1
|
Zheng Y, Young ND, Wang T, Chang BCH, Song J, Gasser RB. Systems biology of Haemonchus contortus - Advancing biotechnology for parasitic nematode control. Biotechnol Adv 2025; 81:108567. [PMID: 40127743 DOI: 10.1016/j.biotechadv.2025.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Parasitic nematodes represent a substantial global burden, impacting animal health, agriculture and economies worldwide. Of these worms, Haemonchus contortus - a blood-feeding nematode of ruminants - is a major pathogen and a model for molecular and applied parasitology research. This review synthesises some key advances in understanding the molecular biology, genetic diversity and host-parasite interactions of H. contortus, highlighting its value for comparative studies with the free-living nematode Caenorhabditis elegans. Key themes include recent developments in genomic, transcriptomic and proteomic technologies and resources, which are illuminating critical molecular pathways, including the ubiquitination pathway, protease/protease inhibitor systems and the secretome of H. contortus. Some of these insights are providing a foundation for identifying essential genes and exploring their potential as targets for novel anthelmintics or vaccines, particularly in the face of widespread anthelmintic resistance. Advanced bioinformatic tools, such as machine learning (ML) algorithms and artificial intelligence (AI)-driven protein structure prediction, are enhancing annotation capabilities, facilitating and accelerating analyses of gene functions, and biological pathways and processes. This review also discusses the integration of these tools with cutting-edge single-cell sequencing and spatial transcriptomics to dissect host-parasite interactions at the cellular level. The discussion emphasises the importance of curated databases, improved culture systems and functional genomics platforms to translate molecular discoveries into practical outcomes, such as novel interventions. New research findings and resources not only advance research on H. contortus and related nematodes but may also pave the way for innovative solutions to the global challenges with anthelmintic resistance.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiangning Song
- Faculty of IT, Department of Data Science and AI, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Liu HX, Li YC, Su RB, Liu CX, Wen SY. Astragalus injection inhibits the growth of osteosarcoma by activating cytotoxic T lymphocyte and targeting CTSL. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119607. [PMID: 40058477 DOI: 10.1016/j.jep.2025.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus, commonly known as Huangqi in China, is a traditional herbal medicine that has attracted significant attention for its immunomodulatory effects. It has been widely studied in various clinical contexts, including cancer treatment. Astragalus injection (HQI) is clinically used for treating myocarditis and cardiac insufficiency. However, its potential therapeutic effects on osteosarcoma, a highly aggressive bone tumor, remain largely unexplored. AIM OF THE STUDY The aim of this study was to investigate the potential therapeutic effects of HQI on osteosarcoma and to elucidate its underlying mechanisms of action. Specifically, we aimed to determine whether HQI could inhibit osteosarcoma growth in vivo, identify its key active components and molecular targets, and explore its immunomodulatory effects on the tumor microenvironment. MATERIALS AND METHODS Mice with osteosarcoma were treated with HQI, and tumor growth was monitored. The number of CD8+ T cells in spleen was assessed using flow cytometry. High-performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS/MS) was used to identify the active ingredients of HQI that entered the peripheral blood of treated mice. Network pharmacology and weighted gene co-expression network analysis (WGCNA) were employed to identify key molecular targets of HQI in osteosarcoma inhibition. In vitro cell assays were conducted to evaluate the effects of HQI and its active components on osteosarcoma cell viability. Molecular docking studies were performed to identify the binding affinity of key active components to the identified molecular targets. The expression of Cathepsin L (CTSL) and the activation of cytotoxic T lymphocytes were assessed in vivo and in vitro to elucidate the primary mechanism of action of HQI and its active component calycosin 7-O-β-D-glucoside (CG). RESULTS Our study found that HQI significantly suppresses osteosarcoma growth in vivo by increasing the number of CD8+ T cells, without causing significant toxic side effects. Eight active ingredients entered the peripheral blood of mice through HPLC-ESI-TOF-MS/MS detection. The network pharmacology and WGCNA revealed that CTSL was a key target of HQI in osteosarcoma inhibition. Cell assays and molecular docking identified CG as the key active component of HQI to inhibit the activity of osteosarcoma cells, capable of binding to CTSL. In vivo, CG activates cytotoxic T lymphocytes and inhibits CTSL expression, thereby exerting its anti-osteosarcoma effects. CONCLUSION Our study demonstrated that HQI, particularly its active component CG, holds potential as a therapeutic agent for osteosarcoma. The primary mechanism underlying its anti-osteosarcoma effects involves modulating the immune response and targeting CTSL. These findings provide a scientific basis for the development of HQI as a novel immunomodulatory therapy for osteosarcoma.
