1
|
Ma JY, Liu JH, Chen CZ, Zhang YZ, Guo ZS, Song MP, Jiang F, Chai ZT, Li Z, Lv SX, Zhen YJ, Wang L, Liang ZL, Jiang ZY. Characteristics of microbial carbon pump in the sediment of kelp aquaculture zone and its contribution to recalcitrant dissolved organic carbon turnover: insights into metabolic patterns and ecological functions. ENVIRONMENTAL RESEARCH 2025; 277:121559. [PMID: 40228693 DOI: 10.1016/j.envres.2025.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
The study delves into the microbial carbon pump (MCP) within the sediments of kelp aquaculture zones, focusing on its influence on the turnover of recalcitrant dissolved organic carbon (RDOC). Following kelp harvest, significant alterations in the microbial community structure were noted, with a decrease in complexity and heterogeneity within co-occurrence networks potentially impacting RDOC production efficiency. Metabolic models constructed identified four key microbial lineages crucial for RDOC turnover, with their abundance observed to decrease post-harvest. Analysis of metabolic complementarity revealed that RDOC-degrading microorganisms exhibit broad substrate diversity and are engaged in specific resource exchange patterns, with cross-feeding interactions possibly enhancing the ecological efficiency of the MCP. Notably, the degradation of RDOC was found not to deplete the RDOC pool; as aromatic compounds break down, new ones are released into the environment, thus supporting the renewal of the RDOC pool. The research highlights the pivotal role of microbial communities in RDOC turnover and offers fresh insights into their cross-feeding behavior related to RDOC cycling, providing valuable data to support the future development and application of MCP theory.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China; Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Ji-Hua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yi-Ze Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zhan-Sheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Min-Peng Song
- Yantai Vocational College, Yantai, 264670, Shandong, PR China
| | - Feng Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zi-Tong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhu Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Su-Xian Lv
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Yu-Jiao Zhen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China.
| |
Collapse
|
2
|
Neves L, Smeby K, Broch OJ, Johnsen G, Ardelan MV, Skjermo J. Particulate and dissolved organic carbon losses in high latitude seaweed farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179677. [PMID: 40388871 DOI: 10.1016/j.scitotenv.2025.179677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
The role of macroalgae as natural sinks for carbon dioxide (CO2) has long been recognized, and interest for climate mitigating solutions from seaweed cultivation is quickly rising. Erosion of biomass provides natural avenues for carbon sequestration at sea, yet data is still lacking for important European cultivars, particularly combining particulate (POC) and dissolved (DOC) organic carbon losses. In this study, data is provided on carbon uptake, lamina growth and erosion over two consecutive seasons for the kelp Saccharina latissima (Phaeophyceae) deployed in Autumn and Winter in Hitra, Norway. A short-term carbon exudation experiment was performed with the same kelp in 2023. By April, the typical harvest time for food applications, average losses to POC and DOC pools amounted to 15 and 34 g C m-2 yr-1, respectively, or 9 % and 19 % of the carbon net primary production (C-NPP) of the farm. Combined POC and DOC losses reached 101-247 g C m-2 yr-1 (40-47 % of C-NPP) by June. DOC exudation rates reached 4.1-7.6 mg C g-1 h-1 after 4 h incubation, reducing significantly after 24 h. On average, 29 % and 12 % of the carbon fixed by S. latissima was released as DOC from Autumn and Winter deployments, respectively, before the progression of bryozoan biofouling. POC and DOC losses provide a continuous source for carbon deposition, burial or further breakdown into RDOC, crucial for environmental impact assessments and carbon accounting methodologies. The study provides valuable data for future research on macroalgae cultivation and its contribution to global carbon mitigation efforts.
Collapse
Affiliation(s)
- Luiza Neves
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway; Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway.
| | - Kristin Smeby
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ole Jacob Broch
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Jorunn Skjermo
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| |
Collapse
|
3
|
de la Hoz CF, Brooks PR, Coughlan J, Mazarrasa I, Ramos E, Sainz-Villegas S, Puente A, Juanes JA, Crowe TP. Unveiling growth and carbon composition of macroalgae with different strategies under global change. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107128. [PMID: 40184952 DOI: 10.1016/j.marenvres.2025.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Marine macroalgae ecosystems are increasingly recognized as potential contributors to carbon sequestration within blue carbon strategies. This study investigates how the carbon storage capacity of two macroalgal species with different living strategies, Fucus vesiculosus (k-strategy, slow-growing) and Ulva lactuca (r-strategy, fast-growing), respond to the individual or combined impacts of two drivers of global change, eutrophication and marine heatwaves. Differences in growth, biomass and carbon accumulation were assessed after 7 and 14 days in two experiments (field and laboratory) that tested different combinations of nutrient enrichment (increase nutrient/surface area of 1 g/cm2 in the field experiment and a concentration of 10 ml/l of Provasoli solution in the laboratory) and warming (5 °C increase) treatments. Results revealed that nutrient addition treatments had significant effects, reducing carbon incorporation by up to 22.5 % in F. vesiculosus compared to control. This reduction was particularly evident in the field experiment, suggesting that eutrophication negatively impacts the carbon storage potential of this slow-growing species. However, F. vesiculosus demonstrated greater resilience in maintaining biomass stability, whereas U. lactuca exhibited reduced growth and carbon accumulation under natural conditions. These findings highlight species-specific differences in carbon assimilation and biomass composition among macroalgae, which can influence their potential contribution to carbon cycling and storage in marine ecosystems, shaped by their ecological and physiological traits, and emphasize the importance of nutrient management for optimizing blue carbon storage. This research contributes to our understanding of macroalgae's role in climate mitigation and underscores the need for targeted conservation strategies to enhance their ecosystem services.
Collapse
Affiliation(s)
- Camino F de la Hoz
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain; Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Paul R Brooks
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| | - Jennifer Coughlan
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| | - Inés Mazarrasa
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Elvira Ramos
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Samuel Sainz-Villegas
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Araceli Puente
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Jose A Juanes
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Spain
| | - Tasman P Crowe
- Earth Institute & School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
4
|
Kennedy JR, Blain CO. A systematic review of marine macroalgal degradation: Toward a better understanding of macroalgal carbon sequestration potential. JOURNAL OF PHYCOLOGY 2025. [PMID: 40423688 DOI: 10.1111/jpy.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/28/2025]
Abstract
Although macroalgae are gaining recognition for their potential role in marine carbon sequestration, critical knowledge gaps related to the fate of macroalgal carbon limit our capacity to quantify rates of macroalgal carbon sequestration. Understanding the degradation dynamics of macroalgal-derived biomaterials-including tissue/wrack, particulate organic matter/carbon (POM/POC), and dissolved organic carbon (DOC)-as well as the environmental drivers of decomposition are critical for assessing the longevity of macroalgal carbon and the potential storage capacity of macroalgae. Thus, a systematic literature review of macroalgal degradation studies was conducted to compile data, estimate the relative recalcitrance (i.e., relative stability) of macroalgal biomaterials, and elucidate key drivers of macroalgal decomposition dynamics. We found that macroalgal decay trajectories are highly variable and not always best described by the often-cited exponential decay models. Our analysis demonstrated that temperature was a notable driver of decomposition, with higher temperatures eliciting faster rates of decomposition. Furthermore, we found that brown algae had significantly higher proportions of recalcitrant biomaterials when compared to red algae. The impact of other factors, including biomaterial type, degradation environment, and tissue carbon and nitrogen content on macroalgal degradation, is variable across contexts, warranting further study. These results help to provide a foundation from which to plan and assess future studies on macroalgal degradation, which will improve our understanding of how macroalgae contribute to marine carbon cycles, trophic subsidies, and, potentially, marine carbon sequestration.
Collapse
Affiliation(s)
- Jessica R Kennedy
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Caitlin O Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
- Coastal People: Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Borer G, Monteiro C, Lima FP, Martins FMS. Performance of DNA Metabarcoding vs. Morphological Methods for Assessing Intertidal Turf and Foliose Algae Diversity. Mol Ecol Resour 2025:e14115. [PMID: 40270465 DOI: 10.1111/1755-0998.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Large biogeographical shifts in marine communities are taking place in response to climate change and biological invasions yet we still lack a full understanding of their diversity and distribution. An important example of this is turf and foliose algae that are key coastal primary producers in several regions and are expanding into new environments. Traditionally, monitoring turf and foliose algae communities involves species identification based on morphological traits, which is challenging due to their reduced dimensions and highly variable morphology. Molecular methods promise to revolutionise this field, but their effectiveness in detecting turf and foliose algae has yet to be tested. Here, we evaluate the performance of DNA metabarcoding (COI and rbcL markers) and morphological identification (in situ and photoquadrat) to describe intertidal turf and foliose algae communities along the Portuguese coast. Both molecular markers detected more taxa than the morphological methods and showed greater discrimination of turf and foliose algae communities between regions, matching our knowledge of the geographical and climatic patterns for the region. In sum, our multi-marker metabarcoding approach was more efficient than morphology-based methods in characterising turf and foliose algae communities along the Portuguese coast, differentiating morphologically similar species, and detecting unicellular organisms. However, certain taxa that were identified by in situ and photoquadrat approaches were not detected through metabarcoding, partly due to lack of reference barcodes or taxonomic resolution. Metabarcoding emerges as a valuable tool for monitoring these communities, particularly in long-term programmes requiring accuracy, speed, and reproducibility.
Collapse
Affiliation(s)
- Gabriela Borer
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | - Cátia Monteiro
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Fernando P Lima
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Filipa M S Martins
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vila do Conde, Portugal
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vila do Conde, Portugal
| |
Collapse
|
6
|
Bulleri F, Pedicini L, Bertocci I, Ravaglioli C. The impact of a marine heatwave on the productivity and carbon budget of a NW Mediterranean seaweed forest. MARINE POLLUTION BULLETIN 2025; 212:117595. [PMID: 39879851 DOI: 10.1016/j.marpolbul.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Marine forests support coastal biodiversity and ecosystem functioning. Nonetheless, how their productivity and carbon uptake might be affected by extreme events, such as marine heatwaves (MHWs), is yet to be explored. We experimentally evaluated the changes in oxygen and carbon budgets of the benthic community formed by the fucoid Ericaria brachycarpa induced by the exposure to a MHW. Rocks colonized by E. brachycarpa and associated macroalgal and invertebrate assemblages were collected at Capraia Island (NW Mediterranean) and put into six 500 L tanks at 23 °C. After 10 days of acclimation, the seawater temperature in three randomly chosen tanks was gradually elevated to 30.5 °C and maintained for 5 days, to simulate a MHW predicted by the end of the century under the RCP 8.5 scenario. Oxygen and carbon metabolic rates of the whole community were evaluated under light and dark conditions, using transparent and black incubation chambers, respectively. The exposure to the MHW caused a reduction in Net Community Productivity (NCP) and increased Community Respiration (CR). There was a trend for MHW to enhance total DIC release through the reduction of calcification and the increase of respiration rates, thus shifting the community metabolism to net heterotrophic. Lower net productivity and carbon uptake suggest that the role of these forests in sustaining coastal food webs and mitigating CO2 emissions could be reduced under future climates. These results have implications for devising climate-proof strategies of conservation and restoration of macroalgal forests.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy
| | - Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy.
