1
|
Shan R, Feng G, Lin Y, Ma Z. Temporal stability of forest productivity declines over stand age at multiple spatial scales. Nat Commun 2025; 16:2745. [PMID: 40113748 PMCID: PMC11926224 DOI: 10.1038/s41467-025-57984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
There is compelling experimental evidence and theoretical predictions that temporal stability of productivity, i.e., the summation of aboveground biomass growth of surviving and recruitment trees, increases with succession. However, the temporal change in productivity stability in natural forests, which may undergo functional diversity loss during canopy transition, remains unclear. Here, we use the forest inventory dataset across the eastern United States to explore how the temporal stability of forest productivity at multi-spatial scales changes with stand age during canopy transition. We find that productivity stability decreases with stand age at the local and metacommunity scales. Specifically, consistent declines in local diversity result in less asynchronous productivity dynamics among species over succession, consequently weakening local stability. Meanwhile, increasing mortality and the transition from conservative to acquisitive species with succession weaken species and local stability. Successional increases in species composition dissimilarity among local communities cause more asynchronous productivity dynamics among local communities. However, the decline in local stability surpasses the rise in asynchronous productivity dynamics among local communities, resulting in lower metacommunity stability in old forests. Our results suggest lower productivity stability in old-growth forests and highlight the urgency of protecting diversity at multiple spatial scales to maintain productivity stability.
Collapse
Affiliation(s)
- Rongxu Shan
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Guangdong, 518107, China
| | - Ganxin Feng
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Guangdong, 518107, China
| | - Yuwei Lin
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-environment and Resource Research, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zilong Ma
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Guangdong, 518107, China.
| |
Collapse
|
2
|
Maire E, Robinson JPW, McLean M, Arif S, Zamborain-Mason J, Cinner JE, Ferse SCA, Graham NAJ, Hoey AS, MacNeil MA, Mouillot D, Hicks CC. Managing nutrition-biodiversity trade-offs on coral reefs. Curr Biol 2024; 34:4612-4622.e5. [PMID: 39293442 DOI: 10.1016/j.cub.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Coral reefs support an incredible abundance and diversity of fish species, with reef-associated fisheries providing important sources of income, food, and dietary micronutrients to millions of people across the tropics. However, the rapid degradation of the world's coral reefs and the decline in their biodiversity may limit their capacity to supply nutritious and affordable seafood while meeting conservation goals for sustainability. Here, we conduct a global-scale analysis of how the nutritional quality of reef fish assemblages (nutritional contribution to the recommended daily intake of calcium, iron, and zinc contained in an average 100 g fish on the reef) relates to key environmental, socioeconomic, and ecological conditions, including two key metrics of fish biodiversity. Our global analysis of more than 1,600 tropical reefs reveals that fish trophic composition is a more important driver of micronutrient concentrations than socioeconomic and environmental conditions. Specifically, micronutrient density increases as the relative biomass of herbivores and detritivores increases at lower overall biomass or under high human pressure. This suggests that the provision of essential micronutrients can be maintained or even increase where fish biomass decreases, reinforcing the need for policies that ensure sustainable fishing, and that these micronutrients are retained locally for nutrition. Furthermore, we found a negative association between micronutrient density and two metrics of fish biodiversity, revealing an important nutrition-biodiversity trade-off. Protecting reefs with high levels of biodiversity maintains key ecosystem functions, whereas sustainable fisheries management in locations with high micronutrient density could sustain the essential supply of micronutrients to coastal human communities.
Collapse
Affiliation(s)
- Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Suchinta Arif
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | | | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Christina C Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
3
|
Zhang C, Li Y, Wang W, Gao Z, Liu H, Nie Y. Combined effects of climate and land-use changes on the alpha and beta functional diversities of terrestrial mammals in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2224-2233. [PMID: 39028374 DOI: 10.1007/s11427-023-2574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Climate and land-use changes are predicted to impact biodiversity, threatening ecosystem services and functions. However, their combined effects on the functional diversity of mammals at the regional scale remain unclear, especially at the beta level. Here, we use projected climate and land-use changes in China to investigate their potential effects on the alpha and beta functional diversities of terrestrial mammals under low- and high-emission scenarios. In the current projection, we showed strong positive spatial correlations between functional richness and species richness. Functional evenness (FEve), functional specialization (FSpe), and functional originality (FOri) decreased with species richness, and functional divergence (FDiv) increased first and then plateaued. Functional beta diversity was dominated by its nestedness component, in contrast to the taxonomic facet. Potential changes in species richness are more strongly influenced by land-use change under the low-emission scenario, while under the high-emission scenario, they are more strongly influenced by climate change. Changes in functional richness (FRic) were inconsistent with those in species richness, with a magnitude of decreases greater than predicted from species richness. Moreover, mammal assemblages showed potential functional differentiation (FD) across the country, and the trends exceeded those towards taxonomic differentiation (TD). Our findings help us understand the processes underlying biodiversity responses to global changes on multiple facets and provide new insight for conservation plans.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumei Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zexuan Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanqing Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonggang Nie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Sun L, He Y, Cao M, Wang X, Zhou X, Yang J, Swenson NG. Tree phytochemical diversity and herbivory are higher in the tropics. Nat Ecol Evol 2024; 8:1426-1436. [PMID: 38937611 DOI: 10.1038/s41559-024-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
A long-standing but poorly tested hypothesis in plant ecology and evolution is that biotic interactions play a more important role in producing and maintaining species diversity in the tropics than in the temperate zone. A core prediction of this hypothesis is that tropical plants deploy a higher diversity of phytochemicals within and across communities because they experience more herbivore pressure than temperate plants. However, simultaneous comparisons of phytochemical diversity and herbivore pressure in plant communities from the tropical to the temperate zone are lacking. Here we provide clear support for this prediction by examining phytochemical diversity and herbivory in 60 tree communities ranging from species-rich tropical rainforests to species-poor subalpine forests. Using a community metabolomics approach, we show that phytochemical diversity is higher within and among tropical tree communities than within and among subtropical and subalpine communities, and that herbivore pressure and specialization are highest in the tropics. Furthermore, we show that the phytochemical similarity of trees has little phylogenetic signal, indicating rapid divergence between closely related species. In sum, we provide several lines of evidence from entire tree communities showing that biotic interactions probably play an increasingly important role in generating and maintaining tree diversity in the lower latitudes.
Collapse
Affiliation(s)
- Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yunyun He
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Xuezhao Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy Sciences, Beijing, China
| | - Xiang Zhou
- School of Ethnic Medicine, Key Lab of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education of China, Yunnan Minzu University, Kunming, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Wellenbeck A, Fehrmann L, Feilhauer H, Schmidtlein S, Misof B, Hein N. Discriminating woody species assemblages from National Forest Inventory data based on phylogeny in Georgia. Ecol Evol 2024; 14:e11569. [PMID: 39045499 PMCID: PMC11264350 DOI: 10.1002/ece3.11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/25/2024] Open
Abstract
Classifications of forest vegetation types and characterization of related species assemblages are important analytical tools for mapping and diversity monitoring of forest communities. The discrimination of forest communities is often based on β-diversity, which can be quantified via numerous indices to derive compositional dissimilarity between samples. This study aims to evaluate the applicability of unsupervised classification for National Forest Inventory data from Georgia by comparing two cluster hierarchies. We calculated the mean basal area per hectare for each woody species across 1059 plot observations and quantified interspecies distances for all 87 species. Following an unspuervised cluster analysis, we compared the results derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic variation. Incorporating genetic variation in the dissimilarity quantification resulted in a more nuanced discrimination of woody species assemblages and increased cluster coherence. Favorable statistics include the total number of clusters (23 vs. 20), mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13 vs. 112.92). Clusters derived from dissimilarities that account for genetic variation showed a more robust alignment with biogeographical units, such as elevation and known habitats. We demonstrate that the applicability of unsupervised classification of species assemblages to large-scale forest inventory data strongly depends on the underlying quantification of dissimilarity. Our results indicate that by incorporating phylogenetic variation, a more precise classification aligned with biogeographic units is attained. This supports the concept that the genetic signal of species assemblages reflects biogeographical patterns and facilitates more precise analyses for mapping, monitoring, and management of forest diversity.
