it is being sculpted. Cardiac heart defects account for a high burden of childhood developmental disorders with many remaining poorly understood mechanistically. Decades of work across a multitude of model organisms has informed our understanding of early cardiac differentiation and morphogenesis and has simultaneously opened new and unanswered questions. Here we have synthesized current knowledge in the field and reviewed recent developments in the realm of imaging, bioengineering and genetic technology and ex vivo cardiac modeling that may be deployed to generate more holistic models of early cardiac morphogenesis, and by extension, new platforms to study congenital heart defects.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Wang JX, White MD. Mechanical forces in avian embryo development. Semin Cell Dev Biol 2021; 120:133-146. [PMID: 34147339 DOI: 10.1016/j.semcdb.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Research using avian embryos has led to major conceptual advances in developmental biology, virology, immunology, genetics and cell biology. The avian embryo has several significant advantages, including ready availability and ease of accessibility, rapid development with marked similarities to mammals and a high amenability to manipulation. As mechanical forces are increasingly recognised as key drivers of morphogenesis, this powerful model system is shedding new light on the mechanobiology of embryonic development. Here, we highlight progress in understanding how mechanical forces direct key morphogenetic processes in the early avian embryo. Recent advances in quantitative live imaging and modelling are elaborating upon traditional work using physical models and embryo manipulations to reveal cell dynamics and tissue forces in ever greater detail. The recent application of transgenic technologies further increases the strength of the avian model and is providing important insights about previously intractable developmental processes.
Collapse
Affiliation(s)
- Jian Xiong Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Abstract
The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.
Collapse
Affiliation(s)
| | - Emily S Noël
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Del Monte-Nieto G, Fischer JW, Gorski DJ, Harvey RP, Kovacic JC. Basic Biology of Extracellular Matrix in the Cardiovascular System, Part 1/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2169-2188. [PMID: 32354384 DOI: 10.1016/j.jacc.2020.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/12/2023]
Abstract
The extracellular matrix (ECM) is the noncellular component of tissues in the cardiovascular system and other organs throughout the body. It is formed of filamentous proteins, proteoglycans, and glycosaminoglycans, which extensively interact and whose structure and dynamics are modified by cross-linking, bridging proteins, and cleavage by matrix degrading enzymes. The ECM serves important structural and regulatory roles in establishing tissue architecture and cellular function. The ECM of the developing heart has unique properties created by its emerging contractile nature; similarly, ECM lining blood vessels is highly elastic in order to sustain the basal and pulsatile forces imposed on their walls throughout life. In this part 1 of a 4-part JACC Focus Seminar, we focus on the role, function, and basic biology of the ECM in both heart development and in the adult.
Collapse
Affiliation(s)
- Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany.
| | - Daniel J Gorski
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; School of Biotechnology and Biomolecular Science, University of New South Wales, New South Wales, Australia.
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
8
|
Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev Cell 2020; 55:413-431.e6. [PMID: 33171097 DOI: 10.1016/j.devcel.2020.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
Collapse
|
9
|
Meng Z, Wang J, Peng J, Zhou Y, Zhou S, Song W, Chen S, Wang Q, Bai K, Sun K. Dynamic transcriptome profiling toward understanding the development of the human embryonic heart during different Carnegie stages. FEBS Lett 2020; 594:4307-4319. [PMID: 32946599 DOI: 10.1002/1873-3468.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Transcriptional regulation participates in heart development. However, the transcriptomes of human embryonic hearts during Carnegie stage (CS)10-CS16 have not been elucidated. Here, we found marked changes in the morphology and transcriptome of the human embryonic heart from CS10 to CS11. At CS12-CS14, the embryonic heart undergoes hypoxia-to-aerobic transformation. At CS14-CS16, transcriptome functions were related to energy metabolism, regulation of cholesterol, and processes related to inorganic substances. Moreover, the transcriptomes of cardiac progenitor cells derived from human embryonic stem cells (hESCs) most overlapped with those of human embryonic hearts at CS10. Cardiomyocytes derived from hESCs considerably overlapped with embryonic hearts at CS14-CS16. Overall, these results provide a new perspective into the characteristics of human embryonic heart development.