Collapse
Affiliation(s)
- Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China.
| | - Yu-Chang Li
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China.
| | - Ru-Bin Su
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China.
| | - Cai-Xia Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Conesa-Bakkali R, Morillo-Huesca M, Martínez-Fábregas J. Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy. Cells 2025; 14:68. [PMID: 39851495 PMCID: PMC11763575 DOI: 10.3390/cells14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions. Furthermore, some lysosomal proteases are no longer restricted to the lysosomal compartment, as more novel non-canonical, extralysosomal targets are being identified. Currently, lysosomal proteases are accepted to play key functions in the extracellular milieu, attached to the plasma membrane and even in the cytosolic and nuclear compartments of the cell. Under physiological conditions, lysosomal proteases, through non-canonical, extralysosomal activities, have been linked to cell differentiation, regulation of gene expression, and cell division. Under pathological conditions, these proteases have been linked to cancer, mostly through their extralysosomal activities in the cytosol and nuclei of cells. In this review, we aim to provide a comprehensive summary of our current knowledge about the extralysosomal, non-canonical functions of lysosomal proteases, both under physiological and pathological conditions, with a particular interest in cancer, that could potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Sevilla, Spain
| |
Collapse
|
4
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Tu Z, Zhong J, Li H, Sun L, Huang Y, Yang S, Lu Y, Cai S. Characterization and function analysis of cathepsin C in Marsupenaeusjaponicus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109379. [PMID: 38242264 DOI: 10.1016/j.fsi.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.
Collapse
Affiliation(s)
- Zuhao Tu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | | | | | | | - Yucong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.
| |
Collapse
|
6
|
Ouyang Y, Nauwynck HJ. Molecular basis for the different PCV2 susceptibility of T-lymphoblasts in Landrace and Piétrain pigs. Vet Res 2024; 55:22. [PMID: 38374131 PMCID: PMC10875804 DOI: 10.1186/s13567-024-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.
Collapse
Affiliation(s)
- Yueling Ouyang
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Zhao S, Hu Q, Jiang H, Zhao Y, Wang Y, Feng C, Li X. Multi-omics analysis of oxidative stress and apoptosis in hepatopancreas cells induced by Polyascus gregaria parasitizing the Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109180. [PMID: 37863124 DOI: 10.1016/j.fsi.2023.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Polyascus gregaria, a parasitic barnacle, poses a significant threat to Eriocheir sinensis farms by inhibiting crab growth. However, the molecular and pathological mechanisms behind P. gregaria infection in the hepatopancreas of E. sinensis remain unclear. In this study, we investigated the impact and underlying mechanisms of P. gregaria infection on E. sinensis through analyzing the infected hepatopancreatic tissues by tandem mass tag technology and RNA-Seq high-throughput sequencing. Among the identified 10,693 differentially expressed genes, 294 genes were significantly altered following P. gregaria infection, including 92 upregulated and 202 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further revealed the involvement of these genes in oxidative decomposition, lipid metabolism, inflammation, and hepatopancreas metabolism. Meanwhile, the identified 253 differentially expressed proteins, including 143 upregulated and 110 downregulated proteins, are mainly related to cellular and metabolic processes, catalytic activity, and cell components. The pathway analysis indicated their enrichment in glycolysis/gluconeogenesis, oxidative phosphorylation, endoplasmic reticulum protein processing, and actin cytoskeleton regulation. The involvement of these differentially expressed genes and proteins in the peroxisome proliferator-activated receptors pathway during host immune responses against P. gregaria infection has been highlighted. Furthermore, pathological examinations and biochemical indicators jointly demonstrated the hepatopancreatic damage and increased oxidative stress and apoptosis in the infected E. sinensis. Collectively, our study provides crucial insights into the mechanisms underlying the E. sinensis-P. gregaria interactions, and may contribute to the development of novel strategies for parasite control and reducing economic losses in aquaculture.
