1
|
Dam S, Tscherne A, Engels L, Sutter G, Osterhaus ADME, Rimmelzwaan GF. Design and evaluation of a poly-epitope based vaccine for the induction of influenza A virus cross-reactive CD8 + T cell responses. Sci Rep 2025; 15:10586. [PMID: 40148547 PMCID: PMC11950192 DOI: 10.1038/s41598-025-95479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
The availability of influenza vaccines that can induce broadly protective immune responses is highly desirable and could also mitigate the impact of future influenza pandemics. Ideally, these vaccines also induce virus-specific CD8 + T cells, which have been identified as an independent correlate of protection. In the present study, we explored the use of an artificial immunogen that comprises of twenty highly conserved influenza virus CD8 + T cell epitopes with an HLA coverage of 99.5% of the world population. The highly attenuated viral vector Modified Vaccinia virus Ankara (MVA) was used to deliver the artificial poly-epitope sequence (rMVA-PE) and by using T cell lines raised against individual epitopes, we confirmed that the epitopes are liberated from the artificial immunogen. For efficient antigen processing and presentation, the epitopes were separated by spacer sequences. Stimulation of peripheral blood mononuclear cells of HLA-typed blood donors with rMVA-PE resulted in the activation of influenza virus-specific T cell responses. Furthermore, immunization of humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice (HLA-A*02:01) with rMVA-PE induced influenza virus-specific CD8 + T cell responses. Thus, rMVA-PE proved to be immunogenic both in vitro and in vivo and constitutes a promising vaccine candidate for the induction of cross-reactive CD8 + T cell responses that could afford protection against antigenically distinct influenza A viruses (IAV) of various subtypes and species, and is currently considered for further clinical testing.
Collapse
Affiliation(s)
- Sharmistha Dam
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), Oberschleißheim, Germany
- German Center for Infection Research (DZIF), partner site Munich, Oberschleißheim, Germany
| | - Leoni Engels
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), Oberschleißheim, Germany
- German Center for Infection Research (DZIF), partner site Munich, Oberschleißheim, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany.
| |
Collapse
|
2
|
Wei Y, Sun K, Han X, Sun Y, Zhang J, Wang Y, Yin Q, Yang T, Yuan K, Li M, Zhao G. Application of Humanized MHC Transgenic Mice in the Screening of HLA-Restricted T Cell Epitopes for Influenza Vaccines. Vaccines (Basel) 2025; 13:331. [PMID: 40266241 PMCID: PMC11945804 DOI: 10.3390/vaccines13030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Annual influenza epidemics pose a significant burden on the global healthcare system. The currently available vaccines mainly induce the production of neutralizing antibodies against hemagglutinin and neuraminidase, which are prone to antigenic variation, and this can reduce vaccine efficacy. Vaccines designed to target T cell epitopes can be potentially valuable. Considering the difficulties in obtaining clinical samples and the unique advantages of mice in disease-related research, a mouse model that can simulate human immune responses can be a superior alternative to peripheral blood mononuclear cells for epitope screening. METHODS The T cell epitopes of the A/California/07/2009 (H1N1) virus were predicted and utilized to evaluate the cellular immune responses of HLA-A2/DR1 and HLA-A11/DR1 transgenic mice during epitope screening. The selected peptides were used to immunize these two groups of transgenic mice, followed by a viral challenge to assess their protective efficacy. RESULTS The epitopes that were predicted and screened could stimulate cellular immune responses in HLA-A2/DR1 transgenic mice, HLA-A11/DR1 transgenic mice, and C57BL/6 mice. Moreover, the transgenic mice exhibited stronger ability to produce IFN-γ than that of the wild-type mice. Upon immunization and subjecting to viral challenge, the selected peptides exhibited protective effects against the influenza virus. CONCLUSIONS The HLA-A2/DR1 and HLA-A11/DR1 transgenic mouse models can be used for the direct screening and validation of influenza virus T cell epitopes, which is crucial for designing T cell epitope vaccines against influenza viruses. Further, this method can be applied in epitope screening and vaccine designing before the spread of other emerging and sudden infectious diseases, thereby supporting epidemic control.
Collapse
Affiliation(s)
- Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Keyu Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Yali Sun
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Jiejie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Tiantian Yang
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Kai Yuan
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (Y.W.); (X.H.); (J.Z.); (Y.W.); (Q.Y.)
- Public Health School, Mudanjiang Medical University, Mudanjiang 157011, China; (K.S.); (Y.S.); (T.Y.); (K.Y.)
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Talpin A, Maia A, Carpier JM, Kulakowski G, Aubergeon L, Kervevan J, Gaal C, Strozzi F, Billerey C, Amable L, Mersceman T, Garnier A, Oliveira C, Calderon C, Bachrouche D, Ventujol C, Bernard L, Manteau A, Martinez J, Bonnet M, Noguerol J, Laviolette K, Boullerot L, Malfroy M, Chevalier G, Adotevi O, Joffre O, Idbaih A, Vieito M, Ghiringhelli F, Stradella A, Tabatabai G, Burger MC, Mildenberger I, Herrlinger U, Reardon DA, Wick W, Gouttefangeas C, Bonny C, Chene L, Gamelas Magalhaes J. Mimicry-based strategy between human and commensal antigens for the development of a new family of immune therapies for cancer. J Immunother Cancer 2025; 13:e010192. [PMID: 39979071 PMCID: PMC11842988 DOI: 10.1136/jitc-2024-010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Molecular mimicry between commensal bacterial antigens and tumor-associated antigens (TAAs) has shown potential in enhancing antitumor immune responses. This study leveraged this concept using commensal bacterial antigens, termed OncoMimics, to induce TAA-derived peptide (TAAp)-specific cross-reactive cytotoxic T cells and improve the efficacy of peptide-based immunotherapies. METHODS The discovery of OncoMimics primarily relied on a bioinformatics approach to identify commensal bacteria-derived peptide sequences mimicking TAAps. Several OncoMimics peptide (OMP) candidates were selected in silico based on multiple key parameters to assess their potential to elicit and ameliorate immune responses against TAAs. Selected OMPs were synthesized and tested for their affinity and stability on the major histocompatibility complex (MHC) in vitro and for their capacity to elicit cross-reactive OMP-specific/TAAp-specific CD8+T cell responses in human leukocyte antigen (HLA)-A2-humanized mice, human peripheral blood mononuclear cells (PBMC) and patients with cancer. RESULTS Selected OMPs demonstrated superior HLA-A2 binding affinities and stabilities compared with homologous TAAps. Vaccination of HLA-A2-humanized mice with OMPs led to the expansion of OMP-specific CD8+T cells that recognize both OMPs and homologous TAAps, exhibiting cytotoxic capacities towards tumor antigens and resulting in tumor protection in a prophylactic setting. Using PBMCs from HLA-A2+healthy donors, we confirmed the ability of OMPs to elicit potent cross-reactive OMP-specific/TAAp-specific CD8+ T-cell responses. Interestingly, we observed a high prevalence of OMP-specific T cells across donors. Cytotoxicity assays revealed that OMP-stimulated human T cells specifically targeted and killed tumor cells loaded with OMPs or TAAps. Preliminary data from an ongoing clinical trial (NCT04116658) support these findings, indicating that OMPs elicit robust OMP-specific/TAAp-specific CD8+T cell responses in patients. Initial immunomonitoring data revealed sustained T-cell responses over time, with T cells maintaining a polyfunctional, cytotoxic and memory phenotype, which is critical for effective antitumor activity and long-term immune surveillance. CONCLUSIONS These findings suggest that leveraging naturally occurring commensal-derived antigens through OMPs could significantly remodel the tumor immune landscape, offering guidance for a promising strategy for cancer peptide-based immunotherapies.
Collapse
Affiliation(s)
| | - Ana Maia
- Institute for Immunology and Cluster of Excellence iFIT (EXC2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Julie Noguerol
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
| | - Karl Laviolette
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
| | - Laura Boullerot
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Marine Malfroy
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | | | - Olivier Adotevi
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 - CNRS UMR5051 - University Toulouse III, Toulouse, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, ICM, Hôpital Universitaire La Pitié-Salpêtrière, Paris, France
| | - Maria Vieito
- Hospital Universitari Vall d'Hebron, Barcelona, Catalunya, Spain
| | | | - Agostina Stradella
- Institut Catala D'Oncologia - Hospital Duran i Reynals, Barcelona, Spain
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, Stuttgart, Germany
| | - Michael C Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Iris Mildenberger
- Universitat Heidelberg Medizinische Fakultat Mannheim, Mannheim, Baden-Württemberg, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology and Center of Integrated Oncology, University Hospital Bonn, Bonn, Nordrhein-Westfalen, Germany
| | | | - Wolfgang Wick
- Universitätsklinikum Heidelberg and German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Cecile Gouttefangeas
- Institute for Immunology and Cluster of Excellence iFIT (EXC2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
4
|
Lopez M, Spehner L, André F, Viot J, Seffar E, Marguier A, Curtit E, Meynard G, Dobi E, Ladoire S, Boidot R, Loyon R, Derangere V, Bidard FC, Borg C, Mansi L, Kroemer M. Exploring the role of ESR1 mutations in metastatic hormone receptor-positive breast cancer T cell immune surveillance disruption. Breast Cancer Res 2025; 27:19. [PMID: 39920833 PMCID: PMC11806781 DOI: 10.1186/s13058-025-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Breast Cancer (BC) is the most common type of cancer in women around the world and 70% of cases are hormone-receptor positive (HR+). In 40% of cases, a key mechanism of endocrine resistance to the standard first line is a mutation of the ligand-binding domain (LBD) of Estrogen Receptor 1 (ESR1) encoding estrogen receptor α (ER). Most common ESR1 mutations that occur at positions 537 and 538 have been associated with poor clinical outcomes. ESR1 mutations have the potential to provide neoantigens. This study aims to identify if ESR1 mutations generate specific T cell responses against ESR1 neoantigens in patients with HR+ HER2- BC, and to investigate if ESR1 mutations might correlate with a gene expression profile related to immune surveillance disruption. METHODS We identified candidate ESR1-derived peptides by predictive software (SYFPEITHI and NetMHCpan 3.0). Then the immunogenicity of ESR1-derived peptides was assessed in Peripheral-Blood-Mononuclear-Cells from 31 healthy donors (HD) and 25 patients with metastatic HR-positive BC by IFN-γ ELISpot assay. A vaccination assay on a humanized mouse model (HLA-A2/DR1) was used to validate the immunogenicity and the presentation of these peptides. Finally, we used Bulk RNA-Seq sequencing along with MCPcounter, a cellular deconvolution method, to investigate the immune contexture of ESR1-mutated BC. RESULTS Preliminary results showed recognition of ESR1-derived peptides by women HD lymphocytes but not in men. Frequencies and intensities of such immune responses were increased in patients with BC. Our results showed that 40% of patients had specific immune responses. In addition, we demonstrated the HLA-A2 ESR1 peptide immunogenicity in humanized HLA-A2/DR1 mice. In a data set generated from BC patients refractory to conventional therapy we showed that ESR1 mutations are correlated in advanced diseases with downregulation of molecules involved in antigen presentation and with loss HLA Class I gene expression. ESR1-mutated BC had a decrease in immune cell infiltration. CONCLUSION These results support that common ESR1 mutations generate neoantigens in hormone-receptor positive metastatic breast cancers. If ESR1 peptides-restricted lymphocytes were detectable in BC patients, ESR1 mutations promote immune escape at advanced stages. TRIAL REGISTRATION ClinicalTrials.gov, NCT02838381. Registered on June 2012.
