1
|
Xing S, Wang WJ, Wang L, Du H, Wu Z, Zong S, Cong Y, Ba S. Soil nutrient content dominates short-term vegetation changes in alpine tundra of Changbai Mountains. Front Microbiol 2024; 15:1422529. [PMID: 39220038 PMCID: PMC11362061 DOI: 10.3389/fmicb.2024.1422529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Alpine tundra, covering 3% of the Earth's land surface, harbors approximately 4% of higher plant species. Changes in this vegetation significantly impact biodiversity and ecosystem services. Recent studies have primarily focused on large-scale and long-term vegetation changes in polar and high-latitude regions. However, the study of short-term vegetation changes and their primary drivers has received insufficient attention in alpine tundra. This study aimed to investigate vegetation changes and their dominant drivers in the alpine tundra of Changbai Mountains-located at the southern edge of the alpine tundra distribution in Eastern Eurasia-over a short period by re-surveying permanent plots in 2019 and comparing them with data from 2014. The results showed that significant changes were observed in alpine tundra vegetation during the study period. The importance values of typical alpine tundra plants such as Rhododendron chrysanthum, Vaccinium uliginosum, and Dryas octopetala decreased noticeably, while those of herbaceous species such as Deyeuxia angustifolia and Sanguisorba sitchensis increased significantly. Species richness, diversity, and evenness at different altitudinal gradients showed varying degrees of increase. A distinct expansion trend of herbaceous species was observed in the alpine tundra, contributing to a shift in plant community composition toward herbaceous dominance. This shift might result in the meadowization of the dwarf shrub tundra. Our findings further revealed that soil nutrients rather than climate factors, dominated the changes of plant communities over a short period. These findings provide scientific references for the conservation and management of biodiversity, as well as for projecting future vegetation dynamics in alpine tundra.
Collapse
Affiliation(s)
- Shanfeng Xing
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Wen J. Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Lei Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Haibo Du
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Zhengfang Wu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Shengwei Zong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Yu Cong
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Shengjie Ba
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
2
|
Quan Q, He N, Zhang R, Wang J, Luo Y, Ma F, Pan J, Wang R, Liu C, Zhang J, Wang Y, Song B, Li Z, Zhou Q, Yu G, Niu S. Plant height as an indicator for alpine carbon sequestration and ecosystem response to warming. NATURE PLANTS 2024; 10:890-900. [PMID: 38755277 PMCID: PMC11208140 DOI: 10.1038/s41477-024-01705-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP). Along a 1,500 km transect on the Plateau, taller plant community promoted NEP and soil carbon through associated chlorophyll content and other photosynthetic traits at the community level. Overall, plant community height as a dominant trait is associated with species composition and regulates ecosystem C sequestration in the high-elevation biome. This trait-based association provides new insights into predicting the direction, magnitude and sensitivity of ecosystem C fluxes in response to climate warming.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, PR China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Ruomeng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yiheng Wang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Bing Song
- School of Resources and Environmental Engineering, Ludong University, Yantai, PR China
| | - Zhaolei Li
- College of Resources and Environment, Southwest University, Chongqing, PR China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
- Department of Environment and Resources, University of Chinese Academy of Sciences, Beijing, PR China.
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
3
|
Yuan M, Na M, Hicks LC, Rousk J. Limiting resources for soil microbial growth in climate change simulation treatments in the subarctic. Ecology 2024; 105:e4210. [PMID: 37989722 DOI: 10.1002/ecy.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023]
Abstract
The microbial use of resources to sustain life and reproduce influences for example, decomposition and plant nutrient provisioning. The study of "limiting factors" has shed light on the interaction between plants and their environment. Here, we investigated whether carbon (C), nitrogen (N), or phosphorus (P) was limiting for soil microorganisms in a subarctic tundra heath, and how changes in resource availability associated with climate change affected this. We studied samples in which changes in resource availability due to climate warming were simulated by the addition of birch litter and/or inorganic N. To these soils, we supplied factorial C (as glucose), N (as NH4 NO3 ), and P (as KH2 PO4 /K2 HPO4 ) additions ("limiting factor assays," LFA), to determine the limiting factors. The combination of C and P induced large growth responses in all soils and, combined with a systematic tendency for growth increases by C, this suggested that total microbial growth was primarily limited by C and secondarily by P. The C limitation was alleviated by the field litter treatment and strengthened by N fertilization. The microbial growth response to the LFA-C and LFA-P addition was strongest in the field-treatment that combined litter and N addition. We also found that bacteria were closer to P limitation than fungi. Our results suggest that, under a climate change scenario, increased C availability resulting from Arctic greening, treeline advance, and shrubification will reduce the microbial C limitation, while increased N availability resulting from warming will intensify the microbial C limitation. Our results also suggest that the synchronous increase of both C and N availability might lead to a progressive P limitation of microbial growth, primarily driven by bacteria being closer to P limitation. These shifts in microbial resource limitation might lead to a microbial targeting of the limiting element from organic matter, and also trigger competition for nutrients between plants and microorganisms, thus modulating the productivity of the ecosystem.
Collapse
Affiliation(s)
- Mingyue Yuan
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Meng Na
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Lettice C Hicks
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Johannes Rousk
- Section of Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Wei B, Zhang D, Wang G, Liu Y, Li Q, Zheng Z, Yang G, Peng Y, Niu K, Yang Y. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. THE NEW PHYTOLOGIST 2023; 240:1802-1816. [PMID: 37434301 DOI: 10.1111/nph.19115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau. Experimental warming shifted community-level functional traits toward more acquisitive values, with earlier green-up, greater plant height, larger leaves, higher photosynthetic resource-use efficiency, thinner roots, and greater specific root length and root nutrient concentrations. However, warming had a negligible effect in terms of functional diversity. In addition, warming shifted hub traits which have the highest centrality in the network from specific root area to leaf area. These results demonstrate that above- and belowground traits exhibit consistent adaptive strategies, with more acquisitive traits in warmer environments. Such changes could provide an adaptive advantage for plants in response to environmental change.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kechang Niu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
García Criado M, Myers-Smith IH, Bjorkman AD, Normand S, Blach-Overgaard A, Thomas HJD, Eskelinen A, Happonen K, Alatalo JM, Anadon-Rosell A, Aubin I, Te Beest M, Betway-May KR, Blok D, Buras A, Cerabolini BEL, Christie K, Cornelissen JHC, Forbes BC, Frei ER, Grogan P, Hermanutz L, Hollister RD, Hudson J, Iturrate-Garcia M, Kaarlejärvi E, Kleyer M, Lamarque LJ, Lembrechts JJ, Lévesque E, Luoto M, Macek P, May JL, Prevéy JS, Schaepman-Strub G, Sheremetiev SN, Siegwart Collier L, Soudzilovskaia NA, Trant A, Venn SE, Virkkala AM. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat Commun 2023; 14:3837. [PMID: 37380662 DOI: 10.1038/s41467-023-39573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.