Collapse
Affiliation(s)
- Shiwei Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingbiao Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongbo Jiang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanping Wang
- Linong Testing (Binzhou) Co., Ltd., Binzhou Bohai Advanced Technology Research Institute, Binzhou, 256600, China
| | - Chengcheng Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
8
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
9
|
Genome-Wide Identification, Evolutionary Analysis, and Expression Patterns of Cathepsin Superfamily in Black Rockfish (Sebastes schlegelii) following Aeromonas salmonicida Infection. Mar Drugs 2022; 20:md20080504. [PMID: 36005507 PMCID: PMC9409823 DOI: 10.3390/md20080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cathepsins are lysosomal cysteine proteases belonging to the papain family and play crucial roles in intracellular protein degradation/turnover, hormone maturation, antigen processing, and immune responses. In the present study, 18 cathepsins were systematically identified from the fish S. schlegelii genome. Phylogenetic analysis indicated that cathepsin superfamilies are categorized into eleven major clusters. Synteny and genome organization analysis revealed that whole-genome duplication led to the expansion of S. schlegelii cathepsins. Evolutionary rate analyses indicated that the lowest Ka/Ks ratios were observed in CTSBa (0.13) and CTSBb (0.14), and the highest Ka/Ks ratios were observed in CTSZa (1.97) and CTSZb (1.75). In addition, cathepsins were ubiquitously expressed in all examined tissues, with high expression levels observed in the gill, intestine, head kidney, and spleen. Additionally, most cathepsins were differentially expressed in the head kidney, gill, spleen, and liver following Aeromonas salmonicida infection, and their expression signatures showed tissue-specific and time-dependent patterns. Finally, protein–protein interaction network (PPI) analyses revealed that cathepsins are closely related to a few immune-related genes, such as interleukins, chemokines, and TLR genes. These results are expected to be valuable for comparative immunological studies and provide insights for further functional characterization of cathepsins in fish species.
Collapse
|
10
|
Skopál A, Kéki T, Tóth PÁ, Csóka B, Koscsó B, Németh ZH, Antonioli L, Ivessa A, Ciruela F, Virág L, Haskó G, Kókai E. Cathepsin D interacts with adenosine A 2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. J Biol Chem 2022; 298:101888. [PMID: 35367412 PMCID: PMC9065627 DOI: 10.1016/j.jbc.2022.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine A2A receptor (A2AR)–dependent signaling in macrophages plays a key role in the regulation of inflammation. However, the processes regulating A2AR targeting to the cell surface and degradation in macrophages are incompletely understood. For example, the C-terminal domain of the A2AR and proteins interacting with it are known to regulate receptor recycling, although it is unclear what role potential A2AR-interacting partners have in macrophages. Here, we aimed to identify A2AR-interacting partners in macrophages that may effect receptor trafficking and activity. To this end, we performed a yeast two-hybrid screen using the C-terminal tail of A2AR as the “bait” and a macrophage expression library as the “prey.” We found that the lysosomal protease cathepsin D (CtsD) was a robust hit. The A2AR–CtsD interaction was validated in vitro and in cellular models, including RAW 264.7 and mouse peritoneal macrophage (IPMΦ) cells. We also demonstrated that the A2AR is a substrate of CtsD and that the blockade of CtsD activity increases the density and cell surface targeting of A2AR in macrophages. Conversely, we demonstrate that A2AR activation prompts the maturation and enzymatic activity of CtsD in macrophages. In summary, we conclude that CtsD is a novel A2AR-interacting partner and thus describe molecular and functional interplay that may be crucial for adenosine-mediated macrophage regulation in inflammatory processes.