Collapse
Affiliation(s)
- Morgane Lopez
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Laurie Spehner
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, CIC Plateforme ITAC, F-25000, Besançon, France
| | - Fabrice André
- Department of Medical Oncology, INSERM U981, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Julien Viot
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Amélie Marguier
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Elsa Curtit
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Guillaume Meynard
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Erion Dobi
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges-François Leclerc Center - UNICANCER, Dijon, France
| | - Romain Boidot
- Department of Pathology and Tumor Biology, Georges François Leclerc Center, Dijon, France
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
- Université de Bourgogne, Dijon, France
- INSERM U1231, Dijon, France
| | - Romain Loyon
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
| | - Valentin Derangere
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France
| | | | - Christophe Borg
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
- Université de Franche-Comté, CHU de Besançon, CIC Plateforme ITAC, F-25000, Besançon, France
| | - Laura Mansi
- Université de Franche-Comté, CHU de Besançon, Service d'oncologie médicale, F-25000, Besançon, France
| | - Marie Kroemer
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000, Besançon, France.
- Université de Franche-comté, CHU de Besançon, Service pharmacie, F-25000, Besançon, France.
- Université de Franche-Comté, CHU de Besançon, CIC Plateforme ITAC, F-25000, Besançon, France.
| |
Collapse
|
5
|
Raghavan R, Friedrich MJ, King I, Chau-Duy-Tam Vo S, Strebinger D, Lash B, Kilian M, Platten M, Macrae RK, Song Y, Nivon L, Zhang F. Rational engineering of minimally immunogenic nucleases for gene therapy. Nat Commun 2025; 16:105. [PMID: 39747875 PMCID: PMC11696374 DOI: 10.1038/s41467-024-55522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Genome editing using CRISPR-Cas systems is a promising avenue for the treatment of genetic diseases. However, cellular and humoral immunogenicity of genome editing tools, which originate from bacteria, complicates their clinical use. Here we report reduced immunogenicity (Red)(i)-variants of two clinically relevant nucleases, SaCas9 and AsCas12a. Through MHC-associated peptide proteomics (MAPPs) analysis, we identify putative immunogenic epitopes on each nuclease. Using computational modeling, we rationally design these proteins to evade the immune response. SaCas9 and AsCas12a Redi variants are substantially less recognized by adaptive immune components, including reduced binding affinity to MHC molecules and attenuated generation of cytotoxic T cell responses, yet maintain wild-type levels of activity and specificity. In vivo editing of PCSK9 with SaCas9.Redi.1 is comparable in efficiency to wild-type SaCas9, but significantly reduces undesired immune responses. This demonstrates the utility of this approach in engineering proteins to evade immune detection.
Collapse
Affiliation(s)
- Rumya Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Massachusetts, 02139, Cambridge, USA
| | - Mirco J Friedrich
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Indigo King
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Samuel Chau-Duy-Tam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Daniel Strebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Blake Lash
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Yifan Song
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Lucas Nivon
- Cyrus Biotechnology, Seattle, WA, 98121, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Kumar S, Nan L, Kalodimou G, Jany S, Freudenstein A, Brandmüller C, Müller K, Girl P, Ehmann R, Guggemos W, Seilmaier M, Wendtner CM, Volz A, Sutter G, Fux R, Tscherne A. Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study. Int J Mol Sci 2024; 25:10898. [PMID: 39456680 PMCID: PMC11508112 DOI: 10.3390/ijms252010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Collapse
Affiliation(s)
- Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Christine Brandmüller
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Katharina Müller
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany
| | - Rosina Ehmann
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Wolfgang Guggemos
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Michael Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Clemens-Martin Wendtner
- Medical Clinic III, University Hospital, Ludwig Maximilians University Munich (LMU Munich), 80336 Munich, Germany;
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| |
Collapse
|
7
|
Andreacchio G, Longo Y, Moreno Mascaraque S, Anandasothy K, Tofan S, Özün E, Wilschrey L, Ptok J, Huynh DT, Luirink J, Drexler I. Viral Vector-Based Chlamydia trachomatis Vaccines Encoding CTH522 Induce Distinct Immune Responses in C57BL/6J and HLA Transgenic Mice. Vaccines (Basel) 2024; 12:944. [PMID: 39204067 PMCID: PMC11360449 DOI: 10.3390/vaccines12080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chlamydia trachomatis remains a major global health problem with increasing infection rates, requiring innovative vaccine solutions. Modified Vaccinia Virus Ankara (MVA) is a well-established, safe and highly immunogenic vaccine vector, making it a promising candidate for C. trachomatis vaccine development. In this study, we evaluated two novel MVA-based recombinant vaccines expressing spCTH522 and CTH522:B7 antigens. Our results show that while both vaccines induced CD4+ T-cell responses in C57BL/6J mice, they failed to generate antigen-specific systemic CD8+ T cells. Only the membrane-anchored CTH522 elicited strong IgG2b and IgG2c antibody responses. In an HLA transgenic mouse model, both recombinant MVAs induced Th1-directed CD4+ T cell and multifunctional CD8+ T cells, while only the CTH522:B7 vaccine generated antibody responses, underscoring the importance of antigen localization. Collectively, our data indicate that distinct antigen formulations can induce different immune responses depending on the mouse strain used. This research contributes to the development of effective vaccines by highlighting the importance of careful antigen design and the selection of appropriate animal models to study specific vaccine-induced immune responses. Future studies should investigate whether these immune responses provide protection in humans and should explore different routes of immunization, including mucosal and systemic immunization.
Collapse
Affiliation(s)
- Giuseppe Andreacchio
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sara Moreno Mascaraque
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Kartikan Anandasothy
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Sarah Tofan
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Esma Özün
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Lena Wilschrey
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Johannes Ptok
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| | - Dung T. Huynh
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Joen Luirink
- R&D Department, Abera Bioscience AB, 75184 Uppsala, Sweden
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, 40225 Düsseldorf, Germany; (G.A.)
| |
Collapse
|
8
|
Pearson JRD, Puig-Saenz C, Thomas JE, Hardowar LD, Ahmad M, Wainwright LC, McVicar AM, Brentville VA, Tinsley CJ, Pockley AG, Durrant LG, McArdle SEB. TRP-2 / gp100 DNA vaccine and PD-1 checkpoint blockade combination for the treatment of intracranial tumors. Cancer Immunol Immunother 2024; 73:178. [PMID: 38954031 PMCID: PMC11219641 DOI: 10.1007/s00262-024-03770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.
Collapse
Affiliation(s)
- Joshua R D Pearson
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Carles Puig-Saenz
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Jubini E Thomas
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Lydia D Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Murrium Ahmad
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Louise C Wainwright
- Bioscience Support Facility, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Adam M McVicar
- Bioscience Support Facility, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Victoria A Brentville
- Scancell Ltd, Unit 202, Bellhouse Building, Oxford Science Park, Sanders Road, Oxford, OX4 4GA, UK
| | - Chris J Tinsley
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - A Graham Pockley
- John Van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Lindy G Durrant
- Scancell Ltd, Unit 202, Bellhouse Building, Oxford Science Park, Sanders Road, Oxford, OX4 4GA, UK
| | | |
Collapse
|
9
|
Zhao X, Zhang Y, Trejo-Cerro O, Kaplan E, Li Z, Albertsboer F, El Hammiri N, Mariz FC, Banks L, Ottonello S, Müller M. A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity. NPJ Vaccines 2024; 9:119. [PMID: 38926425 PMCID: PMC11208501 DOI: 10.1038/s41541-024-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is widely recognized as the primary cause of cervical and other malignant cancers. There are six licensed prophylactic vaccines available against HPV, but none of them shows any significant therapeutic effect on pre-existing infections or lesions. Thus, a prophylactic vaccine also endowed with therapeutic activity would afford protection regardless of the vaccine recipients HPV-infection status. Here, we describe the refinement and further potentiation of a dual-purpose HPV nanoparticle vaccine (hereafter referred to as cPANHPVAX) relying on eight different HPV L2 peptide epitopes and on the E7 oncoantigens from HPV16 and 18. cPANHPVAX not only induces anti-HPV16 E7 cytotoxic T-cell responses in C57BL/6 mice, but also anti-HPV18 E7 T-cell responses in transgenic mice with the A2.DR1 haplotype. These cytotoxic responses add up to a potent, broad-coverage humoral (HPV-neutralizing) response. cPANHPVAX safety was further improved by deletion of the pRb-binding domains of E7. Our dual-purpose vaccine holds great potential for clinical translation as an immune-treatment capable of targeting active infections as well as established HPV-related malignancies, thus benefiting both uninfected and infected individuals.
Collapse
Affiliation(s)
- Xueer Zhao
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| | - Yueru Zhang
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ecem Kaplan
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Femke Albertsboer
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Neyla El Hammiri
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Filipe Colaço Mariz
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
10
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Douguet L, Fert I, Lopez J, Vesin B, Le Chevalier F, Moncoq F, Authié P, Nguyen T, Noirat A, Névo F, Blanc C, Bourgine M, Hardy D, Anna F, Majlessi L, Charneau P. Full eradication of pre-clinical human papilloma virus-induced tumors by a lentiviral vaccine. EMBO Mol Med 2023; 15:e17723. [PMID: 37675835 PMCID: PMC10565635 DOI: 10.15252/emmm.202317723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Human papillomavirus (HPV) infections are the cause of all cervical and numerous oropharyngeal and anogenital cancers. The currently available HPV vaccines, which induce neutralizing antibodies, have no therapeutic effect on established tumors. Here, we developed an immuno-oncotherapy against HPV-induced tumors based on a non-integrative lentiviral vector encoding detoxified forms of the Early E6 and E7 oncoproteins of HPV16 and 18 genotypes, namely, "Lenti-HPV-07". A single intramuscular injection of Lenti-HPV-07 into mice bearing established HPV-induced tumors resulted in complete tumor eradication in 100% of the animals and was also effective against lung metastases. This effect correlated with CD8+ T-cell induction and profound remodeling of the tumor microenvironment. In the intra-tumoral infiltrates of vaccinated mice, the presence of large amounts of activated effector, resident memory, and transcription factor T cell factor-1 (TCF-1)+ "stem-like" CD8+ T cells was associated with full tumor eradication. The Lenti-HPV-07-induced immunity was long-lasting and prevented tumor growth after a late re-challenge, mimicking tumor relapse. Lenti-HPV-07 therapy synergizes with an anti-checkpoint inhibitory treatment and therefore shows promise as an immuno-oncotherapy against established HPV-mediated malignancies.