Collapse
Affiliation(s)
- Zhuo Meng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jiayu Peng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Wenting Song
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Kai Bai
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Pediatric Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, China
| |
Collapse
|
10
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
11
|
Hughes CJR, Turner S, Andrews RM, Vitkin A, Jacobs JR. Matrix metalloproteinases regulate ECM accumulation but not larval heart growth in Drosophila melanogaster. J Mol Cell Cardiol 2020; 140:42-55. [PMID: 32105665 DOI: 10.1016/j.yjmcc.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The Drosophila heart provides a simple model to examine the remodelling of muscle insertions with growth, extracellular matrix (ECM) turnover, and fibrosis. Between hatching and pupation, the Drosophila heart increases in length five-fold. If major cardiac ECM components are secreted remotely, how is ECM "self assembly" regulated? We explored whether ECM proteases were required to maintain the morphology of a growing heart while the cardiac ECM expanded. An increase in expression of Drosophila's single tissue inhibitor of metalloproteinase (TIMP), or reduced function of metalloproteinase MMP2, resulted in fibrosis and ectopic deposition of two ECM Collagens; type-IV and fibrillar Pericardin. Significant accumulations of Collagen-IV (Viking) developed on the pericardium and in the lumen of the heart. Congenital defects in Pericardin deposition misdirected further assembly in the larva. Reduced metalloproteinase activity during growth also increased Pericardin fibre accumulation in ECM suspending the heart. Although MMP2 expression was required to remodel and position cardiomyocyte cell junctions, reduced MMP function did not impair expansion of the heart. A previous study revealed that MMP2 negatively regulates the size of the luminal cell surface in the embryonic heart. Cardiomyocytes align at the midline, but do not adhere to enclose a heart lumen in MMP2 mutant embryos. Nevertheless, these embryos hatch and produce viable larvae with bifurcated hearts, indicating a secondary pathway to lumen formation between ipsilateral cardiomyocytes. MMP-mediated remodelling of the ECM is required for organogenesis, and to prevent assembly of excess or ectopic ECM protein during growth. MMPs are not essential for normal growth of the Drosophila heart.
Collapse
Affiliation(s)
- C J R Hughes
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - S Turner
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - R M Andrews
- Dept. Biology, McMaster University, Hamilton, Canada.
| | - A Vitkin
- Dept. Biomedical Physics, University of Toronto, Toronto, Cananda.
| | - J R Jacobs
- Dept. Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
12
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
13
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
14
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
15
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
16
|
GRP78 protects CHO cells from ribosylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:629-637. [DOI: 10.1016/j.bbamcr.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
|
17
|
Kidokoro H, Yonei-Tamura S, Tamura K, Schoenwolf GC, Saijoh Y. The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension. Development 2018; 145:dev152488. [PMID: 29490984 PMCID: PMC5963862 DOI: 10.1242/dev.152488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022]
Abstract
In the initiation of cardiogenesis, the heart primordia transform from bilateral flat sheets of mesoderm into an elongated midline tube. Here, we discover that this rapid architectural change is driven by actomyosin-based oriented cell rearrangement and resulting dynamic tissue reshaping (convergent extension, CE). By labeling clusters of cells spanning the entire heart primordia, we show that the heart primordia converge toward the midline to form a narrow tube, while extending perpendicularly to rapidly lengthen it. Our data for the first time visualize the process of early heart tube formation from both the medial (second) and lateral (first) heart fields, revealing that both fields form the early heart tube by essentially the same mechanism. Additionally, the adjacent endoderm coordinately forms the foregut through previously unrecognized movements that parallel those of the heart mesoderm and elongates by CE. In conclusion, our data illustrate how initially two-dimensional flat primordia rapidly change their shapes and construct the three-dimensional morphology of emerging organs in coordination with neighboring morphogenesis.
Collapse
Affiliation(s)
- Hinako Kidokoro
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Sayuri Yonei-Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| |
Collapse
|
18
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
19
|
Abd-Elhamid TH, Conway ML, Sinning AR. Expression of hLAMP-1-Positive Particles During Early Heart Development in the Chick. Anat Histol Embryol 2017; 46:413-422. [PMID: 28677155 DOI: 10.1111/ahe.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart development requires coordinated activity of various factors, the disturbance of which can lead to congenital heart defects. Heart lectin-associated matrix protein-1 (hLAMP-1) is a matrix protein expressed within Hensen's node at Hamburger-Hamilton (HH) stage 4, in the lateral mesoderm by HH stages 5-6 and enhanced within the left pre-cardiac field at HH stage 7. At HH stages 15-16, hLAMP-1 expression is observed in the atrioventricular canal and the outflow tract. Also, the role of hLAMP-1 in induction of mesenchyme formation in chick heart has been well documented. To further elucidate the role of this molecule in heart development, we examined its expression patterns during HH stages 8-14 in the chick. In this regard, we immunostained sections of the heart during HH stages 8-14 with antibodies specific to hLAMP-1. Our results showed prominent expression of hLAMP-1-positive particles in the extracellular matrix associated with the pre-cardiac mesoderm, the endoderm, ectoderm as well as neuroectoderm at HH stages 8-9. After formation of the linear heart tube at HH stage 10, the expression of hLAMP-1-stained particles disappears in those regions of original contact between the endoderm and heart forming fields due to rupture of the dorsal mesocardium while their expression becomes confined to the arterial and venous poles of the heart tube. This expression pattern is maintained until HH stage 14. This expression pattern suggests that hLAMP-1 may be involved in the formation of the endocardial tube.
