1
|
Ryder S. Integrated Applied Clinical Pharmacology in the Advancement of Rare and Ultra-Rare Disease Therapeutics. Clin Pharmacol Ther 2024; 116:1485-1495. [PMID: 39034754 DOI: 10.1002/cpt.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
The introduction of safe and effective rare/ultra-rare disease treatments is a focus of many biotherapeutic enterprises. Despite this increased activity, a significant unmet need remains, and the responsibility to meet this need is augmented by enhanced genomic, biologic, medical, analytical, and informatic tools. It is recognized that the development of an effective and safe rare/ultra-rare disease therapeutic faces a number of challenges with an important role noted for clinical pharmacology. Clinical pharmacology is foundationally an integrative discipline which must be embedded in and is interdependent upon understanding the pathogenic biology, clinical presentation, disease progression, and end-point assessment of the disease under study. This manuscript presents an overview and two case examples of this integrative approach, the development of C5-targeted therapeutics for the treatment of generalized myasthenia gravis and asfotase alpha for the treatment of hypophosphatasia. The two presented case examples show the usefulness of understanding the biological drivers and clinical course of a rare disease, having relevant animal models, procuring informative natural history data, importing assessment tools from relevant alternative areas, and using integrated applied clinical pharmacology to inform target engagement, dose, and the cascade of pharmacodynamic and clinical effects that follow. Learnings from these programs include the importance of assuring cross-validation of assays throughout a development program and continued commitment to understanding the relationship among the array of Pd end points and clinical outcomes. Using an integrative approach, substantive work remains to be done to meet the unmet needs of patients with rare/ultra-rare disease.
Collapse
|
2
|
Karbian N, Eshed-Eisenbach Y, Zeibak M, Tabib A, Sukhanov N, Vainshtein A, Morgan BP, Fellig Y, Peles E, Mevorach D. Complement-membrane regulatory proteins are absent from the nodes of Ranvier in the peripheral nervous system. J Neuroinflammation 2023; 20:245. [PMID: 37875972 PMCID: PMC10594684 DOI: 10.1186/s12974-023-02920-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.
Collapse
Affiliation(s)
- Netanel Karbian
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Marian Zeibak
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Adi Tabib
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
| | - Natasha Sukhanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - B. Paul Morgan
- Systems Immunity Research Institute, Cardiff University, Cardiff, Wales UK
| | - Yakov Fellig
- Department of Pathology, School of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, Jerusalem, Israel
- The Institute of Rheumatology-Immunology-Allergology, The Wohl Institute for Translational Medicine, Department of Medicine, Hadassah-Hebrew University Medical Center and School of Medicine, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
3
|
Chai JN, Azad AK, Kuan K, Guo X, Wang Y. A Splice Site Mutation Associated with Congenital CD59 Deficiency. Hematol Rep 2022; 14:172-178. [PMID: 35735736 PMCID: PMC9222317 DOI: 10.3390/hematolrep14020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital CD59 deficiency is a recently described rare autosomal recessive disease associated with CD59 gene mutations that lead to deficient or dysfunctional CD59 protein on the cell surface. The disease is characterized by the early onset of chronic hemolysis, relapsing peripheral demyelinating neuropathy, and recurrent ischemic strokes. To date, there are 14 patients with 4 exon mutations reported globally. A young boy with early onset peripheral neuropathy and atypical hemolytic uremic syndrome is presented. Next-generation sequencing (NGS) identified a homozygous splice site variant in intron 1 of the CD59 gene (c.67 + 1G > T). This variant alters a consensus donor splicing site. Quantitative reverse transcription PCR showed that CD59 mRNA expression in the patient is significantly reduced to 0.017-fold compared to the controls. Flow cytometry showed the lack of CD59 protein on the surface of the patient’s red blood cells. This variant is the first splice site mutation reported to be associated with congenital CD59 deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Yanhua Wang
- Correspondence: ; Tel.: +1-718-920-4976; Fax: +1-718-920-7611
| |
Collapse
|
4
|
Weinstock C. Association of Blood Group Antigen CD59 with Disease. Transfus Med Hemother 2022; 49:13-24. [PMID: 35221864 PMCID: PMC8832213 DOI: 10.1159/000521174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 08/01/2023] Open
Abstract
In 2014, the membrane-bound protein CD59 became a blood group antigen. CD59 has been known for decades as an inhibitor of the complement system, located on erythrocytes and on many other cell types. In paroxysmal nocturnal haemoglobinuria (PNH), a stem cell clone with acquired deficiency to express GPI-anchored molecules, including the complement inhibitor CD59, causes severe and life-threatening disease. The lack of CD59, which is the only membrane-bound inhibitor of the membrane attack complex, contributes a major part of the intravascular haemolysis observed in PNH patients. This crucial effect of CD59 in PNH disease prompted studies to investigate its role in other diseases. In this review, the role of CD59 in inflammation, rheumatic disease, and age-related macular degeneration is investigated. Further, the pivotal role of CD59 in PNH and congenital CD59 deficiency is reviewed.
Collapse
|
5
|
Complement and the prothrombotic state. Blood 2021; 139:1954-1972. [PMID: 34415298 DOI: 10.1182/blood.2020007206] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
In 2007 and 2009 the regulatory approval of the first-in-class complement inhibitor Eculizumab has revolutionized the clinical management of two rare, life-threatening clinical conditions: paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). While being completely distinct diseases affecting blood cells and the glomerulus, PNH and aHUS remarkably share several features in their etiology and clinical presentation. An imbalance between complement activation and regulation at host surfaces underlies both diseases precipitating in severe thrombotic events that are largely resistant to anti-coagulant and/or anti-platelet therapies. Inhibition of the common terminal complement pathway by Eculizumab prevents the frequently occurring thrombotic events responsible for the high mortality and morbidity observed in patients not treated with anti-complement therapy. While many in vitro and ex vivo studies elaborate numerous different molecular interactions between complement activation products and hemostasis, this review focuses on the clinical evidence that links these two fields in humans. Several non-infectious conditions with known complement involvement are scrutinized for common patterns concerning a prothrombotic statues and the occurrence of certain complement activation levels. Next to PNH and aHUS, germline encoded CD59 or CD55 deficiency (the latter causing the disease Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy; CHAPLE), autoimmune hemolytic anemia (AIHA), (catastrophic) anti-phospholipid syndrome (APS, CAPS) and C3 glomerulopathy are considered. Parallels and distinct features among these conditions are discussed against the background of thrombosis, complement activation, and potential complement diagnostic and therapeutic avenues.
Collapse
|
6
|
Haspula D, Vallejos AK, Moore TM, Tomar N, Dash RK, Hoffmann BR. Influence of a Hyperglycemic Microenvironment on a Diabetic Versus Healthy Rat Vascular Endothelium Reveals Distinguishable Mechanistic and Phenotypic Responses. Front Physiol 2019; 10:558. [PMID: 31133884 PMCID: PMC6524400 DOI: 10.3389/fphys.2019.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia is a critical factor in the development of endothelial dysfunction in type 2 diabetes mellitus (T2DM). Whether hyperglycemic states result in a disruption of similar molecular mechanisms in endothelial cells under both diabetic and non-diabetic states, remains largely unknown. This study aimed to address this gap in knowledge through molecular and functional characterization of primary rat cardiac microvascular endothelial cells (RCMVECs) derived from the T2DM Goto-Kakizaki (GK) rat model in comparison to control Wistar-Kyoto (WKY) in response to a normal (NG) and hyperglycemic (HG) microenvironment. GK and WKY RCMVECs were cultured under NG (4.5 mM) and HG (25 mM) conditions for 3 weeks, followed by tandem mass spectrometry (MS/MS), qPCR, tube formation assay, microplate based fluorimetry, and mitochondrial respiration analyses. Following database matching and filtering (false discovery rate ≤ 5%, scan count ≥ 10), we identified a greater percentage of significantly altered proteins in GK (7.1%, HG versus NG), when compared to WKY (3.5%, HG versus NG) RCMVECs. Further stringent filters (log2ratio of > 2 or < -2, p < 0.05) followed by enrichment and pathway analyses of the MS/MS and quantitative PCR datasets (84 total genes screened), resulted in the identification of several molecular targets involved in angiogenic, redox and metabolic functions that were distinctively altered in GK as compared to WKY RCMVECs following HG exposure. While the expression of thirteen inflammatory and apoptotic genes were significantly increased in GK RCMVECs under HG conditions (p < 0.05), only 2 were significantly elevated in WKY RCMVECs under HG conditions. Several glycolytic enzymes were markedly reduced and pyruvate kinase activity was elevated in GK HG RCMVECs, while in mitochondrial respiratory chain activity was altered. Supporting this, TNFα and phorbol ester (PMA)-induced Reactive Oxygen Species (ROS) production were significantly enhanced in GK HG RCMVECs when compared to baseline levels (p < 0.05). Additionally, PMA mediated increase was the greatest in GK HG RCMVECs (p < 0.05). While HG caused reduction in tube formation assay parameters for WKY RCMVECs, GK RCMVECs exhibited impaired phenotypes under baseline conditions regardless of the glycemic microenvironment. We conclude that hyperglycemic microenvironment caused distinctive changes in the bioenergetics and REDOX pathways in the diabetic endothelium as compared to those observed in a healthy endothelium.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States
| | - Andrew K Vallejos
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy M Moore
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian R Hoffmann
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Karbian N, Eshed-Eisenbach Y, Tabib A, Hoizman H, Morgan BP, Schueler-Furman O, Peles E, Mevorach D. Molecular pathogenesis of human CD59 deficiency. NEUROLOGY-GENETICS 2018; 4:e280. [PMID: 30533526 PMCID: PMC6244018 DOI: 10.1212/nxg.0000000000000280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022]
Abstract
Objective To characterize all 4 mutations described for CD59 congenital deficiency. Methods The 4 mutations, p.Cys64Tyr, p.Asp24Val, p.Asp24Valfs*, and p.Ala16Alafs*, were described in 13 individuals with CD59 malfunction. All 13 presented with recurrent Guillain-Barré syndrome or chronic inflammatory demyelinating polyneuropathy, recurrent strokes, and chronic hemolysis. Here, we track the molecular consequences of the 4 mutations and their effects on CD59 expression, localization, glycosylation, degradation, secretion, and function. Mutants were cloned and inserted into plasmids to analyze their expression, localization, and functionality. Results Immunolabeling of myc-tagged wild-type (WT) and mutant CD59 proteins revealed cell surface expression of p.Cys64Tyr and p.Asp24Val detected with the myc antibody, but no labeling by anti-CD59 antibodies. In contrast, frameshift mutants p.Asp24Valfs* and p.Ala16Alafs* were detected only intracellularly and did not reach the cell surface. Western blot analysis showed normal glycosylation but mutant-specific secretion patterns. All mutants significantly increased MAC-dependent cell lysis compared with WT. In contrast to CD59 knockout mice previously used to characterize phenotypic effects of CD59 perturbation, all 4 hCD59 mutations generate CD59 proteins that are expressed and may function intracellularly (4) or on the cell membrane (2). None of the 4 CD59 mutants are detected by known anti-CD59 antibodies, including the 2 variants present on the cell membrane. None of the 4 inhibits membrane attack complex (MAC) formation. Conclusions All 4 mutants generate nonfunctional CD59, 2 are expressed as cell surface proteins that may function in non-MAC-related interactions and 2 are expressed only intracellularly. Distinct secretion of soluble CD59 may have also a role in disease pathogenesis.