Collapse
Affiliation(s)
- Laëtitia Douguet
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Ingrid Fert
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Jodie Lopez
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Benjamin Vesin
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Le Chevalier
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fanny Moncoq
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Authié
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Trang‐My Nguyen
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Amandine Noirat
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Fabien Névo
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Catherine Blanc
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Maryline Bourgine
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - David Hardy
- Histopathology Platform, Institut PasteurUniversité de ParisParisFrance
| | - François Anna
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Laleh Majlessi
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| | - Pierre Charneau
- Virology Department, Pasteur‐TheraVectys Joint Lab, Institut PasteurUniversité de ParisParisFrance
| |
Collapse
|
12
|
Le Chevalier F, Authié P, Chardenoux S, Bourgine M, Vesin B, Cussigh D, Sassier Y, Fert I, Noirat A, Nemirov K, Anna F, Bérard M, Guinet F, Hardy D, Charneau P, Lemonnier F, Langa-Vives F, Majlessi L. Mice humanized for MHC and hACE2 with high permissiveness to SARS-CoV-2 omicron replication. Microbes Infect 2023; 25:105142. [PMID: 37080384 PMCID: PMC10113602 DOI: 10.1016/j.micinf.2023.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
Human Angiotensin-Converting Enzyme 2 (hACE2) is the major receptor enabling host cell invasion by SARS-CoV-2 via interaction with Spike. The murine ACE2 does not interact efficiently with SARS-CoV-2 Spike and therefore the laboratory mouse strains are not permissive to SARS-CoV-2 replication. Here, we generated new hACE2 transgenic mice, which harbor the hACE2 gene under the human keratin 18 promoter, in "HHD-DR1" background. HHD-DR1 mice are fully devoid of murine Major Histocompatibility Complex (MHC) molecules of class-I and -II and express only MHC molecules from Human Leukocyte Antigen (HLA) HLA 02.01, DRA01.01, DRB1.01.01 alleles, widely expressed in human populations. We selected three transgenic strains, with various hACE2 mRNA expression levels and distinctive profiles of lung and/or brain permissiveness to SARS-CoV-2 replication. These new hACE2 transgenic strains display high permissiveness to the replication of SARS-CoV-2 Omicron sub-variants, while the previously available B6.K18-ACE22Prlmn/JAX mice have been reported to be poorly susceptible to infection with Omicron. As a first application, one of these MHC- and ACE2-humanized strains was successfully used to show the efficacy of a lentiviral-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Fabien Le Chevalier
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Pierre Authié
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Sébastien Chardenoux
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Maryline Bourgine
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Benjamin Vesin
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Delphine Cussigh
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Yohann Sassier
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Amandine Noirat
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Kirill Nemirov
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, 75724 Paris, France.
| | - Françoise Guinet
- Lymphocytes and Immunity Unit, Institut Pasteur, Université Paris Cité, Immunology Department, 75724 Paris, France.
| | - David Hardy
- Histopathology Platform, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| | - François Lemonnier
- Unit, Institut Cochin - INSERM U1016 - CNRS UMR8104 - Paris F-75014, France.
| | - Francina Langa-Vives
- Mouse Genetics Engineering, Institut Pasteur, Université Paris Cité, 75724 Paris, France.
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Virology Department, 75724 Paris, France.
| |
Collapse
|
13
|
Sei S, Ahadova A, Keskin DB, Bohaumilitzky L, Gebert J, von Knebel Doeberitz M, Lipkin SM, Kloor M. Lynch syndrome cancer vaccines: A roadmap for the development of precision immunoprevention strategies. Front Oncol 2023; 13:1147590. [PMID: 37035178 PMCID: PMC10073468 DOI: 10.3389/fonc.2023.1147590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Hereditary cancer syndromes (HCS) account for 5~10% of all cancer diagnosis. Lynch syndrome (LS) is one of the most common HCS, caused by germline mutations in the DNA mismatch repair (MMR) genes. Even with prospective cancer surveillance, LS is associated with up to 50% lifetime risk of colorectal, endometrial, and other cancers. While significant progress has been made in the timely identification of germline pathogenic variant carriers and monitoring and early detection of precancerous lesions, cancer-risk reduction strategies are still centered around endoscopic or surgical removal of neoplastic lesions and susceptible organs. Safe and effective cancer prevention strategies are critically needed to improve the life quality and longevity of LS and other HCS carriers. The era of precision oncology driven by recent technological advances in tumor molecular profiling and a better understanding of genetic risk factors has transformed cancer prevention approaches for at-risk individuals, including LS carriers. MMR deficiency leads to the accumulation of insertion and deletion mutations in microsatellites (MS), which are particularly prone to DNA polymerase slippage during DNA replication. Mutations in coding MS give rise to frameshift peptides (FSP) that are recognized by the immune system as neoantigens. Due to clonal evolution, LS tumors share a set of recurrent and predictable FSP neoantigens in the same and in different LS patients. Cancer vaccines composed of commonly recurring FSP neoantigens selected through prediction algorithms have been clinically evaluated in LS carriers and proven safe and immunogenic. Preclinically analogous FSP vaccines have been shown to elicit FSP-directed immune responses and exert tumor-preventive efficacy in murine models of LS. While the immunopreventive efficacy of "off-the-shelf" vaccines consisting of commonly recurring FSP antigens is currently investigated in LS clinical trials, the feasibility and utility of personalized FSP vaccines with individual HLA-restricted epitopes are being explored for more precise targeting. Here, we discuss recent advances in precision cancer immunoprevention approaches, emerging enabling technologies, research gaps, and implementation barriers toward clinical translation of risk-tailored prevention strategies for LS carriers. We will also discuss the feasibility and practicality of next-generation cancer vaccines that are based on personalized immunogenic epitopes for precision cancer immunoprevention.
Collapse
Affiliation(s)
- Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Derin B. Keskin
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Broad Institute of The Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Steven M. Lipkin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Mufarrege EF, Peña LC, Etcheverrigaray M, De Groot AS, Martin W. Specific sequence mutations in a long-lasting rhIFN-α2b version reduce in vitro and in vivo immunogenicity and increase in vitro protein stability. Heliyon 2023; 9:e14670. [PMID: 37020947 PMCID: PMC10068115 DOI: 10.1016/j.heliyon.2023.e14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
For decades, recombinant human interferon alpha (rhIFN-α2b) has been used to treat emerging and chronic viral diseases. However, rhIFN-α2b is immunogenic and has a short in vivo half-life. To solve these limitations, two long-lasting hyperglycosylated proteins with reduced immunogenicity were developed and designated as 4N-IFN(VAR1) and 4N-IFN(VAR3). Here, we continue to study the relevant characteristics of these therapeutic candidates. Thus, we demonstrated that both de-immunized IFN versions elicited significantly lower neutralizing antibody responses than the original molecule in HLA-DR1 transgenic mice, confirming our previous in vitro protein immunogenicity data. Also, we found that these biobetters exhibited remarkable stability when exposed to different physical factors that the protein product may encounter during its production process and storage, such as low pH, thermal stress, and repeated freezing/thawing cycles. Taking into consideration our previous and present results, 4N-IFN(VAR1) and 4N-IFN-4N(VAR3) appear to be valuable candidates for the treatment of human viral diseases.
Collapse
Affiliation(s)
- Eduardo Federico Mufarrege
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
- Corresponding author. Ciudad Universitaria, Paraje “El Pozo” – c.c 242, S3000ZAA, Santa Fe, Argentina.
| | - Lucía Carolina Peña
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Anne S. De Groot
- EpiVax, Inc., Providence, RI, 02903, USA
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, 02903, USA
| | | |
Collapse
|
15
|
Schifflers C, Zottnick S, Förster JD, Kruse S, Yang R, Wiethoff H, Bozza M, Hoppe-Seyler K, Heikenwälder M, Harbottle RP, Michiels C, Riemer AB. Development of an Orthotopic HPV16-Dependent Base of Tongue Tumor Model in MHC-Humanized Mice. Pathogens 2023; 12:pathogens12020188. [PMID: 36839460 PMCID: PMC9958775 DOI: 10.3390/pathogens12020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) caused by infections with high-risk human papillomaviruses (HPV) are responsible for an increasing number of head and neck cancers, particularly in the oropharynx. Despite the significant biological differences between HPV-driven and HPV-negative HNSCC, treatment strategies are similar and not HPV targeted. HPV-driven HNSCC are known to be more sensitive to treatment, particularly to radiotherapy, which is at least partially due to HPV-induced immunogenicity. The development of novel therapeutic strategies that are specific for HPV-driven cancers requires tumor models that reflect as closely as possible the characteristics and complexity of human tumors and their response to treatment. Current HPV-positive cancer models lack one or more hallmarks of their human counterpart. This study presents the development of a new HPV16 oncoprotein-dependent tumor model in MHC-humanized mice, modeling the major biologic features of HPV-driven tumors and presenting HLA-A2-restricted HPV16 epitopes. Furthermore, this model was developed to be orthotopic (base of tongue). Thus, it also reflects the correct tumor microenvironment of HPV-driven HNSCC. The cancer cells are implanted in a manner that allows the exact control of the anatomical location of the developing tumor, thereby homogenizing tumor growth. In conclusion, the new model is suited to study HPV16-specific therapeutic vaccinations and other immunotherapies, as well as tumor-targeted interventions, such as surgery or radiotherapy, or a combination of all these modalities.
Collapse
Affiliation(s)
- Christoph Schifflers
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cell Biology Research Unit (URBC)–Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Samantha Zottnick
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Jonas D. Förster
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sebastian Kruse
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ruwen Yang
- Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hendrik Wiethoff
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Helmholtz-University Group Cell Plasticity and Epigenetic Remodeling, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Bozza
- DNA Vector Laboratory, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwälder
- Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard P. Harbottle
- DNA Vector Laboratory, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Carine Michiels
- Cell Biology Research Unit (URBC)–Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Angelika B. Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-3820
| |
Collapse
|
16
|
Mechanism of action of DSP-7888 (adegramotide/nelatimotide) Emulsion, a peptide-based therapeutic cancer vaccine with the potential to turn up the heat on non-immunoreactive tumors. Clin Transl Oncol 2023; 25:396-407. [PMID: 36138335 PMCID: PMC9510518 DOI: 10.1007/s12094-022-02946-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Wilms' tumor 1 (WT1) is highly expressed in various solid tumors and hematologic malignancies. DSP-7888 (adegramotide/nelatimotide) Emulsion is an investigational therapeutic cancer vaccine comprising three synthetic epitopes derived from WT1. We evaluated the mechanism of action of DSP-7888 Emulsion, which is hypothesized to induce WT1-specific cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs). METHODS The ability of nelatimotide and adegramotide to induce WT1-specific CD8+ T cells and CD4+ T cells was assessed in human peripheral blood mononuclear cells (PBMCs). The ability of DSP-7888 Emulsion to induce WT1-specific CTLs in vivo was assessed using human leukocyte antigen-I (HLA-I) transgenic mice. To assess how adegramotide, the helper peptide in DSP-7888 Emulsion, enhances WT1-specific CTLs, HLA-I transgenic mice were administered DSP-7888 or nelatimotide-only Emulsion. Interferon-gamma secretion under antigen stimulation by splenocytes co-cultured with or without tumor cells was then quantified. The effects of combination treatment with DSP-7888 Emulsion and an anti-programmed cell death protein 1 (PD-1) antibody on tumor volume and the frequency of tumor-infiltrating WT1-specific T cells were assessed in HLA-I transgenic mice implanted with WT1 antigen-positive tumors. RESULTS The peptides in DSP-7888 Emulsion were shown to induce WT1-specific CTLs and HTLs in both human PBMCs and HLA-I transgenic mice. Unlike splenocytes from nelatimotide-only Emulsion-treated mice, splenocytes from DSP-7888 Emulsion-treated mice exhibited high levels of interferon-gamma secretion, including when co-cultured with tumor cells; interferon-gamma secretion was further enhanced by concomitant treatment with anti-PD-1. HLA-I transgenic mice administered DSP-7888 Emulsion plus anti-PD-1 experienced significantly greater reductions in tumor size than mice treated with either agent alone. This reduction in tumor volume was accompanied by increased numbers of tumor-infiltrating WT1-specific CTLs. CONCLUSIONS DSP-7888 Emulsion can promote both cytotoxic and helper T-cell-mediated immune responses against WT1-positive tumors. Adegramotide enhances CTL numbers, and the CTLs induced by treatment with both nelatimotide and adegramotide are capable of functioning within the immunosuppressive tumor microenvironment. The ability of anti-PD-1 to enhance the antitumor activity of DSP-7888 Emulsion in mice implanted with WT1-positive tumors suggests the potential for synergy.