Collapse
Affiliation(s)
- T H Abd-Elhamid
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.,Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - M L Conway
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - A R Sinning
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| |
Collapse
|
20
|
Medeiros NI, Gomes JAS, Correa-Oliveira R. Synergic and antagonistic relationship between MMP-2 and MMP-9 with fibrosis and inflammation in Chagas' cardiomyopathy. Parasite Immunol 2017; 39. [PMID: 28543409 DOI: 10.1111/pim.12446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
Cardiomyopathy is the most important clinical manifestation in the chronic phase of Chagas' disease because of its frequency, severity and impact on morbidity and mortality. The extracellular matrix degradation during cardiac remodeling in Trypanosoma cruzi infection is driven by matrix metalloproteinases (MMPs), primarily the MMP-2 and MMP-9 gelatinases. MMPs also regulate some molecules related to inflammation, such as growth factors, cytokines and chemokines. The involvement of MMP-2 and MMP-9 is not yet fully understood in Chagas' disease. It has been proposed that the gelatinases may have opposite effect on inflammation/regulation and cardiac remodeling. MMP-2 would participate in regulation, offering a protective role for cardiac damage in asymptomatic patients and would be a good marker for the initiation of changes in the heart. On the other hand, MMP-9 can be used as a marker for serious changes on the heart and would be associated with inflammation and fibrosis. Here, we consolidate all characteristics involving MMP-2 and MMP-9 in Chagas' disease based on current studies to clarify their participation on the inflammation/regulation and fibrosis, and the synergistic or antagonistic role between them.
Collapse
Affiliation(s)
- N I Medeiros
- Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.,Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - J A S Gomes
- Departamento de Morfologia, Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - R Correa-Oliveira
- Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
21
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
22
|
Raza QS, Vanderploeg JL, Jacobs JR. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development. PLoS One 2017; 12:e0171905. [PMID: 28192468 PMCID: PMC5305246 DOI: 10.1371/journal.pone.0171905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/28/2017] [Indexed: 01/10/2023] Open
Abstract
Matrix Metalloproteinases (Mmps) degrade glycoproteins and proteoglycans of the extracellular matrix (ECM) or cell surface and are crucial for morphogenesis. Mmps and their inhibitors are expressed during early stages of cardiac development in vertebrates and expression is altered in multiple congenital cardiomyopathies such as cardia bifida. Drosophila genome encodes two copies of Mmps, Mmp1 and Mmp2 whereas in humans up to 25 Mmps have been identified with overlapping functions. We investigated the role of Mmps during embryonic heart development in Drosophila, a process which is morphogenetically similar to early heart tube formation in vertebrates. We demonstrate that the two Mmps in Drosophila have distinct and overlapping roles in cell motility, cell adhesion and cardiac lumenogenesis. We determined that Mmp1 and Mmp2 promote Leading Edge membrane dynamics of cardioblasts during collective migration. Mmp2 is essential for cardiac lumen formation, and mutants generate a cardia bifida phenotype. Mmp1 is required for luminal expansion. Mmp1 and Mmp2 both localise to the basal domains of cardiac cells, however, occupy non-overlapping domains apically. Mmp1 and Mmp2 regulate the proteoglycan composition and size of the apical and basal ECM, yet only Mmp2 is required to restrict ECM assembly to the lumen. Mmp1 negatively regulates the size of the adhesive Cadherin cell surface domain, whereas in a complementary fashion, Mmp2 negatively regulates the size of the Integrin-ECM domain and thereby prescribes the domain to establish and restrict Slit morphogen signalling. Inhibition of Mmp activity through ectopic expression of Tissue Inhibitor of Metalloproteinase in the ectoderm blocks lumen formation. Therefore, Mmp expression and function identifies ECM differentiation and remodelling as a key element for cell polarisation and organogenesis.
Collapse
Affiliation(s)
- Qanber S. Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | | - J. Roger Jacobs
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
MT1-MMP and its potential role in the vertebrate intestinal morphogenesis. Acta Histochem 2016; 118:729-735. [PMID: 27640084 DOI: 10.1016/j.acthis.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) is involved in numerous biological processes, including morphogenesis. However, the role of MT1-MMP in the development of the vertebrate intestine is poorly understood. This study aimed to evaluate the expression of MT1-MMP in the intestine of rats and chickens along the embryonic and postnatal periods using immunohistochemistry. Results revealed a remarkable spatiotemporal correlation between MT1-MMP expression and intestinal villi morphogenesis in both vertebrates. However, the villi morphogenesis process was found to be different in chickens to that of rats. Moreover, extensive MT1-MMP labeling was observed in the entire villus epithelium from birth until the complete maturation of the small intestinal mucosa in both vertebrates. From these results, we suggest that MT1-MMP contributes to intestinal development, particularly to villi morphogenesis, in both vertebrates. However, further studies are necessary to confirm the role of MT1-MMP in this cellular process. In addition, we performed validation of the primary antibody against human MT1-MMP for adult chickens.
Collapse
|
24
|
Bagheri Varzaneh M, Rahmani H, Jahanian R, Mahdavi AH, Perreau C, Perrot G, Brézillon S, Maquart FX. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension. Biol Trace Elem Res 2016; 172:504-510. [PMID: 26749413 DOI: 10.1007/s12011-015-0612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/28/2015] [Indexed: 02/04/2023]
Abstract
The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand.