Collapse
Affiliation(s)
- Netanel Karbian
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Yael Eshed-Eisenbach
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Adi Tabib
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Hila Hoizman
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - B Paul Morgan
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Ora Schueler-Furman
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Elior Peles
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center (N.K., A.T., H.H., D.M.), Center of Rare Diseases, and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem; The Weizmann Institute (Y.E.-E., E.P.), Rehovot, Israel; Systems Immunity Research Institute (B.P.M.), Cardiff University, Cardiff, Wales, UK; and Hebrew University (O.S.-F., D.M.), Jerusalem, Israel
| |
Collapse
|
8
|
Klemann C, Kirschner J, Ammann S, Urbach H, Moske-Eick O, Zieger B, Lorenz MR, Schwarz K, Doostkam S, Ehl S, Korinthenberg R. CD59 deficiency presenting as polyneuropathy and Moyamoya syndrome with endothelial abnormalities of small brain vessels. Eur J Paediatr Neurol 2018; 22:870-877. [PMID: 29843966 DOI: 10.1016/j.ejpn.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 02/17/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
CD59 is involved in lymphocyte signal transduction and regulates complement-mediated cell lysis by inhibiting the membrane attack complex. In the cases reported so far, congenital isolated CD59 deficiency was associated with recurrent episodes of hemolytic anemia, peripheral neuropathy, and strokes. Here, we report on a patient from a consanguineous Turkish family, who had a first episode of hemolytic anemia at one month of age and presented at 14 months with acute Guillain-Barré syndrome (GBS). The child suffered repeated infection-triggered relapses leading to the diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP). Although partly steroid-responsive, the polyneuropathy failed to be stabilized by a number of immunosuppressive agents. At the age of 6 years, he developed acute hemiparesis and showed progressive stenosis of proximal cerebral arteries, evolving into Moyamoya syndrome (MMS) with recurrent infarctions leading to death at 8 years of age. Post-mortem genetic analysis revealed a pathogenic p.(Asp49Valfs*31) mutation in CD59. Re-analysis of brain biopsy specimens showed absent CD59 expression and severe endothelial damage. Whereas strokes are a known feature of CD59 deficiency, MMS has not previously been described in this condition. Therefore, we conclude that in MMS combined with hemolysis or neuropathy CD59 deficiency should be considered. Establishing the diagnosis and targeted therapy with eculizumab might have prevented the lethal course in our patient.
Collapse
Affiliation(s)
- Christian Klemann
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.
| | - Janbernd Kirschner
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics, Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sandra Ammann
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Olaf Moske-Eick
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | | | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg - Hessen, Ulm, Germany
| | - Soroush Doostkam
- Institute for Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Rudolf Korinthenberg
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Center for Pediatrics, Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
9
|
Kinoshita T. Congenital Defects in the Expression of the Glycosylphosphatidylinositol-Anchored Complement Regulatory Proteins CD59 and Decay-Accelerating Factor. Semin Hematol 2018; 55:136-140. [DOI: 10.1053/j.seminhematol.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022]
|
10
|
Tabib A, Hindi I, Karbian N, Zelig O, Falach B, Mevorach D. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59. Thromb Res 2018; 168:67-77. [PMID: 29929138 DOI: 10.1016/j.thromres.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. METHODS Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. FINDINGS 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. INTERPRETATION Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Issam Hindi
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orly Zelig
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batla Falach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
11
|
Chan RCF, Leung RH, Posadas A, Lorey TS, Shaw AJ. High sensitivity 8-color flow cytometry assay for paroxysmal nocturnal hemoglobinuria granulocyte and monocyte detections. Biomed Rep 2018; 8:224-234. [PMID: 29599976 PMCID: PMC5867464 DOI: 10.3892/br.2018.1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023] Open
Abstract
Flow cytometry is the gold standard in diagnosis of paroxysmal nocturnal hemoglobinuria (PNH) by detecting the absence of glycol-phosphatidyl inositol (GPI)-linked protein expression on granulocyte and monocyte surfaces. However, the current assays are not optimized and require improvement, particularly in reducing background fluorescence and optimizing sensitivity and specificity. With more fluorochromes available and with advances in instrument engineering, rare populations may be identified with high sensitivity. The present study assessed an 8-color combination of comprehensive GPI-linked markers, namely fluorescein-labeled proaerolysin (FLAER), cluster of differentiation 157 (CD157), CD24 and CD14, and the lineage markers for granulocyte (CD15) and monocyte (CD64) cells to detect PNH clones. Additionally, to optimize the PNH flow assay, a 'dump' channel was used, comprised of CD5 and CD19, to exclude non-specific binding in order to reduce background. This method aimed to improve sensitivity and reduce the background to create an optimized PNH flow cocktail. The results demonstrated that the current 4-color PNH combination identifies a CD55- and FLAER+ population that is not PNH clones. By contrast, the 8-color panel delineated PNH clones from both monocyte and granulocytes by using granulocyte antigen (CD15) and monocyte antigen (CD64) as a gating strategy. The sensitivity was 0.01% for granulocytes and 0.05% for monocytes with an acquisition of 100,000 monocyte and granulocyte events. The background on a normal whole blood sample was 0.00076% on monocytes and 0.00277% on granulocytes. Thus, overall, the 8-color PNH assay exhibited high levels of specificity and sensitivity. The 8-color combination facilitated the improvement and enhancement of sensitivity in PNH clone identification, and may provide a useful tool for pathologists in PNH diagnosis and for monitoring patients at risk of developing classical/hemolytic PNH, to enable treatment to be delivered promptly.
Collapse
Affiliation(s)
- Ray Chun-Fai Chan
- Department of Flow Cytometry, Kaiser Permanente Regional Laboratory Northern California, The Permanente Medical Group, Inc., Berkeley, CA 94710, USA
| | - Richard H Leung
- Department of Flow Cytometry, Kaiser Permanente Regional Laboratory Northern California, The Permanente Medical Group, Inc., Berkeley, CA 94710, USA
| | - Albert Posadas
- Department of Flow Cytometry, Kaiser Permanente Regional Laboratory Northern California, The Permanente Medical Group, Inc., Berkeley, CA 94710, USA
| | - Thomas S Lorey
- Department of Flow Cytometry, Kaiser Permanente Regional Laboratory Northern California, The Permanente Medical Group, Inc., Berkeley, CA 94710, USA
| | - Allison J Shaw
- Department of Flow Cytometry, Kaiser Permanente Regional Laboratory Northern California, The Permanente Medical Group, Inc., Berkeley, CA 94710, USA
| |
Collapse
|
12
|
Complement and Immunoglobulin Biology Leading to Clinical Translation. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Tabib A, Karbian N, Mevorach D. Demyelination, strokes, and eculizumab: Lessons from the congenital CD59 gene mutations. Mol Immunol 2017. [PMID: 28622911 DOI: 10.1016/j.molimm.2017.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurological symptoms of patients with p.Cys89Tyr mutation in the CD59 gene include recurrent peripheral neuropathy resembling Guillain-Barré syndrome, characterized by sensory-motor demyelinating neuropathy with secondary axonal damage and moderate enhancement of the nerve roots on spine MRI, together with recurrent strokes and retinal involvement. Three additional mutations in CD59, leading to loss of function, have been described, and overall, 12/12 (100%) of patients with any mutation presented with neurological symptoms; 11/12 (92%) patients presented with recurrent peripheral neuropathy, 6/12 (50%) with recurrent strokes, and 1/12 (8%) with retinal involvement. We review the possible thrombophilic profile associated with the mutations. In these patients, excessive intravascular hemolysis saturates scavenger mechanisms resulting in free hemoglobin in plasma that irreversibly reacts with nitric oxide to form nitrate and methemoglobin, leading to arterial thrombosis. CD59 loss of function is also one of the major thrombophilic mechanisms in patients with paroxysmal nocturnal hemoglobinuria. We then describe the relationship with demyelination. The lack of CD59 allows uncontrolled complement amplification following low-level spontaneous-, viral-, or post viral-induced complement activation, resulting in severe demyelination in the peripheral nervous system. It is interesting, and certainly encouraging, that after 3 years, following 4 patients with Cys89Tyr mutations who are treated with eculizumab, no strokes occurred and non-permanent neurological insults underwent resolution without any new neurological exacerbations.