Collapse
|
17
|
Peng S, Xing D, Ferrall L, Tsai YC, Hung CF, Wu TC. Identification of human MHC-I HPV18 E6/E7-specific CD8 + T cell epitopes and generation of an HPV18 E6/E7-expressing adenosquamous carcinoma in HLA-A2 transgenic mice. J Biomed Sci 2022; 29:80. [PMID: 36224625 PMCID: PMC9554842 DOI: 10.1186/s12929-022-00864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Human Papillomavirus type 18 (HPV18) is a high-risk HPV that is commonly associated with cervical cancer. HPV18 oncogenes E6 and E7 are associated with the malignant transformation of cells, thus the identification of human leukocyte antigen (HLA)-restricted E6/E7 peptide-specific CD8 + T cell epitopes and the creation of a HPV18 E6/E7 expressing cervicovaginal tumor in HLA-A2 transgenic mice will be significant for vaccine development. METHODS In the below study, we characterized various human HLA class I-restricted HPV18 E6 and E7-specific CD8 + T cells mediated immune responses in HLA class I transgenic mice using DNA vaccines encoding HPV18E6 and HPV18E7. We then confirmed HLA-restricted E6/E7 specific CD8 + T cell epitopes using splenocytes from vaccinated mice stimulated with HPV18E6/E7 peptides. Furthermore, we used oncogenic DNA plasmids encoding HPV18E7E6(delD70), luciferase, cMyc, and AKT to create a spontaneous cervicovaginal carcinoma model in HLA-A2 transgenic mice. RESULTS Therapeutic HPV18 E7 DNA vaccination did not elicit any significant CD8 + T cell response in HLA-A1, HLA-24, HLA-B7, HLA-B44 transgenic or wild type C57BL/6 mice, but it did generate a strong HLA-A2 and HLA-A11 restricted HPV18E7-specific CD8 + T cell immune response. We found that a single deletion of aspartic acid (D) at location 70 in HPV18E6 DNA abolishes the presentation of HPV18 E6 peptide (aa67-75) by murine MHC class I. We found that the DNA vaccine with this mutant HPV18 E6 generated E6-specific CD8 + T cells in HLA-A2. HLA-A11, HLA-A24 and HLA-b40 transgenic mice. Of note, HLA-A2 restricted, HPV18 E7 peptide (aa7-15)- and HPV18 E6 peptide (aa97-105)-specific epitopes are endogenously processed by HPV18 positive Hela-AAD (HLA-A*0201/Dd) cells. Finally, we found that injection of DNA plasmids encoding HPV18E7E6(delD70), AKT, cMyc, and SB100 can result in the development of adenosquamous carcinoma in the cervicovaginal tract of HLA-A2 transgenic mice. CONCLUSIONS We characterized various human HLA class I-restricted HPV18 E6/E7 peptide specific CD8 + T cell epitopes in human HLA class I transgenic mice. We demonstrated that HPV18 positive Hela cells expressing chimeric HLA-A2 (AAD) do present both HLA-A2-restricted HPV18 E7 (aa7-15)- and HPV18 E6 (aa97-105)-specific CD8 + T cell epitopes. A mutant HPV18E6 that had a single deletion at location 70 obliterates the E6 presentation by murine MHC class I and remains oncogenic. The identification of these human MHC restricted HPV antigen specific epitopes as well as the HPV18E6/E7 expressing adenosquamous cell carcinoma model may have significant future translational potential.
Collapse
Affiliation(s)
- Shiwen Peng
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Deyin Xing
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Louise Ferrall
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Ya-Chea Tsai
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans St., Baltimore, MD, 21231, USA.
| | - T-C Wu
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Medical Institutions, CRB II Room 309, 1550 Orleans St., Baltimore, MD, 21231, USA.
| |
Collapse
|
18
|
Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022; 12:976065. [PMID: 36033445 PMCID: PMC9413077 DOI: 10.3389/fonc.2022.976065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Molecularly targeted treatments and immunotherapy are cornerstones in oncology, with demonstrated efficacy across different tumor types. Nevertheless, the overwhelming majority metastatic disease is incurable due to the onset of drug resistance. Preclinical models including genetically engineered mouse models, patient-derived xenografts and two- and three-dimensional cell cultures have emerged as a useful resource to study mechanisms of cancer progression and predict efficacy of anticancer drugs. However, variables including tumor heterogeneity and the complexities of the microenvironment can impair the faithfulness of these platforms. Here, we will discuss advantages and limitations of these preclinical models, their applicability for drug testing and in co-clinical trials and potential strategies to increase their reliability in predicting responsiveness to anticancer medications.
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Zhu MM, Niu BW, Liu LL, Yang H, Qin BY, Peng XH, Chen LX, Liu Y, Wang C, Ren XN, Xu CH, Zhou XH, Li F. Development of a humanized HLA-A30 transgenic mouse model. Animal Model Exp Med 2022; 5:350-361. [PMID: 35791899 PMCID: PMC9434587 DOI: 10.1002/ame2.12225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background There are remarkable genetic differences between animal major histocompatibility complex (MHC) systems and the human leukocyte antigen (HLA) system. HLA transgenic humanized mouse model systems offer a much better method to study the HLA‐A‐related principal mechanisms for vaccine development and HLA‐A‐restricted responses against infection in human. Methods A recombinant gene encoding the chimeric HLA‐A30 monochain was constructed. This HHD molecule contains the following: α1‐α2 domains of HLA‐A30, α3 and cytoplasmic domains of H‐2Db, linked at its N‐terminus to the C‐terminus of human β2m by a 15‐amino‐acid peptide linker. The recombinant gene encoding the chimeric HLA‐A30 monochain cassette was introduced into bacterial artificial chromosome (BAC) CH502‐67J3 containing the HLA‐A01 gene locus by Red‐mediated homologous recombination. Modified BAC CH502‐67J3 was microinjected into the pronuclei of wild‐type mouse oocytes. This humanized mouse model was further used to assess the immune responses against influenza A virus (H1N1) pdm09 clinically isolated from human patients. Immune cell population, cytokine production, and histopathology in the lung were analyzed. Results We describe a novel human β2m‐HLA‐A30 (α1α2)‐H‐2Db (α3 transmembrane cytoplasmic) (HHD) monochain transgenic mouse strain, which contains the intact HLA‐A01 gene locus including 49 kb 5′‐UTR and 74 kb 3′‐UTR of HLA‐A01*01. Five transgenic lines integrated into the large genomic region of HLA‐A gene locus were obtained, and the robust expression of exogenous transgene was detected in various tissues from A30‐18# and A30‐19# lines encompassing the intact flanking sequences. Flow cytometry revealed that the introduction of a large genomic region in HLA‐A gene locus can influence the immune cell constitution in humanized mice. Pdm09 infection caused a similar immune response among HLA‐A30 Tg humanized mice and wild‐type mice, and induced the rapid increase of cytokines, including IFN‐γ, TNF‐α, and IL‐6, in both HLA‐A30 humanized Tg mice and wild‐type mice. The expression of HLA‐A30 transgene was dramatically promoted in tissues from A30‐9# line at 3 days post‐infection (dpi). Conclusions We established a promising preclinical research animal model of HLA‐A30 Tg humanized mouse, which could accelerate the identification of novel HLA‐A30‐restricted epitopes and vaccine development, and support the study of HLA‐A‐restricted responses against infection in humans.
Collapse
Affiliation(s)
- Meng-Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Wen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Ling-Ling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Hua Yang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Bo-Yin Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiu-Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Li-Xiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yang Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Wang
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Nan Ren
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chun-Hua Xu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao-Hui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| |
Collapse
|
20
|
Yajima Y, Kosaka A, Ishibashi K, Yasuda S, Komatsuda H, Nagato T, Oikawa K, Kitada M, Takekawa M, Kumai T, Ohara K, Ohkuri T, Kobayashi H. A tumor metastasis-associated molecule TWIST1 is a favorable target for cancer immunotherapy due to its immunogenicity. Cancer Sci 2022; 113:2526-2535. [PMID: 35579200 PMCID: PMC9357613 DOI: 10.1111/cas.15429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Although neoantigens are one of the most favorable targets in cancer immunotherapy, it is less versatile and costly to apply neoantigen-derived cancer vaccines to patients due to individual variation. It is, therefore, important to find highly immunogenic antigens among tumor-specific or associated antigens, which are shared among patients. Considering the cancer immunoediting theory, immunogenic tumor cells cannot survive in early phase of tumor progression including two processes: elimination and equilibrium. We hypothesized that highly immunogenic molecules are allowed to be expressed in tumor cells after immune suppressive tumor microenvironment was established, if these molecules contribute to tumor survival. In the current study, we focused on TWIST1 as a candidate of highly immunogenic antigens because it is upregulated in tumor cells under hypoxia and promotes tumor metastasis, which are observed in late phase of tumor progression. We demonstrated that TWIST1 had an immunogenic peptide sequence TWIST1140-162 , which effectively activated TWIST1-specific CD4+ T-cells. In a short-term culture system, we detected more TWIST1-specific responses in breast cancer patients than in healthy donors. Vaccination with the TWIST1 peptide also showed efficient expansion of TWIST1-reactive HTLs in humanized mice. These findings indicate that TWIST1 is a highly immunogenic shared antigen and a favorable target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Yajima
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kei Ishibashi
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shunsuke Yasuda
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroki Komatsuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masahiro Kitada
- Breast Center, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masanori Takekawa
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takumi Kumai
- Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kenzo Ohara
- Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
21
|
Jiang J, Du Y, Peng T. SARS-CoV-2 Omicron Variant is Expected to Retain Most of the Spike Protein Specific Dominant T-Cell Epitopes Presented by COVID-19 Vaccines - Worldwide, 2021. China CDC Wkly 2022; 4:381-384. [PMID: 35686202 PMCID: PMC9167615 DOI: 10.46234/ccdcw2022.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
What is already known about this topic? The newly emerged variant of Omicron, which carries many of the mutations found in other variants of concern (VOCs), as well as a great number of new mutations that may enhance its immune escape, has spread rapidly around the world. This has raised public concern about the effectiveness of the current coronavirus disease 2019 (COVID-19) vaccine. What is added by this report? In this study, different bioinformatic softwares were applied to predict the dominant Omicron spike (S) protein cytotoxic T lymphocyte (CTL) and T helper (Th) epitopes in representative world population and Chinese population. Compared to the original severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, limited mutations were identified within the dominant CTL and Th epitopes in Omicron variant. What are the implications for public health practice? The results of this study suggested that the current COVID-19 vaccine-induced T-cell immunity may still provide significant protection against Omicron variant infection in fully vaccinated individuals.