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy
| |
Collapse
|
7
|
Li H, Feng X, Xiong T, Zhang Z, Huang S, Zhang Y. Herbivore grazing enhances macroalgal organic carbon release and alters their carbon sequestration fate in the ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106842. [PMID: 39547109 DOI: 10.1016/j.marenvres.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Herbivore grazing on macroalgae promotes the release of macroalgal organic carbons into seawater and potentially impacts their bioavailability. However, the influence of herbivores on the fate of macroalgal organic carbon remains unclear, hindering a comprehensive and in-depth understanding of the role of macroalgae in ocean carbon cycle. Here, we cocultured suspended herbivore (Apohyale sp.) and benthic herbivore (Nereis diversicolor) with macroalgae (Ulva prolifera) in the laboratory, and found that the two grazers promote the release of macroalgal organic carbon through different pathways. Apohyale sp. Can simultaneously increase the release of different forms of organic carbon by feeding on U. prolifera thalli, including dissolved organic carbon (DOC), particluate organic carbon (POC), and algal organic detritus; while N. diversicolor demonstrated a preference for ingesting algal detritus and POC, thereby reducing the detrital carbon but greatly promoting their conversion to DOC. The amount of organic carbon released per day after predation by Apohyale sp. is much higher (7.2 vs 0.5 mg C d-1) than by N. diversicolor. Meanwhile, through long-term microbial degradation experiments, we found that herbivores significantly alter the fate of macroalgae organic carbon. Although the proportions of stable carbon (recalcitrant DOC and recalcitrant POC) in different forms of macroalgal organic carbon varied after predation, the absolute amount of their residuals in seawater were 2-3 times higher than those not ingested by herbivores. Our results highlight that herbivores play a pivotal role in promoting carbon flow in marine food webs and have a significant impact on macroalgal carbon sequestration.
Collapse
Affiliation(s)
- Hongmei Li
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Xiuting Feng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianqi Xiong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zenghu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Shengrong Huang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongyu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China.
| |
Collapse
|
8
|
Doney SC, Wolfe WH, McKee DC, Fuhrman JG. The Science, Engineering, and Validation of Marine Carbon Dioxide Removal and Storage. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:55-81. [PMID: 38955207 DOI: 10.1146/annurev-marine-040523-014702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods-measurement, monitoring, reporting, and verification-that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.
Collapse
Affiliation(s)
- Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA; , ,
| | - Wiley H Wolfe
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA; , ,
| | - Darren C McKee
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA; , ,
| | - Jay G Fuhrman
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland, USA;
| |
Collapse
|
9
|
Litchfield SG, Schulz KG, Kelaher BP. Decomposition of Sargassum detritus varies with exposure to different plastic types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64534-64544. [PMID: 39542991 DOI: 10.1007/s11356-024-35505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Plastic pollution and ocean warming threaten crucial ecosystem processes, including detrital decomposition. We carried out a manipulative experiment using 20 outdoor raceways to test hypotheses about the influence of macroplastics (polyvinyl chloride (PVC), polyethylene terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and biodegradable (BIO)) and ocean warming (as 3 °C above ambient sea surface temperatures) on the decomposition of Sargassum vestitum. All types of plastic significantly decreased rates of S. vestitum decomposition compared to controls. LDPE was associated with the greatest decrease in detrital decomposition (41%), followed closely by BIO (28%), whilst HDPE had the least influence (12%) during our 40-day experiment. Treatments with LDPE and PET retained more carbon (%) in S. vestitum than the control treatment. However, plastics neither affected nitrogen (%), nor C/N ratio of the decomposing detritus. Ocean warming significantly increased the decomposition of S. vestitum, but did not affect relative carbon or nitrogen, nor C/N of the remaining detritus, nor did temperature interact with plastic treatments. As detrital decomposition significantly contributes to marine biogeochemical cycling, food-web connectivity, and secondary production, our multiple stressor experiment demonstrates the value of management strategies that simultaneously address the impacts of ocean warming and plastic pollution in nearshore environments.
Collapse
Affiliation(s)
- Sebastian G Litchfield
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia.
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry and School of Environment, Science and Engineering, Southern Cross University, PO Box 157, East Lismore, NSW, 2480, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
10
|
Ridall A, Maciute A, Nascimento FJA, Bonaglia S, Ingels J. Microplastic-induced shifts in bioturbation and oxygen penetration depth in subtidal sediments. MARINE POLLUTION BULLETIN 2024; 209:117074. [PMID: 39413475 DOI: 10.1016/j.marpolbul.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interstitial meiofauna, organisms smaller than 500 μm that live between sediment grains, are the most abundant animals on Earth. They play crucial roles in biogeochemical cycles, but their responses to microplastics (MPs) remain understudied. Due to their size, meiofauna may be particularly vulnerable to MPs. We quantified how realistic levels of MP contamination affect bioturbation, oxygen penetration depth (OPD), and diffusive oxygen uptake (DOU) in sediment mesocosms over thirteen days. Bioturbation depth and OPD increased, while DOU decreased across all treatments. However, sediments containing MPs had lower bioturbation depth and slightly higher OPD compared to controls. The reduction in bioturbation was likely due to meiofauna stress, while the highest MP contamination caused increased bioturbation depth, likely due to evasion responses. Increased OPD over time was likely due to reduced labile organic matter. This study highlights how bioturbation, OPD, and DOU shift with MP pollution, confirming MPs' impacts on ecosystem functions.
Collapse
Affiliation(s)
- Aaron Ridall
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306, USA; Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL 32358, USA.
| | - Adele Maciute
- Department of Marine Science, University of Gothenburg, Gothenburg 41390, Sweden.
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden.
| | - Stefano Bonaglia
- Department of Marine Science, University of Gothenburg, Gothenburg 41390, Sweden.
| | - Jeroen Ingels
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL 32358, USA.
| |
Collapse
|
11
|
Luo J, Wang N, Zhu Y, Wu Z, Ye Z, Christakos G, Wu J. Seasonal effects of fish, seaweed and abalone cultures on dissolved organic matter and carbon sequestration potential in Sansha Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174144. [PMID: 38901588 DOI: 10.1016/j.scitotenv.2024.174144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Coastal bays serve as undeniable dissolved organic matter (DOM) reactors and the role of prevalent mariculture in DOM cycling deserves investigation. This study, based on four seasonal field samplings and a laboratory incubation experiment, examined the source and seasonal dynamics of DOM and fluorescent dissolved organic matter (FDOM) in the seawater of fish (Larimichthys crocea, LC), seaweed (Gracilaria lemaneiformis, GL) and abalone (Haliotis sp., HA) culturing zones in Sansha Bay, China. Using three-dimensional fluorescence spectroscopy coupled with parallel factor analysis (EEMs-PARAFAC), three fluorescent components were identified, i.e. protein-like C1, protein-like C2, and humic-like C3. Our results showed that mariculture activities dominated the DOM pool by seasonal generating abundant DOM with lower aromaticity and humification degrees. Accounting for 40-95 % of total fluorescent components, C1 (Ex/Em = 300/340 nm) was regarded the same as D1 (Ex/Em = 300/335 nm) identified in a 180-day degradation experiments of G. lemaneiformis detritus, indicating that the cultured seaweed modulated DOM through the seasonal production of C1. In addition, the incubation experiment revealed that 0.7 % of the total carbon content of seaweed detritus could be preserved as recalcitrant dissolved organic carbon (RDOC). However, fish culture appeared to contribute to liable DOC and protein-like C2, exerting a substantial impact on DOM during winter but making a negligible contribution to carbon sequestration, while abalone culture might promote the potential export and sequestration of seaweed-derived carbon to the ocean. Our results highlight the influences of mariculture activities, especially seaweed culture, in shaping DOM pool in coastal bays. These findings can provide reference for future studies on the carbon accounting of mariculture.
Collapse
Affiliation(s)
- Ji Luo
- Ocean College, Zhejiang University, Zhoushan, China
| | - Nan Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yaojia Zhu
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China
| | - Zhenyu Wu
- Ocean College, Zhejiang University, Zhoushan, China
| | - Zhanjiang Ye
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China.
| |
Collapse
|
12
|
Chang YE, Liao CH, Hsieh HH, Gradngay Abedneko V, Hung CC, Lee TM. Lateral carbon export of macroalgae and seagrass from diverse habitats contributes particulate organic carbon in the deep sea of the Northern South China Sea. MARINE POLLUTION BULLETIN 2024; 206:116672. [PMID: 39047601 DOI: 10.1016/j.marpolbul.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
Our study explored the lateral export of macroalgae and seagrass to the deep sea of the Northern South China Sea (NSCS). Particulate organic carbon (POC) collected from a depth of 500 m off southwestern Taiwan (station T) and Dongsha Atoll (station K) underwent environmental DNA (eDNA) and stable isotope assays. Metabarcoding using 18S V9 rDNA revealed lateral export of macrophyte detritus in NSCS. At station K, seagrass detritus predominated, while at station T, macroalgae-derived detritus was dominant. The consistency in the stable carbon isotope signature between POC and macrophytes indicates that stable carbon is an ideal bio-indicator for tracking macrophyte detritus destination and transformation after it has been laterally exported. Based on robust scientific methods, these findings provide valuable insights into the lateral export of macrophyte detritus to the deep sea in POC, influenced by habitat species, and shaped by distinct oceanographic physics around NSCS.