Collapse
Affiliation(s)
- Alexander Wellenbeck
- Systematic ZoologyUniversity of BonnBonnGermany
- Forest Inventory and Remote SensingUniversity of GöttingenGöttingenGermany
| | - Lutz Fehrmann
- Forest Inventory and Remote SensingUniversity of GöttingenGöttingenGermany
| | - Hannes Feilhauer
- Remote Sensing Centre for Earth System Research (RSC4Earth)Leipzig UniversityLeipzigGermany
| | - Sebastian Schmidtlein
- Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Bernhard Misof
- Systematic ZoologyUniversity of BonnBonnGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum KoenigBonnGermany
| | - Nils Hein
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum KoenigBonnGermany
| |
Collapse
|
6
|
Jeliazkov A, Chase JM. When Do Traits Tell More Than Species about a Metacommunity? A Synthesis across Ecosystems and Scales. Am Nat 2024; 203:E1-E18. [PMID: 38207141 DOI: 10.1086/727471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractLinking species traits with the variation in species assemblages across habitats has often proved useful for developing a more mechanistic understanding of species distributions in metacommunities. However, summarizing the rich tapestry of a species in all of its nuance with a few key ecological traits can also lead to an abstraction that provides less predictability than when using taxonomy alone. As a further complication, taxonomic and functional diversities can be inequitably compared, either by integrating taxonomic-level information into the calculation of how functional aspects of communities vary or by detecting spurious trait-environment relationships. To remedy this, we here synthesize analyses of 80 datasets on different taxa, ecosystems, and spatial scales that include information on abundance or presence/absence of species across sites with variable environmental conditions and the species' traits. By developing analyses that treat functional and taxonomic diversity equitably, we ask when functional diversity helps to explain metacommunity structure. We found that patterns of functional diversity explained metacommunity structure and response to environmental variation in only 25% of the datasets using a multitrait approach but up to 59% using a single-trait approach. Nevertheless, an average of only 19% (interquartile range = 0%-29%) of the traits showed a significant signal across environmental gradients. Species-level traits, as typically collected and analyzed through functional diversity patterns, often do not bring predictive advantages over what the taxonomic information already holds. While our assessment of a limited advantage of using traits to explain variation in species assemblages was largely true across ecosystems, traits played a more useful role in explaining variation when many traits were used and when trait constructs were more related to species' status, life history, and mobility. We propose future research directions to make trait-based approaches and data more helpful for inference in metacommunity ecology.
Collapse
|
7
|
Chao A, Chiu CH, Hu KH, van der Plas F, Cadotte MW, Mitesser O, Thorn S, Mori AS, Scherer-Lorenzen M, Eisenhauer N, Bässler C, Delory BM, Feldhaar H, Fichtner A, Hothorn T, Peters MK, Pierick K, von Oheimb G, Müller J. Hill-Chao numbers allow decomposing gamma multifunctionality into alpha and beta components. Ecol Lett 2024; 27:e14336. [PMID: 38073071 DOI: 10.1111/ele.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 01/31/2024]
Abstract
Biodiversity-ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill-Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.
Collapse
Affiliation(s)
- Anne Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chun-Huo Chiu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsiang Hu
- Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Marc W Cadotte
- Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Simon Thorn
- Hessian Agency for Nature Conservation, Environment and Geology, Biodiversity Center, Gießen, Germany
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Grafenau, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Ecology of Fungi, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Benjamin M Delory
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - Heike Feldhaar
- Department of Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Marcell K Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kerstin Pierick
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Göttingen, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
8
|
Hosoda K, Seno S, Kamiura R, Murakami N, Kondoh M. Biodiversity and Constrained Information Dynamics in Ecosystems: A Framework for Living Systems. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1624. [PMID: 38136504 PMCID: PMC10742641 DOI: 10.3390/e25121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
The increase in ecosystem biodiversity can be perceived as one of the universal processes converting energy into information across a wide range of living systems. This study delves into the dynamics of living systems, highlighting the distinction between ex post adaptation, typically associated with natural selection, and its proactive counterpart, ex ante adaptability. Through coalescence experiments using synthetic ecosystems, we (i) quantified ecosystem stability, (ii) identified correlations between some biodiversity indexes and the stability, (iii) proposed a mechanism for increasing biodiversity through moderate inter-ecosystem interactions, and (iv) inferred that the information carrier of ecosystems is species composition, or merged genomic information. Additionally, it was suggested that (v) changes in ecosystems are constrained to a low-dimensional state space, with three distinct alteration trajectories-fluctuations, rapid environmental responses, and long-term changes-converging into this state space in common. These findings suggest that daily fluctuations may predict broader ecosystem changes. Our experimental insights, coupled with an exploration of living systems' information dynamics from an ecosystem perspective, enhance our predictive capabilities for natural ecosystem behavior, providing a universal framework for understanding a broad spectrum of living systems.
Collapse
Affiliation(s)
- Kazufumi Hosoda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka 565-0871, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Rikuto Kamiura
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Naomi Murakami
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; (R.K.); (N.M.)
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| |
Collapse
|
9
|
Koziol A, Odriozola I, Leonard A, Eisenhofer R, San José C, Aizpurua O, Alberdi A. Mammals show distinct functional gut microbiome dynamics to identical series of environmental stressors. mBio 2023; 14:e0160623. [PMID: 37650630 PMCID: PMC10653949 DOI: 10.1128/mbio.01606-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE In our manuscript, we report the first interspecific comparative study about the plasticity of the gut microbiota. We conducted a captivity experiment that exposed wild-captured mammals to a series of environmental challenges over 45 days. We characterized their gut microbial communities using genome-resolved metagenomics and modeled how the taxonomic, phylogenetic, and functional microbial dynamics varied across a series of disturbances in both species. Our results indicate that the intrinsic properties (e.g., diversity and functional redundancy) of microbial communities coupled with physiological attributes (e.g., thermal plasticity) of hosts shape the taxonomic, phylogenetic, and functional response of gut microbiomes to environmental stressors, which might influence their contribution to the acclimation and adaptation capacity of animal hosts.
Collapse
Affiliation(s)
- Adam Koziol
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Iñaki Odriozola
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Aoife Leonard
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Raphael Eisenhofer
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carlos San José
- Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Dong K, Li Y, Li D, Hu W, Xu G. Effects of environmental factors on avian communities in urban parks in small- to medium-sized city: a case study of Fuyang City, Anhui, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1347. [PMID: 37857917 DOI: 10.1007/s10661-023-11973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
With a worldwide expansion of urbanization, the conservation of urban biodiversity is attracting growing attention; it is important to study the relationship between wildlife and urban green spaces. In this study, we selected 31 parks in the urban area of Fuyang City in the North China Plain. A total of 8795 individual birds from 69 species were recorded. The study found that (a) at the local level, tree diversity and heights are the most important factors contributing to each level of bird diversity, followed by the coverage of shrubs and herbs, and (b) at the landscape level, the proportion of woodland has a strong positive correlation with the multidimensional diversity of birds, followed by the patch diversity and percent of grassland. Our results showed that artificial greenland can effectively increase bird diversity. While considering urban planning and human well-being, the proportion of vegetation and landscape in urban parks should be properly planned, providing more habitats to enrich bird diversity.
Collapse
Affiliation(s)
- Kai Dong
- Present address: College of Biology and Food Engineering, Fuyang Normal University, 100 Qinghe West Road, Yingzhou District, Fuyang, 236037, Anhui, China
| | - Yongmin Li
- Present address: College of Biology and Food Engineering, Fuyang Normal University, 100 Qinghe West Road, Yingzhou District, Fuyang, 236037, Anhui, China.
| | - Dongwei Li
- Present address: College of Biology and Food Engineering, Fuyang Normal University, 100 Qinghe West Road, Yingzhou District, Fuyang, 236037, Anhui, China
| | - Wenfeng Hu
- College of History, Culture and Tourism, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Gaoxiao Xu
- Present address: College of Biology and Food Engineering, Fuyang Normal University, 100 Qinghe West Road, Yingzhou District, Fuyang, 236037, Anhui, China
| |
Collapse
|
11
|
La Sorte FA, Clark JAG, Lepczyk CA, Aronson MFJ. Collections of small urban parks consistently support higher species richness but not higher phylogenetic or functional diversity. Proc Biol Sci 2023; 290:20231424. [PMID: 37700654 PMCID: PMC10498037 DOI: 10.1098/rspb.2023.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
When prioritizing regions for conservation protection, decisions are often based on the principle that a single large reserve should support more species than several small reserves of the same total area (SLOSS). This principle remains a central paradigm in conservation planning despite conflicting empirical evidence and methodological concerns. In urban areas where small parks tend to dominate and policies to promote biodiversity are becoming increasingly popular, determining the most appropriate prioritization method is critical. Here, we document the role of SLOSS in defining the seasonal diversity of birds in 475 parks in 21 US cities. Collections of small parks were consistently associated with higher species richness, spatial turnover and rarity. Collections of both small and large parks were associated with higher phylogenetic and functional diversity whose patterns varied across seasons and cities. Thus, collections of small parks are a reliable source of species richness driven by higher spatial turnover and rarity, whereas collections of both small and large parks contain the potential to support higher phylogenetic and functional diversity. The presence of strong intra-annual and geographical variation emphasizes the need for regional prioritization strategies, where multiple diversity metrics are examined across parks and seasons.
