1
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Textor J, Buytenhuijs F, Rogers D, Gauthier ÈM, Sultan S, Wortel IMN, Kalies K, Fähnrich A, Pagel R, Melichar HJ, Westermann J, Mandl JN. Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity. Cell Syst 2023; 14:1059-1073.e5. [PMID: 38061355 DOI: 10.1016/j.cels.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4+ T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Johannes Textor
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Franka Buytenhuijs
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shabaz Sultan
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Inge M N Wortel
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Kathrin Kalies
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Anke Fähnrich
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - René Pagel
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
3
|
Stutz R, Meyer C, Kaiser E, Goedicke-Fritz S, Schroeder HW, Bals R, Haertel C, Rogosch T, Kerzel S, Zemlin M. Attenuated asthma phenotype in mice with a fetal-like antigen receptor repertoire. Sci Rep 2021; 11:14199. [PMID: 34244568 PMCID: PMC8270943 DOI: 10.1038/s41598-021-93553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
We hypothesized that the scarcity of N-nucleotides might contribute to the inability of the neonate to mount a robust allergic immune response. To test this, we used terminal deoxyribunucleotidyl Transferase deficient (TdT-/-) mice, which express "fetal-like" T cell receptor and immunoglobulin repertoires with largely germline-encoded CDR3 regions. Intraperitoneal sensitization was followed by aerosol provocation with either PBS or the allergen OVA in both TdT-/- mice and wild-type mice to develop allergic respiratory inflammation. The effects of this procedure were investigated by lung function test, immunological analysis of serum and brochoalveolar lavage. The local TH2 cytokine milieu was significantly attenuated in TdT-/- mice. Within this group, the induction of total IgE levels was also significantly reduced after sensitization. TdT-/- mice showed a tendency toward reduced eosinophilic inflow into the bronchial tubes, which was associated with the elimination of respiratory hyperreactivity. In conclusion, in a murine model of allergic airway inflammation, the expression of fetal-like antigen receptors was associated with potent indications of a reduced ability to mount an asthma phenotype. This underlines the importance of somatically-generated antigen-receptor repertoire diversity in type one allergic immune responses and suggests that the fetus may be protected from allergic responses, at least in part, by controlling N addition.
Collapse
Affiliation(s)
- Regine Stutz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Christopher Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany.,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Critical Care Medicine, Saarland University, Saarland University Medical School, Homburg, Germany
| | - Christoph Haertel
- Department of Pediatrics, Würzburg University Medical Center, Würzburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kerzel
- Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.,Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, Campus St. Hedwig, Regensburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany. .,Department of Pediatrics, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Abstract
Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
6
|
Terminal Deoxynucleotidyl Transferase Is Not Required for Antibody Response to Polysaccharide Vaccines against Streptococcus pneumoniae and Salmonella enterica Serovar Typhi. Infect Immun 2018; 86:IAI.00211-18. [PMID: 29967094 DOI: 10.1128/iai.00211-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022] Open
Abstract
B cell antigen receptor (BCR) diversity increases by several orders of magnitude due to the action of terminal deoxynucleotidyl transferase (TdT) during V(D)J recombination. Unlike adults, infants have limited BCR diversity, in part due to reduced expression of TdT. Since human infants and young mice respond poorly to polysaccharide vaccines, such as the pneumococcal polysaccharide vaccine Pneumovax23 and Vi polysaccharide (ViPS) of Salmonella enterica serovar Typhi, we tested the contribution of TdT-mediated BCR diversity in response to these vaccines. We found that TdT+/- and TdT-/- mice generated comparable antibody responses to Pneumovax23 and survived Streptococcus pneumoniae challenge. Moreover, passive immunization of B cell-deficient mice with serum from Pneumovax23-immunized TdT+/- or TdT-/- mice conferred protection. TdT+/- and TdT-/- mice generated comparable levels of anti-ViPS antibodies and antibody-dependent, complement-mediated bactericidal activity against S Typhi in vitro To test the protective immunity conferred by ViPS immunization in vivo, TdT+/- and TdT-/- mice were challenged with a chimeric Salmonella enterica serovar Typhimurium strain expressing ViPS, since mice are nonpermissive hosts for S Typhi infection. Compared to their unimmunized counterparts, immunized TdT+/- and TdT-/- mice challenged with ViPS-expressing S Typhimurium exhibited a significant reduction in the bacterial burden and liver pathology. These data suggest that the impaired antibody response to the Pneumovax23 and ViPS vaccines in the young is not due to limited TdT-mediated BCR diversification.
Collapse
|
7
|
Fontaine M, Vogel I, Van Eycke YR, Galuppo A, Ajouaou Y, Decaestecker C, Kassiotis G, Moser M, Leo O. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J 2018; 37:398-412. [PMID: 29263148 PMCID: PMC5793804 DOI: 10.15252/embj.201796881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non-self-antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T-cell repertoire was used. The response of EF4.1 mice to an I-Ab-associated epitope of the F-MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg-depleted EF4.1 mice were immunized, and the extent of the Vα2-bearing, antigen-specific TCR repertoire was characterized by high-throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre-immune repertoire. Injection of anti-CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non-self-antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- B7-2 Antigen/immunology
- Cells, Cultured
- Friend murine leukemia virus/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Martina Fontaine
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Isabel Vogel
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Galuppo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yousra Ajouaou
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK
- Department of Medicine Faculty of Medicine, Imperial College London London, UK
| | - Muriel Moser
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
8
|
Insights into immune system development and function from mouse T-cell repertoires. Proc Natl Acad Sci U S A 2017; 114:2253-2258. [PMID: 28196891 DOI: 10.1073/pnas.1700241114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire.
Collapse
|
9
|
Carey AJ, Gracias DT, Thayer JL, Boesteanu AC, Kumova OK, Mueller YM, Hope JL, Fraietta JA, van Zessen DBH, Katsikis PD. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:2602-13. [PMID: 26873987 DOI: 10.4049/jimmunol.1502126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRβ high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential Vβ family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type A virus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different Vβ gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA(257-264)-specific (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment.
Collapse
Affiliation(s)
- Alison J Carey
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19102; Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102;
| | - Donald T Gracias
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jillian L Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Alina C Boesteanu
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Ogan K Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Yvonne M Mueller
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jennifer L Hope
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David B H van Zessen
- Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands; Bioinformatics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Peter D Katsikis
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102; Immunology, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
10
|
Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity 2014; 41:181-90. [PMID: 25148022 DOI: 10.1016/j.immuni.2014.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/11/2022]
Abstract
To support effective host defense, the T cell repertoire must balance breadth of recognition with sensitivity for antigen. The concept that T lymphocytes are positively selected in the thymus is well established, but how this selection achieves such a repertoire has not been resolved. Here we suggest that it is direct linkage between self and foreign antigen recognition that produces the necessary blend of TCR diversity and specificity in the mature peripheral repertoire, enabling responses to a broad universe of unpredictable antigens while maintaining an adequate number of highly sensitive T cells in a population of limited size. Our analysis also helps to explain how diversity and frequency of antigen-reactive cells in a T cell repertoire are adjusted in animals of vastly different size scale to enable effective antipathogen responses and suggests a possible binary architecture in the TCR repertoire that is divided between germline-related optimal binding and diverse recognition.