Collapse
Affiliation(s)
- Yu-En Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chin-Hsin Liao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hsueh-Han Hsieh
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Chin-Chang Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei 115024, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
13
|
Moreda U, Mazarrasa I, Cebrian E, Kaal J, Ricart AM, Serrano E, Serrano O. Role of macroalgal forests within Mediterranean shallow bays in blue carbon storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173219. [PMID: 38750738 DOI: 10.1016/j.scitotenv.2024.173219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Although seaweeds rank among the most productive vegetated habitats globally, their inclusion within Blue Carbon frameworks is at its onset, partially because they usually grow in rocky substrates and their organic carbon (Corg) is mostly exported and stored beyond their habitat and thus, demonstrating its long-term storage is challenging. Here, we studied the sedimentary Corg storage in macroalgal forests dominated by Gongolaria barbata and in adjacent seagrass Cymodocea nodosa mixed with Caulerpa prolifera algae meadows, and bare sand habitats in Mediterranean shallow coastal embayments. We characterized the biogeochemistry of top 30 cm sedimentary deposits, including sediment grain-size, organic matter and Corg contents, Corg burial rates and the provenance of sedimentary Corg throughout stable carbon isotopes (δ13Corg) and pyrolysis analyses. Sediment Corg stocks and burial rates (since 1950) in G. barbata forests (mean ± SE, 3.5 ± 0.2 kg Corg m-2 accumulated at 15.5 ± 1.6 g Corg m-2 y-1) fall within the range of those reported for traditional Blue Carbon Ecosystems. Although the main species contributing to sedimentary Corg stocks in all vegetated habitats examined was C. nodosa (36 ± 2 %), macroalgae contributed 49 % (19 ± 2 % by G. barbata and 30 ± 3 % by C. prolifera) based on isotope mixing model results. Analytical pyrolysis confirmed the presence of macroalgae-derived compounds in the sediments, including N-compounds and α-tocopherol linked to G. barbata and C. prolifera, respectively. The sedimentary Corg burial rate linked to macroalgae within the macroalgal forests examined ranged from 5.4 to 9.5 g Corg m-2 y-1 (7.4 ± 2 g Corg m-2 y-1). This study provides empirical evidence for the long-term (∼70 years) sequestration of macroalgae-derived Corg within and beyond seaweed forests in Mediterranean shallow coastal embayments and thereby, supports the inclusion of macroalgae in Blue Carbon frameworks.
Collapse
Affiliation(s)
- Uxue Moreda
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Inés Mazarrasa
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain; Instituto de Hidráulica Ambiental de la Universidad de Cantabria (IHCantabria), Santander, Spain
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Joeri Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - Aurora M Ricart
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Eduard Serrano
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Oscar Serrano
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain.
| |
Collapse
|
14
|
Bullen CD, Driscoll J, Burt J, Stephens T, Hessing-Lewis M, Gregr EJ. The potential climate benefits of seaweed farming in temperate waters. Sci Rep 2024; 14:15021. [PMID: 38951559 PMCID: PMC11217401 DOI: 10.1038/s41598-024-65408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Seaweed farming is widely promoted as an approach to mitigating climate change despite limited data on carbon removal pathways and uncertainty around benefits and risks at operational scales. We explored the feasibility of climate change mitigation from seaweed farming by constructing five scenarios spanning a range of industry development in coastal British Columbia, Canada, a temperate region identified as highly suitable for seaweed farming. Depending on growth rates and the fate of farmed seaweed, our scenarios sequestered or avoided between 0.20 and 8.2 Tg CO2e year-1, equivalent to 0.3% and 13% of annual greenhouse gas emissions in BC, respectively. Realisation of climate benefits required seaweed-based products to replace existing, more emissions-intensive products, as marine sequestration was relatively inefficient. Such products were also key to reducing the monetary cost of climate benefits, with product values exceeding production costs in only one of the scenarios we examined. However, model estimates have large uncertainties dominated by seaweed production and emissions avoided, making these key priorities for future research. Our results show that seaweed farming could make an economically feasible contribute to Canada's climate goals if markets for value-added seaweed based products are developed. Moreover, our model demonstrates the possibility for farmers, regulators, and researchers to accurately quantify the climate benefits of seaweed farming in their regional contexts.
Collapse
Affiliation(s)
- Cameron D Bullen
- SciTech Environmental Consulting, 2136 Napier Street, Vancouver, BC, Canada, V5L 2N9
| | - John Driscoll
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Jenn Burt
- Nature United, North Vancouver, BC, Canada
| | - Tiffany Stephens
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK, USA
| | - Margot Hessing-Lewis
- Hakai Institute, Campbell River, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Edward J Gregr
- SciTech Environmental Consulting, 2136 Napier Street, Vancouver, BC, Canada, V5L 2N9.
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
James K, Macreadie PI, Burdett HL, Davies I, Kamenos NA. It's time to broaden what we consider a 'blue carbon ecosystem'. GLOBAL CHANGE BIOLOGY 2024; 30:e17261. [PMID: 38712641 DOI: 10.1111/gcb.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 05/08/2024]
Abstract
Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.
Collapse
Affiliation(s)
| | - Peter I Macreadie
- Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Heidi L Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Nicholas A Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Wang W, Xu L, Jiang G, Li Z, Bi YH, Zhou ZG. Characterization of a novel γ-type carbonic anhydrase, Sjγ-CA2, in Saccharina japonica: Insights into carbon concentration mechanism in macroalgae. Int J Biol Macromol 2024; 263:130506. [PMID: 38423426 DOI: 10.1016/j.ijbiomac.2024.130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Carbonic anhydrase (CA) is a crucial component of CO2-concentrating mechanism (CCM) in macroalgae. In Saccharina japonica, an important brown seaweed, 11 CAs, including 5 α-, 3 β-, and 3 γ-CAs, have been documented. Among them, one α-CA and one β-CA were localized in the periplasmic space, one α-CA was found in the chloroplast, and one γ-CA was situated in mitochondria. Notably, the known γ-CAs have predominantly been identified in mitochondria. In this study, we identified a chloroplastic γ-type CA, Sjγ-CA2, in S. japonica. Based on the reported amino acid sequence of Sjγ-CA2, the epitope peptide for monoclonal antibody production was selected as 165 Pro-305. After purification and specificity identification, anti-SjγCA2 monoclonal antibody was employed in immunogold electron microscopy. The results illustrated that Sjγ-CA2 was localized in the chloroplasts of both gametophytes and sporophytes of S. japonica. Subsequently, immunoprecipitation coupled with LC-MS/MS analysis revealed that Sjγ-CA2 mainly interacted with photosynthesis-related proteins. Moreover, the first 65 amino acids at N-terminal of Sjγ-CA2 was identified as the chloroplast transit peptide by the transient expression of GFP-SjγCA2 fused protein in tabacco. Real-time PCR results demonstrated an up-regulation of the transcription of Sjγ-CA2 gene in response to high CO2 concentration. These findings implied that Sjγ-CA2 might contribute to minimizing the leakage of CO2 from chloroplasts and help maintaining a high concentration of CO2 around Rubisco.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Gang Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
Pessarrodona A, Howard J, Pidgeon E, Wernberg T, Filbee-Dexter K. Carbon removal and climate change mitigation by seaweed farming: A state of knowledge review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170525. [PMID: 38309363 DOI: 10.1016/j.scitotenv.2024.170525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The pressing need to mitigate the effects of climate change is driving the development of novel approaches for carbon dioxide removal (CDR) from the atmosphere, with the ocean playing a central role in the portfolio of solutions. The expansion of seaweed farming is increasingly considered as one of the potential CDR avenues among government and private sectors. Yet, comprehensive assessments examining whether farming can lead to tangible climate change mitigation remain limited. Here we examine the results of over 100 publications to synthesize evidence regarding the CDR capacity of seaweed farms and review the different interventions through which an expansion of seaweed farming may contribute to climate change mitigation. We find that presently, the majority of the carbon fixed by seaweeds is stored in short-term carbon reservoirs (e.g., seaweed products) and that only a minority of the carbon ends up in long-term reservoirs that are likely to fit within existing international accounting frameworks (e.g., marine sediments). Additionally, the tiny global area cultivated to date (0.06 % of the estimated wild seaweed extent) limits the global role of seaweed farming in climate change mitigation in the present and mid-term future. A first-order estimate using the best available data suggests that, at present, even in a low emissions scenario, any carbon removal capacity provided by seaweed farms globally is likely to be offset by their emissions (median global balance net emitter: -0.11 Tg C yr-1; range -2.07-1.95 Tg C yr-1), as most of a seaweed farms' energy and materials currently depend on fossil fuels. Enhancing any potential CDR though seaweed farming will thus require decarbonizing of supply chains, directing harvested biomass to long-term carbon storage products, expanding farming outside traditional cultivation areas, and developing robust models tracing the fate of seaweed carbon. This will present novel scientific (e.g., verifying permanence of seaweed carbon), engineering (e.g., developing farms in wave exposed areas), and economic challenges (e.g., increase market demand, lower costs, decarbonize at scale), many of which are only beginning to be addressed.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore.
| | - Jennifer Howard
- Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore
| | - Emily Pidgeon
- Conservation International, Arlington, VA, USA; International Blue Carbon Institute, Singapore
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Institute of Marine Research, His, Norway
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia; Institute of Marine Research, His, Norway
| |
Collapse
|
18
|
Wright LS, Simpkins T, Filbee-Dexter K, Wernberg T. Temperature sensitivity of detrital photosynthesis. ANNALS OF BOTANY 2024; 133:17-28. [PMID: 38142363 PMCID: PMC10921823 DOI: 10.1093/aob/mcad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Kelp forests are increasingly considered blue carbon habitats for ocean-based biological carbon dioxide removal, but knowledge gaps remain in our understanding of their carbon cycle. Of particular interest is the remineralization of detritus, which can remain photosynthetically active. Here, we study a widespread, thermotolerant kelp (Ecklonia radiata) to explore detrital photosynthesis as a mechanism underlying temperature and light as two key drivers of remineralization. METHODS We used meta-analysis to constrain the thermal optimum (Topt) of E. radiata. Temperature and light were subsequently controlled over a 119-day ex situ decomposition experiment. Flow-through experimental tanks were kept in darkness at 15 °C or under a subcompensating maximal irradiance of 8 µmol photons m-2 s-1 at 15, 20 or 25 °C. Photosynthesis of laterals (analogues to leaves) was estimated using closed-chamber oxygen evolution in darkness and under a saturating irradiance of 420 µmol photons m-2 s-1. KEY RESULTS T opt of E. radiata is 18 °C across performance variables (photosynthesis, growth, abundance, size, mass and fertility), life stages (gametophyte and sporophyte) and populations. Our models predict that a temperature of >15 °C reduces the potential for E. radiata detritus to be photosynthetically viable, hence detrital Topt ≤ 15 °C. Detritus is viable under subcompensating irradiance, where it performs better than in darkness. Comparison of net and gross photosynthesis indicates that elevated temperature primarily decreases detrital photosynthesis, whereas darkness primarily increases detrital respiration compared with optimal experimental conditions, in which detrital photosynthesis can persist for ≥119 days. CONCLUSIONS T opt of kelp detritus is ≥3 °C colder than that of the intact plant. Given that E. radiata is one of the most temperature-tolerant kelps, this suggests that photosynthesis is generally more thermosensitive in the detrital phase, which partly explains the enhancing effect of temperature on remineralization. In contrast to darkness, even subcompensating irradiance maintains detrital viability, elucidating the accelerating effect of depth and its concomitant light reduction on remineralization to some extent. Detrital photosynthesis is a meaningful mechanism underlying at least two drivers of remineralization, even below the photoenvironment inhabited by the attached alga.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Taylor Simpkins
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
| | - Karen Filbee-Dexter
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Perth,Australia
- School of Biological Sciences, University of Western Australia, Perth,Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
19
|
Zeng Y, Chen Z, Cao J, Li S, Xia Z, Sun Y, Zhang J, He P. Revolutionizing early-stage green tide monitoring: eDNA metabarcoding insights into Ulva prolifera and microecology in the South Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169022. [PMID: 38043827 DOI: 10.1016/j.scitotenv.2023.169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Green tides, characterized by excessive Ulva prolifera blooms, pose significant ecological and economic challenges, especially in the South Yellow Sea. We successfully employed 18S environmental DNA (eDNA) metabarcoding to detect Ulva prolifera micropropagules, confirming the technique's reliability and introducing a rapid green tide monitoring method. Our investigation revealed notable disparities in the eukaryotic microbial community composition within Ulva prolifera habitats across different regions. Particularly, during the early stages of the South Yellow Sea green tide outbreak, potential interactions emerged between Ulva prolifera micropropagules and certain previously undocumented microorganisms from neighboring waters. These findings enhance our comprehension of early-stage green tide ecosystem dynamics, underscoring the value of merging advanced molecular techniques with conventional ecological methods to gain a comprehensive understanding of the impact of green tide on the local ecosystem. Overall, our study advances our understanding of green tide dynamics, offering novel avenues for control, ecological restoration, and essential scientific support for sustainable marine conservation and management.