Collapse
Affiliation(s)
- Adrienn Skopál
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kéki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Á Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Balázs Koscsó
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA.
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
11
|
The Innate Immune Response to Infection by Polyascus gregaria in the Male Chinese Mitten Crab (Eriocheir sinensis), Revealed by Proteomic Analysis. FISHES 2021. [DOI: 10.3390/fishes6040057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a representative catadromous invertebrate of the Yangtze River and a commercial species widely cultivated in China. Both cultivated and wild crabs suffer from a variety of parasites and pathogens, which can result in catastrophic economic losses in aquaculture revenue. Polyascus gregaria, a parasitic barnacle with a highly derived morphology, is specialized in invading these crabs. This study examines the immunological mechanism in E. sinensis infected with P. gregaria. Tandem mass tags (TMT), a specialized method of mass-spectrometry, was used to analyze the infection by P. gregaria resistance at the protein level. In the hepatopancreas of infected crabs, 598 proteins differentially expressed relating to physiological change, of which, 352 were upregulated and 246 were downregulated. Based on this differential protein expression, 104 GO terms and 13 KEGG pathways were significantly enriched. Differentially expressed proteins, such as ATG, cathepsin, serpin, iron-related protein, Rab family, integrin, and lectin, are associated with the lysosome GO term and the autophagy-animal KEGG pathways, both of which likely relate to the immune response to the parasitic P. gregaria infection. These results show the benefit of taking a detailed, protein-level approach to understanding the innate immune response of aquatic invertebrates to macroparasite infection.
Collapse
|
12
|
Vandyck K, Abdelnabi R, Gupta K, Jochmans D, Jekle A, Deval J, Misner D, Bardiot D, Foo CS, Liu C, Ren S, Beigelman L, Blatt LM, Boland S, Vangeel L, Dejonghe S, Chaltin P, Marchand A, Serebryany V, Stoycheva A, Chanda S, Symons JA, Raboisson P, Neyts J. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Biochem Biophys Res Commun 2021; 555:134-139. [PMID: 33813272 PMCID: PMC7997389 DOI: 10.1016/j.bbrc.2021.03.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 μM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.
Collapse
Affiliation(s)
- Koen Vandyck
- Aligos Belgium BV, Gaston Geenslaan 1, 3001 Leuven, Belgium,Corresponding author
| | - Rana Abdelnabi
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Kusum Gupta
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Dirk Jochmans
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Andreas Jekle
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Jerome Deval
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Dinah Misner
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | | | - Caroline S. Foo
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Cheng Liu
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Suping Ren
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Leonid Beigelman
- Aligos Belgium BV, Gaston Geenslaan 1, 3001 Leuven, Belgium,Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Lawrence M. Blatt
- Aligos Belgium BV, Gaston Geenslaan 1, 3001 Leuven, Belgium,Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Sandro Boland
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Laura Vangeel
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steven Dejonghe
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Chaltin
- Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001 Leuven, Belgium,CISTIM Leuven vzw, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | | | - Vladimir Serebryany
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Antitsa Stoycheva
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Sushmita Chanda
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | - Julian A. Symons
- Aligos Therapeutics, Inc., 1 Corporate Dr., 2nd Floor, South San Francisco, CA, USA
| | | | - Johan Neyts
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium,Corresponding author