Collapse
Affiliation(s)
- Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netanel Karbian
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center and Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
14
|
Correia RP, Bento LC, Bortolucci ACA, Alexandre AM, Vaz ADC, Schimidell D, Pedro EDC, Perin FS, Nozawa ST, Mendes CEA, Barroso RDS, Bacal NS. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria. EINSTEIN-SAO PAULO 2016; 14:366-373. [PMID: 27759825 PMCID: PMC5234748 DOI: 10.1590/s1679-45082016ao3641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/26/2016] [Indexed: 12/18/2022] Open
Abstract
Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. Objetivo: Discutir as melhorias técnicas no diagnóstico e no acompanhamento laboratorial de hemoglobinúria paroxística noturna para a validação da técnica de citometria de fluxo de alta sensibilidade. Métodos: Estudo retrospectivo, que envolveu a análise de dados laboratoriais de 745 pacientes com hipótese diagnóstica e/ou acompanhamento de hemoglobinúria paroxística noturna por citometria de fluxo. Resultados: Os avanços técnicos não só reduziram o custo do ensaio, mas também melhoraram a identificação e a resolução da citometria de fluxo para a detecção de clone hemoglobinúria paroxística noturna. Conclusão: A citometria de fluxo de alta sensibilidade possibilitou a identificação do tipo e do tamanho de clone de hemoglobinúria paroxística noturna, especialmente em amostras com pequeno clone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nydia Strachman Bacal
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.,Centro de Hematologia de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Mevorach D, Reiner I, Grau A, Ilan U, Berkun Y, Ta-Shma A, Elpeleg O, Shorer Z, Edvardson S, Tabib A. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann Neurol 2016; 80:708-717. [DOI: 10.1002/ana.24770] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Dror Mevorach
- Rheumatology Research Center and Department of Medicine; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Inna Reiner
- Rheumatology Research Center and Department of Medicine; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Amir Grau
- Rheumatology Research Center and Department of Medicine; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Uri Ilan
- Department of Pediatrics; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Yackov Berkun
- Department of Pediatrics; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Asaf Ta-Shma
- Monique and Jacques Roboh Department of Genetic Research; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Zamir Shorer
- Neuropediatric Unit, Soroka Medical Center; Beer Sheba Israel
| | - Simon Edvardson
- Neuropediatric Unit; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Adi Tabib
- Rheumatology Research Center and Department of Medicine; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| |
Collapse
|
16
|
Emin M, Wang G, Castagna F, Rodriguez-Lopez J, Wahab R, Wang J, Adams T, Wei Y, Jelic S. Increased internalization of complement inhibitor CD59 may contribute to endothelial inflammation in obstructive sleep apnea. Sci Transl Med 2016; 8:320ra1. [PMID: 26738794 PMCID: PMC5485919 DOI: 10.1126/scitranslmed.aad0634] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during transient cessation of breathing, triples the risk for cardiovascular diseases. We used a phage display peptide library as an unbiased approach to investigate whether IH, which is specific to OSA, activates endothelial cells (ECs) in a distinctive manner. The target of a differentially bound peptide on ECs collected from OSA patients was identified as CD59, a major complement inhibitor that protects ECs from the membrane attack complex (MAC). A decreased proportion of CD59 is located on the EC surface in OSA patients compared with controls, suggesting reduced protection against complement attack. In vitro, IH promoted endothelial inflammation predominantly via augmented internalization of CD59 and consequent MAC deposition. Increased internalization of endothelial CD59 in IH appeared to be cholesterol-dependent and was reversed by statins in a CD59-dependent manner. These studies suggest that reduced complement inhibition may mediate endothelial inflammation and increase vascular risk in OSA patients.
Collapse
Affiliation(s)
- Memet Emin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gang Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesco Castagna
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Josanna Rodriguez-Lopez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Romina Wahab
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tessa Adams
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ying Wei
- Division of Biostatistics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA,Corresponding author.
| |
Collapse
|
17
|
Ben-Zeev B, Tabib A, Nissenkorn A, Garti BZ, Gomori JM, Nass D, Goldshmidt H, Fellig Y, Anikster Y, Nevo Y, Elpeleg O, Mevorach D. Devastating recurrent brain ischemic infarctions and retinal disease in pediatric patients with CD59 deficiency. Eur J Paediatr Neurol 2015; 19:688-93. [PMID: 26233519 DOI: 10.1016/j.ejpn.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Identification of CD59 p.Cys89Tyr mutation in 5 patients from North-African Jewish origin presenting with chronic inflammatory demyelinating polyradiculoneuropathy like disease and chronic hemolysis, led us to reinvestigate an unsolved disease in 2 siblings from the same origin who died 17 years ago. The two patients carried the same CD59 gene mutation previously described by our group. These children had quiet similar disease course but in addition developed devastating recurrent brain infarctions, retinal and optic nerve involvement. Revising the brain autopsy of one of these patients confirmed the finding of multiple brain infarctions of different ages. CD59 protein expression was missing on brain endothelial cells by immunohistochemical staining. This new data expands the clinical spectrum of CD59 mutations and further emphasizes the need for its early detection and treatment.
Collapse
Affiliation(s)
- Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Israel.
| | - Adi Tabib
- Rheumatology Research Center and Department of Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Andreea Nissenkorn
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Israel
| | - Ben-Zion Garti
- Sackler School of Medicine, Tel-Aviv University, Israel; Pediatric B Department, Shneider Pediatric Hospital, Belinson Medical Center, Petach Tikva, Israel
| | - John Moshe Gomori
- Neuroimaging Unit, Department of Radiology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Dvora Nass
- Pathology Department, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Hanoch Goldshmidt
- Clinical Laboratory, Hadassah Medical Center, Hebrew University Medical Center, Jerusalem, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Yair Anikster
- Sackler School of Medicine, Tel-Aviv University, Israel; Pediatric Metabolic Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Yoram Nevo
- Pediatric Neurology Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Dror Mevorach
- Department of Medicine B Director, Center for Research in Rheumatology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
18
|
Flegel WA. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion 2015; 55 Suppl 2:S47-58. [PMID: 26174897 DOI: 10.1111/trf.13147] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The clinical consequences of antibodies to red blood cells (RBCs) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis after transfusion is reliably avoided in a donor-recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. STUDY DESIGN AND RESULTS Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; immunoglobulin (Ig)M and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B, and A1 antigens; A1 versus A2 phenotypes; monocytes-macrophages, other immune cells, and complement; monocyte monolayer assay; antibody-dependent cell-mediated cytotoxicity; and transfusion reactions due to ABO and other antibodies. CONCLUSION Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B in the IVIG products.
Collapse
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Abstract
The severe clinical symptoms of inherited CD59 deficiency confirm the importance of CD59 as essential complement regulatory protein for protection of cells against complement attack, in particular protection of hematopoietic cells and human neuronal tissue. Targeted complement inhibition might become a treatment option as suggested by a case report. The easy diagnostic approach by flow cytometry and the advent of a new treatment option should increase the awareness of this rare differential diagnosis and lead to further studies on their pathophysiology.
Collapse
|
20
|
Anliker M, von Zabern I, Höchsmann B, Kyrieleis H, Dohna-Schwake C, Flegel WA, Schrezenmeier H, Weinstock C. A new blood group antigen is defined by anti-CD59, detected in a CD59-deficient patient. Transfusion 2014; 54:1817-22. [PMID: 24383981 DOI: 10.1111/trf.12531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/10/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND CD59 is a cell surface glycoprotein of approximately 20 kDa limiting the lytic activity of the terminal complement complex C5b-9. Although CD59 is known as a red blood cell (RBC) antigen defined by monoclonal antibodies, it so far has not been identified as a blood group antigen, since the description of a human alloantibody was missing. In this study we show the presence of an anti-CD59 in a patient affected by a homozygous CD59 deficiency. STUDY DESIGN AND METHODS RBC CD59 and CD55 were determined by flow cytometry or by the column agglutination technique using monoclonal antisera. Commercially available His-tagged recombinant soluble CD59 protein was used to inhibit anti-CD59. RESULTS Seven cases of an isolated CD59 deficiency due to three distinct null alleles of the CD59 gene have been published so far. Recently we described the CD59-null allele c.146delA in a young child of heterozygous parents. Her plasma contained an alloantibody directed against the high-prevalence RBC antigen CD59. The antibody specificity was identified using soluble recombinant human CD59 protein, which blocked the reactivity of the patient's antibody and of monoclonal anti-CD59 but not of monoclonal anti-CD55. In addition, RBC alloantibodies such as anti-K, anti-C, anti-c, or anti-Fy(a) remained unaffected. Therefore, inhibition by recombinant CD59 is a useful diagnostic tool to detect alloantibodies in the presence of anti-CD59. CONCLUSION This is the first demonstration of a human anti-CD59 alloantibody, which defines CD59 as an RBC blood group antigen. CD59 represents a candidate for a new blood group system.
