1
|
Taylor BN. Symbiotic nitrogen fixation in trees: patterns, controls and ecosystem consequences. TREE PHYSIOLOGY 2025; 45:tpae159. [PMID: 39658308 DOI: 10.1093/treephys/tpae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Symbiotic nitrogen fixation (SNF) represents the largest natural input of bioavailable nitrogen into the biosphere, impacting key processes spanning from local community dynamics to global patterns of nutrient limitation and primary productivity. While research on SNF historically focused largely on herbaceous and agricultural species, the past two decades have seen major advances in our understanding of SNF by tree species in forest and savanna communities. This has included important developments in the mathematical theory of SNF in forest ecosystems, experimental work on the regulators of tree SNF, broad observational analyses of tree N-fixer abundance patterns and increasingly process-based incorporation of tree SNF into ecosystem models. This review synthesizes recent work on the local and global patterns, environmental drivers and community and ecosystem effects of nitrogen-fixing trees in natural ecosystems. By better understanding the drivers and consequences of SNF in forests, this review aims to shed light on the future of this critical process and its role in forest functioning under changing climate, nutrient cycling and land use.
Collapse
Affiliation(s)
- Benton N Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
- The Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA
| |
Collapse
|
2
|
Zhou W, Tao Y, Peng L, Zheng H, Zhou X, Yin B, Zhang J, Zhang Y. Balancing the nutrient needs: Optimising growth in Malus sieversii seedlings through tailored nitrogen and phosphorus effects. PLANT, CELL & ENVIRONMENT 2024; 47:5280-5296. [PMID: 39188105 DOI: 10.1111/pce.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The impact of nitrogen (N) and phosphorus (P) on the physiological and biochemical processes crucial for tree seedling growth is substantial. Although the study of plant hydraulic traits in response to N and P is growing, comprehensive research on their combined effects remains limited. Malus sieversii, a key ancestral species of modern apples and a dominant species in Xinjiang's Tianshan wild fruit forest, is witnessing a decline due to climate change, pests and diseases, compounded by challenges in seedling regeneration. Addressing this, a 4-year study was conducted to determine the optimal fertilisation method for it. The experiment explored varying levels of N (N10, N20 and N40) and P (P2, P4 and P8), and their combined effects (N20Px: N20P2, N20P4, N20P8; NxP4: N10P4, N20P4 and N40P4), assessing their impact on gas exchange, hydraulic traits, and the interplay among functional traits in Tianshan Mountains' M. sieversii seedlings. Our study revealed that All N-inclusive fertilisers slightly promoted the net photosynthetic rate. N10 significantly increasing leaf hydraulic conductivity. All P-inclusive fertilisers adversely affected hydraulic conductivity. P8, N20P4 and N20P8 notably increased seedlings' vulnerability to embolism. Seedlings can adaptively adjust multiple functional traits in response to nutrient changes. The research suggests N10 and N20 as the most effective fertilisation treatments for M. sieversii seedlings in this region, while fertilisation involving phosphorus is less suitable. This study contributes valuable insights into the specific nutrient needs of it, vital for conservation and cultivation efforts in the Tianshan region.
Collapse
Affiliation(s)
- Weiyi Zhou
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tao
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lan Peng
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang, China
| | - Hongwei Zheng
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RS & GIS Application Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Xiaobing Zhou
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Benfeng Yin
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanming Zhang
- National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Biodiversity Conservation and Application in Arid Lands Xinjiang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Marcellus M, Goud EM, Swartz N, Brown E, Soper FM. Evolutionary history and root trait coordination predict nutrient strategy in tropical legume trees. THE NEW PHYTOLOGIST 2024; 243:1711-1723. [PMID: 39005157 DOI: 10.1111/nph.19962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Plants express diverse nutrient use and acquisition traits, but it is unclear how trait combinations at the species level are constrained by phylogeny, trait coordination, or trade-offs in resource investment. One trait - nitrogen (N) fixation - is assumed to correlate with other traits and used to define plant functional groups, despite potential confounding effects of phylogeny. We quantified growth, carbon metabolism, fixation rate, root phosphatase activity (RPA), mycorrhizal colonization, and leaf and root morphology/chemistry across 22 species of fixing and nonfixing tropical Fabaceae trees under common conditions. Belowground trait variation was high even among closely related species, and most traits displayed a phylogenetic signal, including N-fixation rate and nodule biomass. Across species, we observed strong positive correlations between physiological traits such as RPA and root respiration. RPA increased ~ fourfold per unit increase in fixation, supporting the debated hypothesis that N-fixers 'trade' N for phosphatases to enhance phosphorus acquisition. Specific root length and root N differed between functional groups, though for other traits, apparent differences became nonsignificant after accounting for phylogenetic nonindependence. We conclude that evolutionary history, trait coordination, and fixation ability contribute to nutrient trait expression at the species level, and recommend explicitly considering phylogeny in analyses of functional groupings.