Collapse
|
11
|
Venturi V, Rudd BD, Davenport MP. Specificity, promiscuity, and precursor frequency in immunoreceptors. Curr Opin Immunol 2013; 25:639-45. [PMID: 23880376 DOI: 10.1016/j.coi.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
The immune system is comprised of various immune cell populations that utilize a spectrum of immunoreceptors characterized by different levels of specificity, diversity, and prevalence within a host and across a population. These range from the universal receptors employed by both innate cells and innate-like cells, such as NKT and MAIT cells, through to receptors expressed on T cells with sporadic incidence. Here we review recent advances in understanding the molecular mechanisms that drive the observed spectra of T cell receptors in vivo.
Collapse
Affiliation(s)
- Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia.
| | | | | |
Collapse
|
12
|
Schelonka RL, Ivanov II, Vale AM, Dimmitt RA, Khaled M, Schroeder HW. Absence of N addition facilitates B cell development, but impairs immune responses. Immunogenetics 2011; 63:599-609. [PMID: 21660592 PMCID: PMC3181008 DOI: 10.1007/s00251-011-0543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/24/2011] [Indexed: 12/02/2022]
Abstract
The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT(-/-)) and wild-type (TdT(+/+)) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT(-/-) cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP(19)CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT(-/-) bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgM(a) and congenic TdT-sufficient CB17 IgM(b) bone marrow were placed in competition. TdT(-/-) cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens.
Collapse
Affiliation(s)
- Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- Present Address: Oregon Health and Science University, Portland, OR 97239 USA
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Present Address: Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andre M. Vale
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| | - Reed A. Dimmitt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Mahnaz Khaled
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Harry W. Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Medicine, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
- Department of Genetics, University of Alabama at Birmingham, Shelby Building 401, 1530 3rd Avenue South, Birmingham, AL 35294-2182 USA
| |
Collapse
|
13
|
Abstract
This essay provides an analysis of the inadequacy of the current view of restrictive recognition of peptide by the T-cell antigen receptor. A competing model is developed, and the experimental evidence for the prevailing model is reinterpreted in the new framework. The goal is to contrast the two models with respect to their consistency, coverage of the data, explanatory power, and predictability.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute For Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Hale JS, Wubeshet M, Fink PJ. TCR revision generates functional CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6528-34. [PMID: 20971922 PMCID: PMC3233755 DOI: 10.4049/jimmunol.1002696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/physiology
- Immune Tolerance/genetics
- Immunoglobulin Variable Region/genetics
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/pathology
- Lymphopenia/immunology
- Lymphopenia/microbiology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
15
|
Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, Carlson CS, Warren EH. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med 2010; 2:47ra64. [PMID: 20811043 PMCID: PMC3212437 DOI: 10.1126/scitranslmed.3001442] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diversity in T lymphocyte antigen receptors is generated by somatic rearrangement of T cell receptor (TCR) genes and is concentrated within the third complementarity-determining region 3 (CDR3) of each chain of the TCR heterodimer. We sequenced the CDR3 regions from millions of rearranged TCR beta chain genes in naïve and memory CD8(+) T cells of seven adults. The CDR3 sequence repertoire realized in each individual is strongly biased toward specific V(beta)-J(beta) pair utilization, dominated by sequences containing few inserted nucleotides, and drawn from a defined subset comprising less than 0.1% of the estimated 5 x 10(11) possible sequences. Surprisingly, the overlap in the naïve CD8(+) CDR3 sequence repertoires of any two of the individuals is approximately 7000-fold larger than predicted and appears to be independent of the degree of human leukocyte antigen matching.
Collapse
Affiliation(s)
- Harlan S Robins
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mahmoud TI, Kearney JF. Terminal deoxynucleotidyl transferase is required for an optimal response to the polysaccharide α-1,3 dextran. THE JOURNAL OF IMMUNOLOGY 2009; 184:851-8. [PMID: 20018621 DOI: 10.4049/jimmunol.0902791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An understanding of Ab responses to polysaccharides associated with pathogenic microorganisms is of importance for improving vaccine design, especially in neonates that respond poorly to these types of Ags. In this study, we have investigated the role of the lymphoid-specific enzyme TdT in generating B cell clones responsive to alpha-1,3 dextran (DEX). TdT is a DNA polymerase that plays a major role in generating diversity of lymphocyte AgRs during V(D)J recombination. In this study, we show that the DEX-specific Ab response is lower, and the dominant DEX-specific J558 idiotype (Id) is not detected in TdT(-/-) mice when compared with wild-type (WT) BALB/c mice. Nucleotide sequencing of H chain CDR3s of DEX-specific plasmablasts, sorted postimmunization, showed that TdT(-/-) mice generate a lower frequency of the predominant adult molecularly determined clone J558. Complementation of TdT expression in TdT(-/-) mice by early forced expression of the short splice variant of TdT-restored WT proportions of J558 Id+ clones and also abrogated the development of the minor M104E Id+ clones. J558 Id V(D)J rearrangements are detected as early as 7 d after birth in IgM-negative B cell precursors in the liver and spleen of WT and TdT-transgenic mice but not in TdT(-/-) mice. These data show that TdT is essential for the generation of the predominant higher-affinity DEX-responsive J558 clone.
Collapse
Affiliation(s)
- Tamer I Mahmoud
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
17
|
Leon-Ponte M, Kasprzyski T, Mannik LA, Haeryfar SMM. Altered immunodominance hierarchies of influenza A virus-specific H-2(b)-restricted CD8+ T cells in the absence of terminal deoxynucleotidyl transferase. Immunol Invest 2008; 37:714-25. [PMID: 18821218 DOI: 10.1080/08820130802349908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunodominance is considered an obstacle to successful T cell-based vaccination, and constant efforts are made to uncover the underlying mechanisms for this phenomenon. We have examined the contribution of terminal deoxynucleotidyl transferase (TdT), whose function accounts for approximately 90% of T cell receptor diversity, to dominance hierarchies of H-2(b)-restricted flu-specific T(CD8+). Using intracellular cytokine staining to quantitatively detect epitope-specific T(CD8+), we demonstrate that TdT-deficient mice exhibit a distinct hierarchical pattern in their primary and recall T(CD8+) responses to influenza A viruses, which results from skewed responsiveness towards select influenza epitopes. Our data establish a link between TdT and immunodominance in H-2(b)-restricted antiviral T(CD8+) responses.