Collapse
Affiliation(s)
- Mina Bagheri Varzaneh
- Department of Animal Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France.
| | - Hamidreza Rahmani
- Department of Animal Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rahman Jahanian
- Department of Animal Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Corinne Perreau
- Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France
| | - Gwenn Perrot
- Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France
| | - Stéphane Brézillon
- Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France
| | - François-Xavier Maquart
- Unité de Recherche "Matrice Extracellulaire et Dynamique Cellulaire" (MEDyC), UMR CNRS/URCA NO 7369, Faculté de Médecine de Reims, 51095, Reims Cedex, France
- CHU de Reims, Laboratoire Central de Biochimie, 51092, Reims Cedex, France
| |
Collapse
|
25
|
Spatiotemporal distribution of extracellular matrix changes during mouse duodenojejunal flexure formation. Cell Tissue Res 2016; 365:367-79. [PMID: 27053245 DOI: 10.1007/s00441-016-2390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Although gut flexures characterize gut morphology, the mechanisms underlying flexure formation remain obscure. Previously, we analyzed the mouse duodenojejunal flexure (DJF) as a model for its formation and reported asymmetric morphologies between the inner and outer bending sides of the fetal mouse DJF, implying their contribution to DJF formation. We now present the extracellular matrix (ECM) as an important factor for gut morphogenesis. We investigate ECM distribution during mouse DJF formation by histological techniques. In the intercellular space of the gut wall, high Alcian-Blue positivity for proteoglycans shifted from the outer to the inner side of the gut wall during DJF formation. Immunopositivity for fibronectin, collagen I, or pan-tenascin was higher at the inner than at the outer side. Collagen IV and laminins localized to the epithelial basement membrane. Beneath the mesothelium at the pre-formation stage, collagen IV and laminin immunopositivity showed inverse results, corresponding to the different cellular characteristics at this site. At the post-formation stage, however, laminin positivity beneath the mesothelium was the reverse of that observed during the pre-formation stage. High immunopositivity for collagen IV and laminins at the inner gut wall mesenchyme of the post-formation DJF implied a different blood vessel distribution. We conclude that ECM distribution changes spatiotemporally during mouse DJF formation, indicating ECM association with the establishment of asymmetric morphologies during this process.
Collapse
|
26
|
Silva MT, Nascimento TL, Pereira MG, Siqueira AS, Brum PC, Jaeger RG, Miyabara EH. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9. Cell Tissue Res 2016; 365:173-86. [PMID: 26896238 DOI: 10.1007/s00441-016-2373-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/01/2016] [Indexed: 02/04/2023]
Abstract
We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.
Collapse
Affiliation(s)
- Meiricris T Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Tábata L Nascimento
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil
| | - Adriane S Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS One 2015; 10:e0136566. [PMID: 26305214 PMCID: PMC4549247 DOI: 10.1371/journal.pone.0136566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/05/2015] [Indexed: 01/07/2023] Open
Abstract
Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants) causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis.
Collapse
|
28
|
Thimm TN, Squirrell JM, Liu Y, Eliceiri KW, Ogle BM. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 2015; 21:995-1004. [PMID: 25923353 DOI: 10.1089/ten.tec.2014.0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types.
Collapse
Affiliation(s)
- Terra N Thimm
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jayne M Squirrell
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Yuming Liu
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kevin W Eliceiri
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin.,2 Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin
| | - Brenda M Ogle
- 3 Department of Biomedical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota
| |
Collapse
|
29
|
de Faria Poloni J, Bonatto D. Systems Chemo-Biology and Transcriptomic Meta-Analysis Reveal the Molecular Roles of Bioactive Lipids in Cardiomyocyte Differentiation. J Cell Biochem 2015; 116:2018-31. [PMID: 25752681 DOI: 10.1002/jcb.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/12/2022]
Abstract
Lipids, which are essential constituents of biological membranes, play structural and functional roles in the cell. In recent years, certain lipids have been identified as regulatory signaling molecules and have been termed "bioactive lipids". Subsequently, the importance of bioactive lipids in stem cell differentiation and cardiogenesis has gained increasing recognition. Therefore, the aim of this study was to identify the biological processes underlying murine cardiac differentiation and the mechanisms by which bioactive lipids affect these processes. For this purpose, a transcriptomic meta-analysis of microarray and RNA-seq data from murine stem cells undergoing cardiogenic differentiation was performed. The differentially expressed genes identified via this meta-analysis, as well as bioactive lipids, were evaluated using systems chemo-biology tools. These data indicated that bioactive lipids are associated with the regulation of cell motility, cell adhesion, cytoskeletal rearrangement, and gene expression. Moreover, bioactive lipids integrate the signaling pathways involved in cell migration, the secretion and remodeling of extracellular matrix components, and the establishment of the cardiac phenotype. In conclusion, this study provides new insights into the contribution of bioactive lipids to the induction of cellular responses to various stimuli, which may originate from the extracellular environment and morphogens, and the manner in which this contribution directly affects murine heart morphogenesis.
Collapse
Affiliation(s)
- Joice de Faria Poloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Shi Y, Yao J, Young JM, Fee JA, Perucchio R, Taber LA. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry. Front Physiol 2014; 5:297. [PMID: 25161623 PMCID: PMC4129494 DOI: 10.3389/fphys.2014.00297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Abstract
The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.