Collapse
Affiliation(s)
- Yinqing Zeng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zehua Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxing Cao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangyi Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
20
|
van der Mheen M, Wernberg T, Pattiaratchi C, Pessarrodona A, Janekovic I, Simpkins T, Hovey R, Filbee-Dexter K. Substantial kelp detritus exported beyond the continental shelf by dense shelf water transport. Sci Rep 2024; 14:839. [PMID: 38191572 PMCID: PMC10774291 DOI: 10.1038/s41598-023-51003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Kelp forests may contribute substantially to ocean carbon sequestration, mainly through transporting kelp carbon away from the coast and into the deep sea. However, it is not clear if and how kelp detritus is transported across the continental shelf. Dense shelf water transport (DSWT) is associated with offshore flows along the seabed and provides an effective mechanism for cross-shelf transport. In this study, we determine how effective DSWT is in exporting kelp detritus beyond the continental shelf edge, by considering the transport of simulated sinking kelp detritus from a region of Australia's Great Southern Reef. We show that DSWT is the main mechanism that transports simulated kelp detritus past the continental shelf edge, and that export is negligible when DSWT does not occur. We find that 51% per year of simulated kelp detritus is transported past the continental shelf edge, or 17-29% when accounting for decomposition while in transit across the shelf. This is substantially more than initial global estimates. Because DSWT occurs in many mid-latitude locations around the world, where kelp forests are also most productive, export of kelp carbon from the coast could be considerably larger than initially expected.
Collapse
Affiliation(s)
- Mirjam van der Mheen
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia.
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Charitha Pattiaratchi
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Ivica Janekovic
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Taylor Simpkins
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Renae Hovey
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|
21
|
Pessarrodona A, Franco-Santos RM, Wright LS, Vanderklift MA, Howard J, Pidgeon E, Wernberg T, Filbee-Dexter K. Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review. Biol Rev Camb Philos Soc 2023; 98:1945-1971. [PMID: 37437379 DOI: 10.1111/brv.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61-268 Tg C year-1 ), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Rita M Franco-Santos
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Luka Seamus Wright
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Mathew A Vanderklift
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Jennifer Howard
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Emily Pidgeon
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|
22
|
Morris K, Epstein G, Kaiser MJ, Porter J, Johnson AF. Adapting the marine stewardship council's risk-based framework to assess the impact of towed bottom fishing gear on blue carbon habitats. PLoS One 2023; 18:e0288484. [PMID: 37972207 PMCID: PMC10653409 DOI: 10.1371/journal.pone.0288484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 11/19/2023] Open
Abstract
Wild capture fisheries are of economic and social importance, providing a primary source of protein to people globally. There is a broad research base on the environmental impacts of fishing gears and processing methods yet, the impact on the global CO2 budget is less well studied. Evaluating the risk that wild capture fisheries pose to ecosystem health is vital to sustainably managing fishing practices to meet increasing global nutritional needs and reverse declines in marine biodiversity. At the same time meeting net-zero ambitions by reducing direct and indirect GHG emissions is vital. Ecological risk assessments, trait-based assessments, and vulnerability assessments have long supported fisheries management systems globally but do not yet provide any representation regarding the impacts that fishing gears have on the ability of the habitat to capture and store carbon. Considering the importance of accessibility and transparency in approaches necessary for fisheries sustainability certifications, this paper describes a method to integrate habitat carbon capacity attributes into the Marine Stewardship Council (MSC) Consequence and Spatial Analysis (CSA) framework. Applying the CSA carbon extension developed herein produces different CSA risk scores compared to the MSC CSA that does not account for carbon. This has potential consequences for certification schemes as carbon becomes more important in the fisheries sustainability conversation. The CSA carbon extension tool developed here is an important first step in incorporating carbon indicators into evaluations of fisheries that consider fishery carbon impacts.
Collapse
Affiliation(s)
- Kate Morris
- The Lyell Centre, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Graham Epstein
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- University of Victoria, Victoria, British Columbia, Canada
| | - Michel J. Kaiser
- The Lyell Centre, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Joanne Porter
- International Centre for Island Technology, Heriot-Watt University Orkney, Stromness, Orkney, Scotland, United Kingdom
| | - Andrew F. Johnson
- The Lyell Centre, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
- MarFishEco Fisheries Consultants Ltd, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
23
|
Ørberg SB, Duarte CM, Geraldi NR, Sejr MK, Wegeberg S, Hansen JLS, Krause-Jensen D. Prevalent fingerprint of marine macroalgae in arctic surface sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165507. [PMID: 37442464 DOI: 10.1016/j.scitotenv.2023.165507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Macroalgal forests export much of their production, partly supporting food webs and carbon stocks beyond their habitat, but evidence of their contribution in sediment carbon stocks is poor. We test the hypothesis that macroalgae contribute to carbon stocks in arctic marine sediments. We used environmental DNA (eDNA) fingerprinting on a large-scale set of surface sediment samples from Greenland and Svalbard. We evaluated eDNA results by comparing with traditional survey and tracer methods. The eDNA-based survey identified macroalgae in 94 % of the sediment samples covering shallow nearshore areas to 1460 m depth and 350 km offshore, with highest sequence abundance nearshore and with dominance of brown macroalgae. Overall, the eDNA results reflected the potential source communities of macroalgae and eelgrass assessed by traditional surveys, with the most abundant orders being common among different methods. A stable isotope analysis showed a considerable contribution from macroalgae in sediments although with high uncertainty, highlighting eDNA as a great improvement and supplement for documenting macroalgae as a contributor to sediment carbon stocks. Conclusively, we provide evidence for a prevalent contribution of macroalgal forests in arctic surface sediments, nearshore as well as offshore, identifying brown algae as main contributors.
Collapse
Affiliation(s)
- Sarah B Ørberg
- Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark; Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Carlos M Duarte
- Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark; King Abdullah University of Science and Technology, Red Sea Research Center and Computational Bioscience Research Center, Thuwal, Saudi Arabia.
| | - Nathan R Geraldi
- Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Mikael K Sejr
- Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark; Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Susse Wegeberg
- Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark; Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark.
| | - Jørgen L S Hansen
- Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark.
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, DK-8000 Aarhus C, Denmark; Arctic Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
24
|
Deregibus D, Campana GL, Neder C, Barnes DKA, Zacher K, Piscicelli JM, Jerosch K, Quartino ML. Potential macroalgal expansion and blue carbon gains with northern Antarctic Peninsula glacial retreat. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106056. [PMID: 37385084 DOI: 10.1016/j.marenvres.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
The West Antarctic Peninsula (WAP) is a hotspot of physical climate change, especially glacial retreat, particularly in its northern South Shetland Islands (SSI) region. Along coastlines, this process is opening up new ice-free areas, for colonization by a high biodiversity of flora and fauna. At Potter Cove, in the SSI (Isla 25 de Mayo/King George Island), Antarctica, colonization by macroalgae was studied in two newly ice-free areas, a low glacier influence area (LGI), and a high glacier influence area (HGI) differing in the presence of sediment run-off and light penetration, which are driven by levels of glacial influence. We installed artificial substrates (tiles) at 5 m depth to analyze benthic algal colonization and succession for four years (2010-2014). Photosynthetic active radiation (PAR, 400-700 nm), temperature, salinity, and turbidity were monitored at both sites in spring and summer. The turbidity and the light attenuation (Kd) were significantly lower at LGI than at HGI. All tiles were colonized by benthic algae, differing in species identity and successional patterns between areas, and with a significantly higher richness at LGI than HGI in the last year of the experiment. We scaled up a quadrat survey on the natural substrate to estimate benthic algal colonization in newly deglaciated areas across Potter Cove. Warming in recent decades has exposed much new habitat, with macroalgae making up an important part of colonist communities 'chasing' such glacier retreat. Our estimation of algal colonization in newly ice-free areas shows an expansion of ∼0.005-0.012 km2 with a carbon standing stock of ∼0.2-0.4 C tons, per year. Life moving into new space in such emerging fjords has the potential to be key for new carbon sinks and export. In sustained climate change scenarios, we expect that the processes of colonization and expansion of benthic assemblages will continue and generate significant transformations in Antarctic coastal ecosystems by increasing primary production, providing new structures, food and refuge to fauna, and capturing and storing more carbon.
Collapse
Affiliation(s)
- Dolores Deregibus
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gabriela L Campana
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Camila Neder
- Ecosistemas Marinos y Polares, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina; Ecología Marina, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Katharina Zacher
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Juan Manuel Piscicelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Estación Hidrobiológica Puerto Quequén. Museo Argentino de Ciencias Naturales 'B. Rivadavia', Buenos Aires, Argentina
| | - Kerstin Jerosch
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - María Liliana Quartino
- Departamento de Biología Costera, Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina; Museo Argentino de Ciencias Naturales 'B. Rivadavia', Buenos Aires, Argentina
| |
Collapse
|
25
|
Wear B, O'Connor NE, Schmid MJ, Jackson MC. What does the future look like for kelp when facing multiple stressors? Ecol Evol 2023; 13:e10203. [PMID: 37384243 PMCID: PMC10293785 DOI: 10.1002/ece3.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
As primary producers and ecosystem engineers, kelp (generally Order Laminariales) are ecologically important, and their decline could have far-reaching consequences. Kelp are valuable in forming habitats for fish and invertebrates and are crucial for adaptation to climate change by creating coastal defenses and in providing key functions, such as carbon sequestration and food provision. Kelp are threatened by multiple stressors, such as climate change, over-harvesting of predators, and pollution. In this opinion paper, we discuss how these stressors may interact to affect kelp, and how this varies under different contexts. We argue that more research that bridges kelp conservation and multiple stressor theory is needed and outline key questions that should be addressed as a priority. For instance, it is important to understand how previous exposure (either to earlier generations or life stages) determines responses to emerging stressors, and how responses in kelp scale up to alter food webs and ecosystem functioning. By increasing the temporal and biological complexity of kelp research in this way, we will improve our understanding allowing better predictions. This research is essential for the effective conservation and potential restoration of kelp in our rapidly changing world.