Collapse
Affiliation(s)
- Mia Marcellus
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Ellie M Goud
- Department of Biology, Saint Mary's University, Halifax, NS, B3H 3C3, Canada
| | - Natalie Swartz
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Emily Brown
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Fiona M Soper
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
- Bieler School of Environment, McGill University, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
4
|
Wong MY, Wurzburger N, Hall JS, Wright SJ, Tang W, Hedin LO, Saltonstall K, van Breugel M, Batterman SA. Trees adjust nutrient acquisition strategies across tropical forest secondary succession. THE NEW PHYTOLOGIST 2024; 243:132-144. [PMID: 38742309 DOI: 10.1111/nph.19812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.
Collapse
Affiliation(s)
- Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jefferson S Hall
- ForestGEO, Smithsonian Tropical Research Institute, Ancón, 0843-03092, Panama, Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Wenguang Tang
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2, UK
| | - Lars O Hedin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
| | - Michiel van Breugel
- ForestGEO, Smithsonian Tropical Research Institute, Ancón, 0843-03092, Panama, Panama
- Department of Geography, National University of Singapore, Singapore, 119077, Singapore
- Yale-NUS College, Singapore, 138527, Singapore
| | - Sarah A Batterman
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Panama
- School of Geography and Priestley International Centre for Climate, University of Leeds, Leeds, LS2, UK
| |
Collapse
|
5
|
Yaffar D, Lugli LF, Wong MY, Norby RJ, Addo-Danso SD, Arnaud M, Cordeiro AL, Dietterich LH, Diaz-Toribio MH, Lee MY, Ghimire OP, Smith-Martin CM, Toro L, Andersen K, McCulloch LA, Meier IC, Powers JS, Sanchez-Julia M, Soper FM, Cusack DF. Tropical root responses to global changes: A synthesis. GLOBAL CHANGE BIOLOGY 2024; 30:e17420. [PMID: 39044411 DOI: 10.1111/gcb.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species- and community-level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2 by increasing root biomass in species-scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.
Collapse
Affiliation(s)
- Daniela Yaffar
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michelle Y Wong
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shalom D Addo-Danso
- Forest and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana
| | - Marie Arnaud
- Sorbonne Université, CNRS, INRAE, Institute of Ecology and Environmental Sciences (IEES), Paris, France
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Milton H Diaz-Toribio
- Jardín Botánico Francisco Javier Clavijero, Instituto de Ecología, A.C. Xalapa, Veracruz, Mexico
| | - Ming Y Lee
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Om Prakash Ghimire
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Laura Toro
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| | - Kelly Andersen
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Lindsay A McCulloch
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Fiona M Soper
- Department of Biology and Bieler School of Environment, McGill University, Montreal, Qubec, Canada
| | - Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
6
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
7
|
Zuo Y, Southard M, Xu Q, Zhang G, Skibinski E, Moon N, Gan L, Chen Y, Jiang L. Cell size-dependent species sensitivity to nanoparticles underlies changes in phytoplankton diversity and productivity. GLOBAL CHANGE BIOLOGY 2024; 30:e17049. [PMID: 37988188 DOI: 10.1111/gcb.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Nanoparticle pollution has been shown to affect various organisms. However, the effects of nanoparticles on species interactions, and the role of species traits, such as body size, in modulating these effects, are not well-understood. We addressed this issue using competing freshwater phytoplankton species exposed to copper oxide nanoparticles. Increasing nanoparticle concentration resulted in decreased phytoplankton species growth rates and community productivity (both abundance and biomass). Importantly, we consistently found that nanoparticles had greater negative effects on species with smaller cell sizes, such that nanoparticle pollution weakened the competitive dominance of smaller species and promoted species diversity. Moreover, nanoparticles reduced the growth rate differences and competitive ability differences of competing species, while having little effect on species niche differences. Consequently, nanoparticle pollution reduced the selection effect on phytoplankton community abundance, but increased the selection effect on community biomass. Our results suggest cell size as a key functional trait to consider when predicting phytoplankton community structure and ecosystem functioning in the face of increasing nanopollution.