Collapse
Affiliation(s)
- Frank A. La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | | | | | - Myla F. J. Aronson
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Hahs AK, Fournier B, Aronson MFJ, Nilon CH, Herrera-Montes A, Salisbury AB, Threlfall CG, Rega-Brodsky CC, Lepczyk CA, La Sorte FA, MacGregor-Fors I, Scott MacIvor J, Jung K, Piana MR, Williams NSG, Knapp S, Vergnes A, Acevedo AA, Gainsbury AM, Rainho A, Hamer AJ, Shwartz A, Voigt CC, Lewanzik D, Lowenstein DM, O'Brien D, Tommasi D, Pineda E, Carpenter ES, Belskaya E, Lövei GL, Makinson JC, Coleman JL, Sadler JP, Shroyer J, Shapiro JT, Baldock KCR, Ksiazek-Mikenas K, Matteson KC, Barrett K, Siles L, Aguirre LF, Armesto LO, Zalewski M, Herrera-Montes MI, Obrist MK, Tonietto RK, Gagné SA, Hinners SJ, Latty T, Surasinghe TD, Sattler T, Magura T, Ulrich W, Elek Z, Castañeda-Oviedo J, Torrado R, Kotze DJ, Moretti M. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat Commun 2023; 14:4751. [PMID: 37550318 PMCID: PMC10406945 DOI: 10.1038/s41467-023-39746-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.
Collapse
Affiliation(s)
- Amy K Hahs
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley Campus 500 Yarra Blvd, Richmond, 3121 VIC, Australia.
| | - Bertrand Fournier
- Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Myla F J Aronson
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08816, USA
| | - Charles H Nilon
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Adriana Herrera-Montes
- Department of Environmental Science, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Caragh G Threlfall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Christopher A Lepczyk
- School of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, 36849, USA
| | - Frank A La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Ian MacGregor-Fors
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland
| | - J Scott MacIvor
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4, Canada
| | - Kirsten Jung
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Max R Piana
- USDA Forest Service, Northern Research Station, Amherst, MA, 01002, USA
| | - Nicholas S G Williams
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Burnley Campus 500 Yarra Blvd, Richmond, 3121 VIC, Australia
| | - Sonja Knapp
- Helmholtz Centre for Environmental Research - UFZ, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Technische Universität Berlin, Department of Plant Ecology, Rothenburgstraße 12, 12165, Berlin, Germany
| | - Alan Vergnes
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Aldemar A Acevedo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Laboratorio de Genética y Evolución, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Alison M Gainsbury
- University of South Florida, St. Petersburg Campus, Department of Integrative Biology, St. Petersburg, FL, 33701, USA
| | - Ana Rainho
- cE3c - Centre for Ecology, Evolution and Environmental Changes at the Dept. of Animal Biology, Faculty of Sciences, Univ. of Lisbon, Lisboa, Portugal
| | - Andrew J Hamer
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Assaf Shwartz
- Faculty of Architecture and Town Planning, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Christian C Voigt
- Dept. of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Daniel Lewanzik
- Dept. of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - David M Lowenstein
- Michigan State University Extension, Macomb County, 21885 Dunham Rd - Suite 12, Clinton Twp, MI, 48036, USA
| | - David O'Brien
- Scottish Natural Heritage (NatureScot), Great Glen House, Inverness, IV3 8NW, UK
| | - Desiree Tommasi
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Eduardo Pineda
- Red de Biología y Conservación de Vertebrados. Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, 91073, Mexico
| | - Ela Sita Carpenter
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Dr, Annapolis, MD, 21401, USA
| | - Elena Belskaya
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Eighth March Street 202, Yekaterinburg, 620144, Russia
| | - Gábor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, DK-4200, Slagelse, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Egyetem square 1, Hungary
| | - James C Makinson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Joanna L Coleman
- Queens College at the City University of New York, Flushing, NY, USA
| | - Jon P Sadler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jordan Shroyer
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Julie Teresa Shapiro
- University of Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Laboratory of Lyon, 31 Avenue Tony Garnier, 69364, Lyon Cedex 07, France
| | - Katherine C R Baldock
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | | | - Kevin C Matteson
- Department of Biology/Project Dragonfly, Miami University, Oxford, OH, USA
| | - Kyle Barrett
- Department of Forestry and Environmental Conservation, Clemson University, 261 Lehotsky Hall, Clemson, SC, 29631, USA
| | - Lizette Siles
- Área de Mastozoología, Museo de Historia Natural Alcide d'Orbigny, Avenida Potosí 1458, Cochabamba, Cochabamba, Bolivia
| | - Luis F Aguirre
- Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, c Sucre, frente Parque La Torre s/n, Cochabamba, Bolivia
| | - Luis Orlando Armesto
- Tecnoacademia, CEDRUM, Servicio Nacional de Aprendizaje (SENA), Cúcuta, Colombia
| | - Marcin Zalewski
- Museum and Institute of Zoology of the Polish Academy of Sciences, Wilcza 64, Warsaw, 00-679, Poland
| | | | - Martin K Obrist
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Biodiversity and Conservation Biology, CH-8903, Birmensdorf, Switzerland
| | - Rebecca K Tonietto
- Department of Natural Sciences, University of Michigan-Flint, 303 E Kearsley St., Flint, MI, 48502, USA
| | - Sara A Gagné
- University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sarah J Hinners
- Department of City and Metropolitan Planning, University of Utah, Salt Lake City, UT, USA
| | - Tanya Latty
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Thilina D Surasinghe
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, 02325, USA
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland
| | - Tibor Magura
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, H-4032, Debrecen, Egyetem square 1, Hungary
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, H-4032, Debrecen, Egyetem square 1., Hungary
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Zoltan Elek
- Centre for Agricultural Research, Plant Protection Institute, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| | | | - Ricardo Torrado
- Secretaría de Educación del Municipio de Cúcuta, Cúcuta, Colombia
| | - D Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140, Lahti, Finland.
| | - Marco Moretti
- Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
13
|
Chiu CH, Chao A, Vogel S, Kriegel P, Thorn S. Quantifying and estimating ecological network diversity based on incomplete sampling data. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220183. [PMID: 37246386 PMCID: PMC10225855 DOI: 10.1098/rstb.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/01/2023] [Indexed: 05/30/2023] Open
Abstract
An ecological network refers to the ecological interactions among sets of species. Quantification of ecological network diversity and related sampling/estimation challenges have explicit analogues in species diversity research. A unified framework based on Hill numbers and their generalizations was developed to quantify taxonomic, phylogenetic and functional diversity. Drawing on this unified framework, we propose three dimensions of network diversity that incorporate the frequency (or strength) of interactions, species phylogenies and traits. As with surveys in species inventories, nearly all network studies are based on sampling data and thus also suffer from under-sampling effects. Adapting the sampling/estimation theory and the iNEXT (interpolation/extrapolation) standardization developed for species diversity research, we propose the iNEXT.link method to analyse network sampling data. The proposed method integrates the following four inference procedures: (i) assessment of sample completeness of networks; (ii) asymptotic analysis via estimating the true network diversity; (iii) non-asymptotic analysis based on standardizing sample completeness via rarefaction and extrapolation with network diversity; and (iv) estimation of the degree of unevenness or specialization in networks based on standardized diversity. Interaction data between European trees and saproxylic beetles are used to illustrate the proposed procedures. The software iNEXT.link has been developed to facilitate all computations and graphics. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Chun-Huo Chiu
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University, Hsin-Chu 30043, Taiwan
| | - Sebastian Vogel
- Bavarian Environment Agency, Biodiversitätszentrum Rhön, Marktplatz 11, 97653 Bischofsheim i.d.R., Germany
| | - Peter Kriegel
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181 Rauhenebrach, Germany
| | - Simon Thorn
- Hessian Agency for Nature Conservation, Environment and Geology, Biodiversity Center, Europastraße 10, 35394 Gießen, Germany
| |
Collapse
|
14
|
Bosch NE, Espino F, Tuya F, Haroun R, Bramanti L, Otero-Ferrer F. Black coral forests enhance taxonomic and functional distinctiveness of mesophotic fishes in an oceanic island: implications for biodiversity conservation. Sci Rep 2023; 13:4963. [PMID: 36973395 PMCID: PMC10043018 DOI: 10.1038/s41598-023-32138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The degradation of shallow ecosystems has called for efforts to understand the biodiversity and functioning of Mesophotic Ecosystems. However, most empirical studies have been restricted to tropical regions and have majorly focused on taxonomic entities (i.e., species), neglecting important dimensions of biodiversity that influence community assembly and ecosystem functioning. Here, using a subtropical oceanic island in the eastern Atlantic Ocean (Lanzarote, Canary Islands), we investigated variation in (a) alpha and (b) beta functional (i.e., trait) diversity across a depth gradient (0-70 m), as a function of the presence of black coral forests (BCFs, order Antipatharian) in the mesophotic strata, a vulnerable but often overlooked 'ecosystem engineer' in regional biodiversity. Despite occupying a similar volume of the functional space (i.e., functional richness) than shallow (< 30 m) reefs, mesophotic fish assemblages inhabiting BCFs differed in their functional structure when accounting for species abundances, with lower evenness and divergence. Similarly, although mesophotic BCFs shared, on average, 90% of the functional entities with shallow reefs, the identity of common and dominant taxonomic and functional entities shifted. Our results suggest BCFs promoted the specialization of reef fishes, likely linked to convergence towards optimal traits to maximize the use of resources and space. Regional biodiversity planning should thus focus on developing specific management and conservation strategies for preserving the unique biodiversity and functionality of mesophotic BCFs.