Collapse
Affiliation(s)
- Markus Anliker
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The complement system contains a great deal of biological "energy". This is demonstrated by the atypical hemolytic uremic syndrome (aHUS), which is a thrombotic microangiopathy (TMA) characterized by endothelial and blood cell damage and thrombotic vascular occlusions. Kidneys and often also other organs (brain, lungs and gastrointestinal tract) are affected. A principal pathophysiological feature in aHUS is a complement attack against endothelial cells and blood cells. This leads to platelet activation and aggregation, hemolysis, prothrombotic and inflammatory changes. The attacks can be triggered by infections, pregnancy, drugs or trauma. Complement-mediated aHUS is distinct from bacterial shiga-toxin (produced e.g. by E. coli O:157 or O:104 serotypes) induced "typical" HUS, thrombotic thrombocytopenic purpura (TTP) associated with ADAMTS13 (an adamalysin enzyme) dysfunction and from a recently described disease related to mutations in intracellular diacylglycerol kinase ε (DGKE). Mutations in proteins that regulate complement (factor H, factor I, MCP/CD46, thrombomodulin) or promote (C3, factor B) amplification of its alternative pathway or anti-factor H antibodies predispose to aHUS. The fundamental defect in aHUS is an excessive complement attack against cellular surfaces. This can be due to 1) an inability to regulate complement on self cell surfaces, 2) hyperactive C3 convertases or 3) complement activation and coagulation promoting changes on cell surfaces. The most common genetic cause is in factor H, where aHUS mutations disrupt its ability to recognize protective polyanions on surfaces where C3b has become attached. Most TMAs are thus characterized by misdirected complement activation affecting endothelial cell and platelet integrity.
Collapse
Affiliation(s)
- Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, PO Box 21, FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Sutherland DR, Acton E, Keeney M, Davis BH, Illingworth A. Use of CD157 in FLAER-based assays for high-sensitivity PNH granulocyte and PNH monocyte detection. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 86:44-55. [DOI: 10.1002/cyto.b.21111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/03/2013] [Accepted: 06/24/2013] [Indexed: 11/12/2022]
Affiliation(s)
- D. R. Sutherland
- Laboratory Medicine Program, Toronto General Hospital; University Health Network; Toronto Ontario Canada
| | - E. Acton
- Laboratory Medicine Program, Toronto General Hospital; University Health Network; Toronto Ontario Canada
| | - M. Keeney
- London Laboratory Services Group, London Health Sciences; London Ontario Canada
| | | | | |
Collapse
|
23
|
Risitano AM. Paroxysmal nocturnal hemoglobinuria and other complement-mediated hematological disorders. Immunobiology 2013; 217:1080-7. [PMID: 22964233 DOI: 10.1016/j.imbio.2012.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 11/29/2022]
Abstract
The recent availability of eculizumab as the first complement inhibitor renewed the interest for complement-mediated damage in several human diseases. Paroxysmal nocturnal hemoglobinuria (PNH) may be considered the paradigm a disease caused by complement dysregulation specifically on erythrocytes; in fact, PNH is a clonal, non-malignant, hematological disorder characterized by the expansion of hematopoietic stem cells and progeny mature blood cells which are deficient in some surface proteins, including the two complement regulators CD55 and CD59. As a result, PNH erythrocytes are incapable to modulate on their surface physiologic complement activation, which eventually enables the terminal lytic complement leading to complement-mediated intravascular anemia - the typical clinical hallmark of PNH. In the last decade the anti-C5 monoclonal antibody has been proven effective for the treatment of PNH, resulting in a sustained control of complement-mediated intravascular hemolysis, with a remarkable clinical benefit. Since then, different diseases with a proved or suspected complement-mediated pathophysiology have been considered as candidate for a clinical complement inhibition. At the same time, the growing information on biological changes during eculizumab treatment in PNH have improved our understanding of different steps of the complement system in human diseases, as well as their modulation by current anti-complement treatment. As a result, investigators are currently working on novel strategy of complement inhibition, looking at the second generation of anti-complement agents which hopefully will be able to modulate distinct steps of the complement cascade. Here we review PNH as a disease model, focusing on the observation that led to the development of novel complement modulators; the discussion will be extended to other hemolytic disorders potentially candidate for clinical complement inhibition.
Collapse
Affiliation(s)
- Antonio M Risitano
- Department of Biochemistry and Medical Biotechnologies, Federico II University, Naples, Italy.
| |
Collapse
|
24
|
Paroxysmal nocturnal hemoglobinuria and the complement system: recent insights and novel anticomplement strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:155-72. [PMID: 23402025 DOI: 10.1007/978-1-4614-4118-2_10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a hematological disorder characterized by complement-mediated hemolytic anemia, thrombophilia, and bone marrow failure. PNH is due to a somatic, acquired mutation in the X-linked phosphatidylinositol glycan class A (PIG-A) gene, which impairs the membrane expression on affected blood cells of a number of proteins, including the complement regulators CD55 and CD59. The most evident clinical manifestations of PNH arise from dysregulated complement activation on blood cells; in fact, the hallmark of PNH is chronic, complement-mediated, intravascular hemolysis, which results in anemia, hemoglobinuria, fatigue, and other hemolysis-related disabling symptoms. In addition, the peculiar thromboembolic risk typical of PNH patients is thought as secondary to the complement-mediated hemolysis itself and/or to a complement-mediated activation of platelets. Thus, as a complement-mediated disease, PNH was an appropriate medical condition to develop and to investigate therapeutical complement inhibitors. Indeed, the first complement inhibitor eculizumab, a humanized anti-C5 monoclonal antibody, has been proven safe and effective for the treatment of PNH patients. Chronic treatment with eculizumab results in sustained control of intravascular hemolysis, leading to hemoglobin stabilization and transfusion independence in more than half of the patients. However, recent observations have demonstrated that residual anemia may persist in some patients regardless of sustained fluid-phase terminal complement inhibition. Indeed, persistent dysregulated activation of the early phases of the complement cascade on PNH erythrocytes may lead to progressive C3 deposition on affected cells, which become susceptible to subsequent extravascular hemolysis through the reticuloendothelial system. These findings have renewed the interest for the development of novel complement inhibitors which aim to modulate early phases of complement activation, more specifically at the level of C3 activation. As proof of principle of this concept, an anti-C3 monoclonal antibody has been proven effective in vitro to prevent hemolysis of PNH erythrocytes. More intriguingly, a human fusion protein consisting of the iC3b/ C3d-binding region of complement receptor 2 and of the inhibitory domain of the CAP regulator factor H has been recently shown effective in inhibiting, in vitro, both intravascular hemolysis of and surface C3-deposition on PNH erythrocytes, and is now under investigation in phase 1 clinical trials.
Collapse
|
25
|
CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood 2012; 121:129-35. [PMID: 23149847 DOI: 10.1182/blood-2012-07-441857] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
CD59 deficiency is a common finding in RBCs and WBCs in patients with chronic hemolysis suffering from paroxysmal nocturnal hemoglobinuria in which the acquired mutation in the PIGA gene leads to membrane loss of glycosylphosphatidylinositol-anchored membrane proteins, including CD59. The objective of the present study was to elucidate the molecular basis of childhood familial chronic Coombs-negative hemolysis and relapsing polyneuropathy presenting as chronic inflammatory demyelinating polyradiculoneuropathy in infants of North-African Jewish origin from 4 unrelated families. A founder mutation was searched for using homozygosity mapping followed by exome sequencing. The expression of CD59, CD55, and CD14 was examined in blood cells by flow cytometry followed by Western blot of the CD59 protein. A homozygous missense mutation, p.Cys89Tyr in CD59, was identified in all patients. The mutation segregated with the disease in the families and had a carrier rate of 1:66 among Jewish subjects of North-African origin. The mutated protein was present in the patients' cells in reduced amounts and was undetectable on the membrane surface. Based on the results of the present study, we conclude that the Cys89Tyr mutation in CD59 is associated with a failure of proper localization of the CD59 protein in the cell surface. This mutation is manifested clinically in infancy by chronic hemolysis and relapsing peripheral demyelinating disease.
Collapse
|
26
|
Goonewardene M, Shehata M, Hamad A. Anaemia in pregnancy. Best Pract Res Clin Obstet Gynaecol 2011; 26:3-24. [PMID: 22138002 DOI: 10.1016/j.bpobgyn.2011.10.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 11/16/2022]
Abstract
Anaemia in pregnancy, defined as a haemoglobin concentration (Hb) < 110 g/L, affects more than 56 million women globally, two thirds of them being from Asia. Multiple factors lead to anaemia in pregnancy, nutritional iron deficiency anaemia (IDA) being the commonest. Underlying inflammatory conditions, physiological haemodilution and several factors affecting Hb and iron status in pregnancy lead to difficulties in establishing a definitive diagnosis. IDA is associated with increased maternal and perinatal morbidity and mortality, and long-term adverse effects in the new born. Strategies to prevent anaemia in pregnancy and its adverse effects include treatment of underlying conditions, iron and folate supplementation given weekly for all menstruating women including adolescents and daily for women during pregnancy and the post partum period, and delayed clamping of the umbilical cord at delivery. Oral iron is preferable to intravenous therapy for treatment of IDA. B12 and folate deficiencies in pregnancy are rare and may be due to inadequate dietary intake with the latter being more common. These vitamins play an important role in embryo genesis and hence any relative deficiencies may result in congenital abnormalities. Finding the underlying cause are crucial to the management of these deficiencies. Haemolytic anaemias rare also rare in pregnancy, but may have life-threatening complications if the diagnosis is not made in good time and acted upon appropriately.