Collapse
Affiliation(s)
- Yunfei Shi
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Jiang Yao
- Dassault Systemes Simulia Corp. Providence, RI, USA
| | | | - Judy A Fee
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| | - Renato Perucchio
- Department of Mechanical Engineering, University of Rochester Rochester, NY, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University St. Louis, MO, USA
| |
Collapse
|
31
|
Taber LA. Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev 2014; 27:7-13. [PMID: 24791687 PMCID: PMC4125444 DOI: 10.1016/j.gde.2014.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/05/2023]
Abstract
After decades focusing on the molecular and genetic aspects of organogenesis, researchers are showing renewed interest in the physical mechanisms that create organs. This review deals with the mechanical processes involved in constructing the heart and brain, concentrating primarily on cardiac looping, shaping of the primitive brain tube, and folding of the cerebral cortex. Recent studies suggest that differential growth drives large-scale shape changes in all three problems, causing the heart and brain tubes to bend and the cerebral cortex to buckle. Relatively local changes in form involve other mechanisms such as differential contraction. Understanding the mechanics of organogenesis is central to determining the link between genetics and the biophysical creation of form and structure.
Collapse
Affiliation(s)
- Larry A Taber
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
32
|
Bayraktar M, Männer J. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model. Front Physiol 2014; 5:112. [PMID: 24772086 PMCID: PMC3983514 DOI: 10.3389/fphys.2014.00112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling) to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops) in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process toward the generation of only D- or L-loops, respectively. Our data are discussed with respect to observations made in biological “models.” We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces toward a biased generation of D- or L-loops.
Collapse
Affiliation(s)
- Meriç Bayraktar
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| | - Jörg Männer
- Group Cardio-Embryology, Institute for Anatomy and Embryology, UMG, Georg-August-University of Göttingen Göttingen, Germany
| |
Collapse
|
33
|
Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem 2014; 64:1-72. [PMID: 24938016 DOI: 10.1016/b978-0-12-800263-6.00001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix metalloproteinases (MMP) are a family of zinc-containing endoproteinases that degrade extracellular matrix (ECM) components. MMP have important roles in the development, physiology and pathology of cardiovascular system. Metalloproteases also play key roles in adverse cardiovascular remodeling, atherosclerotic plaque formation and plaque instability, vascular smooth muscle cell (SMC) migration and restenosis that lead to coronary artery disease (CAD), and progressive heart failure. The study of MMP in developing animal model cardiovascular systems has been helpful in deciphering numerous pathologic conditions in humans. Increased peripheral blood MMP-2 and MMP-9 in acute coronary syndrome (ACS) may be useful as noninvasive tests for detection of plaque vulnerability. MMP function can be modulated by certain pharmacological drugs that can be exploited for treatment of ACS. CAD is a polygenic disease and hundreds of genes contribute toward its predisposition. A large number of sequence variations in MMP genes have been identified. Case-control association studies have highlighted their potential association with CAD and its clinical manifestations. Although results thus far are inconsistent, meta-analysis has demonstrated that MMP-3 Glu45Lys and MMP-9 1562C/T gene polymorphisms were associated with CAD risk.
Collapse
|
34
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
35
|
Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch Biochem Biophys 2013; 540:82-93. [DOI: 10.1016/j.abb.2013.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
36
|
Cheng KS, Liao YC, Chen MY, Kuan TC, Hong YH, Ko L, Hsieh WY, Wu CL, Chen MR, Lin CS. Circulating matrix metalloproteinase-2 and -9 enzyme activities in the children with ventricular septal defect. Int J Biol Sci 2013; 9:557-63. [PMID: 23847438 PMCID: PMC3708036 DOI: 10.7150/ijbs.6398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/21/2013] [Indexed: 11/05/2022] Open
Abstract
Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography. There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD.
Collapse
Affiliation(s)
- Kun-Shan Cheng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 2012; 303:H919-30. [PMID: 22904159 DOI: 10.1152/ajpheart.00577.2012] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the discovery of tadpole collagenase in 1962, the matrix metalloproteinase (MMP) family has emerged as a significant proteinase group with recognized effects on the cardiovascular system. Over the last 40 years, many milestones have been achieved, from the identification of the first MMP, to the generation of the first MMP cDNA clone and null mouse, to the clinical approval of the first MMP inhibitor. Over the years, a few myths and misunderstandings have interwoven into the truths. In this review, we will discuss the major milestones of MMP research, as well as review the misinterpretations and misperceptions that have evolved. Clarifying the confusions and dispelling the myths will both provide a better understanding of MMP properties and functions and focus the cardiovascular field on the outstanding research questions that need to be addressed.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | |
Collapse
|
38
|