Collapse
Affiliation(s)
- Yiping Zuo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael Southard
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Qianna Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Guangxing Zhang
- The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily Skibinski
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Lan Gan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Holtum JAM. Klaus Winter - the indefatigable CAM experimentalist. ANNALS OF BOTANY 2023; 132:563-575. [PMID: 37010384 PMCID: PMC10799999 DOI: 10.1093/aob/mcad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND In January 1972, Klaus Winter submitted his first paper on crassulacean acid metabolism (CAM) whilst still an undergraduate student in Darmstadt. During the subsequent half-century, he passed his Staatsexamensarbeit, obtained his Dr. rer. nat. summa cum laude and Dr. rer. nat. habil., won a Heinz Maier-Leibnitz Prize and a Heisenberg Fellowship, and has occupied positions in Germany, Australia, the USA and Panama. Now a doyen in CAM circles, and a Senior Staff Scientist at the Smithsonian Tropical Research Institute (STRI), he has published over 300 articles, of which about 44 % are about CAM. SCOPE I document Winter's career, attempting to place his CAM-related scientific output and evolution in the context of factors that have influenced him as he and his science progressed from the 1970s to the 2020s.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
Effects of Multiple Global Change Factors on Symbiotic and Asymbiotic N2 Fixation: Results Based on a Pot Experiment. NITROGEN 2023. [DOI: 10.3390/nitrogen4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Biological N2 fixation, a major pathway for new nitrogen (N) input to terrestrial ecosystems, largely determines the dynamics of ecosystem structure and functions under global change. Nevertheless, the responses of N2 fixation to multiple global change factors remain poorly understood. Here, saplings of two N2-fixing plant species, Alnus cremastogyne and Cajanus cajan, were grown at rural and urban sites, respectively, with the latter representing an environment with changes in multiple factors occurring simultaneously. Symbiotic N2 fixation per unit of nodule was significantly higher at the urban site than the rural site for A. cremastogyne, but the rates were comparable between the two sites for C. cajan. The nodule investments were significantly lower at the urban site relative to the rural site for both species. Symbiotic N2 fixation per plant increased by 31.2 times for A. cremastogyne, while that decreased by 88.2% for C. cajan at the urban site compared to the rural site. Asymbiotic N2 fixation rate in soil decreased by 46.2% at the urban site relative to the rural site. The decrease in symbiotic N2 fixation per plant for C. cajan and asymbiotic N2 fixation in soil was probably attributed to higher N deposition under the urban conditions, while the increase in symbiotic N2 fixation per plant for A. cremastogyne was probably related to the higher levels of temperature, atmospheric CO2, and phosphorus deposition at the urban site. The responses of N2 fixation to multiple global change factors and the underlying mechanisms may be divergent either between symbiotic and asymbiotic forms or among N2-fixing plant species. While causative evidence is urgently needed, we argue that these differences should be considered in Earth system models to improve the prediction of N2 fixation under global change.