Collapse
Affiliation(s)
- Malik Goonewardene
- Department of Obstetrics and Gynaecology, University of Ruhuna, Faculty of Medicine, Galle, Sri Lanka.
| | | | | |
Collapse
|
27
|
Röth A, Dührsen U. Treatment of paroxysmal nocturnal hemoglobinuria in the era of eculizumab. Eur J Haematol 2011; 87:473-9. [DOI: 10.1111/j.1600-0609.2011.01701.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Jankowska AM, Szpurka H, Calabro M, Mohan S, Schade AE, Clemente M, Silverstein RL, Maciejewski JP. Loss of expression of neutrophil proteinase-3: a factor contributing to thrombotic risk in paroxysmal nocturnal hemoglobinuria. Haematologica 2011; 96:954-62. [PMID: 21546506 PMCID: PMC3128213 DOI: 10.3324/haematol.2010.029298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A deficiency of specific glycosylphosphatidyl inositol-anchored proteins in paroxysmal nocturnal hemoglobinuria may be responsible for most of the clinical features of this disease, but some functional consequences may be indirect. For example, the absence of certain glycosylphosphatidyl inositol-anchored proteins in paroxysmal nocturnal hemoglobinuria cells may influence expression of other membrane proteins. Membrane-bound proteinase 3 co-localizes with glycosylphosphatidyl inositol-linked neutrophil antigen 2a, which is absent in patients with paroxysmal nocturnal hemoglobinuria. DESIGN AND METHODS We compared expression of proteinase 3 and neutrophil antigen 2a by flow cytometry and western blotting in normal and paroxysmal nocturnal hemoglobinuria cells and measured cytoplasmic and soluble levels of proteinase 3 by enzyme-linked immunosorbent assays in controls and patients with paroxysmal nocturnal hemoglobinuria. Finally, we studied the effects of proteinase 3 on platelet activation using an in vitro aggregometry assay and flow cytometry. RESULTS We showed that membrane-bound proteinase 3 is deficient in patients' cells, but invariantly present in the cytoplasm regardless of disease phenotype. When we isolated lipid rafts from patients, both molecules were detected only in the rafts from normal cells, but not diseased ones. Membrane-bound proteinase 3 was associated with a decrease in plasma proteinase 3 levels, clone size and history of thrombosis. In addition, we found that treating platelets ex vivo with proteinase 3, but not other agonists, decreased the exposure of an epitope on protease activated receptor-1 needed for thrombin activation. Conversely, treatment of whole blood with serine protease inhibitor enhanced expression of this epitope on protease activated receptor-1 located C-terminal to the thrombin cleavage site on platelets. CONCLUSIONS We demonstrated that deficiency of glycosylphosphatidyl inositol-anchored proteins in paroxysmal nocturnal hemoglobinuria results in decreased membrane-bound and soluble proteinase 3 levels. This phenomenon may constitute another mechanism contributing to a prothrombotic propensity in patients with paroxysmal nocturnal hemoglobinuria.
Collapse
Affiliation(s)
- Anna M. Jankowska
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| | - Hadrian Szpurka
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| | - Mark Calabro
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
| | - Sanjay Mohan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| | - Andrew E. Schade
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
- Laboratory Medicine Institute, Cleveland Clinic, Cleveland OH, USA
| | - Michael Clemente
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| | - Roy L. Silverstein
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
29
|
Chronic treatment of paroxysmal nocturnal hemoglobinuria patients with eculizumab: safety, efficacy, and unexpected laboratory phenomena. Int J Hematol 2011; 93:704-714. [PMID: 21611719 DOI: 10.1007/s12185-011-0867-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The terminal complement inhibitor eculizumab has become the standard of treatment in patients with symptomatic paroxysmal nocturnal hemoglobinuria (PNH). In this retrospective study, 19 PNH patients received chronic therapy with eculizumab with a median duration of 16 months (range 6-46 months). Parameters of hemolysis, transfusion requirements, and serum iron parameters were analyzed. Lactate dehydrogenase levels were significantly decreased by 85% from a median of 1897 U/l (range 293-3360) to 283 U/l (range 143-667), with an 86% reduction of transfusion requirements, whereas other parameters of hemolysis remained abnormal. Six patients (31.6%) became completely transfusion independent. A significant increase in ferritin levels from a median of 104 μg/l before to a median of 528 μg/l (p = 0.011) during treatment with eculizumab was observed. This was more pronounced in patients with low reticulocyte production index and/or requiring blood transfusions. Monospecific direct Coombs test was positive in most PNH patients, indicating a shift to extravascular hemolysis. Positive immunofixation for IgG kappa was observed, due to the presence of eculizumab in the serum. Eculizumab was safe and well tolerated long term in our study population. Iron should not be routinely supplemented in PNH patients treated with eculizumab without close monitoring of iron parameters, and iron depletion therapy should be considered in the case of overload.
Collapse
|
30
|
Abstract
Since the first issue of TRANSFUSION in 1961, there has been a tremendous expansion in not only the number of blood group antigens identified but also in our knowledge of their biochemical basis, function, and more recently, associated DNA changes. As certain techniques became available, our ability to discover and elucidate blood group antigens and appreciate their contribution to biology became possible. In particular, Western blotting, monoclonal antibodies, cloning, and polymerase chain reaction-based assays have led to an explosion of our knowledge base. The study of blood groups has had a significant effect on human genetics where they serve as useful markers in genetic linkage analyses. Indeed blood groups have provided several "firsts" in certain aspects of genetics. Blood group-null phenotypes, as natural human knockouts, have provided valuable insights into the importance of red blood cell membrane components. This review summarizes key aspects of the discovery of blood groups; the inconsistent terminology that has arisen; and the contribution of blood groups to genetics, safe transfusion, transplantation, evolution, and biology.
Collapse
Affiliation(s)
- Geoff Daniels
- Bristol Institute for Transfusion Sciences, Filton, Bristol, UK.
| | | |
Collapse
|
31
|
Schubert J, Hillmen P, Röth A, Young NS, Elebute MO, Szer J, Gianfaldoni G, Socié G, Browne P, Geller R, Rother RP, Muus P. Eculizumab, a terminal complement inhibitor, improves anaemia in patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 2008; 142:263-72. [PMID: 18503589 DOI: 10.1111/j.1365-2141.2008.07183.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In paroxysmal nocturnal haemoglobinuria (PNH), chronic destruction of PNH red blood cells (RBCs) by complement leads to anaemia and other serious morbidities. Eculizumab inhibits terminal complement-mediated PNH RBC destruction by targeting C5. In the phase III, double-blind, placebo-controlled, TRIUMPH study, eculizumab reduced haemolysis, stabilized haemoglobin levels, reduced transfusion requirements and improved fatigue in patients with PNH. Herein, we explored the effects of eculizumab on measures of anaemia in patients from the TRIUMPH study and the open-label SHEPHERD study, a more heterogeneous population. Eculizumab reduced haemolysis regardless of pretreatment transfusion requirements and regardless of whether or not patients became transfusion-dependent during treatment (P < 0.001). Reduction in haemolysis was associated with increased PNH RBC counts (P < 0.001) while reticulocyte counts remained elevated. Eculizumab-treated patients demonstrated significantly higher levels of haemoglobin as compared with placebo in TRIUMPH and relative to baseline levels in SHEPHERD (P < 0.001 for each study). Eculizumab lowered transfusion requirement across multiple pretreatment transfusion strata and eliminated transfusion support in a majority of both TRIUMPH and SHEPHERD patients (P < 0.001). Patients who required some transfusion support during treatment with eculizumab showed a reduction in haemolysis and transfusion requirements and an improvement in fatigue. Eculizumab reduces haemolysis and improves anaemia and fatigue, regardless of transfusion requirements.
Collapse
Affiliation(s)
- Jörg Schubert
- Internal Medicine I, Saarland University Medical School, Homburg Saar, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 2008; 25:1256-64. [PMID: 17989688 DOI: 10.1038/nbt1344] [Citation(s) in RCA: 565] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complement system provides critical immunoprotective and immunoregulatory functions but uncontrolled complement activation can lead to severe pathology. In the rare hemolytic disease paroxysmal nocturnal hemoglobinuria (PNH), somatic mutations result in a deficiency of glycosylphosphatidylinositol-linked surface proteins, including the terminal complement inhibitor CD59, on hematopoietic stem cells. In a dysfunctional bone marrow background, these mutated progenitor blood cells expand and populate the periphery. Deficiency of CD59 on PNH red blood cells results in chronic complement-mediated intravascular hemolysis, a process central to the morbidity and mortality of PNH. A recently developed, humanized monoclonal antibody directed against complement component C5, eculizumab (Soliris; Alexion Pharmaceuticals Inc., Cheshire, CT, USA), blocks the proinflammatory and cytolytic effects of terminal complement activation. The recent approval of eculizumab as a first-in-class complement inhibitor for the treatment of PNH validates the concept of complement inhibition as an effective therapy and provides rationale for investigation of other indications in which complement plays a role.
Collapse
Affiliation(s)
- Russell P Rother
- Alexion Pharmaceuticals, Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, USA.
| | | | | | | | | |
Collapse
|
33
|
Bessler M, Hiken J. The pathophysiology of disease in patients with paroxysmal nocturnal hemoglobinuria. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:104-110. [PMID: 19074066 DOI: 10.1182/asheducation-2008.1.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by the expansion of a hematopoietic progenitor cell that has acquired a mutation in the X-linked PIGA gene. PNH occurs on the background of bone marrow failure. Bone marrow failure and the presence of the abnormal cells account for the clinical phenotype of patients with PNH including hemolysis, cytopenia, and thrombophilia. PIGA is essential for the synthesis of glycosyl phosphatidylinositol (GPI) anchor molecules. PNH blood cells are therefore deficient in all proteins that use such an anchor molecule for attachment to the cell membrane. Two of these proteins regulate complement activation on the cell surface. Their deficiency therefore explains the exquisite sensitivity of PNH red blood cells to complement-mediated lysis. Complement-mediated lysis of red blood cells is intravascular, and intravascular hemolysis contributes significantly to the morbidity and mortality in patients with this condition. PNH is an outstanding example of how an increased understanding of pathophysiology may directly improve the diagnosis, care, and treatment of disease.