Nikolova A, Ablasser K, Wyler von Ballmoos MC, Poutias D, Kaza E, McGowan FX, Moses MA, Del Nido PJ, Friehs I. Endogenous angiogenesis inhibitors prevent adaptive capillary growth in left ventricular pressure overload hypertrophy. Ann Thorac Surg 2012; 94:1509-17. [PMID: 22795062 DOI: 10.1016/j.athoracsur.2012.05.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND In left ventricular (LV) pressure-overload hypertrophy, lack of adaptive capillary growth contributes to progression to failure. Remodeling of the hypertrophied myocardium requires proteolysis of the extracellular matrix (ECM) carried out by matrix metalloproteinases (MMPs). MMPs, specifically MMP-9, are known to cleave ECM components to generate angiogenesis inhibitors (angiostatin, endostatin, tumstatin). We hypothesize that MMP-9 releases antiangiogenic factors during compensated and decompensated hypertrophy, which results in lack of adaptive capillary growth. METHODS Newborn rabbits underwent aortic banding. Myocardial tissue from age-matched and banded animals at compensated (4 weeks) and decompensated hypertrophy (7 weeks), as identified by serial echocardiography, was analyzed by immunoblotting for angiostatin, endostatin, and tumstatin. MMP-9 activity was determined by zymography. A cell-permeable, potent, selective MMP-9 inhibitor was administered intrapericardially to animals with hypertrophied hearts and tissue was analyzed. RESULTS MMP-9 is activated in hypertrophied myocardium versus in control hearts (22 ± 2 versus 16 ± 1; p = 0.04), which results in significantly increased levels of angiostatin (115 ± 10 versus 86 ± 7; p = 0.02), endostatin (33 ± 1 versus 28 ± 1; p = 0.006), and tumstatin (35 ± 6 versus 17 ± 4; p = 0.04). Zymography confirms inhibition of MMP-9 (hypertrophy + MMP-9 inhibitor, 14 ± 0.6 versus hypertrophy + vehicle, 17 ± 1; p = 0.01) and angiostatin, endostatin, and tumstatin are down-regulated, accompanied by up-regulation of capillary density (hypertrophy + MMP-9 inhibitor, 2.99 ± 0.07 versus hypertrophy + vehicle, 2.7 ± 0.05; p = 0.002). CONCLUSIONS Up-regulation of angiogenesis inhibitors prevents adaptive capillary growth in pressure-overload hypertrophied myocardium. Therapeutic interventions aimed at inhibition of angiogenesis inhibitors are useful in maintaining capillary density and thereby preventing heart failure.
Collapse
Affiliation(s)
- Andriana Nikolova
- Department of Cardiac Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Altered matrix metalloproteinases and tissue inhibitors of metalloproteinases in embryos from diabetic rats during early organogenesis. Reprod Toxicol 2011; 32:449-62. [DOI: 10.1016/j.reprotox.2011.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/11/2011] [Accepted: 09/17/2011] [Indexed: 12/31/2022]
|
40
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
41
|
Castro MM, Kandasamy AD, Youssef N, Schulz R. Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 2011; 64:551-60. [PMID: 21689755 DOI: 10.1016/j.phrs.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases best known for their capacity to proteolyse several proteins of the extracellular matrix. Their increased activity contributes to the pathogenesis of several cardiovascular diseases. MMP-2 in particular is now considered to be also an important intracellular protease which has the ability to proteolyse specific intracellular proteins in cardiac muscle cells and thus reduce contractile function. Accordingly, inhibition of MMPs is a growing therapeutic aim in the treatment or prevention of various cardiovascular diseases. Tetracyclines, especially doxycycline, have been frequently used as important MMP inhibitors since they inhibit MMP activity independently of their antimicrobial properties. In this review we will focus on the intracellular actions of MMPs in some cardiovascular diseases including ischemia and reperfusion (I/R) injury, inflammatory heart diseases and septic shock; and explain how tetracyclines, as MMP inhibitors, have therapeutic actions to treat such diseases. We will also briefly discuss how MMPs can be intracellularly regulated and activated by oxidative stress, thus cleaving several important proteins inside cells. In addition to their potential therapeutic effects, MMP inhibitors may also be useful tools to understand the biological consequences of MMP activity and its respective extra- and intracellular effects.
Collapse
Affiliation(s)
- Michele M Castro
- Department of Pharmacology, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
42
|
Ali MA, Fan X, Schulz R. Cardiac Sarcomeric Proteins: Novel Intracellular Targets of Matrix Metalloproteinase-2 in Heart Disease. Trends Cardiovasc Med 2011; 21:112-8. [DOI: 10.1016/j.tcm.2012.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Garita B, Jenkins MW, Han M, Zhou C, Vanauker M, Rollins AM, Watanabe M, Fujimoto JG, Linask KK. Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 2011; 300:H879-91. [PMID: 21239637 PMCID: PMC3064308 DOI: 10.1152/ajpheart.00433.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/05/2011] [Indexed: 11/22/2022]
Abstract
Analyses of form-function relationships during heart looping are directly related to technological advances. Recent advances in four-dimensional optical coherence tomography (OCT) permit observations of cardiac dynamics at high-speed acquisition rates and high resolution. Real-time observation of the avian stage 13 looping heart reveals that interactions between the endocardial and myocardial compartments are more complex than previously depicted. Here we applied four-dimensional OCT to elucidate the relationships of the endocardium, myocardium, and cardiac jelly compartments in a single cardiac cycle during looping. Six cardiac levels along the longitudinal heart tube were each analyzed at 15 time points from diastole to systole. Using image analyses, the organization of mechanotransducing molecules, fibronectin, tenascin C, α-tubulin, and nonmuscle myosin II was correlated with specific cardiac regions defined by OCT data. Optical coherence microscopy helped to visualize details of cardiac architectural development in the embryonic mouse heart. Throughout the cardiac cycle, the endocardium was consistently oriented between the midline of the ventral floor of the foregut and the outer curvature of the myocardial wall, with multiple endocardial folds allowing high-volume capacities during filling. The cardiac area fractional shortening is much higher than previously published. The in vivo profile captured by OCT revealed an interaction of the looping heart with the extra-embryonic splanchnopleural membrane providing outside-in information. In summary, the combined dynamic and imaging data show the developing structural capacity to accommodate increasing flow and the mechanotransducing networks that organize to effectively facilitate formation of the trabeculated four-chambered heart.