Collapse
Affiliation(s)
| | | | - Anne D Bjorkman
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Signe Normand
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Haydn J D Thomas
- School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anu Eskelinen
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Konsta Happonen
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Alba Anadon-Rosell
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Isabelle Aubin
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, ON, Canada
| | - Mariska Te Beest
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Daan Blok
- Dutch Research Council (NWO), The Hague, The Netherlands
| | - Allan Buras
- Land Surface-Atmosphere Interactions, School of Life Sciences Weihenstephan, Freising, Germany
| | - Bruno E L Cerabolini
- Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Katherine Christie
- Threatened, Endangered, and Diversity Program, Alaska Department of Fish and Game, Anchorage, USA
| | - J Hans C Cornelissen
- Section Systems Ecology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam, The Netherlands
| | - Bruce C Forbes
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | - Esther R Frei
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, Switzerland
| | - Paul Grogan
- Department of Biology, Queen's University, Kingston, Ontario, ON, Canada
| | - Luise Hermanutz
- Department of Biology, Memorial University, St. John's, NL, Canada
| | | | - James Hudson
- Government of British Columbia, Vancouver, BC, Canada
| | - Maitane Iturrate-Garcia
- Department of Chemical and Biological Metrology, Federal Institute of Metrology METAS, Bern-Wabern, Switzerland
| | - Elina Kaarlejärvi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Michael Kleyer
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Jonas J Lembrechts
- Research Group Plants and Ecosystems (PLECO), University of Antwerp, Wilrijk, Belgium
| | - Esther Lévesque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Miska Luoto
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Petr Macek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jeremy L May
- Department of Biological Sciences, Florida International University, Miami, FL, USA
- Department of Biology and Environmental Science, Marietta College, Marietta, OH, USA
| | - Janet S Prevéy
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
- U.S. Geological Survey, Fort Collins, CO, USA
| | - Gabriela Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Laura Siegwart Collier
- Department of Biology, Memorial University, St. John's, NL, Canada
- Terra Nova National Park, Parks Canada Agency, Glovertown, NL, Canada
| | | | - Andrew Trant
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, ON, Canada
| | - Susanna E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Anna-Maria Virkkala
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Woodwell Climate Research Center, Falmouth, MA, USA
| |
Collapse
|
6
|
Mezzetti M, Ryan CP, Balestrucci P, Lacquaniti F, Moscatelli A. Bayesian hierarchical models and prior elicitation for fitting psychometric functions. Front Comput Neurosci 2023; 17:1108311. [PMID: 36936193 PMCID: PMC10018033 DOI: 10.3389/fncom.2023.1108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Our previous articles demonstrated how to analyze psychophysical data from a group of participants using generalized linear mixed models (GLMM) and two-level methods. The aim of this article is to revisit hierarchical models in a Bayesian framework. Bayesian models have been previously discussed for the analysis of psychometric functions although this approach is still seldom applied. The main advantage of using Bayesian models is that if the prior is informative, the uncertainty of the parameters is reduced through the combination of prior knowledge and the experimental data. Here, we evaluate uncertainties between and within participants through posterior distributions. To demonstrate the Bayesian approach, we re-analyzed data from two of our previous studies on the tactile discrimination of speed. We considered different methods to include a priori knowledge in the prior distribution, not only from the literature but also from previous experiments. A special type of Bayesian model, the power prior distribution, allowed us to modulate the weight of the prior, constructed from a first set of data, and use it to fit a second one. Bayesian models estimated the probability distributions of the parameters of interest that convey information about the effects of the experimental variables, their uncertainty, and the reliability of individual participants. We implemented these models using the software Just Another Gibbs Sampler (JAGS) that we interfaced with R with the package rjags. The Bayesian hierarchical model will provide a promising and powerful method for the analysis of psychometric functions in psychophysical experiments.
Collapse
Affiliation(s)
- Maura Mezzetti
- Department Economics and Finance, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: Maura Mezzetti
| | - Colleen P. Ryan
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | | | - Francesco Lacquaniti
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
7
|
Power CC, Assmann JJ, Prendin AL, Treier UA, Kerby JT, Normand S. Improving ecological insights from dendroecological studies of Arctic shrub dynamics: Research gaps and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158008. [PMID: 35988628 DOI: 10.1016/j.scitotenv.2022.158008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Rapid climate change has been driving changes in Arctic vegetation in recent decades, with increased shrub dominance in many tundra ecosystems. Dendroecological observations of tundra shrubs can provide insight into current and past growth and recruitment patterns, both key components for understanding and predicting ongoing and future Arctic shrub dynamics. However, generalizing these dynamics is challenging as they are highly scale-dependent and vary among sites, species, and individuals. Here, we provide a perspective on how some of these challenges can be overcome. Based on a targeted literature search of dendrochronological studies from 2005 to 2022, we highlight five research gaps that currently limit dendro-based studies from revealing cross-scale ecological insight into shrub dynamics across the Arctic biome. We further discuss the related research priorities, suggesting that future studies could consider: 1) increasing focus on intra- and interspecific variation, 2) including demographic responses other than radial growth, 3) incorporating drivers, in addition to warming, at different spatial and temporal scales, 4) implementing systematic and unbiased sampling approaches, and 5) investigating the cellular mechanisms behind the observed responses. Focusing on these aspects in dendroecological studies could improve the value of the field for addressing cross-scale and plant community-framed ecological questions. We outline how this could be facilitated through the integration of community-based dendroecology and dendroanatomy with remote sensing approaches. Integrating new technologies and a more multidisciplinary approach in dendroecological research could provide key opportunities to close important knowledge gaps in our understanding of scale-dependencies, as well as intra- and inter-specific variation, in vegetation community dynamics across the Arctic tundra.
Collapse
Affiliation(s)
- Candice C Power
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark.
| | - Jakob J Assmann
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Angela L Prendin
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Urs A Treier
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| | - Jeffrey T Kerby
- Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark; Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Renault D, Leclerc C, Colleu M, Boutet A, Hotte H, Colinet H, Chown SL, Convey P. The rising threat of climate change for arthropods from Earth's cold regions: Taxonomic rather than native status drives species sensitivity. GLOBAL CHANGE BIOLOGY 2022; 28:5914-5927. [PMID: 35811569 PMCID: PMC9544941 DOI: 10.1111/gcb.16338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Polar and alpine regions are changing rapidly with global climate change. Yet, the impacts on biodiversity, especially on the invertebrate ectotherms which are dominant in these areas, remain poorly understood. Short-term extreme temperature events, which are growing in frequency, are expected to have profound impacts on high-latitude ectotherms, with native species being less resilient than their alien counterparts. Here, we examined in the laboratory the effects of short periodic exposures to thermal extremes on survival responses of seven native and two non-native invertebrates from the sub-Antarctic Islands. We found that survival of dipterans was significantly reduced under warming exposures, on average having median lethal times (LT50 ) of about 30 days in control conditions, which declined to about 20 days when exposed to daily short-term maxima of 24°C. Conversely, coleopterans were either not, or were less, affected by the climatic scenarios applied, with predicted LT50 as high as 65 days under the warmest condition (daily exposures at 28°C for 2 h). The native spider Myro kerguelensis was characterized by an intermediate sensitivity when subjected to short-term daily heat maxima. Our results unexpectedly revealed a taxonomic influence, with physiological sensitivity to heat differing between higher level taxa, but not between native and non-native species representing the same higher taxon. The survival of a non-native carabid beetle under the experimentally imposed conditions was very high, but similar to that of native beetles, while native and non-native flies also exhibited very similar sensitivity to warming. As dipterans are a major element of diversity of sub-Antarctic, Arctic and other cold ecosystems, such observations suggest that the increased occurrence of extreme, short-term, thermal events could lead to large-scale restructuring of key terrestrial ecosystem components both in ecosystems protected from and those exposed to the additional impacts of biological invasions.
Collapse
Affiliation(s)
- David Renault
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Camille Leclerc
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- INRAE, Aix‐Marseille Université, UMR RECOVERAix‐en‐ProvenceFrance
| | - Marc‐Antoine Colleu
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Aude Boutet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Hoel Hotte
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- Nematology Unit, Plant Health LaboratoryANSESLe Rheu CedexFrance
| | - Hervé Colinet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Peter Convey
- British Antarctic Survey, NERCCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
9
|
Liu Z, Kimball JS, Ballantyne AP, Parazoo NC, Wang WJ, Bastos A, Madani N, Natali SM, Watts JD, Rogers BM, Ciais P, Yu K, Virkkala AM, Chevallier F, Peters W, Patra PK, Chandra N. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nat Commun 2022; 13:5626. [PMID: 36163194 PMCID: PMC9512808 DOI: 10.1038/s41467-022-33293-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Warming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2 uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2 loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2 uptake, and thus resulting in a slower rate of increasing annual net CO2 uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2 uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2 uptake as high latitude ecosystems respond to warming climate conditions. The northern high latitude permafrost region has been an important contributor to the carbon sink since the 1980s. A new study finds that as tree cover increases, respiratory CO2 loss during late-growing season offsets photosynthetic CO2 uptake and leads to a slower rate of increasing annual net CO2 uptake.
Collapse
Affiliation(s)
- Zhihua Liu
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA. .,CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.
| | - John S Kimball
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA. .,Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA.
| | - Ashley P Ballantyne
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA. .,Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Nicholas C Parazoo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wen J Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Changchun, Jilin, China.