Collapse
Affiliation(s)
- Nestor E Bosch
- Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS), 35214, Telde, Spain.
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214, Telde, Spain.
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214, Telde, Spain
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214, Telde, Spain
| | - Ricardo Haroun
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214, Telde, Spain
| | - Lorenzo Bramanti
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, 66500, Banyuls-sur-Mer, France
| | - Francisco Otero-Ferrer
- Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS), 35214, Telde, Spain
- Grupo en Biodiversidad y Conservación (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214, Telde, Spain
| |
Collapse
|
15
|
Petrén H, Köllner TG, Junker RR. Quantifying chemodiversity considering biochemical and structural properties of compounds with the R package chemodiv. THE NEW PHYTOLOGIST 2023; 237:2478-2492. [PMID: 36527232 DOI: 10.1111/nph.18685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Plants produce large numbers of phytochemical compounds affecting plant physiology and interactions with their biotic and abiotic environment. Recently, chemodiversity has attracted considerable attention as an ecologically and evolutionary meaningful way to characterize the phenotype of a mixture of phytochemical compounds. Currently used measures of phytochemical diversity, and related measures of phytochemical dissimilarity, generally do not take structural or biosynthetic properties of compounds into account. Such properties can be indicative of the compounds' function and inform about their biosynthetic (in)dependence, and should therefore be included in calculations of these measures. We introduce the R package chemodiv, which retrieves biochemical and structural properties of compounds from databases and provides functions for calculating and visualizing chemical diversity and dissimilarity for phytochemicals and other types of compounds. Our package enables calculations of diversity that takes the richness, relative abundance and - most importantly - structural and/or biosynthetic dissimilarity of compounds into account. We illustrate the use of the package with examples on simulated and real datasets. By providing the R package chemodiv for quantifying multiple aspects of chemodiversity, we hope to facilitate investigations of how chemodiversity varies across levels of biological organization, and its importance for the ecology and evolution of plants and other organisms.
Collapse
Affiliation(s)
- Hampus Petrén
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, 5020, Salzburg, Austria
| |
Collapse
|
16
|
Guo H, Zhou X, Tao Y, Yin J, Zhang L, Guo X, Liu C, Lin Y, Zhang Y. Precipitation preferences alter the relative importance of herbaceous plant diversity for multifunctionality in the drylands of China. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
BackgroundMultiple components of biodiversity are excellent predictors of precipitation-induced changes in ecosystem function. However, the importance of differing scales (alpha versus beta) is usually overlooked in biodiversity–ecosystem multifunctionality studies. Consequently, little is known about how precipitation regulates the relationship between multifunctionality and multiple components of alpha and beta diversity.AimsWe investigated geographic patterns of herbaceous plant diversity and ecosystem multifunctionality along a precipitation gradient spanning more than 2010 km in Northwest China.MethodsWe assessed the effects of herbaceous species, phylogenetic, and functional components at different scales on multifunctionality in drylands.ResultsThe alpha diversity of species and functional beta diversity were key components explaining the variation in multifunctionality. As the main environmental factor, MAP (mean annual precipitation) affected multifunctionality by changing the mediating variables (i.e., species alpha and functional beta diversity). More importantly, a certain precipitation threshold was detected for the relationship of multifunctionality to species alpha and functional beta diversity. MAPs of approximately 158 mm and 140 mm modulated this relationship (shifting it from uncorrelated to significantly correlated).ConclusionsOur findings provide insights into previously neglected mechanisms by which diversity in herbaceous layers at different scales affects ecosystem multifunctionality. It is highlighted that MAP regulates the relationship between diversity and multifunctionality in dryland ecosystems at different scales. Further, diversity may have substantial consequences for multifunctionality where MAP is higher. These empirical results provide a comprehensive understanding of the biodiversity–multifunctionality relationship in the context of precipitation, ultimately contributing to conservation and restoration programs for multifunctionality in drylands.
Collapse
|
17
|
Bat diversity is driven by elevation and distance to the nearest watercourse in a terra firme forest in the northeastern Brazilian Amazon. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Variations in environmental conditions along gradients play an important role in species distribution through environmental filtering of morphological and physiological traits; however, their effects on bat diversity remain poorly understood. Here, we investigate the effect of the distance to the nearest watercourse, terrain elevation, vegetation clutter, basal area and canopy height on taxonomic, functional and phylogenetic diversity and on the predominance of some functional traits (body mass, wing morphology and trophic level) of bat assemblages (phyllostomid and mormoopid bats) in a terra firme forest, in the northeastern Brazilian Amazon. We captured bats using mist nets in 15 permanent plots over a 25 km2 area of continuous forest. We captured 279 individuals belonging to 28 species with a total of 77.760 m2.h of sampling effort. Our results showed that bat richness increases as a function of distance to the nearest watercourse and that the assemblage also changes, with more diverse taxonomic and functional groups in areas further from the watercourse. Furthermore, elevation positively affects species richness, and the basal area of the forest positively influences the average body mass of bats. Taken together, our results demonstrate that subtle variations in the environmental conditions along a local scale gradient impact on the main dimensions of bat diversity in primary forests.
Collapse
|
18
|
Bosch NE, Pessarrodona A, Filbee-Dexter K, Tuya F, Mulders Y, Bell S, Langlois T, Wernberg T. Habitat configurations shape the trophic and energetic dynamics of reef fishes in a tropical-temperate transition zone: implications under a warming future. Oecologia 2022; 200:455-470. [PMID: 36344837 PMCID: PMC9675646 DOI: 10.1007/s00442-022-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Understanding the extent to which species' traits mediate patterns of community assembly is key to predict the effect of natural and anthropogenic disturbances on ecosystem functioning. Here, we apply a trait-based community assembly framework to understand how four different habitat configurations (kelp forests, Sargassum spp. beds, hard corals, and turfs) shape the trophic and energetic dynamics of reef fish assemblages in a tropical-temperate transition zone. Specifically, we tested (i) the degree of trait divergence and convergence in each habitat, (ii) which traits explained variation in species' abundances, and (iii) differences in standing biomass (kg ha-1), secondary productivity (kg ha-1 day-1) and turnover (% day-1). Fish assemblages in coral and kelp habitats displayed greater evidence of trait convergence, while turf and Sargassum spp. habitats displayed a higher degree of trait divergence, a pattern that was mostly driven by traits related to resource use and thermal affinity. This filtering effect had an imprint on the trophic and energetic dynamics of reef fishes, with turf habitats supporting higher fish biomass and productivity. However, these gains were strongly dependent on trophic guild, with herbivores/detritivores disproportionately contributing to among-habitat differences. Despite these perceived overall gains, turnover was decoupled for fishes that act as conduit of energy to higher trophic levels (i.e. microinvertivores), with coral habitats displaying higher rates of fish biomass replenishment than turf despite their lower productivity. This has important implications for biodiversity conservation and fisheries management, questioning the long-term sustainability of ecological processes and fisheries yields in increasingly altered marine habitats.
Collapse
Affiliation(s)
- Nestor E Bosch
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Albert Pessarrodona
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte S/N, 35214, Telde, Spain
| | - Yannick Mulders
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Sahira Bell
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Tim Langlois
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Thomas Wernberg
- School of Biological Sciences, The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Institute of Marine Research, Nye Flødevigveien 20, 4817, His, Norway
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|
19
|
Byrnes JEK, Roger F, Bagchi R. Understandable multifunctionality measures using Hill numbers. OIKOS 2022. [DOI: 10.1111/oik.09402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Fabian Roger
- Dept of Environmental Systems Science, ETH Zurich Zurich Switzerland
- Centre for Environmental and Climate Science, Lund University Lund Sweden
| | - Robert Bagchi
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| |
Collapse
|
20
|
Penjor U, Cushman SA, Kaszta ŻM, Sherub S, Macdonald DW. Effects of land use and climate change on functional and phylogenetic diversity of terrestrial vertebrates in a Himalayan biodiversity hotspot. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ugyen Penjor
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- Department of Forests and Park Services Nature Conservation Division Thimphu Bhutan
| | - Samuel A. Cushman
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
- USDA, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta M. Kaszta
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| | - Sherub Sherub
- Department of Forests and Park Services Ugyen Wangchuck Institute for Conservation and Environmental Research Bumthang Bhutan
| | - David W. Macdonald
- Wildlife Conservation Research Unit, The Recanati‐Kaplan Centre Abingdon UK
| |
Collapse
|
21
|
Sánchez-Ochoa D, González EJ, Arizmendi MDC, Koleff P, Martell-Dubois R, Meave JA, Pérez-Mendoza HA. Quantifying phenological diversity: a framework based on Hill numbers theory. PeerJ 2022; 10:e13412. [PMID: 35582616 PMCID: PMC9107786 DOI: 10.7717/peerj.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Despite the great concern triggered by the environmental crisis worldwide, the loss of temporal key functions and processes involved in biodiversity maintenance has received little attention. Species are restricted in their life cycles by environmental variables because of their physiological and behavioral properties; thus, the timing and duration of species' presence and their activities vary greatly between species within a community. Despite the ecological relevance of such variation, there is currently no measure that summarizes the key temporal aspects of biological diversity and allows comparisons of community phenological patterns. Here, we propose a measure that synthesizes variability of phenological patterns using the Hill numbers-based attribute diversity framework. Methods We constructed a new phenological diversity measure based on the aforementioned framework through pairwise overlapping distances, which was supplemented with wavelet analysis. The Hill numbers approach was chosen as an adequate way to define a set of diversity values of different order q, a parameter that determines the sensitivity of the diversity measure to abundance. Wavelet transform analysis was used to model continuous variables from incomplete data sets for different phenophases. The new measure, which we call Phenological Hill numbers (PD), considers the decouplings of phenophases through an overlapping area value between pairs of species within the community. PD was first tested through simulations with varying overlap in phenophase magnitude and intensity and varying number of species, and then by using one real data set. Results PD maintains the diversity patterns of order q as in any other diversity measure encompassed by the Hill numbers framework. Minimum PD values in the simulated data sets reflect a lack of differentiation in the phenological curves of the community over time; by contrast, the maximum PD values reflected the most diverse simulations in which phenological curves were equally distributed over time. PD values were consistent with the homogeneous distribution of the intensity and concurrence of phenophases over time, both in the simulated and the real data set. Discussion PD provides an efficient, readily interpretable and comparable measure that summarizes the variety of phenological patterns observed in ecological communities. PD retains the diversity patterns of order q characteristic of all diversity measures encompassed by the distance-based Hill numbers framework. In addition, wavelet transform analysis proved useful for constructing a continuous phenological curve. This methodological approach to quantify phenological diversity produces simple and intuitive values for the examination of phenological diversity and can be widely applied to any taxon or community's phenological traits.