Collapse
|
10
|
Jager EA, Quebbeman AW, Wolf AA, Perakis SS, Funk JL, Menge DNL. Symbiotic nitrogen fixation does not stimulate soil phosphatase activity under temperate and tropical trees. Oecologia 2023; 201:827-840. [PMID: 36877257 DOI: 10.1007/s00442-023-05339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
Symbiotic nitrogen (N)-fixing plants can enrich ecosystems with N, which can alter the cycling and demand for other nutrients. Researchers have hypothesized that fixed N could be used by plants and soil microbes to produce extracellular phosphatase enzymes, which release P from organic matter. Consistent with this speculation, the presence of N-fixing plants is often associated with high phosphatase activity, either in the soil or on root surfaces, although other studies have not found this association, and the connection between phosphatase and rates of N fixation-the mechanistic part of the argument-is tenuous. Here, we measured soil phosphatase activity under N-fixing trees and non-fixing trees transplanted and grown in tropical and temperate sites in the USA: two sites in Hawaii, and one each in New York and Oregon. This provides a rare example of phosphatase activity measured in a multi-site field experiment with rigorously quantified rates of N fixation. We found no difference in soil phosphatase activity under N-fixing vs. non-fixing trees nor across rates of N fixation, though we note that no sites were P limited and only one was N limited. Our results add to the literature showing no connection between N fixation rates and phosphatase activity.
Collapse
Affiliation(s)
- Emily A Jager
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Andrew W Quebbeman
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Amelia A Wolf
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Steven S Perakis
- Forest and Rangeland Ecosystem Science Center, US Geological Survey, Corvallis, OR, USA
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Duncan N L Menge
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Toro L, Pereira‐Arias D, Perez‐Aviles D, Vargas G. G, Soper FM, Gutknecht J, Powers JS. Phosphorus limitation of early growth differs between nitrogen-fixing and nonfixing dry tropical forest tree species. THE NEW PHYTOLOGIST 2023; 237:766-779. [PMID: 36352518 PMCID: PMC10107181 DOI: 10.1111/nph.18612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/18/2022] [Indexed: 05/29/2023]
Abstract
Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions. We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits. Nitrogen fixers grew larger with increasing P addition in contrast to non-N fixers, which showed fewer responses in C allocation and P use. Foliar P increased with P addition for both functional types, while P acquisition strategies did not vary among treatments but differed between functional types, with N fixers showing higher root phosphatase activity (RPA) than nonfixers. Growth responses suggest that N fixers are limited by P, but nonfixers may be limited by other resources. However, regardless of limitation, P acquisition traits such as mycorrhizal colonization and RPA were nonplastic across a steep P gradient. Differential limitation among plant functional types has implications for forest succession and earth system models.
Collapse
Affiliation(s)
- Laura Toro
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt PaulMN55108USA
| | | | - Daniel Perez‐Aviles
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt PaulMN55108USA
| | - German Vargas G.
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt PaulMN55108USA
- School of Biological SciencesThe University of UtahSalt Lake CityUT84112USA
| | - Fiona M. Soper
- Department of Biology and Bieler School of EnvironmentMcGill UniversityMontréalQCH3A 1B1Canada
| | - Jessica Gutknecht
- Department of Soil, Water, and ClimateUniversity of MinnesotaSt PaulMN55108USA
| | - Jennifer S. Powers
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt PaulMN55108USA
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt PaulMN55108USA
| |
Collapse
|
12
|
Reichert T, Rammig A, Fuchslueger L, Lugli LF, Quesada CA, Fleischer K. Plant phosphorus-use and -acquisition strategies in Amazonia. THE NEW PHYTOLOGIST 2022; 234:1126-1143. [PMID: 35060130 DOI: 10.1111/nph.17985] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.
Collapse
Affiliation(s)
- Tatiana Reichert
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Anja Rammig
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lucia Fuchslueger
- Centre of Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Laynara F Lugli
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Carlos A Quesada
- National Institute of Amazonian Research, Manaus, 69060-062, Brazil
| | - Katrin Fleischer
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
- Department Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| |
Collapse
|
13
|
The Conservation and Restoration of Riparian Forests along Caribbean Riverbanks Using Legume Trees. SUSTAINABILITY 2022. [DOI: 10.3390/su14073709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the actual context of global change and biodiversity depletion, soil bioengineering represents an important tool for riparian ecosystem restoration and species conservation. Various techniques have already been implemented, but their adaptation still must be carried out in Caribbean Islands biodiversity hotspots, where suitable species remains unknown. Nitrogen-fixing legumes are particularly relevant for ecological restoration and the diversity of native Caribbean legume trees is promising in the search for suitable species for soil bioengineering. We hypothesized that Caribbean legume tree species present a growth performance and set of biotechnical traits compatible with their use in soil bioengineering. We selected five native legume trees, adapted to riparian environments, in different ecosystems (swamp forest, evergreen seasonal forest, rainforest) based on their ecology, resistance to disturbance and seed production characteristics. We measured root traits relevant for soil bioengineering on nursery grown 3-month-old seedlings. Despite their differences in sensitivity to herbivory and in growth strategies, the selected species have a high potential for use in soil bioengineering, with high seed production, high germination rates—from 88 to 100%—, and 100% survival rates, and are therefore compatible with large scale plant material production. We provided practical guidance tools for their integration into soil bioengineering techniques.