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Integration, Jena, Germany
| | - Nima Madani
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Kailiang Yu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Frederic Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wouter Peters
- Meteorology and Air Quality Group, Wageningen University and Research, Wageningen, the Netherlands.,University, Centre for Isotope Research, Groningen, the Netherlands
| | - Prabir K Patra
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| | - Naveen Chandra
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
| |
Collapse
|
10
|
Beet CR, Hogg ID, Cary SC, McDonald IR, Sinclair BJ. The Resilience of Polar Collembola (Springtails) in a Changing Climate. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100046. [PMID: 36683955 PMCID: PMC9846479 DOI: 10.1016/j.cris.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.
Collapse
Affiliation(s)
- Clare R. Beet
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian D. Hogg
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - S. Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Boyle JS, Angers-Blondin S, Assmann JJ, Myers-Smith IH. Summer temperature—but not growing season length—influences radial growth of Salix arctica in coastal Arctic tundra. Polar Biol 2022. [DOI: 10.1007/s00300-022-03074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractArctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of growing season length and climate variables to individually predict radial growth. We found that summer temperature best explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the productivity of all plant species in Arctic tundra ecosystems.
Collapse
|
12
|
Shrubification along Pipeline Corridors in Permafrost Regions. FORESTS 2022. [DOI: 10.3390/f13071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pipeline corridors have been rapidly increasing in length and density because of the ever growing demand for crude oil and natural gas resources in hydrocarbon-rich permafrost regions. Pipeline engineering activities have significant implications for the permafrost environment in cold regions. Along these pipeline corridors, the shrubification in the right-of-way (ROW) has been extensively observed during vegetation recovery. However, the hydrothermal mechanisms of this ROW shrubification have seldom been studied and thus remain poorly understood. This paper reviews more than 112 articles mainly published from 2000 to 2022 and focuses on the hydrothermal mechanisms of shrubification associated with environmental changes induced by the rapidly degrading permafrost from pipeline construction and around the operating pipelines under a warming climate. First, the shrubification from pipeline construction and operation and the ensuing vegetation clearance are featured. Then, key permafrost-related ROW shrubification mechanisms (e.g., from the perspectives of warmer soil, soil moisture, soil type, soil nutrients, topography and landscapes, and snow cover) are discussed. Other key influencing factors on these hydrothermal and other mechanisms are hierarchically documented as well. In the end, future research priorities are identified and proposed. We call for prioritizing more systematic and in-depth investigations and surveys, laboratory testing, long-term field monitoring, and numerical modeling studies of the ROW shrubification along oil and gas pipelines in permafrost regions, such as in boreal and arctic zones, as well as in alpine and high-plateau regions. This review can improve our understanding of shrubification mechanisms under pipeline disturbances and climate changes and help to better manage the ecological environment along pipeline corridors in permafrost regions.
Collapse
|
13
|
Andresen LC, Bodé S, Björk RG, Michelsen A, Aerts R, Boeckx P, Cornelissen JHC, Klanderud K, van Logtestijn RSP, Rütting T. Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. MYCORRHIZA 2022; 32:305-313. [PMID: 35307782 PMCID: PMC9184409 DOI: 10.1007/s00572-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
Collapse
Affiliation(s)
- Louise C Andresen
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden.
| | - Samuel Bodé
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Robert G Björk
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Rien Aerts
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - J Hans C Cornelissen
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Tobias Rütting
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Klarenberg IJ, Keuschnig C, Russi Colmenares AJ, Warshan D, Jungblut AD, Jónsdóttir IS, Vilhelmsson O. Long-term warming effects on the microbiome and nifH gene abundance of a common moss species in sub-Arctic tundra. THE NEW PHYTOLOGIST 2022; 234:2044-2056. [PMID: 34719786 DOI: 10.1111/nph.17837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species composition in the Arctic, but little is known about the response of moss microbiomes in these environments. Here, we studied the total and potentially active bacterial communities associated with Racomitrium lanuginosum in response to a 20-yr in situ warming in an Icelandic heathland. We evaluated the effect of warming and warming-induced shrub expansion on the moss bacterial community composition and diversity, and nifH gene abundance. Warming changed both the total and the potentially active bacterial community structure, while litter abundance only affected the total bacterial community structure. The abundance of nifH genes was negatively affected by litter abundance. We also found shifts in the potentially nitrogen-fixing community, with Nostoc decreasing and noncyanobacterial diazotrophs increasing in relative abundance. Our data suggest that the moss microbial community and potentially nitrogen fixing taxa will be sensitive to future warming, partly via changes in litter and shrub abundance.
Collapse
Affiliation(s)
- Ingeborg J Klarenberg
- Natural Resource Sciences, University of Akureyri, Borgir i Nordurslod, Akureyri, 600, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Avenue Guy de Collongue 36, Écully, 69134, France
| | - Ana J Russi Colmenares
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Ingibjörg S Jónsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Borgir i Nordurslod, Akureyri, 600, Iceland
- BioMedical Center, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AJ, UK
| |
Collapse
|
15
|
N/P Addition Is More Likely Than N Addition Alone to Promote a Transition from Moss-Dominated to Graminoid-Dominated Tundra in the High-Arctic. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nutrient availability for tundra vegetation could change drastically due to increasing temperatures and frequency of nitrogen deposition in the Arctic. Few studies have simultaneously examined the response of plant communities to these two pressures over a long period. This study aims to assess which driver between increasing nitrogen (N) and phosphorus (P) availability through global warming and increasing N availability alone via N deposition is more likely to transform arctic wetland vegetation and whether there is a time lag in this response. An annual fertilization experiment simulating these nutrient inputs was conducted for 17 years in the Canadian High-Arctic to assess the impact on aboveground net primary productivity, floristic composition, and plant nutrient concentration. While the primary productivity of mosses remains unchanged by fertilization after 17 years, productivity of graminoids was increased slightly by N addition (36% increase at the highest dose). In contrast, the primary productivity of graminoids increased strongly with N/P addition (over 227% increase). We noted no difference in graminoid productivity between the 2nd and 5th year of the experiment, but we observed a 203% increase between the 5th and 17th year in the N/P addition treatments. We also noted a 49% decrease in the total moss cover and an 155% increase in the total graminoid cover between the 2nd and 17th year of N/P addition. These results indicate that the impact of warming through increased N/P availability was greater than those of N deposition alone (N addition) and promoted the transition from a moss-dominated tundra to a graminoid-dominated tundra. However, this transition was subject to a time lag of up to 17 years, suggesting that increased productivity of graminoids resulted from a release of nutrients via the decomposition of lower parts of the moss mat.
Collapse
|
16
|
Heim RJ, Heim W, Bültmann H, Kamp J, Rieker D, Yurtaev A, Hölzel N. Fire disturbance promotes biodiversity of plants, lichens and birds in the Siberian subarctic tundra. GLOBAL CHANGE BIOLOGY 2022; 28:1048-1062. [PMID: 34706133 DOI: 10.1111/gcb.15963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Fire shapes the world's terrestrial ecosystems and has been influencing biodiversity patterns for millennia. Anthropogenic drivers alter fire regimes. Wildfires can amplify changes in the structure, biodiversity and functioning of the fast-warming tundra ecosystem. However, there is little evidence available, how these fires affect species diversity and community composition of tundra ecosystems over the long term. We studied long-term fire effects on community composition and diversity at different trophic levels of the food web in the subarctic tundra of Western Siberia. In a space-for-time approach we compared three large fire scars (>44, 28 and 12 years old) to unburnt controls. We found that diversity (measured as species richness, Shannon index and evenness) of vascular and non-vascular plants and birds was strongly affected by fire, with the greatest species richness of plants and birds for the intermediate-age fire scar (28 years). Species composition of plants and birds still differed from that of the control >44 years after fire. Increased deciduous shrub cover was related to species richness of all plants in a hump-shaped manner. The proportion of southern (taiga) bird species was highest in the oldest fire scar, which had the highest shrub cover. We conclude that tundra fires have long-term legacies with regard to species diversity and community composition. They may also increase landscape-scale species richness and facilitate range expansions of more southerly distributed species to the subarctic tundra ecosystem.