Collapse
Affiliation(s)
- Brigitte Wear
- Department of BiologyUniversity of OxfordOxfordUK
- Somerville CollegeOxfordUK
| | - Nessa E. O'Connor
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
| | - Matthias J. Schmid
- School of Natural Sciences, Discipline of ZoologyTrinity College DublinDublinIreland
- School of Natural ScienceUniversity of GalwayGalwayIreland
| | | |
Collapse
|
26
|
Ager TG, Krause-Jensen D, Olesen B, Carlson DF, Winding MHS, Sejr MK. Macroalgal habitats support a sustained flux of floating biomass but limited carbon export beyond a Greenland fjord. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162224. [PMID: 36804986 DOI: 10.1016/j.scitotenv.2023.162224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Despite growing attention on the contribution of macroalgae to carbon cycling and sequestration (blue carbon), more observational data is needed to constrain current estimates. In this study, we estimate the floating macroalgal carbon flux within and beyond a large sub-Arctic fjord system, Nuup Kangerlua, Greenland, which could potentially reach carbon sinks. Our study estimates 1) the fjord-scale area with macroalgal coverage and barrens caused by sea urchin grazing, 2) the floating macroalgal biomass in the fjord, and 3) the annual export flux of floating macroalgae out of the fjord system. ROV surveys documented that macroalgal habitats cover 32 % of the seafloor within the photic zone (0-30 m) with an average coverage of 39.6, 22, and 7.2 % in the depth intervals 0-10, 10-20, and 20-30 m, respectively. 15 % of the area suitable for macroalgae was denuded by sea urchin grazing. Floating macroalgae were common with an average biomass of 55 kg wet weight km-2. Densities and species composition varied seasonally with the highest levels after storms. The floating biomass was composed of intertidal macroalgal species (58 %) (Fucus vesiculosus, Fucus distichus, and Ascophyllum nodosum) and kelps (42 %) (Saccharina longicruris, S. latissima, and Alaria esculenta). We deployed surface GPS drifters to simulate floating macroalgal trajectories and velocity. Data indicated that 80 % of the floating biomass is retained in the fjord where its fate in relation to long-term sequestration is unknown. Export beyond the fjord was limited and indicated an annual floating macroalgal export beyond the fjord of only 6.92 t C yr-1, which is equal to ~0.02 % of the annual net primary production. Our findings suggest that floating macroalgae support a limited blue carbon potential beyond this fjord and that future research should focus on the fate of retained floating macroalgae and subsurface export to resolve the connectivity between macroalgal habitats and long-term carbon sinks.
Collapse
Affiliation(s)
- Thomas Gjerluff Ager
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark; Arctic Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Birgit Olesen
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Arctic Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Daniel F Carlson
- Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | | | - Mikael K Sejr
- Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark; Arctic Research Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Queirós AM, Tait K, Clark JR, Bedington M, Pascoe C, Torres R, Somerfield PJ, Smale DA. Identifying and protecting macroalgae detritus sinks toward climate change mitigation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2798. [PMID: 36504412 DOI: 10.1002/eap.2798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural solutions to mitigate climate change requires an understanding of carbon fixation, flux, and sequestration across ocean habitats. Recent studies have suggested that exported seaweed particulate organic carbon is stored within soft-sediment systems. However, very little is known about how seaweed detritus disperses from coastlines, or where it may enter seabed carbon stores, where it could become the target of conservation efforts. Here, focusing on regionally dominant seaweed species, we surveyed environmental DNA (eDNA) from natural coastal sediments, and studied their connectivity to seaweed habitats using a particle tracking model parameterized to reproduce seaweed detritus dispersal behavior based on laboratory observations of seaweed fragment degradation and sinking. Experiments showed that seaweed detritus density changed over time, differently across species. This, in turn, modified distances traveled by released fragments until they reached the seabed for the first time, during model simulations. Dispersal pathways connected detritus from the shore to the open ocean but, importantly, also to coastal sediments, and this was reflected by field eDNA evidence. Dispersion pathways were also affected by hydrodynamic conditions, varying in space and time. Both the properties and timing of released detritus, individual to each macroalgal population, and short-term near-seabed and medium-term water-column transport pathways, are thus seemingly important in determining the connectivity between seaweed habitats and potential sedimentary sinks. Studies such as this one, supported by further field verification of sedimentary carbon sequestration rates and source partitioning, are still needed to help quantify the role of seaweed in the ocean carbon cycle. Such studies will provide vital evidence to inform on the potential need to develop blue carbon conservation mechanisms, beyond wetlands.
Collapse
Affiliation(s)
| | - Karen Tait
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | | | | | | | | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, UK
| |
Collapse
|
28
|
Dunne AF, Tietbohl MD, Nuber C, Berumen M, Jones BH. Fish-mediated nutrient flows from macroalgae habitats to coral reefs in the Red Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105884. [PMID: 36701826 DOI: 10.1016/j.marenvres.2023.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Macroalgae canopies are common in tropical coastlines, and can be feeding grounds for coral reef fishes. We investigated whether fish transfer algal material from Sargassum-dominated macroalgae habitats to coral reefs by collecting gut contents of two herbivorous fish species (Naso elegans and N. unicornis) from coral reefs in the central Red Sea. On inshore reefs close to macroalgae canopies, Sargassum accounted for up to 41% of these species' gut contents while almost no Sargassum was found in the stomachs of fish on offshore reefs farther from macroalgae canopies. Using consumption and excretion rates from literature, we estimate that these fish consume up to 6.0 mmol C/m2 reef/day and excrete up to 10.8 μmol N/m2 reef/day and 1.0 μmol P/m2 reef/day across inshore reefs as a result of Sargassum consumption. Examining fish-mediated connections between habitats illuminates the role of fish as a vector of nutrition to nutrient-poor coral reefs.
Collapse
Affiliation(s)
- Aislinn F Dunne
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Matthew D Tietbohl
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Clara Nuber
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia; Carl von Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Wilhelmshaven, Germany.
| | - Michael Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| | - Burton H Jones
- King Abdullah University of Science and Technology, Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
29
|
Lozada M, Diéguez MC, García PE, Dionisi HM. Microbial communities associated with kelp detritus in temperate and subantarctic intertidal sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159392. [PMID: 36240919 DOI: 10.1016/j.scitotenv.2022.159392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Kelp forests, among the most productive ecosystems on Earth, cover large areas of the South Atlantic coast. Sediment heterotrophic bacteria have a pivotal role in the degradation of kelp biomass, however, the response of sediment microbial communities to periodic kelp biomass inputs is mostly unknown. Here, we show that kelp biomass induced rapid changes in overlying water chemistry and shifts in sediment microbial communities, which differed in the experimental systems containing Macrocystis pyrifera (M) and Undaria pinnatifida (U) with sediments of the respective regions. We observed results compatible with the degradation of labile, high molecular weight compounds into smaller and more refractory compounds towards the end of the incubations. The capability of microbial communities to degrade alginate, the major component of kelp cell walls, significantly increased with respect to controls after kelp biomass addition (Absorbance at 235 nm 1.2 ± 0.3 and 1.0 ± 0.2 for M and U, respectively, controls <0.2, t = 4 days). Shifts in microbial community structure (based on 16S rRNA gene amplicon sequencing) were tightly related to the kelp treatment and, to a lesser extent, to the sediment provenance (Principal Coordinates Analysis, 80 % of variation explained in the first two axes). Dissolved oxygen, pH, salinity, alginolytic potential, Absorbance at 235 and 600 nm, total N, total C, and SUVA index correlated significantly with community structure. Differentially abundant populations between kelp-amended treatments and controls included members of the Flavobacteriia class (Algibacter and Polaribacter), and Gammaproteobacteria (Psychromonas and Marinomonas), among others. Metagenomes of M and U-amended sediments contained sequences from 18 of the 19 enzyme families related to alginate or fucoidan degradation. Specific taxonomic groups were associated with enzyme classes targeting different substrates, suggesting niche differentiation. This work expands our knowledge on the patterns of microbial assemblages from intertidal sediments in response to kelp biomass inputs.
Collapse
Affiliation(s)
- Mariana Lozada
- Laboratorio de Microbiología Ambiental (CESIMAR-CONICET/IBIOMAR-CONICET), Puerto Madryn, Argentina.
| | - María C Diéguez
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje (GESAP, INIBIOMA-CONICET-UNComa), Bariloche, Argentina
| | - Patricia E García
- Grupo de Ecología de Sistemas Acuáticos a Escala de Paisaje (GESAP, INIBIOMA-CONICET-UNComa), Bariloche, Argentina
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental (CESIMAR-CONICET/IBIOMAR-CONICET), Puerto Madryn, Argentina
| |
Collapse
|
30
|
Bell LE, Kroeker KJ. Standing Crop, Turnover, and Production Dynamics of Macrocystis pyrifera and Understory Species Hedophyllum nigripes and Neoagarum fimbriatum in High Latitude Giant Kelp Forests. JOURNAL OF PHYCOLOGY 2022; 58:773-788. [PMID: 36302142 PMCID: PMC10100489 DOI: 10.1111/jpy.13291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Production rates reported for canopy-forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelp Macrocystis pyrifera are based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity of M. pyrifera and co-occurring understory kelps Hedophyllum nigripes and Neoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m-2 · year-1 from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitude M. pyrifera dwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration of M. pyrifera forest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.