Collapse
Affiliation(s)
- Matilde Leon-Ponte
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Kedzierska K, Thomas PG, Venturi V, Davenport MP, Doherty PC, Turner SJ, La Gruta NL. Terminal deoxynucleotidyltransferase is required for the establishment of private virus-specific CD8+ TCR repertoires and facilitates optimal CTL responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2556-62. [PMID: 18684946 PMCID: PMC2596983 DOI: 10.4049/jimmunol.181.4.2556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virus-immune CD8(+) TCR repertoires specific for particular peptide-MHC class I complexes may be substantially shared between (public), or unique to, individuals (private). Because public TCRs can show reduced TdT-mediated N-region additions, we analyzed how TdT shapes the heavily public (to D(b)NP(366)) and essentially private (to D(b)PA(224)) CTL repertoires generated following influenza A virus infection of C57BL/6 (B6, H2(b)) mice. The D(b)NP(366)-specific CTL response was virtually clonal in TdT(-/-) B6 animals, with one of the three public clonotypes prominent in the wild-type (wt) response consistently dominating the TdT(-/-) set. Furthermore, this massive narrowing of TCR selection for D(b)NP(366) reduced the magnitude of D(b)NP(366)-specific CTL response in the virus-infected lung. Conversely, the D(b)PA(224)-specific responses remained comparable in both magnitude and TCR diversity within individual TdT(-/-) and wt mice. However, the extent of TCR diversity across the total population was significantly reduced, with the consequence that the normally private wt D(b)PA(224)-specific repertoire was now substantially public across the TdT(-/-) mouse population. The key finding is thus that the role of TdT in ensuring enhanced diversity and the selection of private TCR repertoires promotes optimal CD8(+) T cell immunity, both within individuals and across the species as a whole.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Clone Cells
- Cytotoxicity, Immunologic/genetics
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- DNA Nucleotidylexotransferase/physiology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Influenza A Virus, H3N2 Subtype/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Orthomyxoviridae Infections/enzymology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul G. Thomas
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Vanessa Venturi
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, Australia
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington 2052, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole L. La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Haeryfar SM, Hickman HD, Irvine KR, Tscharke DC, Bennink JR, Yewdell JW. Terminal deoxynucleotidyl transferase establishes and broadens antiviral CD8+ T cell immunodominance hierarchies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:649-59. [PMID: 18566432 PMCID: PMC2587314 DOI: 10.4049/jimmunol.181.1.649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The action of TdT on mouse TCR genes accounts for approximately 90% of T cell repertoire diversity. We report that in TdT-/- mice, total T(CD8+) responses to influenza and vaccinia viruses are reduced by approximately 30% relative to wild-type mice. We find that T(CD8+) responses to three subdominant influenza virus determinants are reduced to background values in TdT-/- mice while responses to three immunodominant determinants undergo a major reshuffling. A similar reshuffling occurs in T(CD8+) responses to immunodominant vaccinia virus determinants, and is clearly based on broad differences in TCR family usage and CDR3 length between wild-type and TdT-/- mice. These findings demonstrate that TdT plays a critical role in the magnitude and breadth of anti-viral T(CD8+) responses toward individual determinants and suggests that germline TCR repertoire bias toward the most dominant determinants is a major factor in establishing immunodominance hierarchies.
Collapse
Affiliation(s)
- S.M. Mansour Haeryfar
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
| | - Kari R. Irvine
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
| | - David C. Tscharke
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
- School of Biochemistry and Molecular Biology, Australian National University, Canberra ACT 0200, Australia
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892 USA
| |
Collapse
|
20
|
Adkins B. Heterogeneity in the CD4 T Cell Compartment and the Variability of Neonatal Immune Responsiveness. CURRENT IMMUNOLOGY REVIEWS 2007; 3:151-159. [PMID: 19122799 PMCID: PMC2613353 DOI: 10.2174/157339507781483496] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past decade, it has become clear that T cell immune responses in both murine and human neonates are very heterogeneous, running the gamut from poor or deviant responsiveness to mature, adult-like inflammatory function. How this variability arises is not well understood but there is now a great deal of information suggesting that differences in the T cell compartments in neonates vs adults play important roles. A number of cell types or processes are qualitatively or quantitatively different in the neonate. These include (a) alternate epigenetic programs at the Th2 cytokine locus, (b) enhanced homeostatic proliferation, (c) a relative abundance of fetal-origin cells, (d) a greater representation of recent thymic emigrants, (e) high proportions of potentially self-reactive cells, (f) a developmental delay in the production of regulatory T cells, and (g) cells bearing TCR with limited N region diversity. Different conditions of antigen exposure may lead to different environmental signals that promote the selective responsiveness of one or more of these populations. Therefore, the variability of neonatal responses may be a function of the heterogeneous nature of the responding T cell population. In this review, we will describe these various subpopulations in detail and speculate as to the manner in which they could contribute to the heterogeneity of neonatal immune responses.
Collapse
Affiliation(s)
- Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Fazilleau N, Delarasse C, Motta I, Fillatreau S, Gougeon ML, Kourilsky P, Pham-Dinh D, Kanellopoulos JM. T cell repertoire diversity is required for relapses in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2007; 178:4865-75. [PMID: 17404267 DOI: 10.4049/jimmunol.178.8.4865] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Comparison of TCRalphabeta repertoires of myelin oligodendrocyte glycoprotein (MOG)-specific T lymphocytes in C57BL/6 and TdT-deficient littermates (TdT(-/-)) generated during experimental autoimmune encephalomyelitis (EAE) highlights a link between a diversified TCRalphabeta repertoire and EAE relapses. At the onset of the disease, the EAE-severity is identical in TdT(+/-) and TdT(-/-) mice and the neuropathologic public MOG-specific T cell repertoires express closely similar public Valpha-Jalpha and Vbeta-Jbeta rearrangements in both strains. However, whereas TdT(+/+) and TdT(+/-) mice undergo successive EAE relapses, TdT(-/-) mice recover definitively and the lack of relapses does not stem from dominant regulatory mechanisms. During the first relapse of the disease in TdT(+/-) mice, new public Valpha-Jalpha and Vbeta-Jbeta rearrangements emerge that are distinct from those detected at the onset of the disease. Most of these rearrangements contain N additions and are found in CNS-infiltrating T lymphocytes. Furthermore, CD4(+) T splenocytes bearing these rearrangements proliferate to the immunodominant epitope of MOG and not to other immunodominant epitopes of proteolipid protein and myelin basic protein autoantigens, excluding epitope spreading to these myelin proteins. Thus, in addition to epitope spreading, a novel mechanism involving TCRalphabeta repertoire diversification contributes to autoimmune progression.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Institut National de la Santé et de la Recherche Médicale, Unité 277, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim SK, Clute SC, Welsh RM. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev 2006; 211:164-81. [PMID: 16824126 PMCID: PMC7165519 DOI: 10.1111/j.0105-2896.2006.00394.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The main functions of memory T cells are to provide protection upon re-exposure to a pathogen and to prevent the re-emergence of low-grade persistent pathogens. Memory T cells achieve these functions through their high frequency and elevated activation state, which lead to rapid responses upon antigenic challenge. The significance and characteristics of memory CD8+ T cells in viral infections have been studied extensively. In many of these studies of T-cell memory, experimental viral immunologists go to great lengths to assure that their animal colonies are free of endogenous pathogens in order to design reproducible experiments. These experimental results are then thought to provide the basis for our understanding of human immune responses to viruses. Although these findings can be enlightening, humans are not immunologically naïve, and they often have memory T-cell populations that can cross-react with and respond to a new infectious agent or cross-react with allo-antigens and influence the success of tissue transplantation. These cross-reactive T cells can become activated and modulate the immune response and outcome of subsequent heterologous infections, a phenomenon we have termed heterologous immunity. These large memory populations are also accommodated into a finite immune system, requiring that the host makes room for each new population of memory cell. It appears that memory cells are part of a continually evolving interactive network, where with each new infection there is an alteration in the frequencies, distributions, and activities of memory cells generated in response to previous infections and allo-antigens.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Welsh RM. Private specificities of heterologous immunity. Curr Opin Immunol 2006; 18:331-7. [PMID: 16597500 DOI: 10.1016/j.coi.2006.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Antiviral T-cell responses between individuals that have similar major histocompatibility complex molecules share similarities in epitope hierarchies and T-cell receptor variable gene usage (public specificities), yet the T-cell receptor amino acid sequences differ between individuals (private specificities). The significance of the private specificities of these repertoires is brought about under conditions of heterologous immunity and might have important consequences in anti-viral immunity and immunopathology.