Collapse
Affiliation(s)
- Ramona J Heim
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Wieland Heim
- Institute of Landscape Ecology, University of Münster, Münster, Germany
- Department of Biology, University of Turku, Turku, Finland
| | - Helga Bültmann
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Johannes Kamp
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Daniel Rieker
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Andrey Yurtaev
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, Tyumen, Russia
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| |
Collapse
|
17
|
A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. REMOTE SENSING 2021. [DOI: 10.3390/rs13234933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As Arctic warming continues, its impact on vegetation greenness is complex, variable and inherently scale-dependent. Studies with multiple spatial resolution satellite observations, with 30 m resolution included, on tundra greenness have been implemented all over the North American tundra. However, finer resolution studies on the greenness trends in the Russian tundra have only been carried out at a limited local or regional scale and the spatial heterogeneity of the trend remains unclear. Here, we analyzed the fine spatial resolution dataset Landsat archive from 1984 to 2018 over the entire Russian tundra and produced pixel-by-pixel greenness trend maps with the support of Google Earth Engine (GEE). The entire Russian tundra was divided into six geographical regions based on World Wildlife Fund (WWF) ecoregions. A Theil–Sen regression (TSR) was used for the trend identification and the changed pixels with a significance level p < 0.05 were retained in the final results for a subsequent greening/browning trend analysis. Our results indicated that: (1) the number of valid Landsat observations was spatially varied. The Western and Eastern European Tundras (WET and EET) had denser observations than other regions, which enabled a trend analysis during the whole study period from 1984 to 2018; (2) the most significant greening occurred in the Yamal-Gydan tundra (WET), Bering tundra and Chukchi Peninsula tundra (CT) during 1984–2018. The EET had a greening trend of 2.3% and 6.6% and the WET of 3.4% and 18% during 1984–1999 and 2000–2018, respectively. The area of browning trend was relatively low when we first masked the surface water bodies out before the trend analysis; and (3) the Landsat-based greenness trend was broadly similar to the AVHRR-based trend over the entire region but AVHRR retrieved more browning areas due to spectral mixing adjacent effects. Higher resolution images and field measurement studies are strongly needed to understand the vegetation trend over the Russian tundra ecosystem.
Collapse
|
18
|
MacDougall AS, Caplat P, Olofsson J, Siewert MB, Bonner C, Esch E, Lessard-Therrien M, Rosenzweig H, Schäfer AK, Raker P, Ridha H, Bolmgren K, Fries TCE, Larson K. Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. GLOBAL CHANGE BIOLOGY 2021; 27:5070-5083. [PMID: 34297435 DOI: 10.1111/gcb.15767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Arctic plants are adapted to climatic variability, but their long-term responses to warming remain unclear. Responses may occur by range shifts, phenological adjustments in growth and reproduction, or both. Here, we compare distribution and phenology of 83 arctic and boreal mountain species, sampled identically in the early 20th (1917-1919) and 21st centuries (2017-2018) from a region of northern Sweden that has warmed significantly. We test two compensatory hypotheses to high-latitude warming-upward shifts in distribution, and earlier or extended growth and reproduction. For distribution, we show dramatic upward migration by 69% of species, averaging 6.1 m per decade, especially boreal woodland taxa whose upward expansion has reduced arctic montane habitat by 30%. Twenty percent of summit species showed distributional shifts but downward, especially moisture-associated snowbed flora. For phenology, we detected wide inter-annual variability in the onset of leafing and flowering in both eras. However, there was no detectable change in growing-season length, relating to two mechanisms. First, plot-level snow melt data starting in 1917 demonstrated that melt date, rather than vernal temperatures, better predicts plant emergence, with snow melt influenced by warmer years having greater snowfall-warmer springs did not always result in earlier emergence because snowbeds can persist longer. Second, the onset of reproductive senescence between eras was similar, even when plant emergence was earlier by a month, possibly due to intensified summer heat stress or hard-wired 'canalization' where senescence occurs regardless of summer temperature. Migrations in this system have possibly buffered arctic species against displacement by boreal expansion and warming, but ongoing temperature increases, woody plant invasion, and a potential lack of flexibility in timing of senescence may foreshadow challenges.
Collapse
Affiliation(s)
- Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
| | - Paul Caplat
- School of Biological Sciences, Queen's University, Belfast, Northern Ireland
| | - Johan Olofsson
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Matthias B Siewert
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Colin Bonner
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Ellen Esch
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | | - Pia Raker
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
| | - Hassan Ridha
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
| | - Kjell Bolmgren
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
| | | | - Keith Larson
- Climate Impacts Research Centre, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Ylänne H, Madsen RL, Castaño C, Metcalfe DB, Clemmensen KE. Reindeer control over subarctic treeline alters soil fungal communities with potential consequences for soil carbon storage. GLOBAL CHANGE BIOLOGY 2021; 27:4254-4268. [PMID: 34028938 DOI: 10.1111/gcb.15722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The climate-driven encroachment of shrubs into the Arctic is accompanied by shifts in soil fungal communities that could contribute to a net release of carbon from tundra soils. At the same time, arctic grazers are known to prevent the establishment of deciduous shrubs and, under certain conditions, promote the dominance of evergreen shrubs. As these different vegetation types associate with contrasting fungal communities, the belowground consequences of climate change could vary among grazing regimes. Yet, at present, the impact of grazing on soil fungal communities and their links to soil carbon have remained speculative. Here we tested how soil fungal community composition, diversity and function depend on tree vicinity and long-term reindeer grazing regime and assessed how the fungal communities relate to organic soil carbon stocks in an alpine treeline ecotone in Northern Scandinavia. We determined soil carbon stocks and characterized soil fungal communities directly underneath and >3 m away from mountain birches (Betula pubescens ssp. czerepanovii) in two adjacent 55-year-old grazing regimes with or without summer grazing by reindeer (Rangifer tarandus). We show that the area exposed to year-round grazing dominated by evergreen dwarf shrubs had higher soil C:N ratio, higher fungal abundance and lower fungal diversity compared with the area with only winter grazing and higher abundance of mountain birch. Although soil carbon stocks did not differ between the grazing regimes, stocks were positively associated with root-associated ascomycetes, typical to the year-round grazing regime, and negatively associated with free-living saprotrophs, typical to the winter grazing regime. These findings suggest that when grazers promote dominance of evergreen dwarf shrubs, they induce shifts in soil fungal communities that increase soil carbon sequestration in the long term. Thus, to predict climate-driven changes in soil carbon, grazer-induced shifts in vegetation and soil fungal communities need to be accounted for.
Collapse
Affiliation(s)
- Henni Ylänne
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | | | - Carles Castaño
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniel B Metcalfe
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Karina E Clemmensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Bjorkman AD, Wulff A. A reflection on four impactful Ambio papers: The biotic perspective : This article belongs to Ambio's 50th Anniversary Collection. Theme: Climate change impacts. AMBIO 2021; 50:1145-1149. [PMID: 33650069 PMCID: PMC8068746 DOI: 10.1007/s13280-020-01442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Climate change represents one of the most pressing societal and scientific challenges of our time. While much of the current research on climate change focuses on future prediction, some of the strongest signals of warming can already be seen in Arctic and alpine areas, where temperatures are rising faster than the global average, and in the oceans, where the combination of rising temperatures and acidification due to increased CO2 concentrations has had catastrophic consequences for sensitive marine organisms inhabiting coral reefs. The scientific papers highlighted as part of this anniversary issue represent some of the most impactful advances in our understanding of the consequences of anthropogenic climate change. Here, we reflect on the legacy of these papers from the biotic perspective.
Collapse
Affiliation(s)
- Anne D. Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 413 19 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 413 19 Gothenburg, Sweden
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 413 19 Gothenburg, Sweden
| |
Collapse
|
21
|
Rapid Ecosystem Change at the Southern Limit of the Canadian Arctic, Torngat Mountains National Park. REMOTE SENSING 2021. [DOI: 10.3390/rs13112085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Northern protected areas guard against habitat and species loss but are themselves highly vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside warming temperatures and regional declines in caribou. Little is known, however, about how biophysical controls mediate plant responses to climate warming, and available observational data are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling. Random forest classification was used to hindcast and simulate land cover change for four different land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat archive). The resulting land cover maps, in addition to topographic and biotic variables, were then used to predict where future shrub expansion is likely to occur using a binomial regression framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-elevations. The predictive model identified both biotic (initial cover class, number of surrounding shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43 relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where rapid vegetation change is predicted to occur will help to validate remote sensing observations and will improve our understanding of the consequences of change for biotic and abiotic components of the tundra ecosystem, including important cultural keystone species.