Collapse
Affiliation(s)
- Lauren E. Bell
- Ecology and Evolutionary BiologyUniversity of California Santa Cruz130 McAllister WaySanta CruzCalifornia95060USA
| | - Kristy J. Kroeker
- Ecology and Evolutionary BiologyUniversity of California Santa Cruz130 McAllister WaySanta CruzCalifornia95060USA
| |
Collapse
|
31
|
Johnson MP. Low cost macroalgal canopy biomass monitoring using light attenuation. PeerJ 2022; 10:e14368. [PMID: 36405024 PMCID: PMC9673772 DOI: 10.7717/peerj.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Macroalgal canopies are productive and diverse habitats that export material to other marine ecosystems. Macroalgal canopy cover and composition are considered an Essential Ocean Variable by the research community. Although several techniques exist to both directly and remotely measure algal canopies, frequent measures of biomass are challenging. Presented here is a technique of using the relative attenuation of light inside and outside canopies to derive a proxy for algal biomass. If canopy attenuation coefficients are known, the proxy can be converted to an area of algal thallus per seabed area (thallus area index). An advantage of the approach is that light loggers are widely available and relatively inexpensive. Deployment for a year in the intertidal demonstrated that the method has the sensitivity to resolve summertime peaks in macroalgal biomass, despite the inherent variation in light measurements. Relative attenuation measurements can complement existing monitoring, providing point proxies for biomass and adding seasonal information to surveys that sample shores at less frequent intervals.
Collapse
Affiliation(s)
- Mark P. Johnson
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
32
|
Wright LS, Pessarrodona A, Foggo A. Climate-driven shifts in kelp forest composition reduce carbon sequestration potential. GLOBAL CHANGE BIOLOGY 2022; 28:5514-5531. [PMID: 35694894 PMCID: PMC9545355 DOI: 10.1111/gcb.16299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 05/27/2023]
Abstract
The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digitata and Laminaria hyperborea and warm temperate Laminaria ochroleuca. To understand how this might affect the carbon sequestration potential (CSP) of this ecosystem, we quantified interspecific differences in carbon export and decomposition alongside changes in detrital photosynthesis and biochemistry. We found that while warm temperate kelp exports up to 71% more carbon per plant, it decomposes up to 155% faster than its boreal congeners. Elemental stoichiometry and polyphenolic content cannot fully explain faster carbon turnover, which may be attributable to contrasting tissue toughness or unknown biochemical and structural defenses. Faster decomposition causes the detrital photosynthetic apparatus of L. ochroleuca to be overwhelmed 20 days after export and lose integrity after 36 days, while detritus of cold temperate species maintains carbon assimilation. Depending on the photoenvironment, detrital photosynthesis could further exacerbate interspecific differences in decomposition via a potential positive feedback loop. Through compositional change such as the predicted prevalence of L. ochroleuca, ocean warming may therefore reduce the CSP of such temperate marine forests.
Collapse
Affiliation(s)
- Luka Seamus Wright
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Albert Pessarrodona
- Oceans InstituteUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Andy Foggo
- Marine Biology and Ecology Research CentreUniversity of PlymouthPlymouthUK
| |
Collapse
|
33
|
Kwan V, Fong J, Ng CSL, Huang D. Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154369. [PMID: 35259389 DOI: 10.1016/j.scitotenv.2022.154369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Blue carbon ecosystems are a vital part of nature-based climate solutions due to their capacity to store and sequester carbon, but often exclude macroalgal beds even though they can form highly productive coastal ecosystems. Recent estimates of macroalgal contributions to global carbon sequestration are derived primarily from temperate kelp forests, while tropical macroalgal carbon stock in living biomass is still unclear. Here, using Singapore as a case study, we integrate field surveys and remote sensing data to estimate living macroalgal carbon stock. Results show that macroalgae in Singapore account for up to 650 Mg C biomass stock, which is greater than the aboveground carbon found in seagrass meadows but lower than that in mangrove forests. Ulva and Sargassum dominate macroalgal assemblages and biomass along the coast, with both genera exhibiting distinct spatio-temporal variation. The annual range of macroalgal biomass carbon is estimated to be 450 Mg C yr-1, or 0.77 Mg C ha-1 yr-1. Noting the uncertainties of the fate of macroalgal biomass carbon, we estimate the potential sequestration rate and find that it is comparable to mature terrestrial ecosystems such as tropical grasslands and temperate forests. This study demonstrates that macroalgal seasonality allows for a consistent amount of biomass carbon to either be exported and eventually sequestered, or harvested for utilization on an annual basis. These findings on macroalgal growth patterns and their considerable contributions to tropical coastal carbon pool add to the growing support for macroalgae to be formally included in blue carbon assessments.
Collapse
Affiliation(s)
- Valerie Kwan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Chin Soon Lionel Ng
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore.
| |
Collapse
|
34
|
Li H, Zhang Z, Xiong T, Tang K, He C, Shi Q, Jiao N, Zhang Y. Carbon Sequestration in the Form of Recalcitrant Dissolved Organic Carbon in a Seaweed (Kelp) Farming Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9112-9122. [PMID: 35686906 DOI: 10.1021/acs.est.2c01535] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Under climate change scenarios, the contribution of macroalgae to carbon sequestration has attracted wide attention. As primary producers, macroalgae can release substantial amounts of dissolved organic carbon (DOC) in seawater. However, little is known about the molecular composition and chemical properties of DOC derived from macroalgae and which of them are recalcitrant DOC (RDOC) that can be sequestered for a long time in the ocean. In the most intensive seaweed (kelp) farming area (Sanggou Bay) in China, we found that kelp mariculture not only significantly increased DOC concentration, but also introduced a variety of new DOC molecular species, many of which were sulfur-containing molecules. A long-term DOC degradation experiment revealed that those DOC with strong resistance to microbial degradation, i.e., RDOC, account for approximately 58% of the DOC extracted from kelp mariculture area. About 85% (3587 out of 4224 with different chemical features) of the RDOC molecular species were steadily present throughout the long-term degradation process. 15% (637 out of 4224 with different chemical features) of the RDOC molecular species were likely newly generated by microorganisms after metabolizing macroalgae-derived labile DOC. All these stable RDOC should be included in the blue carbon budgets of seaweed.
Collapse
Affiliation(s)
- Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Tianqi Xiong
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Kunxian Tang
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
35
|
Dolliver J, O’Connor N. Whole System Analysis Is Required To Determine The Fate Of Macroalgal Carbon: A Systematic Review. JOURNAL OF PHYCOLOGY 2022; 58:364-376. [PMID: 35397178 PMCID: PMC9325415 DOI: 10.1111/jpy.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The role of marine primary producers in capturing atmospheric CO2 has received increased attention in the global mission to mitigate climate change. Yet, our understanding of carbon sequestration performed by macroalgae has been limited to a relatively small number of studies that have estimated the ultimate fate of macroalgal-derived carbon. This systematic review was conducted to provide a timely synthesis of the methods used to determine the fate of macroalgal carbon in this rapidly expanding research area. It also aimed to provide suggestions for more effective future research. We found that the most common methods to estimate the fate of macroalgal carbon can be categorized into groups based on those that quantify: (i) export of macroalgal carbon to other environments-known as horizontal transport; (ii) sequestration of macroalgal carbon into deep-sea sediments-known as vertical transport; (iii) burial of macroalgal carbon directly beneath a benthic community; (iv) the loss of macroalgal carbon as particulate carbon or dissolved carbon to the water column; (v) the loss of macroalgal carbon to primary consumers; and finally (vi) those studies that combined multiple methods in one location. Based on this review, several recommendations for future research were formulated, which require the combination of multiple methods in a whole system analysis approach.
Collapse
Affiliation(s)
- Jessie Dolliver
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | - Nessa O’Connor
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
| |
Collapse
|
36
|
Hurd CL, Law CS, Bach LT, Britton D, Hovenden M, Paine ER, Raven JA, Tamsitt V, Boyd PW. Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. JOURNAL OF PHYCOLOGY 2022; 58:347-363. [PMID: 35286717 DOI: 10.1111/jpy.13249] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.
Collapse
Affiliation(s)
- Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Cliff S Law
- National Institute of Water and Atmospheric Research, Wellington, 6021, New Zealand
- Department of Marine Science, University of Otago, Dunedin, 9016, New Zealand
| | - Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mark Hovenden
- Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Ellie R Paine
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Sydney, Ultimo, New South Wales, 2006, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Veronica Tamsitt
- University of South Florida College of Marine Science, 830 1st St S, St Petersburg, Florida, 33701, USA
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
37
|
Walton MEM, Browne R, Griffiths JN, Cartwright D, Robins P, Malham SK, Le Vay L. Kelp detritus: Unutilized productivity or an unacknowledged trophic resource? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153191. [PMID: 35051477 DOI: 10.1016/j.scitotenv.2022.153191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Kelp beds are one of the most productive marine systems and, while little of this production is directly consumed, there is growing evidence that kelp detritus is an essential food source for many detrital and suspension feeders, and forms an important component of offshore sedimentary carbon pools. However, the extent of the contribution of kelp detritus to the nutrition of coastal fauna is not well resolved. In this study, we compare the contribution of phytoplankton, kelp detritus, and waste from fish cages to the diet of a sentinel suspension feeder, the blue mussel (Mytilus edulis) using stable isotopes. We found a significant depletion in both 13C and 15N in kelp tissue with age (distance from stipe to the deteriorating distal end of the kelp frond) which may have biased dietary estimates in previous studies which have applied isotopic source values derived from fresh kelp. Our mixing models indicate that macroalgal detritus formed 59% of the diet of the mussels in Berehaven, Bantry Bay, Ireland. We support the isotopic mixing model results by modelling the relative production of phytoplankton, kelp, and salmon farm waste, and found the supply of C and N from kelp and phytoplankton far exceeded the requirements of the mussels with much less coming from the nearby fish cages. Monthly chlorophyll measurements indicated there was only sufficient phytoplankton density to support mussel growth during the spring and autumn, explaining our observation of patterns in the relative importance of utilization of kelp detritus. Where there is pressure to harvest kelp beds, this study highlights the supporting ecosystem service they provide as an important dietary source in coastal food webs and emphasises the need for appropriate management measures for this resource.
Collapse
Affiliation(s)
- M E M Walton
- Centre for Applied Marine Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK.
| | - R Browne
- Bord Iascaigh Mhara, (BIM), Crofton Road, Dun Laoghaire, Co. Dublin, Republic of Ireland
| | - J N Griffiths
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| | - D Cartwright
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| | - P Robins
- Centre for Applied Marine Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| | - S K Malham
- Centre for Applied Marine Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| | - L Le Vay
- Centre for Applied Marine Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| |
Collapse
|
38
|
Jones AR, Alleway HK, McAfee D, Reis-Santos P, Theuerkauf SJ, Jones RC. Climate-Friendly Seafood: The Potential for Emissions Reduction and Carbon Capture in Marine Aquaculture. Bioscience 2022; 72:123-143. [PMID: 35145350 PMCID: PMC8824708 DOI: 10.1093/biosci/biab126] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aquaculture is a critical food source for the world's growing population, producing 52% of the aquatic animal products consumed. Marine aquaculture (mariculture) generates 37.5% of this production and 97% of the world's seaweed harvest. Mariculture products may offer a climate-friendly, high-protein food source, because they often have lower greenhouse gas (GHG) emission footprints than do the equivalent products farmed on land. However, sustainable intensification of low-emissions mariculture is key to maintaining a low GHG footprint as production scales up to meet future demand. We examine the major GHG sources and carbon sinks associated with fed finfish, macroalgae and bivalve mariculture, and the factors influencing variability across sectors. We highlight knowledge gaps and provide recommendations for GHG emissions reductions and carbon storage, including accounting for interactions between mariculture operations and surrounding marine ecosystems. By linking the provision of maricultured products to GHG abatement opportunities, we can advance climate-friendly practices that generate sustainable environmental, social, and economic outcomes.