Collapse
Affiliation(s)
- Monica Bessler
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
34
|
Pedersen ED, Aass HCD, Rootwelt T, Fung M, Lambris JD, Mollnes TE. CD59 efficiently protects human NT2-N neurons against complement-mediated damage. Scand J Immunol 2007; 66:345-51. [PMID: 17635812 DOI: 10.1111/j.1365-3083.2007.01959.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The complement regulatory protein CD59 controls cell survival by the inhibition of C5b-9 formation on the cell membrane. Loss of CD59 increases the susceptibility of cells to complement-mediated damage and lysis. Deposition of IgM can induce complement activation with subsequent cell death. We have previously demonstrated the presence of CD59 on human NT2-N neurons. In this study, we investigated the functional role of CD59 for NT2-N cell survival after IgM-mediated complement activation. Complement activation was induced on NT2-N neurons with human serum following incubation with the IgM monoclonal antibody A2B5 reacting with a neuronal cell membrane epitope. Deposition of C1q and C5b-9 was detected on the cell membrane and sC5b-9 in the culture supernatant. Specific inhibition of complement was obtained by the C3 inhibitor compstatin, and by anti-C5/C5a MoAb. CD59 was blocked by the MoAb BRIC 229. Membrane damage of propidium iodide-stained NT2-N cells was confirmed by immunofluorescence microscopy and degeneration of neuronal processes was shown with crystal violet staining. A2B5, but not the irrelevant control IgM antibody, induced complement activation on NT2-N neurons after incubation with a human serum, as detected by the deposition of C1q. A marked membrane deposition of C5b-9 on NT2-N neurons with accompanying cell death and axonal degeneration was found after the blocking of CD59 with MoAb BRIC 229 but not with an isotype-matched control antibody. Compstatin and anti-C5 monoclonal antibodies which blocked C5 activation efficiently inhibited complement activation. In conclusion, CD59 is essential for protecting human NT2-N neurons against complement-mediated damage, which is known to occur in a number of clinical conditions including stroke.
Collapse
Affiliation(s)
- E D Pedersen
- Institute of Immunology, Rikshospitalet HF, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
35
|
Sutherland DR, Kuek N, Davidson J, Barth D, Chang H, Yeo E, Bamford S, Chin-Yee I, Keeney M. Diagnosing PNH with FLAER and multiparameter flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:167-77. [PMID: 17285629 DOI: 10.1002/cyto.b.20151] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND PNH is an acquired hematopoietic stem cell disorder leading to a partial or absolute deficiency of all glycophosphatidyl-inositol (GPI)-linked proteins. The classical approach to diagnosis of PNH by cytometry involves the loss of at least two GPI-linked antigens on RBCs and neutrophils. While flow assays are more sensitive and specific than complement-mediated lysis or the Hams test, they suffer from several drawbacks. Bacterial aerolysin binds to the GPI moiety of cell surface GPI-linked molecules and causes lysis of normal but not GPI-deficient PNH cells. FLAER is an Alexa488-labeled inactive variant of aerolysin that does not cause lysis of cells. Our goals were to develop a FLAER-based assay to diagnose and monitor patients with PNH and to improve detection of minor populations of PNH clones in other hematologic disorders. METHODS In a single tube assay, we combined FLAER with CD45, CD33, and CD14 allowing the simultaneous analysis of FLAER and the GPI-linked CD14 structure on neutrophil and monocyte lineages. RESULTS Comparison to standard CD55 and CD59 analysis showed excellent agreement. Because of the higher signal to noise ratio, the method shows increased sensitivity in our hands over single (CD55 or CD59) parameter analysis. Using this assay, we were able to detect as few as 1% PNH monocytes and neutrophils in aplastic anemia, that were otherwise undetectable using CD55 and CD59 on RBC's. We also observed abnormal FLAER staining of blast populations in acute leukemia. In these cases, the neutrophils stained normally with FLAER, while the gated CD33bright cells failed to express normal levels of CD14 and additionally showed aberrant CD45 staining and bound lower levels of FLAER. CONCLUSION FLAER combined with multiparameter flow cytometry offers an improved assay for diagnosis and monitoring of PNH clones and may have utility in detection of unsuspected myeloproliferative disorders.
Collapse
Affiliation(s)
- D Robert Sutherland
- Clinical Flow Cytometry Laboratory, University Health Network, Toronto, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hillmen P, Young NS, Schubert J, Brodsky RA, Socié G, Muus P, Röth A, Szer J, Elebute MO, Nakamura R, Browne P, Risitano AM, Hill A, Schrezenmeier H, Fu CL, Maciejewski J, Rollins SA, Mojcik CF, Rother RP, Luzzatto L. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006; 355:1233-43. [PMID: 16990386 DOI: 10.1056/nejmoa061648] [Citation(s) in RCA: 885] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND We tested the safety and efficacy of eculizumab, a humanized monoclonal antibody against terminal complement protein C5 that inhibits terminal complement activation, in patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS We conducted a double-blind, randomized, placebo-controlled, multicenter, phase 3 trial. Patients received either placebo or eculizumab intravenously; eculizumab was given at a dose of 600 mg weekly for 4 weeks, followed 1 week later by a 900-mg dose and then 900 mg every other week through week 26. The two primary end points were the stabilization of hemoglobin levels and the number of units of packed red cells transfused. Biochemical indicators of intravascular hemolysis and the patients' quality of life were also assessed. RESULTS Eighty-seven patients underwent randomization. Stabilization of hemoglobin levels in the absence of transfusions was achieved in 49% (21 of 43) of the patients assigned to eculizumab and none (0 of 44) of those assigned to placebo (P<0.001). During the study, a median of 0 units of packed red cells was administered in the eculizumab group, as compared with 10 units in the placebo group (P<0.001). Eculizumab reduced intravascular hemolysis, as shown by the 85.8% lower median area under the curve for lactate dehydrogenase plotted against time (in days) in the eculizumab group, as compared with the placebo group (58,587 vs. 411,822 U per liter; P<0.001). Clinically significant improvements were also found in the quality of life, as measured by scores on the Functional Assessment of Chronic Illness Therapy-Fatigue instrument (P<0.001) and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire. Of the 87 patients, 4 in the eculizumab group and 9 in the placebo group had serious adverse events, none of which were considered to be treatment-related; all these patients recovered without sequelae. CONCLUSIONS Eculizumab is an effective therapy for PNH.
Collapse
|
37
|
Kimberley FC, Sivasankar B, Paul Morgan B. Alternative roles for CD59. Mol Immunol 2006; 44:73-81. [PMID: 16884774 DOI: 10.1016/j.molimm.2006.06.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 01/23/2023]
Abstract
CD59 was first identified as a regulator of the terminal pathway of complement, which acts by binding to the C8/C9 components of the assembling membrane attack complex (MAC), to inhibit formation of the lytic pore. Structurally, CD59 is a small, highly glycosylated, GPI-linked protein, with a wide expression profile. Functionally, the role of CD59 in complement regulation is well-defined but studies have also shown clear evidence for signalling properties, which are linked to its glycophosphatidyl inositol (GPI) anchor and its location within lipid rafts. Cross-linking of CD59 using specific monoclonal antibodies drives both calcium release and activation of lipid-raft associated signalling molecules such as tyrosine kinases. These observations clearly show that CD59 exhibits roles independent of its function as a complement inhibitor. In this review, we examine the progression of research in this area and explore the alternative functions of CD59 that have recently been defined.
Collapse
Affiliation(s)
- Fiona C Kimberley
- Complement Biology Group, Department of Medical Biochemistry and Immunology, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | |
Collapse
|
38
|
Hill A, Ridley SH, Esser D, Oldroyd RG, Cullen MJ, Kareclas P, Gallagher S, Smith GP, Richards SJ, White J, Smith RAG, Hillmen P. Protection of erythrocytes from human complement–mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 2006; 107:2131-7. [PMID: 16322479 DOI: 10.1182/blood-2005-02-0782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) results from the expansion of a hematopoietic clone that is deficient in glycosylphosphatidylinositol-anchored molecules. PNH is characterized by chronic hemolysis with acute exacerbations due to the uncontrolled activity of complement on PNH cells, which lack the inhibitor of homologous complement, CD59. Symptoms include severe fatigue, hemoglobinuria, esophageal spasm, erectile dysfunction, and thrombosis. We report the use of a novel synthetically modified recombinant human CD59, rhCD59-P, a soluble protein that attaches to cell membranes. In vitro treatment of PNH erythrocytes with rhCD59-P resulted in levels of CD59 equivalent to normal erythrocytes and effectively protected erythrocytes from complement-mediated hemolysis. The administration of rhCD59-P to CD1 mice resulted in levels of CD59 on erythrocytes, which protected them from complement-mediated lysis. Thus, rhCD59-P corrects the CD59 deficiency in vitro and can bind to erythrocytes in an in vivo murine model, protecting the cells from the activity of human complement, and represents a potential therapeutic strategy in PNH.