Collapse
Affiliation(s)
- Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingying Du
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China,Yingying Du,
| | - Tao Peng
- Guangdong South China Vaccine, Guangzhou, Guangdong, China,Tao Peng,
| |
Collapse
|
22
|
Chuntova P, Yamamichi A, Chen T, Narayanaswamy R, Ronseaux S, Hudson C, Tron AE, Hyer ML, Montoya M, Mende AL, Nejo T, Downey KM, Diebold D, Lu M, Nicolay B, Okada H. Inhibition of D-2HG leads to upregulation of a proinflammatory gene signature in a novel HLA-A2/HLA-DR1 transgenic mouse model of IDH1R132H-expressing glioma. J Immunother Cancer 2022; 10:e004644. [PMID: 35606087 PMCID: PMC9174833 DOI: 10.1136/jitc-2022-004644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Long-term prognosis of WHO grade II, isocitrate dehydrogenase (IDH)-mutated low-grade glioma (LGG) is poor due to high risks of recurrence and malignant transformation into high-grade glioma. Immunotherapy strategies are attractive given the relatively intact immune system of patients with LGG and the slow tumor growth rate. However, accumulation of the oncometabolite D-2-hydroxyglutarate (D-2HG) in IDH-mutated gliomas leads to suppression of inflammatory pathways in the tumor microenvironment, thereby contributing to the 'cold' tumor phenotype. Inhibiting D-2HG production presents an opportunity to generate a robust antitumor response following tumor antigen vaccination and immune checkpoint blockade. METHODS An IDH1R132H glioma model was created in syngeneic HLA-A2/HLA-DR1-transgenic mice, allowing us to evaluate the vaccination with the human leukocyte antigens (HLA)-DR1-restricted, IDH1R132H mutation-derived neoepitope. The effects of an orally available inhibitor of mutant IDH1 and IDH2, AG-881, were evaluated as monotherapy and in combination with the IDH1R132H peptide vaccination or anti-PD-1 immune checkpoint blockade. RESULTS The HLA-A2/HLA-DR1-syngeneic IDH1R132H cell line expressed the IDH1 mutant protein and formed D-2HG producing orthotopic gliomas in vivo. Treatment of tumor-bearing mice with AG-881 resulted in a reduction of D-2HG levels in IDH1R132H glioma cells (10 fold) and tumor-associated myeloid cells, which demonstrated high levels of intracellular D-2HG in the IDH1R132H gliomas. AG-881 monotherapy suppressed the progression of IDH1R132H gliomas in a CD4+ and CD8+ cell-dependent manner, enhanced proinflammatory IFNγ-related gene expression, and increased the number of CD4+ tumor-infiltrating T-cells. Prophylactic vaccination with the HLA-DR1-restricted IDH1R132H peptide or tumor-associated HLA-A2-restricted peptides did not enhance survival of tumor-bearing animals; however, vaccination with both HLA-A2-IDH1R132H and DR1-IDH1R132H peptides in combination with the IDH inhibitor significantly prolonged survival. Finally, tumor-bearing mice treated with both AG-881 and a PD-1 blocking antibody demonstrated improved survival when compared with either treatment alone. CONCLUSION The development of effective IDH1R132H-targeting vaccine may be enhanced by integration with HLA class I-restricted cytotoxic T cell epitopes and AG-881. Our HLA-A2/HLA-DR1-syngeneic IDH1R132H glioma model should allow us to evaluate key translational questions related to the development of novel strategies for patients with IDH-mutant glioma.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Akane Yamamichi
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Tiffany Chen
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rohini Narayanaswamy
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
- Servier BioInnovation, Boston, Massachusetts, USA
| | - Sebastien Ronseaux
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
- Cedilla Therapeutics, Cambridge, Massachusetts, USA
| | - Christine Hudson
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
- Deciphera Pharmaceuticals Inc, Waltham, Massachusetts, USA
| | | | - Marc L Hyer
- Servier BioInnovation, Boston, Massachusetts, USA
| | - Megan Montoya
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Abigail L Mende
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Takahide Nejo
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Kira M Downey
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - David Diebold
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Min Lu
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
- Servier BioInnovation, Boston, Massachusetts, USA
| | - Brandon Nicolay
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
- Cedilla Therapeutics, Cambridge, Massachusetts, USA
| | - Hideho Okada
- Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
23
|
A Mutated Prostatic Acid Phosphatase (PAP) Peptide-Based Vaccine Induces PAP-Specific CD8 + T Cells with Ex Vivo Cytotoxic Capacities in HHDII/DR1 Transgenic Mice. Cancers (Basel) 2022; 14:cancers14081970. [PMID: 35454873 PMCID: PMC9032647 DOI: 10.3390/cancers14081970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current treatments for castrate (hormone)-resistant prostate cancer (CRPC) remain limited and are not curative, with a median survival from diagnosis of 23 months. The PAP-specific Sipuleucel-T vaccine, which was approved by the FDA in 2010, increases the Overall Survival (OS) by 4 months, but is extremely expensive. We have previously shown that a 15 amino accid (AA) PAP sequence-derived peptide could induce strong immune responses and delay the growth of murine TRAMP-C1 prostate tumors. We have now substituted one amino acid and elongated the sequence to include epitopes predicted to bind to several additional HLA haplotypes. Herein, we present the immunological properties of this 42mer-mutated PAP-derived sequence (MutPAP42mer). METHODS The presence of PAP-135-143 epitope-specific CD8+ T cells in the blood of patients with prostate cancer (PCa) was assessed by flow cytometry using Dextramer™ technology. HHDII/DR1 transgenic mice were immunized with mutated and non-mutated PAP-derived 42mer peptides in the presence of CAF®09 or CpG ODN1826 (TLR-9 agonist) adjuvants. Vaccine-induced immune responses were measured by assessing the proportion and functionality of splenic PAP-specific T cells in vitro. RESULTS PAP-135-143 epitope-specific CD8+ T cells were detected in the blood of patients with PCa and stimulation of PBMCs from patients with PCa with mutPAP42mer enhanced their capacity to kill human LNCaP PCa target cells expressing PAP. The MutPAP42mer peptide was significantly more immunogenic in HHDII/DR1 mice than the wild type sequence, and immunogenicity was further enhanced when combined with the CAF®09 adjuvant. The vaccine induced secretory (IFNγ and TNFα) and cytotoxic CD8+ T cells and effector memory splenic T cells. CONCLUSIONS The periphery of patients with PCa exhibits immune responsiveness to the MutPAP42mer peptide and immunization of mice induces/expands T cell-driven, wild-type PAP immunity, and therefore, has the potential to drive protective anti-tumor immunity in patients with PCa.
Collapse
|
24
|
Kilian M, Friedrich M, Sanghvi K, Green E, Pusch S, Kawauchi D, Löwer M, Sonner JK, Krämer C, Zaman J, Jung S, Breckwoldt MO, Willimksy G, Eichmüller SB, von Deimling A, Wick W, Sahm F, Platten M, Bunse L. T-cell Receptor Therapy Targeting Mutant Capicua Transcriptional Repressor in Experimental Gliomas. Clin Cancer Res 2022; 28:378-389. [PMID: 34782365 PMCID: PMC9401455 DOI: 10.1158/1078-0432.ccr-21-1881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Gliomas are intrinsic brain tumors with a high degree of constitutive and acquired resistance to standard therapeutic modalities such as radiotherapy and alkylating chemotherapy. Glioma subtypes are recognized by characteristic mutations. Some of these characteristic mutations have shown to generate immunogenic neoepitopes suitable for targeted immunotherapy. EXPERIMENTAL DESIGN Using peptide-based ELISpot assays, we screened for potential recurrent glioma neoepitopes in MHC-humanized mice. Following vaccination, droplet-based single-cell T-cell receptor (TCR) sequencing from established T-cell lines was applied for neoepitope-specific TCR discovery. Efficacy of intraventricular TCR-transgenic T-cell therapy was assessed in a newly developed glioma model in MHC-humanized mice induced by CRISPR-based delivery of tumor suppressor-targeting guide RNAs. RESULTS We identify recurrent capicua transcriptional repressor (CIC) inactivating hotspot mutations at position 215 CICR215W/Q as immunogenic MHC class II (MHCII)-restricted neoepitopes. Vaccination of MHC-humanized mice resulted in the generation of robust MHCII-restricted mutation-specific T-cell responses against CICR215W/Q. Adoptive intraventricular transfer of CICR215W-specific TCR-transgenic T cells exert antitumor responses against CICR215W-expressing syngeneic gliomas. CONCLUSIONS The integration of immunocompetent MHC-humanized orthotopic glioma models in the discovery of shared immunogenic glioma neoepitopes facilitates the identification and preclinical testing of human leukocyte antigen (HLA)-restricted neoepitope-specific TCRs for locoregional TCR-transgenic T-cell adoptive therapy.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Khwab Sanghvi
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Edward Green
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Pusch
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Daisuke Kawauchi
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Martin Löwer
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Jana K. Sonner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Zaman
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Jung
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O. Breckwoldt
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuroradiology at the Neurology Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerald Willimksy
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neuro-oncology and National Center for Tumor Diseases, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany.,DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Corresponding Author: Lukas Bunse, DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. E-mail:
| |
Collapse
|
25
|
Schreiber S, Honz M, Mamozai W, Kurktschiev P, Schiemann M, Witter K, Moore E, Zielinski C, Sette A, Protzer U, Wisskirchen K. Characterization of a library of 20 HBV-specific MHC class II-restricted T cell receptors. Mol Ther Methods Clin Dev 2021; 23:476-489. [PMID: 34853796 PMCID: PMC8605085 DOI: 10.1016/j.omtm.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
CD4+ T cells play an important role in the immune response against cancer and infectious diseases. However, mechanistic details of their helper function in hepatitis B virus (HBV) infection in particular, or their advantage for adoptive T cell therapy remain poorly understood as experimental and therapeutic tools are missing. Therefore, we identified, cloned, and characterized a comprehensive library of 20 MHC class II-restricted HBV-specific T cell receptors (TCRs) from donors with acute or resolved HBV infection. The TCRs were restricted by nine different MHC II molecules and specific for eight different epitopes derived from intracellularly processed HBV envelope, core, and polymerase proteins. Retroviral transduction resulted in a robust expression of all TCRs on primary T cells. A high functional avidity was measured for all TCRs specific for epitopes S17, S21, S36, and P774 (half-maximal effective concentration [EC50] <10 nM), or C61 and preS9 (EC50 <100 nM). Eight TCRs recognized peptide variants of HBV genotypes A to D. Both CD4+ and CD8+ T cells transduced with the MHC II-restricted TCRs were polyfunctional, producing interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and granzyme B (GrzB), and killed peptide-loaded target cells. Our set of MHC class II-restricted TCRs represents an important tool for elucidating CD4+ T cell help in viral infection with potential benefit for T cell therapy.