Collapse
Affiliation(s)
- Barbara Garita
- Department of Pediatrics, The Children’s Research Institute, University of South Florida and All Children’s Hospital, St. Petersburg, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bowers SLK, Baudino TA. Laying the groundwork for growth: Cell-cell and cell-ECM interactions in cardiovascular development. ACTA ACUST UNITED AC 2010; 90:1-7. [PMID: 20301223 DOI: 10.1002/bdrc.20168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell-cell and cell-ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders.
Collapse
Affiliation(s)
- Stephanie L K Bowers
- Division of Molecular Cardiology, Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | | |
Collapse
|
45
|
Singh NK, Quyen DV, Kundumani-Sridharan V, Brooks PC, Rao GN. AP-1 (Fra-1/c-Jun)-mediated induction of expression of matrix metalloproteinase-2 is required for 15S-hydroxyeicosatetraenoic acid-induced angiogenesis. J Biol Chem 2010; 285:16830-43. [PMID: 20353950 DOI: 10.1074/jbc.m110.106187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the involvement of matrix metalloproteinases (MMPs) in 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE)-induced angiogenesis, we have studied the role of MMP-2. 15(S)-HETE induced MMP-2 expression and activity in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Inhibition of MMP-2 activity or depletion of its levels attenuated 15(S)-HETE-induced HDMVEC migration, tube formation, and Matrigel plug angiogenesis. 15(S)-HETE also induced Fra-1 and c-Jun expression in a Rac1-MEK1-JNK1-dependent manner. In addition, 15(S)-HETE-induced MMP-2 expression and activity were mediated by Rac1-MEK1-JNK1-dependent activation of AP-1 (Fra-1/c-Jun). Cloning and site-directed mutagenesis of MMP-2 promoter revealed that AP-1 site proximal to the transcriptional start site is required for 15(S)-HETE-induced MMP-2 expression, and Fra-1 and c-Jun are the essential components of AP-1 that bind to MMP-2 promoter in response to 15(S)-HETE. Hind limb ischemia led to an increase in MEK1 and JNK1 activation and Fra-1, c-Jun, and MMP-2 expression resulting in enhanced neovascularization and recovery of blood perfusion in wild-type mice as compared with 12/15-Lox(-/-) mice. Together, these results provide the first direct evidence for a role of 12/15-Lox-12/15(S)-HETE axis in the regulation of ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
46
|
Murtuza B, Nichol JW, Khademhosseini A. Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. TISSUE ENGINEERING. PART B, REVIEWS 2009; 15:443-54. [PMID: 19552604 PMCID: PMC3121785 DOI: 10.1089/ten.teb.2009.0006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/24/2009] [Indexed: 12/19/2022]
Abstract
Advances in stem cell (SC) biology have greatly enhanced our understanding of SC self-renewal and differentiation. Both embryonic and adult SCs can be differentiated into a great variety of tissue cell types, including cardiac myocytes. In vivo studies and clinical trials, however, have demonstrated major limitations in reconstituting the myocardium in failing hearts. These limitations include precise control of SC proliferation, survival and phenotype both prior and subsequent to transplantation and avoidance of serious adverse effects such as tumorigenesis and arrhythmias. Micro- and nanoscale techniques to recreate SC niches, the natural environment for the maintenance and regulation of SCs, have enabled the elucidation of novel SC behaviors and offer great promise in the fabrication of cardiac tissue constructs. The ability to precisely manipulate the interface between biopolymeric scaffolds and SCs at in vivo scale resolutions is unique to micro- and nanoscale approaches and may help overcome limitations of conventional biological scaffolds and methods for cell delivery. We now know that micro- and nanoscale manipulation of scaffold composition, mechanical properties, and three-dimensional architecture have profound influences on SC fate and will likely prove important in developing the next generation of "transplantable SC niches" for regeneration of heart and other tissues. In this review, we examine two key aspects of micro- and nanofabricated SC-based cardiac tissue constructs: the role of scaffold composition and the role of scaffold architecture and detail how recent work in these areas brings us closer to clinical solutions for cardiovascular regeneration.