Collapse
Affiliation(s)
- Anita Hill
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, Algernon Firth Building, Great George Street, Leeds, United Kingdom, LS1 3EX.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yazdanbakhsh K. Development of complement therapeutics for inhibition of immune-mediated red cell destruction. Transfusion 2005; 45:122S-9S. [PMID: 16086799 PMCID: PMC4797633 DOI: 10.1111/j.1537-2995.2005.00526.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A major objective of my National Blood Foundation (NBF)-funded proposal was to produce recombinant soluble forms of a complement regulatory protein called complement receptor 1 (CR1) that carries the Knops blood group system antigens to perform antibody neutralization studies. By generating these recombinant proteins, we were able to inhibit several Knops antibodies in patient serum samples, thereby demonstrating their usefulness for clinical use. Interestingly, the recombinant CR1 proteins generated through NBF funding were also found to strongly reduce complement-mediated red cell destruction in a mouse hemolytic transfusion model. In this review, I will outline our NBF-funded studies, give an overview of recent advances from our group and others in the development of complement therapeutics, and highlight their potential use in the transfusion medicine setting.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Complement sensitization of red blood cells (RBCs) can lead to both intravascular and extravascular red cell destruction. Altered levels of naturally occurring complement regulatory proteins on red cells can result in hemolysis, while defective expression of these proteins on immune cells can cause breakdown of tolerance to self antigens and is associated with autoimmune disease. RECENT FINDINGS To date several complement inhibitors, including recombinant forms of complement regulatory proteins, humanized antibodies, and synthetic molecules have been described that limit complement activation by interfering with different steps in the complement cascade. However, few have been evaluated for prevention of complement-mediated RBC destruction. In this review, possible applications of these complement inhibitors for treatment of complement-mediated hemolysis in specific disease states are described. Furthermore, the implication of the regulatory role of complement in the development of autoimmune hemolytic anemia is discussed. SUMMARY Complement therapeutics has potential for effective and safe prophylactic use and treatment of hemolytic transfusion reactions and complement-mediated hemolytic diseases. Furthermore, the regulatory function of complement may be exploited to prevent and treat autoimmune hemolytic anemia.
Collapse
|
41
|
Lin F, Salant DJ, Meyerson H, Emancipator S, Morgan BP, Medof ME. Respective Roles of Decay-Accelerating Factor and CD59 in Circumventing Glomerular Injury in Acute Nephrotoxic Serum Nephritis. THE JOURNAL OF IMMUNOLOGY 2004; 172:2636-42. [PMID: 14764738 DOI: 10.4049/jimmunol.172.4.2636] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Decay-accelerating factor (DAF or CD55) and CD59 are regulators that protect self cells from C3b deposition and C5b-9 assembly on their surfaces. Their relative roles in protecting glomeruli in immune-mediated renal diseases in vivo are unknown. We induced nephrotoxic serum (NTS) nephritis in Daf1(-/-), CD59a(-/-), Daf1(-/-)CD59a(-/-), and wild-type (WT) mice by administering NTS IgG. After 18 h, we assessed proteinuria, and performed histological, immunohistochemical, and electron microscopic analyses of kidneys. Twenty-four mice in each group were studied. Baseline albuminuria in the Daf1(-/-), CD59a(-/-), and Daf1(-/-)CD59a(-/-) mice was 82, 83, and 139 as compared with 92 microg/mg creatinine in the WT controls (p > 0.1). After NTS, albuminuria in CD59a(-/-) and WT mice (186 +/- 154 and 183 +/- 137 microg/mg creatinine, p > 0.1) was similar. In contrast, Daf1(-/-) mice developed severe albuminuria (378 +/- 520, p < 0.05) that was further exacerbated in Daf1(-/-)CD59a(-/-) mice (577 +/- 785 micro g/mg creatinine, p < 0.05). Glomerular histology showed essentially no infiltrating leukocytes in any group. In contrast, electron microscopy revealed prominent podocyte foot process effacement in Daf1(-/-) mice with more widespread and severe damage in the double knockouts compared with only mild focal changes in CD59a(-/-) or WT mice. In all animals, deposition of administered (sheep) NTS Ig was equivalent. This contrasted with marked deposition of both C3 and C9 in Daf1(-/-)CD59a(-/-) and Daf1(-/-) mice, which was evident as early as 2 h post-NTS injection. The results support the proposition that in autoantibody-mediated nephritis, DAF serves as the primary barrier to classical pathway-mediated injury, while CD59 limits consequent C5b-9-mediated cell damage.
Collapse
Affiliation(s)
- Feng Lin
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hillmen P, Hall C, Marsh JCW, Elebute M, Bombara MP, Petro BE, Cullen MJ, Richards SJ, Rollins SA, Mojcik CF, Rother RP. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 2004; 350:552-9. [PMID: 14762182 DOI: 10.1056/nejmoa031688] [Citation(s) in RCA: 440] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Paroxysmal nocturnal hemoglobinuria (PNH) arises from a somatic mutation of the PIG-A gene in a hematopoietic stem cell and the subsequent production of blood cells with a deficiency of surface proteins that protect the cells against attack by the complement system. We tested the clinical efficacy of eculizumab, a humanized antibody that inhibits the activation of terminal complement components, in patients with PNH. METHODS Eleven transfusion-dependent patients with PNH received infusions of eculizumab (600 mg) every week for four weeks, followed one week later by a 900-mg dose and then by 900 mg every other week through week 12. Clinical and biochemical indicators of hemolysis were measured throughout the trial. RESULTS Mean lactate dehydrogenase levels decreased from 3111 IU per liter before treatment to 594 IU per liter during treatment (P=0.002). The mean percentage of PNH type III erythrocytes increased from 36.7 percent of the total erythrocyte population to 59.2 percent (P=0.005). The mean and median transfusion rates decreased from 2.1 and 1.8 units per patient per month to 0.6 and 0.0 units per patient per month, respectively (P=0.003 for the comparison of the median rates). Episodes of hemoglobinuria were reduced by 96 percent (P<0.001), and measurements of the quality of life improved significantly. CONCLUSIONS Eculizumab is safe and well tolerated in patients with PNH. This antibody against terminal complement protein C5 reduces intravascular hemolysis, hemoglobinuria, and the need for transfusion, with an associated improvement in the quality of life in patients with PNH.
Collapse
Affiliation(s)
- Peter Hillmen
- Department of Haematology, Leeds Teaching Hospitals National Health Science Trust, Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Turnberg D, Botto M, Warren J, Morgan BP, Walport MJ, Cook HT. CD59a deficiency exacerbates accelerated nephrotoxic nephritis in mice. J Am Soc Nephrol 2003; 14:2271-9. [PMID: 12937303 DOI: 10.1097/01.asn.0000083901.47783.2e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
CD59 is a complement regulatory protein that inhibits the terminal part of the complement system, the membrane attack complex (MAC), a mediator of renal injury. Mice deficient in the Cd59a gene (mCd59a-/-) were used to investigate the role of CD59 in experimentally induced accelerated nephrotoxic nephritis, a model of immune complex-mediated glomerulonephritis. After accelerated nephrotoxic nephritis was induced by administration of sheep nephrotoxic globulin, mCd59a-/- mice and strain-matched controls on two genetic backgrounds, 129/Sv x C57BL/6 and 129/Sv, were examined. For both, mCd59a-/- mice developed significantly greater glomerular cellularity than wild-type (WT) mice at day 5 after administration. At day 10 post-administration, mCd59a-/- mice exhibited more glomerular thrombosis than WT mice (thrombosis score, 1.8 [range, 1.4 to 4.0] versus 0.8 [range, 0.2 to 1.5] quadrants thrombosed per glomerulus, respectively; P = 0.0006). In the majority of experiments, mCd59a-/- mice also had significantly more proteinuria than controls; however, there was no difference in serum creatinine or albumin. Quantitative immunofluorescence of kidney sections revealed significantly more C9 (as a marker of MAC) deposition within glomeruli of mCd59a-/- mice than WT controls (P < 0.001). There was no difference in deposition of C3 and sheep IgG between the two experimental groups. The lack of CD59a, by allowing unregulated MAC deposition, exacerbates the renal injury in this model of immune complex-mediated glomerulonephritis.
Collapse
Affiliation(s)
- Daniel Turnberg
- Rheumatology Section and Department of Histopathology, Faculty of Medicine, Hammersmith Campus, Imperial College, London
| | | | | | | | | | | |
Collapse
|
44
|
De Nardo C, Fonsatti E, Sigalotti L, Calabrò L, Colizzi F, Cortini E, Coral S, Altomonte M, Maio M. Recombinant transmembrane CD59 (CD59-TM) confers complement resistance to GPI-anchored protein defective melanoma cells. J Cell Physiol 2002; 190:200-6. [PMID: 11807824 DOI: 10.1002/jcp.10050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protectin (CD59) is a glycosylphosphatidylinositol (GPI)-anchored cell membrane glycoprotein, broadly expressed on melanocytic cells, that represents the main restriction factor of complement (C)-mediated lysis of human melanoma cells. Levels of CD59 expression may impair the clinical efficacy of C-activating monoclonal antibodies (mAb); thus, we investigated the molecular mechanisms underlying the lack of CD59 expression in selected melanoma cells. Serological and biochemical analyses showed that MeWo melanoma cells expressed CD59 neither at cell surface nor at cytoplasmic levels; however, no critical mutations were identified in their CD59 mRNA. Consistently, MeWo CD59 cDNA (MeWo-CD59) was appropriately translated when transfected into the CD59-positive Mel 100 melanoma cells, and into the CD59-negative Nalm-6 pre-B leukemia cells that acquired resistance to C. In contrast, transfection of MeWo cells with CD59 cDNA from Mel 275 melanoma cells did not induce CD59 expression; however, their transfection with the CD59-TM chimeric construct, obtained by replacing the GPI-anchoring signal of MeWo-CD59 with the transmembrane tail of the human low-density lipoprotein receptor, induced the expression of a C-protective transmembrane form of CD59. These data, together with the absent expression of additional GPI-anchored proteins (i.e., CD55), suggest that defects in the biosynthesis and/or processing of GPI-anchored proteins underlie the lack of CD59 expression in MeWo cells. Further unveiling of the molecular mechanism that turns off CD59 expression in human melanoma cells will help to set-up more effective therapeutic strategies utilizing C-activating mAb in melanoma patients.