Collapse
|
22
|
Increased Above- and Belowground Plant Input Can Both Trigger Microbial Nitrogen Mining in Subarctic Tundra Soils. Ecosystems 2021. [DOI: 10.1007/s10021-021-00642-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractLow nitrogen (N) availability in the Arctic and Subarctic constrains plant productivity, resulting in low litter inputs to soil. Increased N availability and litter inputs as a result of climate change, therefore, have the potential to impact the functioning of these ecosystems. We examined plant and microbial responses to chronic inorganic N (5 g m−2 year−1) and/or litter (90 g m−2 year−1), supplied during three growing seasons. We also compared the response to more extreme additions, where the total cumulative additions of N (that is, 15 g m−2) and litter (that is, 270 g m−2) were concentrated into a single growth season. Plant productivity was stimulated by N additions and was higher in the extreme addition plots than those with chronic annual additions. Microbial community structure also differed between the chronic and extreme plots, and there was a significant relationship between plant and microbial community structures. Despite differences in microbial structure, the field treatments had no effect on microbial growth or soil C mineralization. However, gross N mineralization was higher in the N addition plots. This led to a lower ratio of soil C mineralization to gross N mineralization, indicating microbial targeting of N-rich organic matter (“microbial N-mining”), likely driven by the increased belowground C-inputs due to stimulated plant productivity. Surprisingly, aboveground litter addition also decreased ratio of soil C mineralization to gross N mineralization. Together, these results suggest that elevated N availability will induce strong responses in tundra ecosystems by promoting plant productivity, driving changes in above- and belowground community structures, and accelerating gross N mineralization. In contrast, increased litter inputs will have subtle effects, primarily altering the ratio between C and N derived from soil organic matter.
Collapse
|
23
|
Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proc Natl Acad Sci U S A 2021; 118:1921854118. [PMID: 33876741 PMCID: PMC8053992 DOI: 10.1073/pnas.1921854118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth’s climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity.
Collapse
|
24
|
Kelsey KC, Pedersen SH, Leffler AJ, Sexton JO, Feng M, Welker JM. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. GLOBAL CHANGE BIOLOGY 2021; 27:1572-1586. [PMID: 33372357 DOI: 10.1111/gcb.15505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Tundra dominates two-thirds of the unglaciated, terrestrial Arctic. Although this region has experienced rapid and widespread changes in vegetation phenology and productivity over the last several decades, the specific climatic drivers responsible for this change remain poorly understood. Here we quantified the effect of winter snowpack and early spring temperature conditions on growing season vegetation phenology (timing of the start, peak, and end of the growing season) and productivity of the dominant tundra vegetation communities of Arctic Alaska. We used daily remotely sensed normalized difference vegetation index (NDVI), and daily snowpack and temperature variables produced by SnowModel and MicroMet, coupled physically based snow and meteorological modeling tools, to (1) determine the most important snowpack and thermal controls on tundra vegetation phenology and productivity and (2) describe the direction of these relationships within each vegetation community. Our results show that soil temperature under the snowpack, snowmelt timing, and air temperature following snowmelt are the most important drivers of growing season timing and productivity among Arctic vegetation communities. Air temperature after snowmelt was the most important control on timing of season start and end, with warmer conditions contributing to earlier phenology in all vegetation communities. In contrast, the controls on the timing of peak season and productivity also included snowmelt timing and soil temperature under the snowpack, dictated in part by the snow insulating capacity. The results of this novel analysis suggest that while future warming effects on phenology may be consistent across communities of the tundra biome, warming may result in divergent, community-specific productivity responses if coupled with reduced snow insulating capacity lowers winter soil temperature and potential nutrient cycling in the soil.
Collapse
Affiliation(s)
- Katharine C Kelsey
- Department of Geography and Environmental Science, University of Colorado Denver, Denver, CO, USA
| | - Stine Højlund Pedersen
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, USA
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - A Joshua Leffler
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | | | - Min Feng
- terraPulse, Inc, Gaithersburg, MD, USA
| | - Jeffrey M Welker
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- University of the Arctic-UArctic, Rovaniemi, Finland
| |
Collapse
|
25
|
Clemmensen KE, Durling MB, Michelsen A, Hallin S, Finlay RD, Lindahl BD. A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol Lett 2021; 24:1193-1204. [PMID: 33754469 DOI: 10.1111/ele.13735] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Tundra ecosystems are global belowground sinks for atmospheric CO2 . Ongoing warming-induced encroachment by shrubs and trees risks turning this sink into a CO2 source, resulting in a positive feedback on climate warming. To advance mechanistic understanding of how shifts in mycorrhizal types affect long-term carbon (C) and nitrogen (N) stocks, we studied small-scale soil depth profiles of fungal communities and C-N dynamics across a subarctic-alpine forest-heath vegetation gradient. Belowground organic stocks decreased abruptly at the transition from heath to forest, linked to the presence of certain tree-associated ectomycorrhizal fungi that contribute to decomposition when mining N from organic matter. In contrast, ericoid mycorrhizal plants and fungi were associated with organic matter accumulation and slow decomposition. If climatic controls on arctic-alpine forest lines are relaxed, increased decomposition will likely outbalance increased plant productivity, decreasing the overall C sink capacity of displaced tundra.
Collapse
Affiliation(s)
- Karina Engelbrecht Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden
| | - Roger D Finlay
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, Uppsala, 750 07, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, 750 07, Sweden
| |
Collapse
|
26
|
Klarenberg IJ, Keuschnig C, Warshan D, Jónsdóttir IS, Vilhelmsson O. The Total and Active Bacterial Community of the Chlorolichen Cetraria islandica and Its Response to Long-Term Warming in Sub-Arctic Tundra. Front Microbiol 2020; 11:540404. [PMID: 33391192 PMCID: PMC7775390 DOI: 10.3389/fmicb.2020.540404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
Lichens are traditionally defined as a symbiosis between a fungus and a green alga and or a cyanobacterium. This idea has been challenged by the discovery of bacterial communities inhabiting the lichen thalli. These bacteria are thought to contribute to the survival of lichens under extreme and changing environmental conditions. How these changing environmental conditions affect the lichen-associated bacterial community composition remains unclear. We describe the total (rDNA-based) and potentially metabolically active (rRNA-based) bacterial community of the lichen Cetaria islandica and its response to long-term warming using a 20-year warming experiment in an Icelandic sub-Arctic tundra. 16S rRNA and rDNA amplicon sequencing showed that the orders Acetobacterales (of the class Alphaproteobacteria) and Acidobacteriales (of the phylum Acidobacteria) dominated the bacterial community. Numerous amplicon sequence variants (ASVs) could only be detected in the potentially active community but not in the total community. Long-term warming led to increases in relative abundance of bacterial taxa on class, order and ASV level. Warming altered the relative abundance of ASVs of the most common bacterial genera, such as Granulicella and Endobacter. The potentially metabolically active bacterial community was also more responsive to warming than the total community. Our results suggest that the bacterial community of the lichen C. islandica is dominated by acidophilic taxa and harbors disproportionally active rare taxa. We also show for the first time that climate warming can lead to shifts in lichen-associated bacterial community composition.
Collapse
Affiliation(s)
- Ingeborg J. Klarenberg
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- BioMedical Center, University of Iceland, Reykjavík, Iceland
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
27
|
Bouskill NJ, Riley WJ, Zhu Q, Mekonnen ZA, Grant RF. Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. Nat Commun 2020; 11:5798. [PMID: 33199687 PMCID: PMC7670472 DOI: 10.1038/s41467-020-19574-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/22/2020] [Indexed: 11/08/2022] Open
Abstract
Climate warming is occurring fastest at high latitudes. Based on short-term field experiments, this warming is projected to stimulate soil organic matter decomposition, and promote a positive feedback to climate change. We show here that the tightly coupled, nonlinear nature of high-latitude ecosystems implies that short-term (<10 year) warming experiments produce emergent ecosystem carbon stock temperature sensitivities inconsistent with emergent multi-decadal responses. We first demonstrate that a well-tested mechanistic ecosystem model accurately represents observed carbon cycle and active layer depth responses to short-term summer warming in four diverse Alaskan sites. We then show that short-term warming manipulations do not capture the non-linear, long-term dynamics of vegetation, and thereby soil organic matter, that occur in response to thermal, hydrological, and nutrient transformations belowground. Our results demonstrate significant spatial heterogeneity in multi-decadal Arctic carbon cycle trajectories and argue for more mechanistic models to improve predictive capabilities.