Collapse
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
24
|
Souto-Carneiro MM, Sims GP, Girschik H, Lee J, Lipsky PE. Developmental changes in the human heavy chain CDR3. THE JOURNAL OF IMMUNOLOGY 2006; 175:7425-36. [PMID: 16301650 DOI: 10.4049/jimmunol.175.11.7425] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The CDR3 of the Ig H chain (CDR3(H)) is significantly different in fetal and adult repertoires. To understand the mechanisms involved in the developmental changes in the CDR3(H) of Ig H chains, sets of nonproductive V(H)DJ(H) rearrangements obtained from fetal, full-term neonates and adult single B cells were analyzed and compared with the corresponding productive repertoires. Analysis of the nonproductive repertoires was particularly informative in assessing developmental changes in the molecular mechanisms of V(H)DJ(H) recombination because these rearrangements did not encode a protein and therefore their distribution was not affected by selection. Although a number of differences were noted, the major reasons that fetal B cells expressed Ig H chains with shorter CDR3(H) were both diminished TdT activity in the DJ(H) junction and the preferential use of the short J(H) proximal D segment D7-27. The enhanced usage of D7-27 by fetal B cells appeared to relate to its position in the locus rather than its short length. The CDR3(H) progressively acquired a more adult phenotype during ontogeny. In fetal B cells, there was decreased recurrent DJ(H) rearrangements before V(H)-DJ(H) rearrangement and increased usage of junctional microhomologies both of which also converted to the adult pattern during ontogeny. Overall, these results indicate that the decreased length and complexity of the CDR3(H) of fetal B cells primarily reflect limited enzymatic modifications of the joins as well as a tendency to use proximal D and J(H) segments during DJ(H) rearrangements.
Collapse
Affiliation(s)
- M Margarida Souto-Carneiro
- Repertoire Analysis Group, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | | | |
Collapse
|
25
|
Cohn M. What are the commonalities governing the behavior of humoral immune recognitive repertoires? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:19-42. [PMID: 16139887 DOI: 10.1016/j.dci.2005.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The humoral repertoire of immune systems is large, random and somatically selected. It is derived from a germline selected repertoire by a variety of diversification mechanisms, complementation of subunits, mutation and gene conversion. However derived, the end-product must be able to recognize and rid a vast variety of pathogens. This is accomplished by viewing antigens as combinatorials of epitopes, an astuce that permits a small repertoire to respond sufficiently rapidly to a vast antigenic universe. A somatically generated repertoire, however, requires a solution to two problems. First, a somatic mechanism for a self-nonself discrimination has to be put in place. Second, the repertoire has to be coupled to the effector mechanisms in a coherent fashion. The rules governing these two mechanisms are species-independent and delineate the parameters of all immune repertoires, whatever the somatic mechanism used to generate them.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Uchiyama Y, Tagami J, Kamisuki S, Kasai N, Oshige M, Chiku H, Ibe S, Koiwai O, Sugawara F, Sakaguchi K. Selective inhibitors of terminal deoxyribonucleotidyltransferase (TdT): baicalin and genistin. Biochim Biophys Acta Gen Subj 2005; 1725:298-304. [PMID: 16099107 DOI: 10.1016/j.bbagen.2005.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Studies of mammalian terminal deoxyribonucleotidyltransferase (TdT) are facilitated by use of inhibitors that selectively knock down the activity of the enzyme. We have screened for selective inhibitors of TdT and identified a natural compound with this property in the Japanese vegetable, Arctium lappa. The compound has little effect on the activities of mammalian DNA polymerases, such as alpha, beta, delta or lambda polymerase, and prokaryotic DNA polymerases, such as Taq DNA polymerase, T4 DNA polymerase and Klenow fragment. H1- and C13-NMR spectroscopic analyses showed the compound to be baicalin, a compound previously reported as an anti-inflammatory or antipyretic agent. The IC50 value of baicalin to TdT was 18.6 microM. We also found that genistin, a baicalin derivative known to be antimutagenic, more selectively inhibited TdT activity than baicalin, although its IC50 value was weaker (28.7 microM). Genistin and baicalin also inhibited the activity of truncated TdT (the so-called pol beta core domain) in which the BRCT motif was deleted in its N-terminal region. In kinetic analyses, inhibition by either genistin or baicalin was competitive with the primer and non-competitive with the dNTP substrate. The compounds may, therefore, bind directly to the primer-binding site of TdT and simultaneously disturb dNTP substrate incorporation into the primer. Genistin and baicalin should prove to be useful agents for studying TdT.
Collapse
Affiliation(s)
- Yukinobu Uchiyama
- Department of Applied Biological Science and Frontier Research Center for Genomic Drug Discovery, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Selin LK, Cornberg M, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM. CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol 2005; 16:335-47. [PMID: 15528078 PMCID: PMC7128110 DOI: 10.1016/j.smim.2004.08.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Virus-specific memory T cell populations demonstrate plasticity in antigen recognition and in their ability to accommodate new memory T cell populations. The degeneracy of T cell antigen recognition and the flexibility of diverse antigen-specific repertoires allow the host to respond to a multitude of pathogens while accommodating these numerous large memory pools in a finite immune system. These cross-reactive memory T cells can be employed in immune responses and mediate protective immunity, but they can also induce life-threatening immunopathology or impede transplantation tolerance and graft survival. Here we discuss examples of altered viral pathogenesis occurring as a consequence of heterologous T cell immunity and propose models for the maintenance of a dynamic pool of memory cells.
Collapse
Affiliation(s)
- Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fazilleau N, Cabaniols JP, Lemaître F, Motta I, Kourilsky P, Kanellopoulos JM. Valpha and Vbeta public repertoires are highly conserved in terminal deoxynucleotidyl transferase-deficient mice. THE JOURNAL OF IMMUNOLOGY 2005; 174:345-55. [PMID: 15611258 DOI: 10.4049/jimmunol.174.1.345] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell repertoires observed in response to immunodominant and subdominant peptides include private, i.e., specific for each individual, as well as public, i.e., common to all mice or humans of the same MHC haplotype, Valpha-Jalpha and Vbeta-Dbeta-Jbeta rearrangements. To measure the impact of N-region diversity on public repertoires, we have characterized the alphabeta TCRs specific for several CD4 or CD8 epitopes of wild-type mice and of mice deficient in the enzyme TdT. We find that V, (D), J usage identified in public repertoires is strikingly conserved in TdT(o/o) mice, even for the CDR3 loops which are shorter than those found in TdT(+/+) animals. Moreover, the 10- to 20-fold decrease in alphabeta T cell diversity in TdT(o/o) mice did not prevent T cells from undergoing affinity maturation during secondary responses. A comparison of the CDR3beta in published public and private repertoires indicates significantly reduced N-region diversity in public CDR3beta. We interpret our findings as suggesting that public repertoires are produced more efficiently than private ones by the recombination machinery. Alternatively, selection may be biased in favor of public repertoires in the context of the interactions between TCR and MHC peptide complexes and we hypothesize that MHCalpha helices are involved in the selection of public repertoires.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Unité de Biologie Moléculaire du Gène, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 277, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
Thai TH, Kearney JF. Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function. Adv Immunol 2005; 86:113-36. [PMID: 15705420 DOI: 10.1016/s0065-2776(04)86003-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The immune system develops in a series of programmed developmental stages. Although recombination-activating gene (RAG) and nonhomologous end-joining (NHEJ) proteins are indispensable in the generation of immunoglobulins and T-cell receptors (TCRs), most CDR3 diversity is contributed by nontemplated addition of nucleotides catalyzed by the nuclear enzyme terminal deoxynucleotidyltransferase (TdT) and most nucleotide deletion is performed by exonucleases at V(D)J joins. Increasing TdT expression continuing into adult life results in N region addition and diversification of the T and B cell repertoires. In several species including mice and humans, there are multiple isoforms of TdT resulting from alternative mRNA splicing. The short form (TdTS) produces N additions during TCR and B-cell receptor (BCR) gene rearrangements. Other long isoforms, TdTL1 and TdTL2, have 3' --> 5' exonuclease activity. The two forms of TdT therefore have distinct and opposite functions in lymphocyte development. The enzymatic activities of the splice variants of TdT play an essential role in the diversification of lymphocyte repertoires by modifying the composition and length of the gene segments involved in the production of antibodies and T-cell receptors.