Collapse
|
26
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
27
|
Becker JP, Helm D, Rettel M, Stein F, Hernandez-Sanchez A, Urban K, Gebert J, Kloor M, Neu-Yilik G, von Knebel Doeberitz M, Hentze MW, Kulozik AE. NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. iScience 2021; 24:102389. [PMID: 33981976 PMCID: PMC8082087 DOI: 10.1016/j.isci.2021.102389] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Jonas P. Becker
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Dominic Helm
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Urban
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Gebert
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Kloor
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Zahm CD, Moseman JE, Delmastro LE, G Mcneel D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncoimmunology 2021; 10:1912892. [PMID: 33996265 PMCID: PMC8078506 DOI: 10.1080/2162402x.2021.1912892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Concurrent blockade of different checkpoint receptors, notably PD-1 and CTLA-4, elicits greater anti-tumor activity for some tumor types, and the combination of different checkpoint receptor inhibitors is an active area of clinical research. We have previously demonstrated that anti-tumor vaccination, by activating CD8 + T cells, increases the expression of PD-1, CTLA-4, LAG-3 and other inhibitory receptors, and the anti-tumor efficacy of vaccination can be increased with checkpoint blockade. In the current study, we sought to determine whether anti-tumor vaccination might be further improved with combined checkpoint blockade. Using an OVA-expressing mouse tumor model, we found that CD8 + T cells activated in the presence of professional antigen presenting cells (APC) expressed multiple checkpoint receptors; however, T cells activated without APCs expressed LAG-3 alone, suggesting that LAG-3 might be a preferred target in combination with vaccination. Using three different murine tumor models, and peptide or DNA vaccines targeting three tumor antigens, we assessed the effects of vaccines with blockade of PD-1 and/or LAG-3 on tumor growth. We report that, in each model, the anti-tumor efficacy of vaccination was increased with PD-1 and/or LAG-3 blockade. However, combined PD-1 and LAG-3 blockade elicited the greatest anti-tumor effect when combined with vaccination in a MycCaP prostate cancer model in which PD-1 blockade alone with vaccination targeting a “self” tumor antigen had less efficacy. These results suggest anti-tumor vaccination might best be combined with concurrent blockade of both PD-1 and LAG-3, and potentially other checkpoint receptors whose expression is increased on CD8 + T cells following vaccine-mediated activation.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Jena E Moseman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Lauren E Delmastro
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Douglas G Mcneel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
29
|
Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev 2021; 40:7-30. [PMID: 32929562 PMCID: PMC7897192 DOI: 10.1007/s10555-020-09931-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Recent developments in pre-clinical screening tools, that more reliably predict the clinical effects and adverse events of candidate therapeutic agents, has ushered in a new era of drug development and screening. However, given the rapid pace with which these models have emerged, the individual merits of these translational research tools warrant careful evaluation in order to furnish clinical researchers with appropriate information to conduct pre-clinical screening in an accelerated and rational manner. This review assesses the predictive utility of both well-established and emerging pre-clinical methods in terms of their suitability as a screening platform for treatment response, ability to represent pharmacodynamic and pharmacokinetic drug properties, and lastly debates the translational limitations and benefits of these models. To this end, we will describe the current literature on cell culture, organoids, in vivo mouse models, and in silico computational approaches. Particular focus will be devoted to discussing gaps and unmet needs in the literature as well as current advancements and innovations achieved in the field, such as co-clinical trials and future avenues for refinement.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Mihailo Miljanic
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Todd Triplett
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Craig Ramirez
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Kyaw L Aung
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Anna Capasso
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Schmidt J, Smith AR, Magnin M, Racle J, Devlin JR, Bobisse S, Cesbron J, Bonnet V, Carmona SJ, Huber F, Ciriello G, Speiser DE, Bassani-Sternberg M, Coukos G, Baker BM, Harari A, Gfeller D. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. CELL REPORTS MEDICINE 2021; 2:100194. [PMID: 33665637 PMCID: PMC7897774 DOI: 10.1016/j.xcrm.2021.100194] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Angela R Smith
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Morgane Magnin
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason R Devlin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Cesbron
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Santiago J Carmona
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
31
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
32
|
Donor HLA-DR Drives the Development of De Novo Autoimmunity Following Lung and Heart Transplantation. Transplant Direct 2020; 6:e607. [PMID: 33062840 PMCID: PMC7515617 DOI: 10.1097/txd.0000000000001062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Individuals harbor preexisting HLA−DR/DQ−restricted responses to collagen type V (ColV) mediated by Th17 cells under Treg control, both specific to peptides that bind to inherited HLA class II antigens. Yet after transplant, the donor−DR type somehow influences graft outcome. We hypothesized that, long after a lung or heart allograft, the particular HLA−DR type of the mismatched transplant donor transforms the specificity of the “anti−self” response. This could explain why, over long term, certain donor DRs could be more immunogenic than others.
Collapse
|
33
|
Ballhausen A, Przybilla MJ, Jendrusch M, Haupt S, Pfaffendorf E, Seidler F, Witt J, Hernandez Sanchez A, Urban K, Draxlbauer M, Krausert S, Ahadova A, Kalteis MS, Pfuderer PL, Heid D, Stichel D, Gebert J, Bonsack M, Schott S, Bläker H, Seppälä T, Mecklin JP, Ten Broeke S, Nielsen M, Heuveline V, Krzykalla J, Benner A, Riemer AB, von Knebel Doeberitz M, Kloor M. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat Commun 2020; 11:4740. [PMID: 32958755 PMCID: PMC7506541 DOI: 10.1038/s41467-020-18514-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers.
Collapse
Affiliation(s)
- Alexej Ballhausen
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Moritz Jakob Przybilla
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Michael Jendrusch
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Elisabeth Pfaffendorf
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Florian Seidler
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Johannes Witt
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Alejandro Hernandez Sanchez
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Katharina Urban
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Markus Draxlbauer
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Sonja Krausert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Martin Simon Kalteis
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Pauline L Pfuderer
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Daniel Heid
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Damian Stichel
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Maria Bonsack
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
- Department of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sanne Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Beate Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University Hospital and EMBL, Heidelberg, Germany.
| |
Collapse
|
34
|
Zottnick S, Voß AL, Riemer AB. Inducing Immunity Where It Matters: Orthotopic HPV Tumor Models and Therapeutic Vaccinations. Front Immunol 2020; 11:1750. [PMID: 32922389 PMCID: PMC7457000 DOI: 10.3389/fimmu.2020.01750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Anogenital and oropharyngeal cancers caused by human papillomavirus (HPV) infections account for 4.5% of all cancer cases worldwide. So far, only the initial infection with selected high-risk types can be prevented by prophylactic vaccination. Already existing persistent HPV infections, however, can currently only be treated by surgical removal of resulting lesions. Therapeutic HPV vaccination, promoting cell-based anti-HPV immunity, would be ideal to eliminate and protect against HPV-induced lesions and tumors. A multitude of vaccination approaches has been tested to date, many of which led to high amounts of HPV-specific T cells in vivo. However, growing evidence suggests that not the induction of systemic but of local immunity is paramount for tackling mucosal infections and tumors. Therefore, recent therapeutic vaccination studies have focused on how to induce tissue-resident T cells in the anogenital and oropharyngeal mucosa. These approaches include direct mucosal vaccinations and influencing the migration of systemic T cells toward the mucosa. The efficacy of these new vaccination approaches is best tested in vivo by utilizing orthotopic tumor models, i.e. HPV-positive tumors being located in the animal's mucosa. In line with this, we here review existing HPV tumor models and describe two novel tumorigenic cell lines for the MHC-humanized mouse model A2.DR1. These were used for the establishment of an HPV16 E6/E7-positive vaginal tumor model, suitable for testing therapeutic vaccines containing HLA-A2-restricted HPV16-derived epitopes. The newly developed MHC-humanized orthotopic HPV16-positive tumor model is likely to improve the translatability of in vivo findings to the clinical setting.
Collapse
Affiliation(s)
- Samantha Zottnick
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alessa L Voß
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Delignat S, Rayes J, Dasgupta S, Gangadharan B, Denis CV, Christophe OD, Bayry J, Kaveri SV, Lacroix-Desmazes S. Removal of Mannose-Ending Glycan at Asn 2118 Abrogates FVIII Presentation by Human Monocyte-Derived Dendritic Cells. Front Immunol 2020; 11:393. [PMID: 32273875 PMCID: PMC7117063 DOI: 10.3389/fimmu.2020.00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The development of an immune response against therapeutic factor VIII is the major complication in hemophilia A patients. Oligomannose carbohydrates at N239 and/or N2118 on factor VIII allow its binding to the macrophage mannose receptor expressed on human dendritic cells, thereby leading to factor VIII endocytosis and presentation to CD4+ T lymphocytes. Here, we investigated whether altering the interaction of factor VIII with mannose-sensitive receptors on antigen-presenting cells may be a strategy to reduce factor VIII immunogenicity. Gene transfer experiments in factor VIII-deficient mice indicated that N239Q and/or N2118Q factor VIII mutants have similar specific activities as compared to non-mutated factor VIII; N239Q/N2118Q mutant corrected blood loss upon tail clip. Production of the corresponding recombinant FVIII mutants or light chains indicated that removal of the N-linked glycosylation site at N2118 is sufficient to abrogate in vitro the activation of FVIII-specific CD4+ T cells by human monocyte-derived dendritic cells. However, removal of mannose-ending glycans at N2118 did not alter factor VIII endocytosis and presentation to CD4+ T cells by mouse antigen-presenting cells. In agreement with this, the N2118Q mutation did not reduce factor VIII immunogenicity in factor VIII-deficient mice. Our results highlight differences in the endocytic pathways between human and mouse dendritic cell subsets, and dissimilarities in tissue distribution and function of endocytic receptors such as CD206 in both species. Further investigations in preclinical models of hemophilia A closer to humans are needed to decipher the exact role of mannose-ending glycans in factor VIII immunogenicity.
Collapse
Affiliation(s)
- Sandrine Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Julie Rayes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Suryasarathi Dasgupta
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bagirath Gangadharan
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
36
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
37
|
Michel-Todó L, Reche PA, Bigey P, Pinazo MJ, Gascón J, Alonso-Padilla J. In silico Design of an Epitope-Based Vaccine Ensemble for Chagas Disease. Front Immunol 2019; 10:2698. [PMID: 31824493 PMCID: PMC6882931 DOI: 10.3389/fimmu.2019.02698] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma cruzi infection causes Chagas disease, which affects 7 million people worldwide. Two drugs are available to treat it: benznidazole and nifurtimox. Although both are efficacious against the acute stage of the disease, this is usually asymptomatic and goes undiagnosed and untreated. Diagnosis is achieved at the chronic stage, when life-threatening heart and/or gut tissue disruptions occur in ~30% of those chronically infected. By then, the drugs' efficacy is reduced, but not their associated high toxicity. Given current deficiencies in diagnosis and treatment, a vaccine to prevent infection and/or the development of symptoms would be a breakthrough in the management of the disease. Current vaccine candidates are mostly based on the delivery of single antigens or a few different antigens. Nevertheless, due to the high biological complexity of the parasite, targeting as many antigens as possible would be desirable. In this regard, an epitope-based vaccine design could be a well-suited approach. With this aim, we have gone through publicly available databases to identify T. cruzi epitopes from several antigens. By means of a computer-aided strategy, we have prioritized a set of epitopes based on sequence conservation criteria, projected population coverage of Latin American population, and biological features of their antigens of origin. Fruit of this analysis, we provide a selection of CD8+ T cell, CD4+ T cell, and B cell epitopes that have <70% identity to human or human microbiome protein sequences and represent the basis toward the development of an epitope-based vaccine against T. cruzi.
Collapse
Affiliation(s)
- Lucas Michel-Todó
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pedro Antonio Reche
- Laboratory of Immunomedicine, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
| | - Pascal Bigey
- Université de Paris, UTCBS, CNRS, INSERM, Paris, France.,PSL University, ChimieParisTech, Paris, France
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Joaquim Gascón
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Milcent B, Josseaume N, Riller Q, Giglioli I, Rabia E, Deligne C, Latouche JB, Hamieh M, Couture A, Toutirais O, Lone YC, Jeger-Madiot R, Graff-Dubois S, Amorim S, Loiseau P, Toubert A, Brice P, Thieblemont C, Teillaud JL, Sibéril S. Presence of T cells directed against CD20-derived peptides in healthy individuals and lymphoma patients. Cancer Immunol Immunother 2019; 68:1561-1572. [PMID: 31494742 PMCID: PMC6805815 DOI: 10.1007/s00262-019-02389-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive T cell response. A central role in this process has been attributed to CD4+ T cells, but the relevant T cell epitopes, mostly derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracellular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab or other anti-CD20 antibodies.