Collapse
Affiliation(s)
- Nicholas J Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - William J Riley
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zelalem A Mekonnen
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, D'Arrigo R, Goetz SJ. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat Commun 2020; 11:4621. [PMID: 32963240 PMCID: PMC7509805 DOI: 10.1038/s41467-020-18479-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.
Collapse
Affiliation(s)
- Logan T Berner
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Richard Massey
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Patrick Jantz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bruce C Forbes
- Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QF, UK
| | - Isla Myers-Smith
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Timo Kumpula
- Department of Geographical and Historical Studies, University of Eastern Finland, 80101, Joensuu, Finland
| | - Gilles Gauthier
- Department of Biology and Centre d'études nordiques, Université Laval, Quebec City, QC, G1V0A6, Canada
| | - Laia Andreu-Hayles
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Benjamin V Gaglioti
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Patrick Burns
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Pentti Zetterberg
- Department of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Rosanne D'Arrigo
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Scott J Goetz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
29
|
Liu S, Stoof-Leichsenring KR, Kruse S, Pestryakova LA, Herzschuh U. Holocene Vegetation and Plant Diversity Changes in the North-Eastern Siberian Treeline Region From Pollen and Sedimentary Ancient DNA. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.560243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
30
|
Parker TC, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Lindahl BD, Olofsson J, Siewert MB, Street LE, Subke JA, Wookey PA. Rhizosphere allocation by canopy-forming species dominates soil CO 2 efflux in a subarctic landscape. THE NEW PHYTOLOGIST 2020; 227:1818-1830. [PMID: 32248524 DOI: 10.1111/nph.16573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.
Collapse
Affiliation(s)
- Thomas C Parker
- Biological and Environmental Sciences, University of Stirling, Stirling,, FK9 4LA, UK
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Nina L Friggens
- Biological and Environmental Sciences, University of Stirling, Stirling,, FK9 4LA, UK
| | - Iain P Hartley
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter,, EX4 4RJ, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Johan Olofsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, SE-901 87, Sweden
| | - Matthias B Siewert
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, SE-901 87, Sweden
| | - Lorna E Street
- School of Geosciences, University of Edinburgh, Edinburgh,, EH9 3FF, UK
| | - Jens-Arne Subke
- Biological and Environmental Sciences, University of Stirling, Stirling,, FK9 4LA, UK
| | - Philip A Wookey
- Biological and Environmental Sciences, University of Stirling, Stirling,, FK9 4LA, UK
| |
Collapse
|
31
|
Prasad A, Pedlar J, Peters M, McKenney D, Iverson L, Matthews S, Adams B. Combining US and Canadian forest inventories to assess habitat suitability and migration potential of 25 tree species under climate change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Anantha Prasad
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - John Pedlar
- Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie ON Canada
| | - Matt Peters
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - Dan McKenney
- Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie ON Canada
| | - Louis Iverson
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
| | - Steve Matthews
- Northern Institute of Applied Climate Science and Northern Research Station USDA Forest Service Delaware OH USA
- School of Environment and Natural Resources Columbus OH USA
| | - Bryce Adams
- School of Environment and Natural Resources Columbus OH USA
| |
Collapse
|
32
|
Hicks LC, Leizeaga A, Rousk K, Michelsen A, Rousk J. Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic. Ecology 2020; 101:e03094. [PMID: 32379897 DOI: 10.1002/ecy.3094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 01/12/2023]
Abstract
Climate change is exposing high-latitude systems to warming and a shift towards more shrub-dominated plant communities, resulting in increased leaf-litter inputs at the soil surface, and more labile root-derived organic matter (OM) input in the soil profile. Labile OM can stimulate the mineralization of soil organic matter (SOM); a phenomenon termed "priming." In N-poor subarctic soils, it is hypothesized that microorganisms may "prime" SOM in order to acquire N (microbial N-mining). Increased leaf-litter inputs with a high C/N ratio might further exacerbate microbial N demand, and increase the susceptibility of N-poor soils to N-mining. We investigated the N-control of SOM mineralization by amending soils from climate change-simulation treatments in the subarctic (+1.1°C warming, birch litter addition, willow litter addition, and fungal sporocarp addition) with labile OM either in the form of glucose (labile C; equivalent to 400 µg C/g fresh [fwt] soil) or alanine (labile C + N; equivalent to 400 µg C and 157 µg N/g fwt soil), to simulate rhizosphere inputs. Surprisingly, we found that despite 5 yr of simulated climate change treatments, there were no significant effects of the field-treatments on microbial process rates, community structure or responses to labile OM. Glucose primed the mineralization of both C and N from SOM, but gross mineralization of N was stimulated more than that of C, suggesting that microbial SOM use increased in magnitude and shifted to components richer in N (i.e., selective microbial N-mining). The addition of alanine also resulted in priming of both C and N mineralization, but the N mineralization stimulated by alanine was greater than that stimulated by glucose, indicating strong N-mining even when a source of labile OM including N was supplied. Microbial carbon use efficiency was reduced in response to both labile OM inputs. Overall, these findings suggest that shrub expansion could fundamentally alter biogeochemical cycling in the subarctic, yielding more N available for plant uptake in these N-limited soils, thus driving positive plant-soil feedbacks.
Collapse
Affiliation(s)
- Lettice C Hicks
- Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Ainara Leizeaga
- Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| | - Kathrin Rousk
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark.,Centre for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, Copenhagen, DK-1350, Denmark
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark.,Centre for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, Copenhagen, DK-1350, Denmark
| | - Johannes Rousk
- Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden
| |
Collapse
|
33
|
Thomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, Schaepman-Strub G, Wilmking M, Wipf S, Cornwell WK, Beck PSA, Georges D, Goetz SJ, Guay KC, Rüger N, Soudzilovskaia NA, Spasojevic MJ, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Te Beest M, Berner LT, Björk RG, Buchwal A, Buras A, Carbognani M, Christie KS, Collier LS, Cooper EJ, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Heijmans MMPD, Hermanutz L, Hudson JMG, Johnstone JF, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Kaarlejarvi E, Kulonen A, Lamarque LJ, Lantz TC, Lévesque E, Little CJ, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Petraglia A, Rumpf SB, Shetti R, Speed JDM, Suding KN, Tape KD, Tomaselli M, Trant AJ, Treier UA, Tremblay M, Venn SE, Vowles T, Weijers S, Wookey PA, Zamin TJ, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS, Craine JM, Dainese M, Green WA, Jansen S, Kleyer M, Manning P, Niinemets Ü, Onoda Y, Ozinga WA, Peñuelas J, Poschlod P, et alThomas HJD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Kattge J, Diaz S, Vellend M, Blok D, Cornelissen JHC, Forbes BC, Henry GHR, Hollister RD, Normand S, Prevéy JS, Rixen C, Schaepman-Strub G, Wilmking M, Wipf S, Cornwell WK, Beck PSA, Georges D, Goetz SJ, Guay KC, Rüger N, Soudzilovskaia NA, Spasojevic MJ, Alatalo JM, Alexander HD, Anadon-Rosell A, Angers-Blondin S, Te Beest M, Berner LT, Björk RG, Buchwal A, Buras A, Carbognani M, Christie KS, Collier LS, Cooper EJ, Elberling B, Eskelinen A, Frei ER, Grau O, Grogan P, Hallinger M, Heijmans MMPD, Hermanutz L, Hudson JMG, Johnstone JF, Hülber K, Iturrate-Garcia M, Iversen CM, Jaroszynska F, Kaarlejarvi E, Kulonen A, Lamarque LJ, Lantz TC, Lévesque E, Little CJ, Michelsen A, Milbau A, Nabe-Nielsen J, Nielsen SS, Ninot JM, Oberbauer SF, Olofsson J, Onipchenko VG, Petraglia A, Rumpf SB, Shetti R, Speed JDM, Suding KN, Tape KD, Tomaselli M, Trant AJ, Treier UA, Tremblay M, Venn SE, Vowles T, Weijers S, Wookey PA, Zamin TJ, Bahn M, Blonder B, van Bodegom PM, Bond-Lamberty B, Campetella G, Cerabolini BEL, Chapin FS, Craine JM, Dainese M, Green WA, Jansen S, Kleyer M, Manning P, Niinemets Ü, Onoda Y, Ozinga WA, Peñuelas J, Poschlod P, Reich PB, Sandel B, Schamp BS, Sheremetiev SN, de Vries FT. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat Commun 2020; 11:1351. [PMID: 32165619 PMCID: PMC7067758 DOI: 10.1038/s41467-020-15014-4] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.