Collapse
Affiliation(s)
- To-Ha Thai
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35204, USA
| | | |
Collapse
|
30
|
Robey IF, Peterson M, Horwitz MS, Kono DH, Stratmann T, Theofilopoulos AN, Sarvetnick N, Teyton L, Feeney AJ. Terminal deoxynucleotidyltransferase deficiency decreases autoimmune disease in diabetes-prone nonobese diabetic mice and lupus-prone MRL-Fas(lpr) mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:4624-9. [PMID: 15034081 DOI: 10.4049/jimmunol.172.7.4624] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The wide diversity of the T and B Ag receptor repertoires becomes even more extensive postneonatally due to the activity of TdT, which adds nontemplated N nucleotides to Ig and TCR coding ends during V(D)J recombination. In addition, complementarity-determining region 3 sequences formed in the absence of TdT are more uniform due to the use of short sequence homologies between the V, D, and J genes. Thus, the action of TdT produces an adult repertoire that is both different from, and much larger than, the repertoire of the neonate. We have generated TdT-deficient nonobese diabetic (NOD) and MRL-Fas(lpr) mice, and observed a decrease in the incidence of autoimmune disease, including absence of diabetes and decreased pancreatic infiltration in NOD TdT(-/-) mice, and reduced glomerulonephritis and increased life span in MRL-Fas(lpr) TdT(-/-) mice. Using tetramer staining, TdT(-/-) and TdT(+/+) NOD mice showed similar frequencies of the diabetogenic BDC 2.5 CD4(+) T cells. We found no increase in CD4(+)CD25(+) regulatory T cells in NOD TdT(-/-) mice. Thus, TdT deficiency ameliorates the severity of disease in both lupus and diabetes, two very disparate autoimmune diseases that affect different organs, with damage conducted by different effector cell types. The neonatal repertoire appears to be deficient in autoreactive T and/or B cells with high enough affinities to induce end-stage disease. We suggest that the paucity of autoreactive specificities created in the N region-lacking repertoire, and the resultant protection afforded to the newborn, may be the reason that TdT expression is delayed in ontogeny.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Autoimmune Diseases/genetics
- Autoimmune Diseases/mortality
- Autoimmune Diseases/pathology
- Autoimmune Diseases/prevention & control
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Clone Cells
- Crosses, Genetic
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- DNA Nucleotidylexotransferase/physiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/mortality
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Inbred MRL lpr
- Mice, Inbred NOD
- Mice, Knockout
- Receptors, Interleukin-2/biosynthesis
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- fas Receptor/genetics
Collapse
Affiliation(s)
- Ian F Robey
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 2004; 4:123-32. [PMID: 15040585 DOI: 10.1038/nri1292] [Citation(s) in RCA: 480] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-alphabeta gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and the Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
32
|
Molano ID, Redmond S, Sekine H, Zhang XK, Reilly C, Hutchison F, Ruiz P, Gilkeson GS. Effect of genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production and renal disease in MRL/lpr mice. Clin Immunol 2003; 107:186-97. [PMID: 12804532 DOI: 10.1016/s1521-6616(03)00035-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) places non-template-coded nucleotides (N additions) in the VH CDR3 of T cell receptors and immunoglobulins. Amino acids coded for by N additions are important in autoantibody binding of dsDNA in lupus. We hypothesized that a genetic lack of TdT would modulate disease in lupus-prone mice. To test this hypothesis, we derived TdT-deficient MRL/lpr mice. Serum levels of anti-dsDNA antibodies and anti-dsDNA producing splenocytes were significantly lower in the TdT(-) versus TdT(+) littermates. Albuminuria, glomerular IgG deposition, and pathologic renal disease were significantly reduced in the TdT(-) mice. Sequence analysis of anti-dsDNA hybridomas derived from TdT(-) mice revealed a lack of N additions, short VH CDR3 segments, yet the presence of VH CDR3 arginines. Thus, the genetic absence of TdT reduces autoantibody production and clinical disease in MRL/lpr mice, confirming the importance of N additions in the autoimmune response in these mice.
Collapse
Affiliation(s)
- Ivan D Molano
- Medical Research Service, Ralph H. Johnson VAMC, and the Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zemlin M, Schelonka RL, Bauer K, Schroeder HW. Regulation and chance in the ontogeny of B and T cell antigen receptor repertoires. Immunol Res 2003; 26:265-78. [PMID: 12403364 DOI: 10.1385/ir:26:1-3:265] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adaptive immune system has to economically generate a large array of T and B cell antigen receptors (T cell receptors [TCRs], B cell receptors [BCRs]) that eliminate both longstanding and novel antigens from the host while preventing the production of deleterious (e.g., autoreactive) antigen receptors. Our studies focus on the mechanisms that shape the development of these antigen receptor repertoires during human ontogeny. The key to BCR and TCR diversity is the third complementarity determining region (CDR3) of the variable domain, which in the immunoglobulin heavy chain and TCR beta chain, is created by the junction between the variable, diversity, and joining gene segments. The CDR3 diversity is constrained by overrepresentation of gene segments and lack of N regions during the first trimester of gestation and then increases exponentially during ontogeny until it reaches adult levels months after birth. This process parallels, and may contribute to, the stepwise acquisition of the ability to respond to specific antigens. Recent studies indicate that maturation of the CDR3 repertoire is not accelerated by premature exposition to extrauterine antigen and thus appears to follow a strictly developmentally regulated program whose pacemaker(s) is still unknown.