Collapse
Affiliation(s)
- Chiara De Nardo
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, Istituto Nazionale di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Holt DS, Botto M, Bygrave AE, Hanna SM, Walport MJ, Morgan BP. Targeted deletion of the CD59 gene causes spontaneous intravascular hemolysis and hemoglobinuria. Blood 2001; 98:442-9. [PMID: 11435315 DOI: 10.1182/blood.v98.2.442] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycolipid-anchored glycoprotein CD59 inhibits assembly of the lytic membrane attack complex of complement by incorporation into the forming complex. Absence of CD59 and other glycolipid-anchored molecules on circulating cells in the human hemolytic disorder paroxysmal nocturnal hemoglobinuria is associated with intravascular hemolysis and thrombosis. To examine the role of CD59 in protecting host tissues in health and disease, CD59-deficient (CD59(-/-)) mice were produced by gene targeting in embryonic stem cells. Absence of CD59 was confirmed by staining cells and tissues with specific antibody. Despite the complete absence of CD59, mice were healthy and fertile. Erythrocytes in vitro displayed increased susceptibility to complement and were positive in an acidified serum lysis test. Despite this, CD59(-/-) mice were not anemic but had elevated reticulocyte counts, indicating accelerated erythrocyte turnover. Fresh plasma and urine from CD59(-/-) mice contained increased amounts of hemoglobin when compared with littermate controls, providing further evidence for spontaneous intravascular hemolysis. Intravascular hemolysis was increased following administration of cobra venom factor to trigger complement activation. CD59(-/-) mice will provide a tool for characterizing the importance of CD59 in protection of self tissues from membrane attack complex damage in health and during diseases in which complement is activated.
Collapse
Affiliation(s)
- D S Holt
- Complement Biology Group, Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE. Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 1999; 380:503-23. [PMID: 10384957 DOI: 10.1515/bc.1999.066] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Membrane anchoring of cell surface proteins via glycosylphosphatidylinositol (GPI) occurs in all eukaryotic organisms. In addition, GPI-related glycophospholipids are important constituents of the glycan coat of certain protozoa. Defects in GPI biosynthesis can retard, if not abolish growth of these organisms. In humans, a defect in GPI biosynthesis can cause paroxysmal nocturnal hemoglobinuria (PNH), a severe acquired bone marrow disorder. Here, we review advances in the characterization of GPI biosynthesis in parasitic protozoa, yeast and mammalian cells. The GPI core structure as well as the major steps in its biosynthesis are conserved throughout evolution. However, there are significant biosynthetic differences between mammals and microbes. First indications are that these differences could be exploited as targets in the design of novel pharmacotherapeutics that selectively inhibit GPI biosynthesis in unicellular microbes.
Collapse
Affiliation(s)
- A Tiede
- Department of Clinical Immunology, Hannover Medical School, Germany
| | | | | | | | | |
Collapse
|
47
|
Abstract
Over 250 blood group determinants are known and most of these are located on integral red cell proteins and glycoproteins. The functions of some of these structures are known: Diego (band 3) is the red cell anion exchanger; Kidd, a urea transporter; Colton (aquaporin 1), a water channel; Cromer (DAF) and Knops (CRI), complement regulators; Diego (band 3) and Gerbich (glycophorin C/D) link the red cell membrane and the membrane skeleton. The Duffy glycoprotein is a chemokine receptor that may act as a scavenger for inflammatory mediators in the peripheral blood, but is also exploited as a receptor by Plasmodium vivax merozoites. The functions of some blood group antigens can be speculated upon because of structural similarity to proteins and glycoproteins of known function. For example, the Lutheran, LW, and Ok glycoproteins are members of the immunoglobulin superfamily of receptors and signal transducers, the Rh proteins and related glycoproteins show homology to ammonium transporters, and the Kell glycoprotein resembles a family of endopeptidases. Yet most blood groups systems contain null phenotypes associated with no apparent pathology. If these blood group antigens have important functions, other structures must be able to carry out those functions in their absence. Almost nothing is known of the biological significance of blood group polymorphism.
Collapse
Affiliation(s)
- G Daniels
- Bristol Institute for Transfusion Sciences, UK.
| |
Collapse
|
48
|
Harris JW, Koscick R, Lazarus HM, Eshleman JR, Medof ME. Leukemia arising out of paroxysmal nocturnal hemoglobinuria. Leuk Lymphoma 1999; 32:401-26. [PMID: 10048414 DOI: 10.3109/10428199909058399] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In paroxysmal nocturnal hemoglobinuria (PNH), one or more hematopoietic stem cells that are defective in GPI anchor assembly as a result of mutation in the PIG-A gene preferentially expand in the bone marrow and give rise to peripheral blood elements that are deficient in GPI anchored protein expression. According to current concepts, 5-15% of PNH patients develop leukocyte dyscrasias which invariably are acute myelogenous leukemia (AML). In this review, the literature from 1962 to the present is analyzed regarding the type of leukocyte dyscrasia, incidence, and cytogenetic features of the abnormal cells that have been reported. Among a total of 119 cases that are well-documented, 104 myeloid dyscrasias involving several categories in addition to AML, as well as 15 lymphoid dyscrasias are described. Of 1,760 patients in 15 series that contain 20 or more patients, 16 (1%) are reported as having developed "acute leukemia." However, of 288 listed as having died, 13 (5%) are recorded as having had "acute leukemia." In 32 of the patients with hematological dyscrasias where karyotypes were analyzed, 7 were found to be normal and 25 found to harbor various alterations with the +8 abnormality present in 8. In 5 of 7 instances evidence indicates that the dyscratic cell arises from the PNH clone. Processes potentially involved in the evolution of the dyscratic cells from PNH clones are discussed.
Collapse
Affiliation(s)
- J W Harris
- MetroHealth Medical Center of Cleveland, Case Western Reserve University, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
49
|
Shichishima T, Saitoh Y, Terasawa T, Noji H, Kai T, Maruyama Y. Complement sensitivity of erythrocytes in a patient with inherited complete deficiency of CD59 or with the Inab phenotype. Br J Haematol 1999; 104:303-6. [PMID: 10050712 DOI: 10.1046/j.1365-2141.1999.01188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the complement sensitivity of erythrocytes from three patients, one with inherited complete deficiency of CD59, one with the Inab phenotype, and one with paroxysmal nocturnal haemoglobinuria (PNH). The complement lysis sensitivity units on the erythrocytes were 11.7, 4.6, and 47.6 for inherited CD59 deficiency, Inab phenotype, and PNH, respectively. Two-colour flow cytometric analysis showed that the erythrocytes from the three patients consisted of a single population negative for CD59, negative for decay accelerating factor (DAF), and negative for both proteins, respectively. In addition, only the Inab phenotype patient had no haemolysis in vivo. These facts suggest that CD59 deficiency plays a more important role than DAF deficiency in complement-mediated haemolysis in vitro and in vivo, and that deficiency of both proteins, but not CD59 or DAF alone, causes complement sensitivity corresponding to that of PNH III erythrocytes in vitro.
Collapse
Affiliation(s)
- T Shichishima
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Maher SE, Pflugh DL, Larsen NJ, Rothschild MF, Bothwell AL. Structure/function characterization of porcine CD59: expression, chromosomal mapping, complement-inhibition, and costimulatory activity. Transplantation 1998; 66:1094-100. [PMID: 9808497 DOI: 10.1097/00007890-199810270-00021] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Complement regulatory proteins have become important targets to potentially modulate inflammatory reactions or transplant rejection. Since pig into human xenotransplantation could potentially overcome the enormous shortage of donor organs and tissues, characterization of porcine complement regulatory proteins is critical. METHODS The porcine CD59 cDNA has been isolated from porcine aortic endothelial cells and its structure determined. In addition, a molecular genetic analysis of the gene and its transcriptional properties and a functional analysis have been performed utilizing the transfected cDNA. RESULTS The most prominent mRNA species is 1.8 kilobases but cloned reverse transcriptase polymerase chain reaction products suggest that multiple polyadenylation sites are utilized. Gene mapping was performed utilizing a polymorphism identified in the 3' UT, and the gene was localized to within 3 cM of follicle-stimulating hormone, beta polypeptide in the middle of the chromosome 2 linkage map. RNA expression was equivalent in endothelial, kidney, and testis cell lines. Comparisons have been made with CD59 sequences from other species to identify possible important domains of the protein. The cDNA has been utilized to express an epitope-tagged or wild-type protein either transiently on COS-7 cells or stably in Chinese hamster ovary cells. The porcine CD59 protein effectively inhibited the antibody-mediated lytic activity of both porcine and human complement. In contrast to human CD59, porcine CD59 is incapable of providing costimulation to human T cells. CONCLUSIONS These data suggest that overexpression of porcine CD59 might be more effective than human CD59 in prolonging xenograft survival with transgenic pig organs because of reduced immunoreactivity.
Collapse
Affiliation(s)
- S E Maher
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|