Collapse
Affiliation(s)
- Bari Murtuza
- Circulation Sciences and Cardiac Surgery, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jason W. Nichol
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ali Khademhosseini
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
47
|
Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res 2009; 3:73-87. [DOI: 10.1016/j.scr.2009.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/01/2009] [Accepted: 08/18/2009] [Indexed: 12/21/2022] Open
|
48
|
Kandasamy AD, Chow AK, Ali MAM, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 2009; 85:413-23. [PMID: 19656780 DOI: 10.1093/cvr/cvp268] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Matrix metalloproteinase (MMP)-2 belongs to a family of zinc-dependent proteases which are best known for their ability to proteolyse extracellular matrix proteins throughout the body, including the cardiovascular system. Increased MMP-2 activity has been demonstrated in myocardial ischaemia and reperfusion injury and the progression to congestive heart failure, with most evidence to date for its role in cardiac remodelling. Recent evidence, however, shows that MMP-2 also co-localizes with and proteolyses specific protein targets within the cardiomyocyte to cause acute, reversible contractile dysfunction, challenging the conventional wisdom on the 'extracellular matrix only' actions of this enzyme. In this review, we discuss the recent upsurge in MMP-2 research with regards to its activation by non-proteolytic pathways in the setting of enhanced oxidative stress in the heart. We will focus on the consequences of intracellular actions of MMP-2 within the cardiomyocyte and its regulation at several levels including its expression, post-translational modifications, and regulation by endogenous tissue inhibitors of metalloproteinases, caveolin, and small molecule MMP inhibitors. MMP-2 is emerging as an important signalling protease implicated in the proteolytic regulation of various intracellular proteins in myocardial oxidative stress injury.
Collapse
Affiliation(s)
- Arulmozhi D Kandasamy
- Department of Pediatrics and Pharmacology, Cardiovascular Research Centre, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | |
Collapse
|
49
|
Hildreth V, Webb S, Chaudhry B, Peat JD, Phillips HM, Brown N, Anderson RH, Henderson DJ. Left cardiac isomerism in the Sonic hedgehog null mouse. J Anat 2009; 214:894-904. [PMID: 19538633 PMCID: PMC2705298 DOI: 10.1111/j.1469-7580.2009.01087.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2009] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted morphogen necessary for the production of sidedness in the developing embryo. In this study, we describe the morphology of the atrial chambers and atrioventricular junctions of the Shh null mouse heart. We demonstrate that the essential phenotypic feature is isomerism of the left atrial appendages, in combination with an atrioventricular septal defect and a common atrioventricular junction. These malformations are known to be frequent in humans with left isomerism. To confirm the presence of left isomerism, we show that Pitx2c, a recognized determinant of morphological leftness, is expressed in the Shh null mutants on both the right and left sides of the inflow region, and on both sides of the solitary arterial trunk exiting from the heart. It has been established that derivatives of the second heart field expressing Isl1 are asymmetrically distributed in the developing normal heart. We now show that this population is reduced in the hearts from the Shh null mutants, likely contributing to the defects. To distinguish the consequences of reduced contributions from the second heart field from those of left-right patterning disturbance, we disrupted the movement of second heart field cells into the heart by expressing dominant-negative Rho kinase in the population of cells expressing Isl1. This resulted in absence of the vestibular spine, and presence of atrioventricular septal defects closely resembling those seen in the hearts from the Shh null mutants. The primary atrial septum, however, was well formed, and there was no evidence of isomerism of the atrial appendages, suggesting that these features do not relate to disruption of the contributions made by the second heart field. We demonstrate, therefore, that the Shh null mouse is a model of isomerism of the left atrial appendages, and show that the recognized associated malformations found at the venous pole of the heart in the setting of left isomerism are likely to arise from the loss of the effects of Shh in the establishment of laterality, combined with a reduced contribution made by cells derived from the second heart field.
Collapse
|
50
|
Tuysuz B, Mosig R, Altun G, Sancak S, Glucksman MJ, Martignetti JA. A novel matrix metalloproteinase 2 (MMP2) terminal hemopexin domain mutation in a family with multicentric osteolysis with nodulosis and arthritis with cardiac defects. Eur J Hum Genet 2009; 17:565-72. [PMID: 18985071 PMCID: PMC2721823 DOI: 10.1038/ejhg.2008.204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/25/2008] [Accepted: 10/01/2008] [Indexed: 11/08/2022] Open
Abstract
Multicentric osteolysis with nodulosis and arthropathy (MONA, NAO (OMIM no. 605156)) is an autosomal recessive member of the 'vanishing bone' syndromes and is notable for the extent of carpal and tarsal osteolysis and interphalangeal joint erosions, facial dysmorphia, and the presence of fibrocollagenous nodules. This rare disorder has been described previously in Saudi Arabian and Indian families. We now report on the first Turkish family with MONA, further confirming the panethnic nature of this disease. Strikingly, and in addition to the previously noted skeletal and joint features, affected members of this family also had congenital heart defects. Molecular analysis identified a novel MMP2 inactivating mutation that deletes the terminal hemopexin domains and thus confirmed the diagnosis of MONA. On the basis of these findings, we suggest that cardiac defects may also represent a component of this syndrome and thus a physiologically relevant target of MMP-2 activity.
Collapse
Affiliation(s)
- Beyhan Tuysuz
- Division of Genetics, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Rebecca Mosig
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Gürkan Altun
- Division of Genetics, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Selim Sancak
- Division of Genetics, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Marc J Glucksman
- Midwest Proteome Center, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, IL, USA
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
- Department of Pediatrics, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|