Collapse
MESH Headings
- Antigenic Variation
- Complementarity Determining Regions
- Embryonic and Fetal Development/genetics
- Embryonic and Fetal Development/immunology
- Evolution, Molecular
- Female
- Gene Expression Regulation, Developmental
- Humans
- Infant, Newborn
- Pregnancy
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Michael Zemlin
- Department of Microbiology, University of Alabama at Birmingham, 35294-3300, USA
| | | | | | | |
Collapse
|
34
|
Casrouge A, Fazilleau N, Cabaniols JP, Kourilsky P, Kanellopoulos JM. [Methods of studying T-lymphocyte repertoires]. PATHOLOGIE-BIOLOGIE 2002; 50:151-6. [PMID: 11980327 DOI: 10.1016/s0369-8114(02)00281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Mi QS, Rezanka LJ, Lustig A, Zhou L, Longo DL, Kenny JJ. The M603 idiotype is lost in the response to phosphocholine in terminal deoxynucleotidyl transferase-deficient mice. Eur J Immunol 2002; 32:1139-46. [PMID: 11932921 DOI: 10.1002/1521-4141(200204)32:4<1139::aid-immu1139>3.0.co;2-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of anti-phosphocholine (PC) antibodies induced by the PC epitope in Proteus morganii (PM) express the M603 idiotype (id), which is characterized by an invariant Asp to Asn substitution at the V(H):D(H) junction. To elucidate the molecular basis by which M603-like B cells acquire the mutations resulting in this invariant substitution, we analyzed the immune response to PC-PM in terminal deoxynucleotidyl transferase (TdT) gene knockout (KO) mice. In the absence of TdT, T15-id antibodies comprised 80-100% of the primary response to PC-PM. Less than 10% of the response in wild-type mice is T15-id(+). In TdT KO mice, the secondary response to PC-KLH was higher than in wild-type mice and was dominated by the germ-line T15-id. About 10% of this response, in both TdT KO and wild-type mice, comprised M167-id(+) antibodies. Additionally, none of the functionally rearranged V1/DFL16.1/J(H)1 cDNA isolated from PC-PM-immunized TdT KO mice showed the Asp/Asn substitution characteristic of PC-binding, PC-PM-induced M603-like antibodies. These data indicate that production of M603-id antibody is TdT dependent, while generation of M167-id antibody is TdT independent, and that in the absence of competition from M603-like B cells, T15-id B cells can respond to PC-PM.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore 21224, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cabaniols JP, Fazilleau N, Casrouge A, Kourilsky P, Kanellopoulos JM. Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 2001; 194:1385-90. [PMID: 11696602 PMCID: PMC2195970 DOI: 10.1084/jem.194.9.1385] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The contribution of template-independent nucleotide addition to antigen receptor diversity is unknown. We therefore determined the size of the T cell receptor (TCR)alpha/beta repertoire in mice bearing a null mutation on both alleles of the terminal deoxynucleotidyl transferase (Tdt) gene. We used a method based upon polymerase chain reaction amplification and exhaustive sequencing of various AV-AJ and BV-BJ combinations. In both wild-type and Tdt degrees / degrees mice, TCRAV diversity is one order of magnitude lower than the TCRBV diversity. In Tdt degrees / degrees animals, TCRBV chain diversity is reduced 10-fold compared with wild-type mice. In addition, in Tdt degrees / degrees mice, one BV chain can associate with three to four AV chains as in wild-type mice. The alpha/beta repertoire size in Tdt degrees / degrees mice is estimated to be 10(5) distinct receptors, approximately 5-10% of that calculated for wild-type mice. Thus, while Tdt activity is not involved in the combinatorial diversity resulting from alpha/beta pairing, it contributes to at least 90% of TCRalpha/beta diversity.
Collapse
Affiliation(s)
- J P Cabaniols
- Unité de Biologie Moléculaire du Gène, Institut National de la Sante et de la Recherche Medicale U277, Institut Pasteur, 75 724 Paris, France
| | | | | | | | | |
Collapse
|
37
|
Lawson TM, Man S, Williams S, Boon AC, Zambon M, Borysiewicz LK. Influenza A antigen exposure selects dominant Vbeta17+ TCR in human CD8+ cytotoxic T cell responses. Int Immunol 2001; 13:1373-81. [PMID: 11675369 DOI: 10.1093/intimm/13.11.1373] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During acute human viral infections, such as influenza A, specific cytotoxic T lymphocytes (CTL) are generated which aid virus clearance. We have observed that in HLA-A*0201+ subjects, CTL expressing Vbeta17+ TCR and recognizing a peptide from the influenza A matrix protein (M1(58-66)) dominate this response. In experimental models of infection such dominance can be due to inheritance of a restricted T cell repertoire or acquired consequent on expansion of CTL bearing an optimum TCR conformation against the MHC-peptide complex. To examine how influenza A infection might influence the development of TCR Vbeta17 expansion, we studied influenza A-specific CTL in a cross-sectional study of 82 HLA-A*0201+ individuals from birth (cord blood) to adulthood. Primary M1(58-66) -specific CTL were detected in cord blood, but their TCR were diverse and depletion of Vbeta17+ cells did not abrogate specific cytotoxicity. In contrast following natural influenza A infection, TCR Vbeta17+ CTL dominated to the extent that only one of nine adult CTL lines retained any functional activity after in vitro depletion of Vbeta17+ CTL. These results suggest that the dominance of Vbeta17+ TCR among adult M1(58-66)-specific CTL results from maturation and focussing of the response driven by exposure to influenza, and have implications for optimum immunization strategies.
Collapse
Affiliation(s)
- T M Lawson
- Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | |
Collapse
|
38
|
Feeney AJ, Lawson BR, Kono DH, Theofilopoulos AN. Terminal deoxynucleotidyl transferase deficiency decreases autoimmune disease in MRL-Fas(lpr) mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3486-93. [PMID: 11544342 DOI: 10.4049/jimmunol.167.6.3486] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neonatal Ab and TCR repertoires are much less diverse, and also very different from, the adult repertoires due to the delayed onset of terminal deoxynucleotidyl transferase (TdT) expression in ontogeny. TdT adds nontemplated N nucleotides to the junctions of Igs and TCRs, and thus its absence removes one of the major components of junctional diversity in complementarity-determining region 3 (CDR3). We have generated TdT-deficient MRL/lpr, Fas-deficient (MRL-Fas(lpr)) mice, and show that they have an increased lifespan, decreased incidence of skin lesions, and much lower serum levels of anti-dsDNA, anti-chromatin, and IgM rheumatoid factors. The generalized hypergammaglobulinemia characteristic of MRL-Fas(lpr) mice is also greatly reduced, as is the percentage of CD4(-)CD8(-)B220(+) (double-negative) T cells. IgG deposits in the kidney are significantly reduced, although evidence of renal disease is present in many mice at 6 mo. CDR3 regions of both IgH and TCR from peripheral lymphocytes of MRL-Fas(lpr) mice are shorter in the absence of TdT, and there is a paucity of arginines in the IgH CDR3 regions of the MRL-Fas(lpr) TdT(-/-) mice. Because the amelioration of symptoms is so widespread, it is likely that the absence of N regions has more of an affect than merely decreasing the precursor frequency of anti-dsDNA B cells. Hence, either the T or B cell repertoires, or more likely both, require N region diversity to produce the full spectrum of autoimmune lupus disease.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/genetics
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/genetics
- Chromatin/immunology
- Complementarity Determining Regions/genetics
- Crosses, Genetic
- DNA/blood
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- Disease Models, Animal
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Hyperplasia
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/pathology
- Lupus Nephritis/enzymology
- Lupus Nephritis/genetics
- Lymphocyte Count
- Lymphocyte Subsets
- Lymphoproliferative Disorders/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Mice, Inbred NZB
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Rheumatoid Factor/analysis
- Skin/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- A J Feeney
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Typically, neonates exhibit decreased or aberrant cellular immune responses when compared to adults, resulting in increased susceptibility to infection. However, it is clear that newborns are able to generate adult-like protective T cell responses under certain conditions. The focus of our research is to understand the deficiencies within the neonatal immune system that lead to improper cellular responses and how priming conditions can be altered to elicit the appropriate T cell response necessary to protect against development of pathogen-induced disease. With these goals in mind, we are exploring the attributes of neonatal T cells and their development, as well as the conditions during priming that influence the resulting response to immune challenge during the neonatal period.