Collapse
Affiliation(s)
- Daniel Sánchez-Ochoa
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Edgar J. González
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Maria del Coro Arizmendi
- Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México, Mexico
| | - Patricia Koleff
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Tlalpan, Ciudad de México, Mexico
| | - Raúl Martell-Dubois
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Tlalpan, Ciudad de México, Mexico
| | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Hibraim Adán Pérez-Mendoza
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México, Mexico
| |
Collapse
|
22
|
Linking key human-environment theories to inform the sustainability of coral reefs. Curr Biol 2022; 32:2610-2620.e4. [PMID: 35568029 DOI: 10.1016/j.cub.2022.04.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/06/2022] [Accepted: 04/20/2022] [Indexed: 01/19/2023]
Abstract
Effective solutions to the ongoing "coral reef crisis" will remain limited until the underlying drivers of coral reef degradation are better understood. Here, we conduct a global-scale study of how four key metrics of ecosystem states and processes on coral reefs (top predator presence, reef fish biomass, trait diversity, and parrotfish scraping potential) are explained by 11 indicators based on key human-environment theories from the social sciences. Our global analysis of >1,500 reefs reveals three key findings. First, the proximity of the nearest market has the strongest and most consistent relationships with these ecosystem metrics. This finding is in keeping with a body of terrestrial research on how market accessibility shapes agricultural practices, but the integration of these concepts in marine systems is nascent. Second, our global study shows that resource conditions tend to display a n-shaped relationship with socioeconomic development. Specifically, the probabilities of encountering a top predator, fish biomass, and fish trait diversity were highest where human development was moderate but lower where development was either high or low. This finding contrasts with previous regional-scale research demonstrating an environmental Kuznets curve hypothesis (which predicts a U-shaped relationship between socioeconomic development and resource conditions). Third, together, our ecosystem metrics are best explained by the integration of different human-environment theories. Our best model includes the interactions between indicators from different theoretical perspectives, revealing how marine reserves can have different outcomes depending on how far they are from markets and human settlements, as well as the size of the surrounding human population.
Collapse
|
23
|
The evolution of trait variance creates a tension between species diversity and functional diversity. Nat Commun 2022; 13:2521. [PMID: 35534474 PMCID: PMC9085882 DOI: 10.1038/s41467-022-30090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
It seems intuitively obvious that species diversity promotes functional diversity: communities with more plant species imply more varied plant leaf chemistry, more species of crops provide more kinds of food, etc. Recent literature has nuanced this view, showing how the relationship between the two can be modulated along latitudinal or environmental gradients. Here we show that even without such effects, the evolution of functional trait variance can erase or even reverse the expected positive relationship between species- and functional diversity. We present theory showing that trait-based eco-evolutionary processes force species to evolve narrower trait breadths in more tightly packed, species-rich communities, in their effort to avoid competition with neighboring species. This effect is so strong that it leads to an overall reduction in trait space coverage whenever a new species establishes. Empirical data from land snail communities on the Galápagos Islands are consistent with this claim. The finding that the relationship between species- and functional diversity can be negative implies that trait data from species-poor communities may misjudge functional diversity in species-rich ones, and vice versa. The positive relationship between species diversity and functional diversity has been shown to vary. Here, the authors use theoretical models and data from Galápagos land snail communities to show how eco-evolutionary processes can force species to evolve narrower trait breadths in more species-rich communities to avoid competition, creating a negative relationship.
Collapse
|
24
|
Bosch NE, McLean M, Zarco-Perello S, Bennett S, Stuart-Smith RD, Vergés A, Pessarrodona A, Tuya F, Langlois T, Spencer C, Bell S, Saunders BJ, Harvey ES, Wernberg T. Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of top-down control on the rebound potential of temperate seaweed forests? GLOBAL CHANGE BIOLOGY 2022; 28:2296-2311. [PMID: 34981602 DOI: 10.1111/gcb.16070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Extreme climatic events can reshape the functional structure of ecological communities, potentially altering ecological interactions and ecosystem functioning. While these shifts have been widely documented, evidence of their persistence and potential flow-on effects on ecosystem structure following relaxation of extreme events remains limited. Here, we investigate changes in the functional trait structure - encompassing dimensions of resource use, thermal affinity, and body size - of herbivorous fishes in a temperate reef system that experienced an extreme marine heatwave (MHW) and subsequent return to cool conditions. We quantify how changes in the trait structure modified the nature and intensity of herbivory-related functions (macroalgae, turf, and sediment removal), and explored the potential flow-on effects on the recovery dynamics of macroalgal foundation species. The trait structure of the herbivorous fish assemblage shifted as a result of the MHW, from dominance of cool-water browsing species to increased evenness in the distribution of abundance among temperate and tropical guilds supporting novel herbivory roles (i.e. scraping, cropping, and sediment sucking). Despite the abundance of tropical herbivorous fishes and intensity of herbivory-related functions declined following a period of cooling after the MHW, the underlying trait structure displayed limited recovery. Concomitantly, algal assemblages displayed a lack of recovery of the formerly dominant foundational species, the kelp Ecklonia radiata, transitioning to an alternative state dominated by turf and Sargassum spp. Our study demonstrates a legacy effect of an extreme MHW and exemplified the value of monitoring phenotypic (trait mediated) changes in the nature of core ecosystem processes to predict and adapt to the future configurations of changing reef ecosystems.
Collapse
Affiliation(s)
- Nestor E Bosch
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Salvador Zarco-Perello
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Scott Bennett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Adriana Vergés
- Centre of Marine Science & Innovation, Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, UNSW Sydney, Kensington, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Albert Pessarrodona
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de G.C., Canary Islands, Spain
| | - Tim Langlois
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Claude Spencer
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sahira Bell
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Thomas Wernberg
- The UWA Oceans Institute, School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
25
|
Nyholm L, Odriozola I, Martin Bideguren G, Aizpurua O, Alberdi A. Gut microbiota differences between paired intestinal wall and digesta samples in three small species of fish. PeerJ 2022; 10:e12992. [PMID: 35223211 PMCID: PMC8877339 DOI: 10.7717/peerj.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
The microbial gut communities of fish are receiving increased attention for their relevance, among others, in a growing aquaculture industry. The members of these communities are often split into resident (long-term colonisers specialised to grow in and adhere to the mucus lining of the gut) and transient (short-term colonisers originated from food items and the surrounding water) microorganisms. Separating these two communities in small fish are impeded by the small size and fragility of the gastrointestinal tract. With the aim of testing whether it is possible to recover two distinct communities in small species of fish using a simple sampling technique, we used 16S amplicon sequencing of paired intestinal wall and digesta samples from three small Cyprinodontiformes fish. We examined the diversity and compositional variation of the two recovered communities, and we used joint species distribution modelling to identify microbes that are most likely to be a part of the resident community. For all three species we found that the diversity of intestinal wall samples was significantly lower compared to digesta samples and that the community composition between sample types was significantly different. Across the three species we found seven unique families of bacteria to be significantly enriched in samples from the intestinal wall, encompassing most of the 89 ASVs enriched in intestinal wall samples. We conclude that it is possible to characterise two different microbial communities and identify potentially resident microbes through separately analysing samples from the intestinal wall and digesta from small species of fish. We encourage researchers to be aware that different sampling procedures for gut microbiome characterization will capture different parts of the microbiome and that this should be taken into consideration when reporting results from such studies on small species of fish.