Collapse
Affiliation(s)
- Benoit Milcent
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Nathalie Josseaume
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Quentin Riller
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Ilenia Giglioli
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Emilia Rabia
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Claire Deligne
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France
| | - Jean-Baptiste Latouche
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Mohamad Hamieh
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Alexandre Couture
- Inserm U1245, Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, Rouen University Hospital, Rouen, France
| | - Olivier Toutirais
- Unicaen, Inserm 1237, Physiopathology and Imaging of Neurological Disorders, Normandie University, Caen, France.,French Blood Service (Etablissement Français du Sang, EFS), Caen, France
| | - Yu-Chun Lone
- Inserm U1014, Hôpital Paul Brousse, Villejuif, France
| | - Raphaël Jeger-Madiot
- Inserm U1135, CNRS ERL8255, Center for Immunology and Microbial Infection, Paris, France
| | - Stéphanie Graff-Dubois
- Inserm U1135, CNRS ERL8255, Center for Immunology and Microbial Infection, Paris, France
| | - Sandy Amorim
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France
| | - Pascale Loiseau
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Inserm UMR-S 1160, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, Paris, France
| | - Antoine Toubert
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France.,Inserm UMR-S 1160, Paris, France.,Institut Universitaire d'Hématologie, Université Paris Diderot-Paris 7, Paris, France
| | - Pauline Brice
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France
| | - Catherine Thieblemont
- APHP, Saint-Louis Hospital, Hemato-oncology, Diderot University, Sorbonne Paris Cité, Paris, France.,EA7324 Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Luc Teillaud
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France.,Laboratory "Immune Microenvironment and Immunotherapy", Sorbonne Université UMRS 1135, INSERM U.1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France
| | - Sophie Sibéril
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Inserm UMRS 1138, "Cancer, Immune Control and Escape" Laboratory, Centre de Recherche des Cordeliers, Paris, France. .,Cordeliers Research Center-Inserm UMR-S 1138, "Cancer, Immune Control and Escape" Laboratory, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
39
|
Eickhoff CS, Terry FE, Peng L, Meza KA, Sakala IG, Van Aartsen D, Moise L, Martin WD, Schriewer J, Buller RM, De Groot AS, Hoft DF. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 2019; 37:5371-5381. [PMID: 31331771 DOI: 10.1016/j.vaccine.2019.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.
Collapse
Affiliation(s)
- Christopher S Eickhoff
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Frances E Terry
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Linda Peng
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Krystal A Meza
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Isaac G Sakala
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Daniel Van Aartsen
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Leonard Moise
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - William D Martin
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Jill Schriewer
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - R Mark Buller
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Anne S De Groot
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - Daniel F Hoft
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States; Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
| |
Collapse
|
40
|
Abstract
Therapeutic protein drugs have significantly improved the management of many severe and chronic diseases. However, their development and optimal clinical application are complicated by the induction of unwanted immune responses. Therapeutic protein-induced antidrug antibodies can alter drug pharmacokinetics and pharmacodynamics leading to impaired efficacy and occasionally serious safety issues. There has been a growing interest over the past decade in developing methods to assess the risk of unwanted immunogenicity during preclinical drug development, with the aim to mitigate the risk during the molecular design phase, clinical development and when products reach the market. Here, we discuss approaches to therapeutic protein immunogenicity risk assessment, with attention to assays and in vivo models used to mitigate this risk.
Collapse
|
41
|
Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E, Paolini L, Beauvillain C, Dupel E, Latouche JB, Adotevi O, Labarrière N, Lang F. Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 2019; 8:e1560919. [PMID: 30906653 PMCID: PMC6422379 DOI: 10.1080/2162402x.2018.1560919] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
There is now a consensus that efficient peptide vaccination against cancer requires that peptides should (i) be exclusively presented by professional APC and (ii) stimulate both CD4 and CD8-specific T cell responses. To this aim, in recent trials, patients were vaccinated with pools of synthetic long peptides (SLP) (15-30 aa long) composed of a potential class I epitope(s) elongated at both ends with native antigen sequences to also provide a potential class II epitope(s). Using MELOE-1 as a model antigen, we present an alternative strategy consisting in linking selected class I and class II epitopes with an artificial cathepsin-sensitive linker to improve epitope processing and presentation by DC. We provide evidence that some linker sequences used in our artificial SLPs (aSLPs) could increase up to 100-fold the cross-presentation of class I epitopes to CD8-specific T cell clones when compared to cross-presentation of the corresponding native long peptide. Presentation of class II epitopes were only slightly increased. We confirmed this increased cross-presentation after in vitro stimulation of PBMC from healthy donors with aSLP and assessment of CD8-specific responses and also in vivo following aSLP vaccination of HLA*A0201/HLA-DRB0101 transgenic mice. Finally, we provide some evidence that vaccination with aSLP could inhibit the growth of transplanted tumors in mice. Our data thus support the use of such aSLPs in future cancer vaccination trials to improve anti-tumor CD8 T cell responses and therapeutic efficacy.
Collapse
Affiliation(s)
- Catherine Rabu
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Laurie Rangan
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Laetitia Florenceau
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Agnès Fortun
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Maud Charpentier
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Emilie Dupré
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Léa Paolini
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Céline Beauvillain
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Estelle Dupel
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Jean-Baptiste Latouche
- Rouen University Hospital, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, Rouen, France
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Nathalie Labarrière
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - François Lang
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
42
|
Onodi F, Maherzi-Mechalikh C, Mougel A, Ben Hamouda N, Taboas C, Gueugnon F, Tran T, Nozach H, Marcon E, Gey A, Terme M, Bouzidi A, Maillere B, Kerzerho J, Tartour E, Tanchot C. High Therapeutic Efficacy of a New Survivin LSP-Cancer Vaccine Containing CD4 + and CD8 + T-Cell Epitopes. Front Oncol 2018; 8:517. [PMID: 30483475 PMCID: PMC6243131 DOI: 10.3389/fonc.2018.00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
The efficacy of an antitumoral vaccine relies both on the choice of the antigen targeted and on its design. The tumor antigen survivin is an attractive target to develop therapeutic cancer vaccines because of its restricted over-expression and vital functions in most human tumors. Accordingly, several clinical trials targeting survivin in various cancer indications have been conducted. Most of them relied on short peptide-based vaccines and showed promising, but limited clinical results. In this study, we investigated the immunogenicity and therapeutic efficacy of a new long synthetic peptide (LSP)-based cancer vaccine targeting the tumor antigen survivin (SVX). This SVX vaccine is composed of three long synthetic peptides containing several CD4+ and CD8+ T-cell epitopes, which bind to various HLA class II and class I molecules. Studies in healthy individuals showed CD4+ and CD8+ T-cell immunogenicity of SVX peptides in human, irrespective of the individual's HLA types. Importantly, high frequencies of spontaneous T-cell precursors specific to SVX peptides were also detected in the blood of various cancer patients, demonstrating the absence of tolerance against these peptides. We then demonstrated SVX vaccine's high therapeutic efficacy against four different established murine tumor models, associated with its capacity to generate both specific cytotoxic CD8+ and multifunctional Th1 CD4+ T-cell responses. When tumors were eradicated, generated memory T-cell responses protected against rechallenge allowing long-term protection against relapses. Treatment with SVX vaccine was also found to reshape the tumor microenvironment by increasing the tumor infiltration of both CD4+ and CD8+ T cells but not Treg cells therefore tipping the balance toward a highly efficient immune response. These results highlight that this LSP-based SVX vaccine appears as a promising cancer vaccine and warrants its further clinical development.
Collapse
Affiliation(s)
- Fanny Onodi
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France
| | - Chahrazed Maherzi-Mechalikh
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alice Mougel
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadine Ben Hamouda
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Service d'immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Charlotte Taboas
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France
| | - Fabien Gueugnon
- VAXEAL Research, Evry, France.,CEA-Saclay, Institut des Sciences du Vivant Frederic Joliot, Service d'Ingénierie Moléculaire des Protéines, Gif Sur Yvette, France
| | - Thi Tran
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France
| | - Herve Nozach
- CEA-Saclay, Institut des Sciences du Vivant Frederic Joliot, Service d'Ingénierie Moléculaire des Protéines, Gif Sur Yvette, France
| | - Elodie Marcon
- CEA-Saclay, Institut des Sciences du Vivant Frederic Joliot, Service d'Ingénierie Moléculaire des Protéines, Gif Sur Yvette, France
| | - Alain Gey
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Service d'immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Magali Terme
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Bernard Maillere
- CEA-Saclay, Institut des Sciences du Vivant Frederic Joliot, Service d'Ingénierie Moléculaire des Protéines, Gif Sur Yvette, France
| | | | - Eric Tartour
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service d'immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Corinne Tanchot
- INSERM U970, PARCC (Paris-Cardiovascular Research Center), Paris, France
| |
Collapse
|
43
|
Zahm CD, Colluru VT, McIlwain SJ, Ong IM, McNeel DG. TLR Stimulation during T-cell Activation Lowers PD-1 Expression on CD8 + T Cells. Cancer Immunol Res 2018; 6:1364-1374. [PMID: 30201735 PMCID: PMC6215515 DOI: 10.1158/2326-6066.cir-18-0243] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Expression of T-cell checkpoint receptors can compromise antitumor immunity. Blockade of these receptors, notably PD-1 and LAG-3, which become expressed during T-cell activation with vaccination, can improve antitumor immunity. We evaluated whether T-cell checkpoint expression could be separated from T-cell activation in the context of innate immune stimulation with TLR agonists. We found that ligands for TLR1/2, TLR7, and TLR9 led to a decrease in expression of PD-1 on antigen-activated CD8+ T cells. These effects were mediated by IL12 released by professional antigen-presenting cells. In two separate tumor models, treatment with antitumor vaccines combined with TLR1/2 or TLR7 ligands induced antigen-specific CD8+ T cells with lower PD-1 expression and improved antitumor immunity. These findings highlight the role of innate immune activation during effector T-cell development and suggest that at least one mechanism by which specific TLR agonists can be strategically used as vaccine adjuvants is by modulating the expression of PD-1 during CD8+ T-cell activation. Cancer Immunol Res; 6(11); 1364-74. ©2018 AACR.
Collapse
Affiliation(s)
- Christopher D Zahm
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Viswa T Colluru
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Sean J McIlwain
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
44
|
Kruse S, Büchler M, Uhl P, Sauter M, Scherer P, Lan TCT, Zottnick S, Klevenz A, Yang R, Rösl F, Mier W, Riemer AB. Therapeutic vaccination using minimal HPV16 epitopes in a novel MHC-humanized murine HPV tumor model. Oncoimmunology 2018; 8:e1524694. [PMID: 30546964 DOI: 10.1080/2162402x.2018.1524694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/21/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
Therapeutic vaccination as a treatment option for HPV-induced cancers is actively pursued because the two HPV proteins E6 and E7 represent ideal targets for immunotherapy, as they are non-self and expressed in all tumor stages. MHC-humanized mice are valuable tools for the study of therapeutic cancer vaccines - given the availability of a suitable tumor model. Here, we present for the first time an HPV16 tumor model suitable for fully MHC-humanized A2.DR1 mice, PAP-A2 cells, which in contrast to existing HPV16 tumor models allows the exclusive study of HLA-A2- and DR1-mediated immune responses, without any interfering murine MHC-presented epitopes. We used several HPV16 epitopes that were shown to be presented on human cervical cancer cells by mass spectrometry for therapeutic anti-tumor vaccination in the new tumor model. All epitopes were immunogenic when rendered amphiphilic by incorporation into a molecule containing stearic acids. Prophylactic and therapeutic vaccination experiments with the epitope E7/11-19 demonstrated that effective immune responses could be induced with these vaccination approaches in A2.DR1 mice. Interestingly, the combination of E7/11-19 with other immunogenic HPV16 E6/E7 epitopes caused a reduction of vaccine efficacy, although all tested combinations resulted in a survival benefit. In summary, we present the first HPV16 tumor model for exclusive studies of HLA-A2-mediated anti-HPV tumor immune responses and show anti-tumor efficacy of minimal epitope vaccines.