Collapse
Affiliation(s)
- A M Garcia
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
40
|
Zemlin M, Bauer K, Hummel M, Pfeiffer S, Devers S, Zemlin C, Stein H, Versmold HT. The diversity of rearranged immunoglobulin heavy chain variable region genes in peripheral blood B cells of preterm infants is restricted by short third complementarity-determining regions but not by limited gene segment usage. Blood 2001; 97:1511-3. [PMID: 11222402 DOI: 10.1182/blood.v97.5.1511] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin diversity is restricted in fetal liver B cells. This study examined whether peripheral blood B cells of extremely preterm infants show similar restrictions (overrepresentation of some gene segments, short third complementarity-determining regions [CDR3]). DNA of rearranged immunoglobulin heavy chain genes was amplified by polymerase chain reaction, cloned, and sequenced. A total of 417 sequences were analyzed from 6 preterm infants (25-28 weeks of gestation), 6 term infants, and 6 adults. Gene segments from the entire V(H) and D(H) gene locus were rearranged in preterm infants, even though the D(H)7-27 segment was overrepresented (17% of rearrangements) compared to term infants (7%) and adults (2%). CDR3 was shorter in preterm infants (40 +/- 10 nucleotides) than in term infants (44 +/- 12) and adults (48 +/- 14) (P <.001) due to shorter N regions. Somatic mutations were exclusively found in term neonates and adults (mutational frequency 0.8% and 1.8%). We conclude that preterm infants have no limitations in gene segment usage, whereas the diversity of CDR3 is restricted throughout gestation.
Collapse
Affiliation(s)
- M Zemlin
- Department of Pediatrics and Pathology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Benedict CL, Gilfillan S, Kearney JF. The long isoform of terminal deoxynucleotidyl transferase enters the nucleus and, rather than catalyzing nontemplated nucleotide addition, modulates the catalytic activity of the short isoform. J Exp Med 2001; 193:89-99. [PMID: 11136823 PMCID: PMC2195880 DOI: 10.1084/jem.193.1.89] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Accepted: 11/15/2000] [Indexed: 11/18/2022] Open
Abstract
During variable/diversity/joining (V[D]J) recombination, the enzyme terminal deoxynucleotidyl transferase (Tdt) adds random nucleotides at the junctions of the rearranging gene segments, increasing diversity of the antibody (Ab) and T cell receptor repertoires. Two splice variants of Tdt have been described, but only one (short isoform of Tdt [TdtS]) has been convincingly demonstrated to catalyze nontemplated (N) addition in vitro. We have expressed each splice variant of Tdt in transgenic (Tg) mice and found that the TdtS transgene catalyzes N addition on the endogenous Tdt(-/)- background and in fetal liver, but that the long isoform of Tdt (TdtL) transgene does neither. In contrast to previous in vitro results, both TdtS and TdtL are translocated to the nucleus in our model. Furthermore, TdtL/TdtS double Tg mice exhibit less N addition in fetal liver than do TdtS Tg mice. Whereas the TdtS transgene was shown to have functional consequences on the antiphosphorylcholine (PC) B cell repertoire, TdtL Tg mice exhibit a normal PC response, and Tdt(-/)- mice actually exhibit an increase in the PC response and in TEPC 15 idiotype(+) Ab production. We conclude that TdtL localizes to the nucleus in vivo where it serves to modulate TdtS function.
Collapse
Affiliation(s)
- Cindy L. Benedict
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294
| | - Susan Gilfillan
- The Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - John F. Kearney
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294
| |
Collapse
|
42
|
Tuaillon N, Capra JD. Evidence that terminal deoxynucleotidyltransferase expression plays a role in Ig heavy chain gene segment utilization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6387-97. [PMID: 10843694 DOI: 10.4049/jimmunol.164.12.6387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TdT is a nuclear enzyme that catalyzes the addition of random nucleotides at Ig and TCR V(D)J junctions. In this paper we analyze human IgH rearrangements generated from transgenic minilocus mice in the presence or absence of TdT. In the absence of TdT, the pseudo-VH gene segment present in the minilocus is rearranged dramatically more frequently. Additionally, JH6 gene segment utilization is increased as well as the number of rearrangements involving only VH and JH gene segments. Thus, the recombination of IgH gene segments that are flanked by 23-nt spacer recombination signal sequences may be influenced by TdT expression. Extensive analysis indicates that these changes are independent of antigenic selection and cannot be explained by homology-mediated recombination. Thus, the role played by TdT may be more extensive than previously thought.
Collapse
MESH Headings
- Animals
- Antibody Diversity/genetics
- Base Sequence
- Cloning, Molecular
- DNA Nucleotidylexotransferase/biosynthesis
- DNA Nucleotidylexotransferase/deficiency
- DNA Nucleotidylexotransferase/genetics
- DNA Nucleotidylexotransferase/physiology
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genetic Markers/immunology
- Humans
- Immunoglobulin Heavy Chains/blood
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- N Tuaillon
- Molecualar Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
43
|
Molano ID, Wloch MK, Alexander AA, Watanabe H, Gilkeson GS. Effect of a genetic deficiency of terminal deoxynucleotidyl transferase on autoantibody production by C57BL6 Fas(lpr) mice. Clin Immunol 2000; 94:24-32. [PMID: 10607487 DOI: 10.1006/clim.1999.4797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) adds nontemplate coded nucleotides (N additions) between the recombining ends of immunoglobulin and T cell receptor genes. These nucleotides add significant diversity to the Ig and TCR repertoires. Amino acids coded for by these nucleotides play a key role in the binding of self antigens by autoantibodies and autoreactive T cells. To determine the effect of a lack of N additions on autoantibody production, we bred the TdT knockout genotype onto the autoimmune C57BL/6-Fas(lpr) background. TdT-deficient mice had significantly lower sera anti-DNA and rheumatoid factor activity than their TdT-producing littermates. C57BL/6-Fas(lpr) TdT-deficient mice had shorter VH CDR3 regions and fewer VH CDR3 arginines [0.6% versus 4. 7%] than their TdT-producing littermates. These data indicate that the absence of TdT limited the production of anti-DNA antibodies and rheumatoid factors in C57BL/6-Fas(lpr) mice, likely due to constraints on Ig diversity secondary to the lack of TdT-derived N additions.
Collapse
Affiliation(s)
- I D Molano
- Ralph H. Johnson VA Medical Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
44
|
Benedict CL, Kearney JF. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 1999; 10:607-17. [PMID: 10367906 DOI: 10.1016/s1074-7613(00)80060-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fetal Igs are less diverse than adult Igs, largely because of the lack of N addition in the absence of Tdt. To test whether the absence of Tdt is essential, we generated Tg mice that express Tdt and add N regions in fetal B cells. When challenged as adults with PC-containing Streptococcus pneumoniae, these mice fail to make the hallmark T15 anti-PC Ab encoded by canonical rearrangements of Ig H and L chain genes. The anti-PC Abs from these mice are altered by premature N addition and do not protect against death from virulent pneumococcal infection. These results show that maintenance of lower Ig diversity in early life is essential for the acquisition of a complete functional adult repertoire.