Collapse
Affiliation(s)
- Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Iñaki Odriozola
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Garazi Martin Bideguren
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Carvajal-Castro JD, Ospina-L AM, Toro-López Y, Pulido-G A, Cabrera-Casas LX, Guerrero-Peláez S, García-Merchán VH, Vargas-Salinas F. Urbanization is associated to a loss of phylogenetic diversity of birds in a medium size city on the Andes of Colombia, South America. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2021. [DOI: 10.1080/01650521.2021.1974709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juan D. Carvajal-Castro
- Department of Biological Sciences, St. John’s University, Queens, NY, USA
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
| | - Ana María Ospina-L
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
- Behavior and Sensory Ecology Lab, Department of Biological Sciences, University of Purdue, West Lafayette, IN, USA
| | | | - Anny Pulido-G
- Área de Proyectos, Universidad CES, Medellín, Colombia
| | - Laura Ximena Cabrera-Casas
- Maestría en Enseñanza de las Ciencias Exactas y, Universidad Nacional Sede Manizales, Manizales, Colombia
| | - Sebastián Guerrero-Peláez
- Maestria en Conservación y Uso de Biodiversidad, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Víctor Hugo García-Merchán
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
| | - Fernando Vargas-Salinas
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
27
|
Abstract
Species' traits, rather than taxonomic identities, determine community assembly and ecosystem functioning, yet biogeographic patterns have been far less studied for traits. While both environmental conditions and evolutionary history shape trait biogeography, their relative contributions are largely unknown for most organisms. Here, we explore the global biogeography of reef fish traits for 2,786 species from 89 ecoregions spanning eight marine realms with contrasting environmental conditions and evolutionary histories. Across realms, we found a common structure in the distribution of species traits despite a 10-fold gradient in species richness, with a defined "backbone" of 21 trait combinations shared by all realms globally, both temperate and tropical. Across ecoregions, assemblages under similar environmental conditions had similar trait compositions despite hosting drastically different species pools from separate evolutionary lineages. Thus, despite being separated by thousands of kilometers and millions of years of evolution, similar environments host similar trait compositions in reef fish assemblages worldwide. Our findings suggest that similar trait-based management strategies can be applied among regions with distinct species pools, potentially improving conservation outcomes across diverse jurisdictions.
Collapse
|
28
|
Chao A, Henderson PA, Chiu C, Moyes F, Hu K, Dornelas M, Magurran AE. Measuring temporal change in alpha diversity: A framework integrating taxonomic, phylogenetic and functional diversity and the
iNEXT.3D
standardization. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Chao
- Institute of Statistics National Tsing Hua University Hsin‐Chu Taiwan
| | | | - Chun‐Huo Chiu
- Department of Agronomy National Taiwan University Taipei Taiwan
| | - Faye Moyes
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology University of St Andrews St Andrews Fife UK
| | - Kai‐Hsiang Hu
- Institute of Statistics National Tsing Hua University Hsin‐Chu Taiwan
| | - Maria Dornelas
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology University of St Andrews St Andrews Fife UK
| | - Anne E. Magurran
- Centre for Biological Diversity and Scottish Oceans Institute, School of Biology University of St Andrews St Andrews Fife UK
| |
Collapse
|
29
|
Tarifa R, Martínez‐Núñez C, Valera F, González‐Varo JP, Salido T, Rey PJ. Agricultural intensification erodes taxonomic and functional diversity in Mediterranean olive groves by filtering out rare species. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rubén Tarifa
- Departamento de Biología Animal Biología Vegetal y EcologíaUniversidad de Jaén Jaén Spain
- Departamento de Biología IVAGROUniversidad de CádizPuerto Real Cádiz Spain
| | - Carlos Martínez‐Núñez
- Departamento de Biología Animal Biología Vegetal y EcologíaUniversidad de Jaén Jaén Spain
- Instituto Interuniversitario del Sistema Tierra de Andalucía Jaén Spain
| | | | | | - Teresa Salido
- Departamento de Biología Animal Biología Vegetal y EcologíaUniversidad de Jaén Jaén Spain
- Instituto Interuniversitario del Sistema Tierra de Andalucía Jaén Spain
| | - Pedro J. Rey
- Departamento de Biología Animal Biología Vegetal y EcologíaUniversidad de Jaén Jaén Spain
- Instituto Interuniversitario del Sistema Tierra de Andalucía Jaén Spain
| |
Collapse
|
30
|
Monge‐González ML, Guerrero‐Ramírez N, Krömer T, Kreft H, Craven D. Functional diversity and redundancy of tropical forests shift with elevation and forest‐use intensity. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Thorsten Krömer
- Centro de Investigaciones Tropicales Universidad Veracruzana Xalapa Mexico
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL) University of Goettingen Göttingen Germany
| | - Dylan Craven
- Biodiversity, Macroecology and Biogeography University of Goettingen Göttingen Germany
- Centro de Modelación y Monitoreo de Ecosistemas Facultad de Ciencias Universidad Mayor Santiago Chile
| |
Collapse
|
31
|
Vogel S, Prinzing A, Bußler H, Müller J, Schmidt S, Thorn S. Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood. Ecol Evol 2021; 11:6881-6888. [PMID: 34141262 PMCID: PMC8207401 DOI: 10.1002/ece3.7535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
Most parasites and parasitoids are adapted to overcome defense mechanisms of their specific hosts and hence colonize a narrow range of host species. Accordingly, an increase in host functional or phylogenetic dissimilarity is expected to increase the species diversity of parasitoids. However, the local diversity of parasitoids may be driven by the accessibility and detectability of hosts, both increasing with increasing host abundance. Yet, the relative importance of these two mechanisms remains unclear. We parallelly reared communities of saproxylic beetle as potential hosts and associated parasitoid Hymenoptera from experimentally felled trees. The dissimilarity of beetle communities was inferred from distances in seven functional traits and from their evolutionary ancestry. We tested the effect of host abundance, species richness, functional, and phylogenetic dissimilarities on the abundance, species richness, and Shannon diversity of parasitoids. Our results showed an increase of abundance, species richness, and Shannon diversity of parasitoids with increasing beetle abundance. Additionally, abundance of parasitoids increased with increasing species richness of beetles. However, functional and phylogenetic dissimilarity showed no effect on the diversity of parasitoids. Our results suggest that the local diversity of parasitoids, of ephemeral and hidden resources like saproxylic beetles, is highest when resources are abundant and thereby detectable and accessible. Hence, in some cases, resources do not need to be diverse to promote parasitoid diversity.
Collapse
Affiliation(s)
- Sebastian Vogel
- Department of Animal Ecology and Tropical Biology (Zoology III)Field Station FabrikschleichachJulius Maximilians University WürzburgRauhenebrachGermany
| | - Andreas Prinzing
- Research Unit “Ecosystèmes Biodiversité, Evolution” («UMR 6553»)Centre National de la Recherche ScientifiqueUniversity Rennes 1RennesFrance
| | - Heinz Bußler
- Department of Animal Ecology and Tropical Biology (Zoology III)Field Station FabrikschleichachJulius Maximilians University WürzburgRauhenebrachGermany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology (Zoology III)Field Station FabrikschleichachJulius Maximilians University WürzburgRauhenebrachGermany
| | | | - Simon Thorn
- Department of Animal Ecology and Tropical Biology (Zoology III)Field Station FabrikschleichachJulius Maximilians University WürzburgRauhenebrachGermany
| |
Collapse
|
32
|
Mouillot D, Loiseau N, Grenié M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B, McGill BJ, McLean M, Mouquet N, Munoz F, Thuiller W, Villéger S, Violle C, Auber A. The dimensionality and structure of species trait spaces. Ecol Lett 2021; 24:1988-2009. [PMID: 34015168 DOI: 10.1111/ele.13778] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/02/2023]
Abstract
Trait-based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade-off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices.