Collapse
Affiliation(s)
- Sebastian Kruse
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marleen Büchler
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Philipp Uhl
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Max Sauter
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Scherer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tammy C T Lan
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samantha Zottnick
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Klevenz
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruwen Yang
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy & Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Abstract
Immunotherapy is one of the most exciting recent breakthroughs in the field of cancer treatment. Many different approaches are being developed and a number have already gained regulatory approval or are under investigation in clinical trials. However, learning from the past, preclinical animal models often insufficiently reflect the physiological situation in humans, which subsequently causes treatment failures in clinical trials. Due to species-specific differences in most parts of the immune system, the transfer of knowledge from preclinical studies to clinical trials is eminently challenging. Human tumor cell line-based or patient-derived xenografts in immunocompromised mice have been successfully applied in the preclinical testing of cytotoxic or molecularly targeted agents, but naturally these systems lack the human immune system counterpart. The co-transplantation of human peripheral blood mononuclear cells or hematopoietic stem cells is employed to overcome this limitation. This review summarizes some important aspects of the different available tumor xenograft mouse models, their history, and their implementation in drug development and personalized therapy. Moreover, recent progress, opportunities and limitations of different humanized mouse models will be discussed.
Collapse
|
46
|
Olson B, Li Y, Lin Y, Liu ET, Patnaik A. Mouse Models for Cancer Immunotherapy Research. Cancer Discov 2018; 8:1358-1365. [PMID: 30309862 DOI: 10.1158/2159-8290.cd-18-0044] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Immunotherapy has revolutionized cancer therapy, largely attributed to the success of immune-checkpoint blockade. However, there are subsets of patients across multiple cancers who have not shown robust responses to these agents. A major impediment to progress in the field is the availability of faithful mouse models that recapitulate the complexity of human malignancy and immune contexture within the tumor microenvironment. These models are urgently needed across all malignancies to interrogate and predict antitumor immune responses and therapeutic efficacy in clinical trials. Herein, we seek to review pros and cons of different cancer mouse models, and how they can be used as platforms to predict efficacy and resistance to cancer immunotherapies.Significance: Although immunotherapy has shown substantial benefit in the treatment of a variety of malignancies, a key hurdle toward the advancement of these therapies is the availability of immunocompetent preclinical mouse models that recapitulate human disease. Here, we review the evolution of preclinical mouse models and their utility as coclinical platforms for mechanistic interrogation of cancer immunotherapies. Cancer Discov; 8(11); 1358-65. ©2018 AACR.
Collapse
Affiliation(s)
- Brian Olson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yadi Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yu Lin
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Edison T Liu
- The Jackson Laboratory Cancer Center, Bar Harbor, Maine
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
47
|
Identification of novel HLA-A11-restricted T-cell epitopes in the Ebola virus nucleoprotein. Microbes Infect 2018; 21:56-62. [PMID: 29775667 DOI: 10.1016/j.micinf.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022]
Abstract
The Ebola virus (EBOV) is a very contagious virus that is highly fatal in humans and animals. The largest epidemic was in West Africa in 2014, in which over 11,000 people died. However, to date, there are no licensed vaccines against it. Studies show that CD4+ and CD8+ T-cell responses, especially cytotoxic T-lymphocyte (CTL) responses, play key roles in protecting individuals from EBOV infection. Since HLA-restricted epitope vaccines are likely to be effective and safe immunization strategies for infectious diseases, the present study screened for CTL epitopes in the EBOV-nucleoprotein that are restricted by HLA-A11 (a common allele in Chinese people). Predictive computer analysis of the amino-acid sequence of EBOV-nucleoprotein identified ten putative HLA-A11-restricted epitopes. ELISPOT assay of immunized HLA-A11/DR1 transgenic mice showed that five (GR-9, VR-9, EK-9, PK-9, and RK-9) induced effective CTL responses. Additional epitope analyses will aid the design of epitope vaccines against EBOV.
Collapse
|
48
|
Quandt J, Schlude C, Bartoschek M, Will R, Cid-Arregui A, Schölch S, Reissfelder C, Weitz J, Schneider M, Wiemann S, Momburg F, Beckhove P. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology 2018; 7:e1500671. [PMID: 30524892 PMCID: PMC6279329 DOI: 10.1080/2162402x.2018.1500671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Mutated proteins arising from somatic mutations in tumors are promising targets for cancer immunotherapy. They represent true tumor-specific antigens (TSAs) as they are exclusively expressed in tumors, reduce the risk of autoimmunity and are more likely to overcome tolerance compared to wild-type (wt) sequences. Hence, we designed a panel of long peptides (LPs, 28–35 aa) comprising driver gene mutations in TP35 and KRAS frequently found in gastrointestinal tumors to test their combined immunotherapeutic potential. We found increased numbers of T cells responsive against respective mutated and wt peptides in colorectal cancer patients that carry the tested mutations in their tumors than patients with other mutations. Further, active immunization of HLA(-A2/DR1)-humanized mice with mixes of the same mutated LPs yielded simultaneous, polyvalent CD8+/CD4+ T cell responses against the majority of peptides. Peptide-specific T cells possessed a multifunctional cytokine profile with CD4+ T cells showing a TH1-like phenotype. Two mutated peptides (Kras[G12V], p53[R248W]) induced significantly higher T cell responses than corresponding wt sequences and comprised HLA-A2/DR1-restricted mutated epitopes. However, vaccination with the same highly immunogenic LPs strongly increased systemic regulatory T cells (Treg) numbers in a syngeneic sarcoma model over-expressing these mutated protein variants and resulted in accelerated tumor outgrowth. In contrast, tumor outgrowth was delayed when vaccination was directed against tumor-intrinsic Kras/Tp53 mutations of lower immunogenicity. Conclusively, we show that LP vaccination targeting multiple mutated TSAs elicits polyvalent, multifunctional, and mutation-specific effector T cells capable of targeting tumors. However, the success of this therapeutic approach can be hampered by vaccination-induced, TSA-specific Tregs.
Collapse
Affiliation(s)
- Jasmin Quandt
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Knapp Research Center, Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Christoph Schlude
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Bartoschek
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rainer Will
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angel Cid-Arregui
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultaet an der TU-Dresden, Dresden, Germany
| | - Martin Schneider
- Department of Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Wiemann
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Antigen Presentation and T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Beckhove
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Regensburg Center for Interventional Immunology (RCI), University Regensburg and Department of Hematology-Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
49
|
Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, McNeel DG. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology 2018; 7:e1456603. [PMID: 30221049 DOI: 10.1080/2162402x.2018.1456603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background. Sipuleucel T, an autologous cell-based vaccine targeting prostatic acid phosphatase (PAP), has demonstrated efficacy for the treatment of advanced prostate cancer. DNA vaccines encoding PAP and live attenuated Listeria vaccines have entered clinical trials for patients with prostate cancer, and have advantages in terms of eliciting predominantly Th1-biased immunity. In this study, we investigated whether the immunogenicity and anti-tumor efficacy of a DNA and Listeria vaccine, each encoding PAP, could be enhanced by using them in a heterologous prime/boost approach. Methods. Transgenic mice expressing HLA-A2.01 and HLA-DRB1*0101 were immunized alone or with a heterologous prime/boost strategy. Splenocytes were evaluated for MHC class I and II-restricted, PAP-specific immune responses by IFNγ ELISPOTs. Anti-tumor activity to a syngeneic, PAP-expressing tumor line was evaluated. Results. PAP-specific cellular immunity and anti-tumor activity were elicited in mice after immunization with DNA- or listeria-based vaccines. Greater CD4+ and CD8+ responses, and anti-tumor responses, were elicited when mice were immunized first with DNA and boosted with Listeria, but not when administered in the opposite order. This was found to be dependent on CD4+ T cells elicited with DNA priming, and was not due to inflammatory signals by Listeria itself or due to B cells serving as antigen-presenting cells for DNA during priming. Conclusions. Heterologous prime/boost vaccination using DNA priming with Listeria boosting may provide better anti-tumor immunity, similar to many reports evaluating DNA priming with vaccines targeting foreign microbial antigens. These findings have implications for the design of future clinical trials.
Collapse
Affiliation(s)
- Laura E Johnson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | | | | | | | - Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
50
|
Rangan L, Galaine J, Boidot R, Hamieh M, Dosset M, Francoual J, Beziaud L, Pallandre JR, Lauret Marie Joseph E, Asgarova A, Borg C, Al Saati T, Godet Y, Latouche JB, Valmary-Degano S, Adotévi O. Identification of a novel PD-L1 positive solid tumor transplantable in HLA-A*0201/DRB1*0101 transgenic mice. Oncotarget 2018; 8:48959-48971. [PMID: 28430664 PMCID: PMC5564740 DOI: 10.18632/oncotarget.16900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
HLA-A*0201/DRB1*0101 transgenic mice (A2/DR1 mice) have been developed to study the
immunogenicity of tumor antigen-derived T cell epitopes. To extend the use and
application of this mouse model in the field of antitumor immunotherapy, we described
a tumor cell line generated from a naturally occurring tumor in A2/DR1 mouse named
SARC-L1. Histological and genes signature analysis supported the sarcoma origin of
this cell line. While SARC-L1 tumor cells lack HLA-DRB1*0101 expression, a very low
expression of HLA-A*0201 molecules was found on these cells. Furthermore they also
weakly but constitutively expressed the programmed death-ligand 1 (PD-L1).
Interestingly both HLA-A*0201 and PD-L1 expressions can be increased on SARC-L1 after
IFN-γ exposure in vitro. We also obtained two genetically
modified cell lines highly expressing either HLA-A*0201 or both HLA-A*0201/
HLA-DRB1*0101 molecules referred as SARC-A2 and SARC-A2DR1 respectively. All the
SARC-L1-derived cell lines induced aggressive subcutaneous tumors in A2DR1 mice
in vivo. The analysis of SARC-L1 tumor microenvironment revealed
a strong infiltration by T cells expressing inhibitory receptors such as PD-1 and
TIM-3. Finally, we found that SARC-L1 is sensitive to several drugs commonly used to
treat sarcoma and also susceptible to anti-PD-L1 monoclonal antibody therapy
in vivo. Collectively, we described a novel syngeneic tumor model
A2/DR1 mice that could be used as preclinical tool for the evaluation of antitumor
immunotherapies.
Collapse
Affiliation(s)
- Laurie Rangan
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Romain Boidot
- Platform for Transfer to Cancer Biology, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Mohamad Hamieh
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Julie Francoual
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean-René Pallandre
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Elodie Lauret Marie Joseph
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Afag Asgarova
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Talal Al Saati
- INSERM/UPS, US006/CREFRE, Department of Histopathology, University Hospital of Purpan, 31000 Toulouse, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean Baptiste Latouche
- Department of Genetics, University Hospital of Rouen, Normandy Centre for Genomic and Personalized Medicine, 76183 Rouen, France
| | | | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| |
Collapse
|