Collapse
Affiliation(s)
- C L Benedict
- Department of Microbiology, University of Alabama at Birmingham, 35294-3300, USA
| | | |
Collapse
|
45
|
Conde C, Weller S, Gilfillan S, Marcellin L, Martin T, Pasquali JL. Terminal Deoxynucleotidyl Transferase Deficiency Reduces the Incidence of Autoimmune Nephritis in (New Zealand Black × New Zealand White)F1 Mice. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Terminal deoxynucleotidyl transferase (TdT) enzyme activity in lymphocytes generates diversity in the Ag receptor repertoires by adding template-independent N nucleotides and disrupting homology-directed rearrangements. The importance of this diversity in vivo and the significance of the suppression of TdT during fetal life remain uncertain. Previous studies have shown that in TdT knockout mice (TdT°) 1) the T cell repertoire is less peptide oriented; and 2) natural autoantibody, particularly anti-DNA autoantibodies, are less polyreactive, and their mean affinities are reduced. Consequently, the suppression of TdT during early T/B cell ontogeny may participate in controlling autoimmunity. To study the impact of TdT suppression in autoimmune-prone mice, we introduced the TdT null mutation into the (NZB × NZW)F1 (B/W) mouse strain. We show that TdT deficiency significantly reduces the incidence of autoimmune nephritis and prolongs survival compared with those in control mice. Surprisingly, the long-term survivor TdT° mice produced amounts of anti-ADN and anti-histone autoantibodies similar to those of their TdT+ littermates. However, these TdT° mice showed no evidence of renal inflammation, and the immune deposits were restricted to the mesangium, whereas basal membrane deposits were clearly correlated with overt renal disease. The present study supports the idea that the absence of TdT enzyme activity in lymphocytes protects mice against autoimmunity and could offer a therapeutic approach to autoimmune diseases. Moreover, our results may help to unravel the mechanisms of lupus nephritis.
Collapse
Affiliation(s)
- Carmen Conde
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | - Sandra Weller
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | | | - Luc Marcellin
- †Department of Pathology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France; and
| | - Thierry Martin
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| | - Jean-Louis Pasquali
- *Laboratory of Immunopathology, Institute of Immuno-Hematology, Central Hospital, and
| |
Collapse
|
46
|
Boulé JB, Johnson E, Rougeon F, Papanicolaou C. High-level expression of murine terminal deoxynucleotidyl transferase in Escherichia coli grown at low temperature and overexpressing argU tRNA. Mol Biotechnol 1998; 10:199-208. [PMID: 9951698 DOI: 10.1007/bf02740839] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a highly conserved vertebrate enzyme that possesses the unique ability to catalyze the random addition of deoxynucleoside 5'-triphosphates onto the 3'-hydroxyl group of a single-stranded DNA. It plays an important role in the generation of immunoglobin and T-cell receptor diversity. TdT is usually obtained from animal thymus gland or produced in a baculovirus system, but both procedures are rather tedious, and proteolysis occurs during purification. Attempts to overexpress TdT in bacteria have been unsuccessful or have yielded an enzyme with a lower specific activity. A dearth of TdT has thus hampered detailed structural and functional studies. In the present study, we report that by lowering growth temperature and overexpressing a rare arginyl tRNA, it is possible to boost the production in Escherichia coli of murine TdT with minimal proteolysis and high specific activity.
Collapse
Affiliation(s)
- J B Boulé
- Départment d'Immunologie, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
47
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Schelonka RL, Raaphorst FM, Infante D, Kraig E, Teale JM, Infante AJ. T cell receptor repertoire diversity and clonal expansion in human neonates. Pediatr Res 1998; 43:396-402. [PMID: 9505280 DOI: 10.1203/00006450-199803000-00015] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Newborn human infants, particularly those born prematurely, are susceptible to infection with a variety of microorganisms. We questioned whether limitations in the T cell repertoire contribute to the neonatal immunocompromised state. To describe developmental changes of the T cell repertoire, cDNA segments corresponding to third complementarity regions (CDR3) of human umbilical cord blood T cell receptors (TCR) from 24-41-wk gestational age were amplified with TCR family-specific probes. The resulting amplified CDRs were visualized by fingerprinting and single strand conformation polymorphism (SSCP) analysis. At 24-wk gestation there were no limitations in TCRBV family usage, and the degree of CDR3 size heterogeneity was not different from the adult. However, earlier in gestation, CDR3s were shorter for all families and gradually increased in size until term. The extent of oligoclonal expansion observed in cord blood was greater than in adult peripheral blood (p = 0.03). T cell oligoclonal expansion was greatest at 29-33-wk gestation and declined toward term. Expansions were detectable in both CD4+ and CD8+ subpopulations. Our findings indicate that the genetic mechanisms of repertoire diversification appear intact as early as 24 wk of gestation, but repertoire diversity is limited as a result of smaller CDR3 sizes. In addition, there was a developmentally regulated progression of oligoclonally expanded T cells. These differences in the TCRBV repertoire add to the body of evidence demonstrating immaturity of the neonatal immune system. However, the role that these subtle differences are likely to play in the relative immunodeficiency of the neonate remains to be determined.
Collapse
Affiliation(s)
- R L Schelonka
- Department of Pediatrics, USAF Medical Center, Lackland AFB, Texas, USA
| | | | | | | | | | | |
Collapse
|
50
|
Tuaillon N, Capra JD. Use of D gene segments with irregular spacers in terminal deoxynucleotidyltransferase (TdT)+/+ and TdT-/- mice carrying a human Ig heavy chain transgenic minilocus. Proc Natl Acad Sci U S A 1998; 95:1703-8. [PMID: 9465080 PMCID: PMC19158 DOI: 10.1073/pnas.95.4.1703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
D gene segments with irregular spacers (DIR) are D gene segments that are specific to higher primates. Their use is controversial because of their G+C-rich long sequences. In the human, it has always been tempting to assume that a complementarity-determining region 3 sequence has been added by terminal deoxynucleotidyltransferase (TdT) activity and is not derived from DIR recombination. Herein, we examine the use of human DIR gene segments by cross-breeding the human Ig heavy chain minilocus pHC1 transgenic mice and TdT-deficient mice. In the absence of TdT and with a defined set of human D gene segments, it is relatively easy to demonstrate that DIR2 is used to form human Ig heavy chains, contributing to 7% of the human heavy chain rearrangements. VHDJH rearrangements (where H is heavy chain) in the minilocus TdT-/- mice use small portions of DIR2 located throughout the coding sequence. These results constitute the strongest evidence to date that DIR gene segments are used to form human antibodies. Additionally, we show that direct and inverted DIR2JH and VHDIR2 rearrangements occur in the minilocus transgenic mice. During these rearrangements, DM2 3' signal sequence and a new DIR2 5' signal sequence are used. These rearrangements generally follow the 12/23 recombination rule. Our results at the VHDJH, DJH, and VHD levels indicate that DIR2 is used to form human heavy chains in transgenic mice. The rearrangement of this gene segment likely involves, however, other mechanisms in addition to the classical VHDJH recombination.
Collapse
Affiliation(s)
- N Tuaillon
- Department of Molecular Immunogenetics, Oklahoma Medical Resarch Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|