Collapse
Affiliation(s)
- H J D Thomas
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK.
| | - A D Bjorkman
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 40530, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Carl Skottsbergs gata 22B, 41319, Gothenburg, Sweden
| | - I H Myers-Smith
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - S C Elmendorf
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - J Kattge
- Max Planck Institute for Biogeochemistry, 07701, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - S Diaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Av.Velez Sarsfield 299, Cordoba, Argentina
- FCEFyN, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, X5000JJC, Córdoba, Argentina
| | - M Vellend
- Département de Biologie, Université de Sherbrooke, 2500, boul. de l'Université Sherbrooke, Québec, J1K 2R1, Canada
| | - D Blok
- Dutch Research Council, (NWO), Postbus 93460, 2509 AL, Den Haag, The Netherlands
| | - J H C Cornelissen
- Systems Ecology, Department of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - B C Forbes
- Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
| | - G H R Henry
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
| | - R D Hollister
- Biology Department, Grand Valley State University, 1 Campus Drive, 3300a Kindschi Hall of Science, Allendale, Michigan, USA
| | - S Normand
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J S Prevéy
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - C Rixen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - G Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - M Wilmking
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - S Wipf
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss National Park, Runatsch 124, Chastè Planta-Wildenberg, 7530, Zernez, Switzerland
| | - W K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - P S A Beck
- European Commission, Joint Research Centre, Via Enrico Fermi, 2749, Ispra, 21027, Italy
| | - D Georges
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
- International Agency for Research in Cancer, 150 Cours Albert Thomas, 69372, Lyon, France
| | - S J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - K C Guay
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, Maine, 04544, USA
| | - N Rüger
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancón, Panama
| | - N A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - M J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Life Sciences Building, Eucalyptus Dr #2710, Riverside, CA, 92521, USA
| | - J M Alatalo
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
- Environmental Science Center, Qatar University, Doha, Qatar
| | - H D Alexander
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Mississippi, MS, 39762, USA
| | - A Anadon-Rosell
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S Angers-Blondin
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
| | - M Te Beest
- Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - L T Berner
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, 1295S Knoles Dr, AZ, 86011, USA
| | - R G Björk
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30, Gothenburg, Sweden
| | - A Buchwal
- Adam Mickiewicz University, Institute of Geoecology and Geoinformation, B. Krygowskiego 10, 61-680, Poznan, Poland
- University of Alaska Anchorage, 3211 Providence Dr, Anchorage, AK, 99508, USA
| | - A Buras
- Land Surface-Atmosphere Interactions, Technische Universität München, Hans-Carl-von-Carlowitz Platz 2, 85354, Freising, Germany
| | - M Carbognani
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - K S Christie
- Alaska Department of Fish and Game, 333 Raspberry Rd, Anchorage, AK, 99518, USA
| | - L S Collier
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - E J Cooper
- Deptartment of Arctic and Marine Biology, Faculty of Bioscences Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway
| | - B Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - A Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Deutscher Platz 5e, 04103, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Oulu, Finland
| | - E R Frei
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, V6T 1Z2, Canada
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - O Grau
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane), Campus Agronomique, 97310, Kourou, French Guiana
| | - P Grogan
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Hallinger
- Biology Department, Swedish Agricultural University (SLU), SE-750 07, Uppsala, Sweden
| | - M M P D Heijmans
- Plant Ecology and Nature Conservation Group, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - L Hermanutz
- Department of Biology, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - J M G Hudson
- British Columbia Public Service, Vancouver, Canada
| | - J F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - K Hülber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - M Iturrate-Garcia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - C M Iversen
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6134, USA
| | - F Jaroszynska
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen, N-5020, Bergen, Norway
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3FX, Scotland, UK
| | - E Kaarlejarvi
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
- Department of Biology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Elsene, Brussles, Belgium
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box, 65, FI-00014, Helsinki, Finland
| | - A Kulonen
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - L J Lamarque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - T C Lantz
- School of Environmental Studies, University of Victoria, David Turpin Building, B243, Victoria, BC, Canada
| | - E Lévesque
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - C J Little
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Aquatic Ecology, Eawag, the Swiss Federal Institute for Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Duebendorf, Switzerland
| | - A Michelsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
- Department of Biology, University of Copenhagen, Terrestrial Ecology Section, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - A Milbau
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000, Brussels, Belgium
| | - J Nabe-Nielsen
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - S S Nielsen
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - J M Ninot
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| | - S F Oberbauer
- Department of Biological Sciences, Florida International University, 11200S.W. 8th Street, Miami, FL, 33199, USA
| | - J Olofsson
- Department of Ecology and Environmental Science Umeå University, SE-901 87, Umeå, Sweden
| | - V G Onipchenko
- Department of Ecology and Plant Geography, Moscow State Lomonosov University, 119234, Moscow, 1-12 Leninskie Gory, Russia
| | - A Petraglia
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - S B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- Department of Ecology and Evolution, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015, Lausanne, Switzerland
| | - R Shetti
- Institute of Botany and Landscape Ecology, Greifswald University, Soldmannstraße 15, 17487, Greifswald, Germany
| | - J D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - K N Suding
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| | - K D Tape
- Institute of Northern Engineering, University of Alaska, Engineering Learning and Innovation Facility (ELIF), Suite 240, 1764 Tanana Loop, Fairbanks, AK, 99775-5910, USA
| | - M Tomaselli
- Deptartment of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124, Parma, Italy
| | - A J Trant
- School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - U A Treier
- Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus C, Denmark
| | - M Tremblay
- Département des Sciences de l'environnement et Centre d'études nordiques, Université du Québec à Trois-Rivières, 3351, boul. des Forges, Québec, Canada
| | - S E Venn
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Rd, Waurn Ponds Victoria, 3216, Australia
| | - T Vowles
- Department of Earth Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - S Weijers
- Department of Geography, University of Bonn, Meckenheimer Allee 166, D-53115, Bonn, Germany
| | - P A Wookey
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - T J Zamin
- Department of Biology, Queen's University, Biosciences Complex, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - M Bahn
- Department of Ecology, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - B Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, 3 South Parks Road, Oxford, OX1 3QY, UK
- Rocky Mountain Biological Laboratory, 8000 Co Rd 317, Crested Butte, CO, 81224, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94706, USA
| | - P M van Bodegom
- Environmental Biology Department, Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands
| | - B Bond-Lamberty
- Pacific Northwest National Laboratory, Joint Global Change Research Institute, 5825 University Research Ct, College Park, MD, 20740, USA
| | - G Campetella
- School of Biosciences and Veterinary Medicine-Plant Diversity and Ecosystems Management Unit, Univeristy of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - B E L Cerabolini
- DBSV-University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - F S Chapin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - J M Craine
- Jonah Ventures, 1600 Range Street Suite 201, Boulder, CO, 80301, USA
| | - M Dainese
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Alpine Environment, EURAC Research, Viale Druso, 1, 39100, Bolzano, Italy
| | - W A Green
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - M Kleyer
- Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - P Manning
- Senckenberg Biodiversity and Climate Research Centre, 60325, Frankfurt, Germany
| | - Ü Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr.R.Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Y Onoda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - W A Ozinga
- Vegetation, Forest and Landscape Ecology, Wageningen University and Research, P.O. Box 47, NL-6700 AA, Wageningen, The Netherlands
| | - J Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - P Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| | - P B Reich
- Department of Forest Resources, University of Minnesota, 115 Green Hall, 1530 Cleveland Ave. N., St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - B Sandel
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - B S Schamp
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste., Marie, ON, P6A 2G4, Canada
| | - S N Sheremetiev
- Komarov Botanical Institute, Professor Popova Street, 2, St Petersburg, Russia
| | - F T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, 1090 GE, Amsterdam, Netherlands
| |
Collapse
|
34
|
Bjorkman AD, García Criado M, Myers-Smith IH, Ravolainen V, Jónsdóttir IS, Westergaard KB, Lawler JP, Aronsson M, Bennett B, Gardfjell H, Heiðmarsson S, Stewart L, Normand S. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. AMBIO 2020; 49:678-692. [PMID: 30929249 PMCID: PMC6989703 DOI: 10.1007/s13280-019-01161-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 05/20/2023]
Abstract
Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.