Collapse
Affiliation(s)
- David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.,Institut Universitaire de France, IUF, Paris, France
| | - Nicolas Loiseau
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Matthias Grenié
- Centre d'Ecologie Fonctionnelle et Evolutive-UMR 5175 CEFE, University of Montpellier, CNRS, EPHE, University of Paul Valéry, IRD, Montpellier, France
| | - Adam C Algar
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Michele Allegra
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289, CNRS, Marseille, France
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, Canada
| | | | - Pierre Denelle
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
| | - Maya Guéguen
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Anthony Maire
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | - Brian Maitner
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT, USA
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Matthew McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicolas Mouquet
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France.,FRB-CESAB, Institut Bouisson Bertrand, Montpellier, France
| | - François Munoz
- LiPhy (Laboratoire Interdisciplinaire de Physique), Université Grenoble Alpes, Grenoble, France
| | - Wilfried Thuiller
- Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sébastien Villéger
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Cyrille Violle
- Centre d'Ecologie Fonctionnelle et Evolutive-UMR 5175 CEFE, University of Montpellier, CNRS, EPHE, University of Paul Valéry, IRD, Montpellier, France
| | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France
| |
Collapse
|
33
|
Chen B, He X, Pan B, Zou X, You N. Comparison of beta diversity measures in clustering the high-dimensional microbial data. PLoS One 2021; 16:e0246893. [PMID: 33600415 PMCID: PMC7891732 DOI: 10.1371/journal.pone.0246893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
The heterogeneity of disease is a major concern in medical research and is commonly characterized as subtypes with different pathogeneses exhibiting distinct prognoses and treatment effects. The classification of a population into homogeneous subgroups is challenging, especially for complex diseases. Recent studies show that gut microbiome compositions play a vital role in disease development, and it is of great interest to cluster patients according to their microbial profiles. There are a variety of beta diversity measures to quantify the dissimilarity between the compositions of different samples for clustering. However, using different beta diversity measures results in different clusters, and it is difficult to make a choice among them. Considering microbial compositions from 16S rRNA sequencing, which are presented as a high-dimensional vector with a large proportion of extremely small or even zero-valued elements, we set up three simulation experiments to mimic the microbial compositional data and evaluate the performance of different beta diversity measures in clustering. It is shown that the Kullback-Leibler divergence-based beta diversity, including the Jensen-Shannon divergence and its square root, and the hypersphere-based beta diversity, including the Bhattacharyya and Hellinger, can capture compositional changes in low-abundance elements more efficiently and can work stably. Their performance on two real datasets demonstrates the validity of the simulation experiments.
Collapse
Affiliation(s)
- Biyuan Chen
- Child Development and Behavior Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueyi He
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Bangquan Pan
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Zou
- Child Development and Behavior Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na You
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Marchetti ZY, Villalba AB, Ramonell C, Brumnich F, Pereira MS. Biogeomorphic succession in a fluvial-lacustrine delta of the Middle Paraná River (Argentina): Feedbacks between vegetation and morphodynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139799. [PMID: 32846504 DOI: 10.1016/j.scitotenv.2020.139799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The Leyes' Delta lies at the Middle Paraná River, the second-largest fluvial system in South America, and it is being quickly formed into the Setúbal fluvial lake, Argentina. In the context of the Fluvial Biogeomorphic Succession theory, our aim was to better understand interactions between physical and biotic processes contributing to the formation of the Leyes' Delta. We studied the genesis, morphologic development, and vegetation in three groups of its deltaic islands with contrasting formation ages. Different methodologies were applied. Genesis and morphologic development were interpreted from time-series of satellite images and aerial photography obtained from 1974 to 2014. Then landforms and vegetation communities were mapped on the most current images, and they were corroborated and characterized during fieldwork. Our results evidence that the three island groups (Channel crevasse splay islands, Delta bar-plain islands, and Delta front islands) were formed via two different geomorphic processes, determining differences in the initial vegetation colonization. Eight fluvial-lacustrine landforms and eight vegetation communities, both differently represented among the island groups, currently characterize these islands. The species richness accumulation curves and beta diversity showed that the morphodynamic activity can be as important in the floristic composition of the deltaic islands as formation ages. The floristic composition differed statistically among island groups. After identifying three of the four phases of the FBS, we concluded that even though the morphodynamic activity under which islands were formed determined differences in the initial vegetation colonization, under similar subsequent levels of morphodynamics the resulting vegetation heterogeneity tends to be similar even under contrasting genesis. Among the vegetation types, Lotic prairies would play a key role in the morphologic evolution of the deltaic islands, therefore, their distribution and interactions with flow and sediments should be considered during the studies of social ecological systems as the Leyes' Delta, in Santa Fe, Argentina.
Collapse
Affiliation(s)
- Zuleica Y Marchetti
- Consejo Nacional de Investigaciones Científicas y Técnicas/Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Andrea B Villalba
- Universidad Nacional del Litoral, Santa Fe, Argentina/Departamento de Ciencias Naturales/Facultad de Humanidades y Ciencias
| | - Carlos Ramonell
- Consejo Nacional de Investigaciones Científicas y Técnicas/Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Federico Brumnich
- Consejo Nacional de Investigaciones Científicas y Técnicas/Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, Argentina
| | - María S Pereira
- Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
35
|
Neff F, Resch MC, Marty A, Rolley JD, Schütz M, Risch AC, Gossner MM. Long-term restoration success of insect herbivore communities in seminatural grasslands: a functional approach. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02133. [PMID: 32299121 DOI: 10.1002/eap.2133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Seminatural grasslands are important biodiversity hotspots, but they are increasingly degraded by intensive agriculture. Grassland restoration is considered to be promising in halting the ongoing loss of biodiversity, but this evaluation is mostly based on plant communities. Insect herbivores contribute substantially to grassland biodiversity and to the provisioning of a variety of ecosystem functions. However, it is unclear how they respond to different measures that are commonly used to restore seminatural grasslands from intensively used agricultural land. We studied the long-term success of different restoration techniques, which were originally targeted at reestablishing seminatural grassland plant communities, for herbivorous insect communities on taxonomic as well as functional level. Therefore, we sampled insect communities 22 yr after the establishment of restoration measures. These measures ranged from harvest and removal of biomass to removal of the topsoil layer and subsequent seeding of plant propagules. We found that insect communities in restored grasslands had higher taxonomic and functional diversity compared to intensively managed agricultural grasslands and were more similar in composition to target grasslands. Restoration measures including topsoil removal proved to be more effective, in particular in restoring species characterized by functional traits susceptible to intensive agriculture (e.g., large-bodied species). Our study shows that long-term success in the restoration of herbivorous insect communities of seminatural grasslands can be achieved by different restoration measures and that more invasive approaches that involve the removal of the topsoil layer are more effective. We attribute these restoration successes to accompanying changes in the plant community, resulting in bottom-up control of the herbivore community. Our results are of critical importance for management decisions aiming to restore multi-trophic communities, their functional composition and consequently the proliferation of ecosystem functions.
Collapse
Affiliation(s)
- Felix Neff
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, 8092, Switzerland
| | - M Carol Resch
- Community Ecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anja Marty
- Community Ecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Jacob D Rolley
- Community Ecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin Schütz
- Community Ecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anita C Risch
- Community Ecology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
36
|
Zarco‐Perello S, Carroll G, Vanderklift M, Holmes T, Langlois TJ, Wernberg T. Range‐extending tropical herbivores increase diversity, intensity and extent of herbivory functions in temperate marine ecosystems. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salvador Zarco‐Perello
- School of Biological Sciences and UWA Oceans Institute The University of Western Australia Crawley (Perth) WA Australia
| | - Gemma Carroll
- Institute of Marine Sciences University of California Santa Cruz Santa Cruz CA USA
- Environmental Research Division Southwest Fisheries Science Center National Oceanic and Atmospheric Administration (NOAA) Monterey CA USA
| | - Mat Vanderklift
- Oceans and Atmosphere Flagship Commonwealth Scientific and Industrial Research Organisation (CSIRO)Indian Ocean Marine Research Centre Crawley WA Australia
| | - Thomas Holmes
- Marine Science Program, Biodiversity and Conservation Science Division Department of Biodiversity, Conservation and AttractionsKensington WA Australia
| | - Tim J. Langlois
- School of Biological Sciences and UWA Oceans Institute The University of Western Australia Crawley (Perth) WA Australia
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute The University of Western Australia Crawley (Perth) WA Australia
| |
Collapse
|
37
|
Nunes A, Alda M, Trappenberg T. Multiplicative Decomposition of Heterogeneity in Mixtures of Continuous Distributions. ENTROPY 2020; 22:e22080858. [PMID: 33286629 PMCID: PMC7517460 DOI: 10.3390/e22080858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
A system's heterogeneity (diversity) is the effective size of its event space, and can be quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah-Kay indices in economics), which are indexed by an elasticity parameter q≥0. Under these indices, the heterogeneity of a composite system (the γ-heterogeneity) is decomposable into heterogeneity arising from variation within and between component subsystems (the α- and β-heterogeneity, respectively). Since the average heterogeneity of a component subsystem should not be greater than that of the pooled system, we require that γ≥α. There exists a multiplicative decomposition for Rényi heterogeneity of composite systems with discrete event spaces, but less attention has been paid to decomposition in the continuous setting. We therefore describe multiplicative decomposition of the Rényi heterogeneity for continuous mixture distributions under parametric and non-parametric pooling assumptions. Under non-parametric pooling, the γ-heterogeneity must often be estimated numerically, but the multiplicative decomposition holds such that γ≥α for q>0. Conversely, under parametric pooling, γ-heterogeneity can be computed efficiently in closed-form, but the γ≥α condition holds reliably only at q=1. Our findings will further contribute to heterogeneity measurement in continuous systems.