Collapse
Affiliation(s)
- Alice R Jones
- University of Adelaide, Adelaide, South Australia, Australia
| | - Heidi K Alleway
- Nature Conservancy's Aquaculture Program, Arlington, Virginia, United States
| | - Dominic McAfee
- University of Adelaide, Adelaide, South Australia, Australia
| | | | - Seth J Theuerkauf
- NOAA National Marine Fisheries Office of Aquaculture, Silver Spring, Maryland, United States
| | - Robert C Jones
- Nature Conservancy's Aquaculture Program, Arlington, Virginia, United States
| |
Collapse
|
39
|
Zwerschke N, Sands CJ, Roman-Gonzalez A, Barnes DKA, Guzzi A, Jenkins S, Muñoz-Ramírez C, Scourse J. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. GLOBAL CHANGE BIOLOGY 2022; 28:8-20. [PMID: 34658117 DOI: 10.1111/gcb.15898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Global warming is causing significant losses of marine ice around the polar regions. In Antarctica, the retreat of tidewater glaciers is opening up novel, low-energy habitats (fjords) that have the potential to provide a negative feedback loop to climate change. These fjords are being colonized by organisms on and within the sediment and act as a sink for particulate matter. So far, blue carbon potential in Antarctic habitats has mainly been estimated using epifaunal megazoobenthos (although some studies have also considered macrozoobenthos). We investigated two further pathways of carbon storage and potential sequestration by measuring the concentration of carbon of infaunal macrozoobenthos and total organic carbon (TOC) deposited in the sediment. We took samples along a temporal gradient since time of last glacier ice cover (1-1000 years) at three fjords along the West Antarctic Peninsula. We tested the hypothesis that seabed carbon standing stock would be mainly driven by time since last glacier covered. However, results showed this to be much more complex. Infauna were highly variable over this temporal gradient and showed similar total mass of carbon standing stock per m2 as literature estimates of Antarctic epifauna. TOC mass in the sediment, however, was an order of magnitude greater than stocks of infaunal and epifaunal carbon and increased with time since last ice cover. Thus, blue carbon stocks and recent gains around Antarctica are likely much higher than previously estimated as is their negative feedback on climate change.
Collapse
Affiliation(s)
- Nadescha Zwerschke
- British Antarctic Survey, Cambridge, UK
- Joint Nature Conservation Committee, Aberdeen, UK
| | | | | | | | - Alice Guzzi
- Department of Physical Sciences, Earth and Environment (DSFTA), University of Siena, Siena, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), Genoa, Italy
| | - Stuart Jenkins
- School of Ocean Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Carlos Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
40
|
Climate Mitigation through Biological Conservation: Extensive and Valuable Blue Carbon Natural Capital in Tristan da Cunha's Giant Marine Protected Zone. BIOLOGY 2021; 10:biology10121339. [PMID: 34943254 PMCID: PMC8698552 DOI: 10.3390/biology10121339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Solving biodiversity loss and climate change are part of the same problem; intact natural habitats can provide powerful and efficient climate mitigation if protected. Beyond the land (forests), there is little appreciation of just how important ocean nature is to climate mitigation. Carbon captured, stored and the rate at which it is buried (sequestration) by marine organisms is called blue carbon. We measured how much blue carbon occurs around the remote islands and seamounts of the Tristan da Cunha archipelago Marine Protected Zone (MPZ). We estimated that there are 300 tonnes of carbon (tC) captured in seaweed biomass each year, a proportion of which will sink and become a part of the long-term sediment carbon store. In deeper water we found a standing stock of ~2.3 million tC in the shallowest 1000 m depths, of which equivalent to 0.8 million t of carbon dioxide has the potential to be sequestered. At current carbon prices, and were it to attract blue carbon credits, £24 million worth of blue carbon can potentially be sequestered from the standing stock of this small United Kingdom Overseas Territory. This standing stock is protected and growth could, therefore, generate an additional £3.5 million worth of sequestered carbon a year, making it an unrecognized major component of the local economy. The economic return on this example MPZ probably ranks highly amongst climate mitigation schemes. The message is that placing meaningful protection to carbon-rich natural habitats can massively help society fight climate change and biodiversity loss. Nations who provide this protection should be fairly compensated, particularly where it comes at the detriment of other economic uses of marine habitats. Abstract Carbon-rich habitats can provide powerful climate mitigation if meaningful protection is put in place. We attempted to quantify this around the Tristan da Cunha archipelago Marine Protected Area. Its shallows (<1000 m depth) are varied and productive. The 5.4 km2 of kelp stores ~60 tonnes of carbon (tC) and may export ~240 tC into surrounding depths. In deep-waters we analysed seabed data collected from three research cruises, including seabed mapping, camera imagery, seabed oceanography and benthic samples from mini-Agassiz trawl. Rich biological assemblages on seamounts significantly differed to the islands and carbon storage had complex drivers. We estimate ~2.3 million tC are stored in benthic biodiversity of waters <1000 m, which includes >0.22 million tC that can be sequestered (the proportion of the carbon captured that is expected to become buried in sediment or locked away in skeletal tissue for at least 100 years). Much of this carbon is captured by cold-water coral reefs as a mixture of inorganic (largely calcium carbonate) and organic compounds. As part of its 2020 Marine Protection Strategy, these deep-water reef systems are now protected by a full bottom-trawling ban throughout Tristan da Cunha and representative no take areas on its seamounts. This small United Kingdom Overseas Territory’s reef systems represent approximately 0.8 Mt CO2 equivalent sequestered carbon; valued at >£24 Million GBP (at the UN shadow price of carbon). Annual productivity of this protected standing stock generates an estimated £3 million worth of sequestered carbon a year, making it an unrecognized and potentially major component of the economy of small island nations like Tristan da Cunha. Conservation of near intact habitats are expected to provide strong climate and biodiversity returns, which are exemplified by this MPA.
Collapse
|
41
|
Queirós AM, Talbot E, Beaumont NJ, Somerfield PJ, Kay S, Pascoe C, Dedman S, Fernandes JA, Jueterbock A, Miller PI, Sailley SF, Sará G, Carr LM, Austen MC, Widdicombe S, Rilov G, Levin LA, Hull SC, Walmsley SF, Nic Aonghusa C. Bright spots as climate-smart marine spatial planning tools for conservation and blue growth. GLOBAL CHANGE BIOLOGY 2021; 27:5514-5531. [PMID: 34486773 PMCID: PMC9291121 DOI: 10.1111/gcb.15827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
Marine spatial planning that addresses ocean climate-driven change ('climate-smart MSP') is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change ('CC') modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors' present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP.
Collapse
Affiliation(s)
| | | | | | | | - Susan Kay
- Plymouth Marine LaboratoryPlymouthUK
| | | | - Simon Dedman
- Hopkins Marine StationStanford UniversityStanfordCaliforniaUSA
| | - Jose A. Fernandes
- AZTI‐Tecnalia, Marine ResearchBasque Research and Technology Alliance (BRTA)BizkaiaSpain
| | | | | | | | - Gianluca Sará
- Department of Earth and Marine ScienceLaboratory of EcologyUniversity of PalermoPalermoItaly
| | | | | | | | - Gil Rilov
- National Institute of OceanographyIsrael Oceanographic and Limnological Research InstituteHaifaIsrael
| | - Lisa A. Levin
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | | | | | | |
Collapse
|
42
|
Perkins AK, Rose AL, Grossart HP, Rojas-Jimenez K, Barroso Prescott SK, Oakes JM. Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Front Microbiol 2021; 12:726138. [PMID: 34733248 PMCID: PMC8558676 DOI: 10.3389/fmicb.2021.726138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.
Collapse
Affiliation(s)
- Anita K. Perkins
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L. Rose
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Selva K. Barroso Prescott
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Joanne M. Oakes
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
43
|
Coppock RL, Lindeque PK, Cole M, Galloway TS, Näkki P, Birgani H, Richards S, Queirós AM. Benthic fauna contribute to microplastic sequestration in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125583. [PMID: 33773248 DOI: 10.1016/j.jhazmat.2021.125583] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are ubiquitous in the marine environment, however, the mechanisms governing their uptake by, and burial within, seabed habitats are poorly understood. In this study, microplastic burial and its impact on fauna-mediated sedimentary processes was quantified at three coastal sites, and the potential contribution of burrowing faunal communities to this process assessed via functional trait diversity analysis of field data. In addition, laboratory exposures were used to assess whether sediment-processing undertaken by the brittlestar Amphiura filiformis, a key species in the sampled area, could explain the burial of microplastic fibres. Field observations confirmed broad-scale burial of microplastics across the coastal seabed, consistent across sites and seasons, with microplastic sequestration linked to benthic-pelagic exchange pathways, driven by burrowing fauna. Brittlestars were observed to bury and line their burrow walls with microfibres during experiments, and their burial activity was also modified following exposure to nylon fibres, relative to controls. Collectively, these results indicate that biodiverse and functionally important seabed habitats act as microplastic sinks, with burrowing fauna contributing to this process via well-known benthic-pelagic pathways, the rates of which are modified by plastic exposure.
Collapse
Affiliation(s)
- Rachel L Coppock
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK; University of Exeter, College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Matthew Cole
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - Tamara S Galloway
- University of Exeter, College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Pinja Näkki
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, FI-00790 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Hannah Birgani
- Department of Health and Applied Science, University of the West of England, Frenchay Campus, Coldharbour Lane, Stoke Gifford, Bristol BS16 1QY, UK
| | - Saskiya Richards
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| | - Ana M Queirós
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK
| |
Collapse
|
44
|
Miranda KK, Weigel BL, McCoy SJ, Pfister CA. Differential impacts of alternate primary producers on carbon cycling. Ecology 2021; 102:e03455. [PMID: 34166524 DOI: 10.1002/ecy.3455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
Disturbance impacts the spatial distribution of primary producers, which can have cascading effects on ecosystem function. The lower-intertidal zone on the rocky shores of the Pacific Northwest is one such place where wave energy creates a mosaic-like distribution between two assemblages: surfgrass (Phyllospadix scouleri) meadows and macroalgal forests dominated by kelp. We simulated wave disturbance by experimentally removing patches of surfgrass monocultures, resulting in a macroalgal assemblage with increased diversity, biomass, and net primary productivity in the following year. Although surfgrass had a higher C:N compared to macroalgal assemblages, macroalgal assemblages achieved a higher biomass, fixed carbon at a faster rate, and released more dissolved organic carbon (DOC) during photosynthesis. Thus, despite similar standing amounts of carbon, macroalgal assemblages have increased carbon turnover-from fixation to DOC release. Comparative photophysiology indicated that surfgrasses have a competitive advantage over other macrophytes at low light levels, allowing them to persist when disturbance is reduced. Unexpectedly, disturbance in this system increased the potential for carbon sequestration when surfgrass monocultures were replaced by diverse macroalgae.