Collapse
Affiliation(s)
- Anne D. Bjorkman
- Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | - James P. Lawler
- Inventory and Monitoring Program, U.S. National Park Service, Anchorage, Alaska USA
| | - Mora Aronsson
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bruce Bennett
- Yukon Conservation Data Centre, Whitehorse, Yukon Canada
| | - Hans Gardfjell
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Starri Heiðmarsson
- Akureyri Division, Icelandic Institute of Natural History, Borgir vid Nordurslod, 600 Akureyri, Iceland
| | - Laerke Stewart
- Arctic Ecosystem Ecology, Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
- Arctic Research Center, Department of Bioscience, Aarhus University, Ny Munkegade 114-116, 8000 Århus, Denmark
- Center for Biodiversity Dynamic in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Ny Munkegade 114-116, 8000 Århus, Denmark
| |
Collapse
|
35
|
Ravolainen V, Soininen EM, Jónsdóttir IS, Eischeid I, Forchhammer M, van der Wal R, Pedersen ÅØ. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. AMBIO 2020; 49:666-677. [PMID: 31955396 PMCID: PMC6989444 DOI: 10.1007/s13280-019-01310-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 05/26/2023]
Abstract
Vegetation change has consequences for terrestrial ecosystem structure and functioning and may involve climate feedbacks. Hence, when monitoring ecosystem states and changes thereof, the vegetation is often a primary monitoring target. Here, we summarize current understanding of vegetation change in the High Arctic-the World's most rapidly warming region-in the context of ecosystem monitoring. To foster development of deployable monitoring strategies, we categorize different kinds of drivers (disturbances or stresses) of vegetation change either as pulse (i.e. drivers that occur as sudden and short events, though their effects may be long lasting) or press (i.e. drivers where change in conditions remains in place for a prolonged period, or slowly increases in pressure). To account for the great heterogeneity in vegetation responses to climate change and other drivers, we stress the need for increased use of ecosystem-specific conceptual models to guide monitoring and ecological studies in the Arctic. We discuss a conceptual model with three hypothesized alternative vegetation states characterized by mosses, herbaceous plants, and bare ground patches, respectively. We use moss-graminoid tundra of Svalbard as a case study to discuss the documented and potential impacts of different drivers on the possible transitions between those states. Our current understanding points to likely additive effects of herbivores and a warming climate, driving this ecosystem from a moss-dominated state with cool soils, shallow active layer and slow nutrient cycling to an ecosystem with warmer soil, deeper permafrost thaw, and faster nutrient cycling. Herbaceous-dominated vegetation and (patchy) bare ground would present two states in response to those drivers. Conceptual models are an operational tool to focus monitoring efforts towards management needs and identify the most pressing scientific questions. We promote greater use of conceptual models in conjunction with a state-and-transition framework in monitoring to ensure fit for purpose approaches. Defined expectations of the focal systems' responses to different drivers also facilitate linking local and regional monitoring efforts to international initiatives, such as the Circumpolar Biodiversity Monitoring Program.
Collapse
Affiliation(s)
- Virve Ravolainen
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway.
- Norwegian Polar Institute, Fram Centre, 9062, Tromsø, Norway.
| | | | - Ingibjörg Svala Jónsdóttir
- University of Iceland, 101, Reykjavik, Iceland
- The University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Isabell Eischeid
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
- UiT, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Mads Forchhammer
- The University Centre in Svalbard, 9171, Longyearbyen, Norway
- The Centre for Macroecology, Evolution and Climate (CMEC) and Greenland Perspective (GP), Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - René van der Wal
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Ulls väg 16, 75651, Uppsala, Sweden
- University of Aberdeen, AB24 3UU, Aberdeen, Scotland
| | - Åshild Ø Pedersen
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
- Norwegian Polar Institute, Fram Centre, 9062, Tromsø, Norway
| |
Collapse
|
36
|
Wang JA, Sulla-Menashe D, Woodcock CE, Sonnentag O, Keeling RF, Friedl MA. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. GLOBAL CHANGE BIOLOGY 2020; 26:807-822. [PMID: 31437337 DOI: 10.1111/gcb.14804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/25/2019] [Indexed: 05/19/2023]
Abstract
A multitude of disturbance agents, such as wildfires, land use, and climate-driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic-Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high-latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large-scale land cover changes in the Arctic-Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984-2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106 km2 in Alaska and northwestern Canada to characterize regional-scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance-driven decreases in Evergreen Forest area (-14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate-driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate-induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2 seasonality and ecosystem productivity at northern high-latitudes and signal continental-scale shifts in the structure and function of northern high-latitude ecosystems in response to climate change.
Collapse
Affiliation(s)
- Jonathan A Wang
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | | | - Curtis E Woodcock
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Oliver Sonnentag
- Département de Géographie, Université de Montréal, Montréal, QC, Canada
| | - Ralph F Keeling
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark A Friedl
- Department of Earth and Environment, Boston University, Boston, MA, USA
| |
Collapse
|
37
|
Liu Z, Kimball JS, Parazoo NC, Ballantyne AP, Wang WJ, Madani N, Pan CG, Watts JD, Reichle RH, Sonnentag O, Marsh P, Hurkuck M, Helbig M, Quinton WL, Zona D, Ueyama M, Kobayashi H, Euskirchen ES. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. GLOBAL CHANGE BIOLOGY 2020; 26:682-696. [PMID: 31596019 DOI: 10.1111/gcb.14863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.
Collapse
Affiliation(s)
- Zhihua Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - John S Kimball
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Department of Ecosystem and Conservation Sciences, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Nicholas C Parazoo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Ashley P Ballantyne
- Department of Ecosystem and Conservation Sciences, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Wen J Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Nima Madani
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Caleb G Pan
- Numerical Terradynamic Simulation Group, WA Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | | | | | - Oliver Sonnentag
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montreal, QC, Canada
| | - Philip Marsh
- Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Miriam Hurkuck
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montreal, QC, Canada
| | - Manuel Helbig
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - William L Quinton
- Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Donatella Zona
- Global Change Research Group, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Masahito Ueyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hideki Kobayashi
- Institute of Arctic Climate and Environment Research, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | | |
Collapse
|
38
|
A DNA Barcoding Survey of an Arctic Arthropod Community: Implications for Future Monitoring. INSECTS 2020; 11:insects11010046. [PMID: 31936447 PMCID: PMC7023425 DOI: 10.3390/insects11010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022]
Abstract
Accurate and cost-effective methods for tracking changes in arthropod communities are needed to develop integrative environmental monitoring programs in the Arctic. To date, even baseline data on their species composition at established ecological monitoring sites are severely lacking. We present the results of a pilot assessment of non-marine arthropod diversity in a middle arctic tundra area near Ikaluktutiak (Cambridge Bay), Victoria Island, Nunavut, undertaken in 2018 using DNA barcodes. A total of 1264 Barcode Index Number (BIN) clusters, used as a proxy for species, were recorded. The efficacy of widely used sampling methods was assessed. Yellow pan traps captured 62% of the entire BIN diversity at the study sites. When complemented with soil and leaf litter sifting, the coverage rose up to 74.6%. Combining community-based data collection with high-throughput DNA barcoding has the potential to overcome many of the logistic, financial, and taxonomic obstacles for large-scale monitoring of the Arctic arthropod fauna.
Collapse
|
39
|
Assmann JJ, Myers-Smith IH, Phillimore AB, Bjorkman AD, Ennos RE, Prevéy JS, Henry GHR, Schmidt NM, Hollister RD. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra. GLOBAL CHANGE BIOLOGY 2019; 25:2258-2274. [PMID: 30963662 DOI: 10.1111/gcb.14639] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/18/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long-term time series of spring leaf-out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.
Collapse
Affiliation(s)
| | | | | | - Anne D Bjorkman
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | | | - Janet S Prevéy
- Pacific Northwest Research Station, Department of Agriculture - Forest Service, Olympia, Washington
| | | | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|