Collapse
|
14
|
Backéus I, Skoglund J, Skarpe C, Hytteborn H. Diameter growth of trees in miombo and acacia woodland in an eroded landscape in NE Tanzania. Afr J Ecol 2022. [DOI: 10.1111/aje.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ingvar Backéus
- Plant Ecology and Evolution Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jerry Skoglund
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Christina Skarpe
- Campus Evenstad Faculty of Applied Ecology, Agricultural Sciences and Biotechnology Inland Norway University of Applied Sciences Elverum Norway
| | - Håkan Hytteborn
- Plant Ecology and Evolution Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
15
|
Mao J, Mao Q, Gundersen P, Gurmesa GA, Zhang W, Huang J, Wang S, Li A, Wang Y, Guo Y, Liu R, Mo J, Zheng M. Unexpected high retention of 15 N-labeled nitrogen in a tropical legume forest under long-term nitrogen enrichment. GLOBAL CHANGE BIOLOGY 2022; 28:1529-1543. [PMID: 34800306 DOI: 10.1111/gcb.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The responses of forests to nitrogen (N) deposition largely depend on the fates of deposited N within the ecosystem. Nitrogen-fixing legume trees widely occur in terrestrial forests, but the fates of deposited N in legume-dominated forests remain unclear, which limit a global evaluation of N deposition impacts and feedbacks on carbon sequestration. Here, we performed the first ecosystem-scale 15 N labeling experiment in a typical legume-dominated forest as well as in a nearby non-legume forest to determine the fates of N deposition between two different forest types and to explore their underlying mechanisms. The 15 N was sprayed bimonthly for 1 year to the forest floor in control and N addition (50 kg N ha-1 year-1 for 10 years) plots in both forests. We unexpectedly found a strong capacity of the legume forest to retain deposited N, with 75 ± 5% labeled N recovered in plants and soils, which was higher than that in the non-legume forest (56 ± 4%). The higher 15 N recovery in legume forest was mainly driven by uptake by the legume trees, in which 15 N recovery was approximately 15% more than that in the nearby non-legume trees. This indicates higher N-demand by the legume than non-legume trees. Mineral soil was the major sink for deposited N, with 39 ± 4% and 34 ± 3% labeled N retained in the legume and non-legume forests, respectively. Moreover, N addition did not significantly change the 15 N recovery patterns of both forests. Overall, these findings indicate that legume-dominated forests act as a strong sink for deposited N regardless of high soil N availability under long-term atmospheric N deposition, which suggest a necessity to incorporate legume-dominated forests into N-cycling models of Earth systems to improve the understanding and prediction of terrestrial N budgets and the global N deposition effects.
Collapse
Affiliation(s)
- Jinhua Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Geshere A Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Senhao Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yufang Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yabing Guo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Rongzhen Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Thompson JB, Slot M, Dalling JW, Winter K, Turner BL, Zalamea P. Species‐specific effects of phosphorus addition on tropical tree seedling response to elevated CO
2. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer B. Thompson
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Environmental Science, Policy, and Management University of California Berkeley Berkeley CA USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute Panama City Republic of Panama
| | - James W. Dalling
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Plant Biology University of Illinois Champaign‐Urbana IL USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute Panama City Republic of Panama
| | | | - Paul‐Camilo Zalamea
- Smithsonian Tropical Research Institute Panama City Republic of Panama
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|