Collapse
Affiliation(s)
- Khashiff K Miranda
- The College, University of Chicago, 1101 E 58th, Chicago, Illinois, 60637, USA
| | - Brooke L Weigel
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois, 60637, USA
| | - Sophie J McCoy
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306, USA
| | - Catherine A Pfister
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, Illinois, 60637, USA.,Department of Ecology & Evolution, University of Chicago, 1101 East 57th Street, Chicago, Illinois, 60637, USA
| |
Collapse
|
45
|
Bayley D, Brickle P, Brewin P, Golding N, Pelembe T. Valuation of kelp forest ecosystem services in the Falkland Islands: A case study integrating blue carbon sequestration potential. ONE ECOSYSTEM 2021. [DOI: 10.3897/oneeco.6.e62811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kelp forests provide many important ecosystem services to people, including mitigating storm damage, cycling nutrients, and providing commercially-harvestable resources. However, kelp forests’ ability to sequester carbon dioxide, and therefore help regulate the climate, has until recently, been overlooked in assessments of the beneficial services they provide. In this study we incorporate updated knowledge on the potential of kelp to sequester ‘blue carbon’, and use the extensive kelp forests of the Falkland Islands as a case study to assess the value of kelp forest to society through multiple associated ecosystem services. Our analysis shows kelp forests provide a highly valuable range of direct and indirect services, which if managed correctly, will continue to benefit people, both now and in the future. The total estimated value of the Falkland Islands’ kelp system is currently equivalent to ~ £2.69 billion per year (or £3.24 million km-2 year-1). However, the true value of the kelp forest surrounding the Falkland Islands is likely to be higher still, given that our estimate does not account for elements such as associated scientific research, tourism, and cultural services, due to the necessary data currently being unavailable. Similarly, the full value of these highly biodiverse ecosystems in supplying habitat and food to a large range of associated species is crucial, yet extremely difficult to fully quantify. This study illustrates the importance of maintaining kelp ecosystems in a healthy state to ensure they continue to supply valuable ecological processes, functional roles, and ecosystem services, including their overlooked role as significant long-term carbon sinks.
Collapse
|
46
|
Frontier N, de Bettignies F, Foggo A, Davoult D. Sustained productivity and respiration of degrading kelp detritus in the shallow benthos: Detached or broken, but not dead. MARINE ENVIRONMENTAL RESEARCH 2021; 166:105277. [PMID: 33592375 DOI: 10.1016/j.marenvres.2021.105277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
Temperate kelp forests contribute significantly to marine primary productivity and fuel many benthic and pelagic food chains. A large proportion of biomass is exported from kelp forests as detritus into recipient marine ecosystems, potentially contributing to Blue Carbon sequestration. The degradation of this organic material is slow and recent research has revealed the preservation of photosynthetic functions over time. However, the physiological correlates of detrital breakdown in Laminaria spp. have not yet been studied. The warming climate threatens to reshuffle the species composition of kelp forests and perturb the dynamics of these highly productive ecosystems. The present study compares the physiological response of degrading detritus from two competing North East Atlantic species; the native Boreal Laminaria hyperborea and the thermally tolerant Boreal-Lusitanian L. ochroleuca. Detrital fragment degradation was measured by a mesocosm experiment across a gradient of spectral attenuation (a proxy for depth) to investigate the changes in physiological performance under different environmental conditions. Degradation of fragments was quantified over 108 days by measuring the biomass, production and respiration (by respirometry) and efficiency of Photosystem II (by PAM fluorometry). Data indicated that whilst degrading, the photosynthetic performance of the species responded differently to simulated depths, but fragments of both species continued to produce oxygen for up to 56 days and sustained positive net primary production. This study reveals the potential for ostensibly detrital kelp to contribute to Blue Carbon fixation through sustained primary production which should be factored into Blue Carbon management. Furthermore, the physiological response of kelp detritus is likely dependent upon the range of habitats to which it is exported. In the context of climate change, shifts in species composition of kelp forests and their detritus are likely to have wide-reaching effects upon the cycling of organic matter in benthic ecosystems.
Collapse
Affiliation(s)
- Nadia Frontier
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| | - Andy Foggo
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, F-29680, Roscoff, France
| |
Collapse
|
47
|
Kahma TI, Karlson AML, Sun X, Mörth CM, Humborg C, Norkko A, Rodil IF. Macroalgae fuels coastal soft-sediment macrofauna: A triple-isotope approach across spatial scales. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105163. [PMID: 33137597 DOI: 10.1016/j.marenvres.2020.105163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Shallow coastal zones may provide cross-habitat nutrient subsidies for benthic communities offshore, as macrophyte matter can drift to deeper sediments. To study the relative importance of carbon and nutrient flows derived from different primary food sources in a coastal ecosystem, the diets of clam Macoma balthica, polychaete Marenzelleria spp. and mussel Mytilus trossulus were examined across environmental gradients in the northern Baltic Sea using a triple-isotope approach (i.e. 13C, 15N and 34S) and Bayesian mixing models (MixSIAR). Our results suggest that in shallow habitats, production from Fucus vesiculosus is the primary energy source for M. balthica. The proportion of macroalgae-derived matter in the diet of M. balthica and Marenzelleria spp. decreased following a depth gradient. Our models for M. trossulus indicate that the pelagic POM dominates its diet. Our results indicate a trophic connectivity between shallow macrophyte-dominated and deeper habitats, which receive significant amounts of nutrient subsidies from shallower areas.
Collapse
Affiliation(s)
- T I Kahma
- University of Helsinki, Tvärminne Zoological Station, J. A. Palménin Tie 260, 10900 Hanko, Finland.
| | - A M L Karlson
- Stockholm University, Department of Ecology, Environment and Plant Science, 106 91 Stockholm, Sweden; Stockholm University, Baltic Sea Centre, 106 91 Stockholm, Sweden.
| | - X Sun
- Stockholm University, Baltic Sea Centre, 106 91 Stockholm, Sweden.
| | - C-M Mörth
- Stockholm University, Department of Geological Sciences, 106 91 Stockholm, Sweden.
| | - C Humborg
- University of Helsinki, Tvärminne Zoological Station, J. A. Palménin Tie 260, 10900 Hanko, Finland; Stockholm University, Baltic Sea Centre, 106 91 Stockholm, Sweden.
| | - A Norkko
- University of Helsinki, Tvärminne Zoological Station, J. A. Palménin Tie 260, 10900 Hanko, Finland; Stockholm University, Baltic Sea Centre, 106 91 Stockholm, Sweden.
| | - I F Rodil
- University of Helsinki, Tvärminne Zoological Station, J. A. Palménin Tie 260, 10900 Hanko, Finland; Stockholm University, Baltic Sea Centre, 106 91 Stockholm, Sweden.
| |
Collapse
|
48
|
Arina N, Raynusha C, Hidayah N, Zainee NFA, Prathep A, Rozaimi M. Coralline macroalgae contribution to ecological services of carbon storage in a disturbed seagrass meadow. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105156. [PMID: 33032080 DOI: 10.1016/j.marenvres.2020.105156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Coralline macroalgae are globally distributed rhodopyhtes that remove carbon from their immediate environment and transform it into carbonate sediments through the senescence of their calcified tissues. In this study, the calcium carbonate (CaCO3) stocks in the tissue of Jania adhaerens and sediments in Tanjung Adang Shoal, Johor were quantified for a 13-month study period. The detailed maps of the geographical distribution based on the spatial and temporal variations of biomass and CaCO3 were also assessed. The highest amount of biomass, CaCO3 and organic carbon (OC) stocks in the tissues showed the highest in May 2018 and May 2019. The biomass values ranged from 65 to 143 g DW m-2, which contained 53-147 g CaCO3 m-2 and 3-11 g OC m-2. These findings provided insights into the biogeochemical cycling of these inputs, which can be used to estimate the overall carbon budget of the macrophyte meadow.
Collapse
Affiliation(s)
- Natasha Arina
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Chandran Raynusha
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Nur Hidayah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Nur Farah Ain Zainee
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Anchana Prathep
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mohammad Rozaimi
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
49
|
Watson SCL, Preston J, Beaumont NJ, Watson GJ. Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140688. [PMID: 32717468 DOI: 10.1016/j.scitotenv.2020.140688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Using a natural capital framework to inform improvements to water quality and mitigation of climate change requires robust and spatially explicit ecosystem service data. Yet, for coastal habitats this approach is often constrained by a) sufficient and relevant habitat extent data and b) significant variability in baseline assessments used to quantify and value regulatory habitat services. Here, the European Nature Information System (EUNIS) habitat classification scheme is used to map seven key temperate coastal biotopes (littoral sediment, mat-forming green macroalgae, subtidal sediment, saltmarsh, seagrass, reedbeds and native oyster reefs) within the UK's Solent European Marine Site (SEMS). We then estimate the capacity of these biotopes to remove nitrogen (N) and phosphorus (P) and carbon (C), alongside monetary values associated with the resulting benefits. Littoral and sublittoral sediments (including those combined with macroalgae) were the largest contributors to total N, P and C removal, reflecting their large biotope area. However, our results also show considerable differences in relative biotope contributions to nutrient removal depending on how they are analysed and delineated over large spatial scales. When considered at a regional catchment level seagrass meadows, saltmarshes and reedbeds all had considerable N, P and C removal potential. Overall, we estimate that SEMS biotopes provide nutrient reductions and avoided climate damages equivalent to UK £1.1 billion, although this could be nearly £10 billion if water-treatment infrastructure costs and high carbon trading prices are utilised. Despite the variability in the final natural capital evaluations, the substantial regulatory value of N, P and C ecosystem services support a strong rational for restoring temperate coastal biotopes.
Collapse
Affiliation(s)
- Stephen C L Watson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO49LY, UK.
| | - Joanne Preston
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO49LY, UK
| | - Nicola J Beaumont
- Plymouth Marine Laboratory, The Hoe Plymouth, Prospect Place, Devon PL13DH, UK
| | - Gordon J Watson
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth PO49LY, UK
| |
Collapse
|
50
|
|