Collapse
Affiliation(s)
- Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, Canada;
- Correspondence:
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, Canada;
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
38
|
Cinner JE, Zamborain-Mason J, Gurney GG, Graham NAJ, MacNeil MA, Hoey AS, Mora C, Villéger S, Maire E, McClanahan TR, Maina JM, Kittinger JN, Hicks CC, D’agata S, Huchery C, Barnes ML, Feary DA, Williams ID, Kulbicki M, Vigliola L, Wantiez L, Edgar GJ, Stuart-Smith RD, Sandin SA, Green AL, Beger M, Friedlander AM, Wilson SK, Brokovich E, Brooks AJ, Cruz-Motta JJ, Booth DJ, Chabanet P, Tupper M, Ferse SCA, Sumaila UR, Hardt MJ, Mouillot D. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 2020; 368:307-311. [DOI: 10.1126/science.aax9412] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
The worldwide decline of coral reefs necessitates targeting management solutions that can sustain reefs and the livelihoods of the people who depend on them. However, little is known about the context in which different reef management tools can help to achieve multiple social and ecological goals. Because of nonlinearities in the likelihood of achieving combined fisheries, ecological function, and biodiversity goals along a gradient of human pressure, relatively small changes in the context in which management is implemented could have substantial impacts on whether these goals are likely to be met. Critically, management can provide substantial conservation benefits to most reefs for fisheries and ecological function, but not biodiversity goals, given their degraded state and the levels of human pressure they face.
Collapse
Affiliation(s)
- Joshua E. Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Jessica Zamborain-Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Georgina G. Gurney
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Nicholas A. J. Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
| | | | - Andrew S. Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Camilo Mora
- University of Hawai‘i at Manoa, Honolulu, HI, USA
| | | | - Eva Maire
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
- University of Montpellier, Montpellier, France
| | | | - Joseph M. Maina
- Wildlife Conservation Society, Bronx, NY, USA
- Macquarie University, Sydney, NSW, Australia
| | | | - Christina C. Hicks
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Lancaster University, Lancaster, Lancashire, UK
| | - Stephanie D’agata
- University of Montpellier, Montpellier, France
- Wildlife Conservation Society, Bronx, NY, USA
- Macquarie University, Sydney, NSW, Australia
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Cindy Huchery
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Michele L. Barnes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | | | - Ivor D. Williams
- National Oceanic and Atmospheric Administration, Washington, DC, USA
| | - Michel Kulbicki
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Laurent Vigliola
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Laurent Wantiez
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | | | | | | | | | - Maria Beger
- University of Leeds, Leeds, West Yorkshire, UK
| | | | - Shaun K. Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | | | | | | | | | - Pascale Chabanet
- ENTROPIE, IRD-UR-UNC-CNRS-IFREMER, La Réunion/New Caledonia, France
| | - Mark Tupper
- University of Portsmouth, Portsmouth, Hampshire, UK
| | | | | | | | - David Mouillot
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- University of Montpellier, Montpellier, France
| |
Collapse
|
39
|
Ricotta C, Laroche F, Szeidl L, Pavoine S. From alpha to beta functional and phylogenetic redundancy. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlo Ricotta
- Department of Environmental Biology University of Rome ‘La Sapienza’ Rome Italy
| | | | - László Szeidl
- John von Neumann Faculty of Informatics Óbuda University Budapest Hungary
| | - Sandrine Pavoine
- Centre d'Ecologie et des Sciences de la Conservation (CESCO) Muséum National d'Histoire Naturelle CNRSSorbonne Université Paris France
| |
Collapse
|
40
|
Georgiev KB, Chao A, Castro J, Chen Y, Choi C, Fontaine JB, Hutto RL, Lee E, Müller J, Rost J, Żmihorski M, Thorn S. Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kostadin B. Georgiev
- Field Station Fabrikschleichach Biocenter University of Würzburg Rauhenebrach Germany
- Bavarian Forest National Park Grafenau Germany
| | - Anne Chao
- Institute of Statistics National Tsing Hua University Hsin‐Chu Taiwan
| | - Jorge Castro
- Department of Ecology University of Granada Granada Spain
| | - Yan‐Han Chen
- Institute of Statistics National Tsing Hua University Hsin‐Chu Taiwan
| | - Chang‐Yong Choi
- Research Institute of Agriculture and Life Sciences Seoul National University Seoul Korea
| | - Joseph B. Fontaine
- Environmental and Conservation Sciences Murdoch University Murdoch WA Australia
| | - Richard L. Hutto
- Division of Biological Sciences University of Montana Missoula MT USA
| | - Eun‐Jae Lee
- Urban Planning Research Group Daejeon Sejong Research Institute Daejeon Korea
| | - Jörg Müller
- Field Station Fabrikschleichach Biocenter University of Würzburg Rauhenebrach Germany
- Bavarian Forest National Park Grafenau Germany
| | - Josep Rost
- Department of Environmental Sciences and Food Industries University of Vic‐Central University of Catalonia Catalonia Spain
| | - Michal Żmihorski
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Simon Thorn
- Field Station Fabrikschleichach Biocenter University of Würzburg Rauhenebrach Germany
| |
Collapse
|
41
|
Thorn S, Chao A, Bernhardt-Römermann M, Chen YH, Georgiev KB, Heibl C, Müller J, Schäfer H, Bässler C. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 2020; 101:e02949. [PMID: 31833562 DOI: 10.1002/ecy.2949] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022]
Abstract
Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.
Collapse
Affiliation(s)
- Simon Thorn
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany
| | - Anne Chao
- Institute of Statistics, National Tsing Hua University Hsin-Chu, Hsin-Chu City, 30043, Taiwan
| | - Markus Bernhardt-Römermann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Strasse 159, Jena, 07743, Germany
| | - Yan-Han Chen
- Institute of Statistics, National Tsing Hua University Hsin-Chu, Hsin-Chu City, 30043, Taiwan
| | - Kostadin B Georgiev
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany.,Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Christoph Heibl
- Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Biocenter, University of Würzburg, Glashüttenstrasse 5, Rauhenebrach, 96181, Germany.,Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany
| | - Hanno Schäfer
- Plant Biodiversity, Department of Ecology and Ecosystem Management, Technische Universität München, Emil-Ramann Strasse 2, Freising, 85354, Germany
| | - Claus Bässler
- Bavarian Forest National Park, Freyunger Strasse 2, Grafenau, 94481, Germany.,Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Frankfurt am Main, D-60438, Germany
| |
Collapse
|
42
|
McLean M, Mouillot D, Lindegren M, Villéger S, Engelhard G, Murgier J, Auber A. Fish communities diverge in species but converge in traits over three decades of warming. GLOBAL CHANGE BIOLOGY 2019; 25:3972-3984. [PMID: 31376310 DOI: 10.1111/gcb.14785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait-based approaches can provide better insight than species-based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33-year database of fish monitoring to compare the spatio-temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.
Collapse
Affiliation(s)
- Matthew McLean
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - David Mouillot
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Martin Lindegren
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Sébastien Villéger
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier Cedex, France
| | - Georg Engelhard
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, UK
- Collaborative Centre for Sustainable Use of the Seas (CCSUS), University of East Anglia, Norwich, UK
| | - Juliette Murgier
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| | - Arnaud Auber
- Unité Halieutique de Manche et mer du Nord, IFREMER, Boulogne-sur-Mer, France
| |
Collapse
|
43
|
Sherwin WB, Prat i Fornells N. The Introduction of Entropy and Information Methods to Ecology by Ramon Margalef. ENTROPY (BASEL, SWITZERLAND) 2019; 21:E794. [PMID: 33267507 PMCID: PMC7515323 DOI: 10.3390/e21080794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022]
Abstract
In ecology and evolution, entropic methods are now used widely and increasingly frequently. Their use can be traced back to Ramon Margalef's first attempt 70 years ago to use log-series to quantify ecological diversity, including searching for ecologically meaningful groupings within a large assemblage, which we now call the gamma level. The same year, Shannon and Weaver published a generally accessible form of Shannon's work on information theory, including the measure that we now call Shannon-Wiener entropy. Margalef seized on that measure and soon proposed that ecologists should use the Shannon-Weiner index to evaluate diversity, including assessing local (alpha) diversity and differentiation between localities (beta). He also discussed relating this measure to environmental variables and ecosystem processes such as succession. Over the subsequent decades, he enthusiastically expanded upon his initial suggestions. Finally, 2019 also would have been Margalef's 100th birthday.
Collapse
Affiliation(s)
- William B Sherwin
- Evolution & Ecology Research Centre, School of Biological Earth and Environmental Science, UNSW Sydney, Sydney NSW 2052, Australia
| | - Narcis Prat i Fornells
- Secció Ecologia, Departament de Biologia, Evolución, Ecologia & Ciències Ambiamentales, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
44
|
Alberdi A, Gilbert MTP. A guide to the application of Hill numbers to DNA‐based diversity analyses. Mol Ecol Resour 2019; 19:804-817. [DOI: 10.1111/1755-0998.13014] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Antton Alberdi
- Section for Evolutionary Genomics University of Copenhagen Copenhagen Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics University of Copenhagen Copenhagen Denmark
- NTNU University Museum Trondheim Norway
| |
Collapse
|