| |
Collapse
|
13
|
Peñaloza HF, Olonisakin TF, Bain WG, Qu Y, van der Geest R, Zupetic J, Hulver M, Xiong Z, Newstead MW, Zou C, Alder JK, Ybe JA, Standiford TJ, Lee JS. Thrombospondin-1 Restricts Interleukin-36γ-Mediated Neutrophilic Inflammation during Pseudomonas aeruginosa Pulmonary Infection. mBio 2021; 12:e03336-20. [PMID: 33824208 PMCID: PMC8092289 DOI: 10.1128/mbio.03336-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-36γ (IL-36γ), a member of the IL-1 cytokine superfamily, amplifies lung inflammation and impairs host defense during acute pulmonary Pseudomonas aeruginosa infection. To be fully active, IL-36γ is cleaved at its N-terminal region by proteases such as neutrophil elastase (NE) and cathepsin S (CatS). However, it remains unclear whether limiting extracellular proteolysis restrains the inflammatory cascade triggered by IL-36γ during P. aeruginosa infection. Thrombospondin-1 (TSP-1) is a matricellular protein with inhibitory activity against NE and the pathogen-secreted Pseudomonas elastase LasB-both proteases implicated in amplifying inflammation. We hypothesized that TSP-1 tempers the inflammatory response during lung P. aeruginosa infection by inhibiting the proteolytic environment required for IL-36γ activation. Compared to wild-type (WT) mice, TSP-1-deficient (Thbs1-/-) mice exhibited a hyperinflammatory response in the lungs during P. aeruginosa infection, with increased cytokine production and an unrestrained extracellular proteolytic environment characterized by higher free NE and LasB, but not CatS activity. LasB cleaved IL-36γ proximally to M19 at a cleavage site distinct from those generated by NE and CatS, which cleave IL-36γ proximally to Y16 and S18, respectively. N-terminal truncation experiments in silico predicted that the M19 and the S18 isoforms bind the IL-36R complex almost identically. IL-36γ neutralization ameliorated the hyperinflammatory response and improved lung immunity in Thbs1-/- mice during P. aeruginosa infection. Moreover, administration of cleaved IL-36γ induced cytokine production and neutrophil recruitment and activation that was accentuated in Thbs1-/- mice lungs. Collectively, our data show that TSP-1 regulates lung neutrophilic inflammation and facilitates host defense by restraining the extracellular proteolytic environment required for IL-36γ activation.IMPORTANCEPseudomonas aeruginosa pulmonary infection can lead to exaggerated neutrophilic inflammation and tissue destruction, yet host factors that regulate the neutrophilic response are not fully known. IL-36γ is a proinflammatory cytokine that dramatically increases in bioactivity following N-terminal processing by proteases. Here, we demonstrate that thrombospondin-1, a host matricellular protein, limits N-terminal processing of IL-36γ by neutrophil elastase and the Pseudomonas aeruginosa-secreted protease LasB. Thrombospondin-1-deficient mice (Thbs1-/-) exhibit a hyperinflammatory response following infection. Whereas IL-36γ neutralization reduces inflammatory cytokine production, limits neutrophil activation, and improves host defense in Thbs1-/- mice, cleaved IL-36γ administration amplifies neutrophilic inflammation in Thbs1-/- mice. Our findings indicate that thrombospondin-1 guards against feed-forward neutrophilic inflammation mediated by IL-36γ in the lung by restraining the extracellular proteolytic environment.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tolani F Olonisakin
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William G Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanyan Qu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jill Zupetic
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Newstead
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Theodore J Standiford
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Sawyer AJ, Garand M, Chaussabel D, Feng CG. Transcriptomic Profiling Identifies Neutrophil-Specific Upregulation of Cystatin F as a Marker of Acute Inflammation in Humans. Front Immunol 2021; 12:634119. [PMID: 33868254 PMCID: PMC8047108 DOI: 10.3389/fimmu.2021.634119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cystatin F encoded by CST7 is a cysteine peptidase inhibitor known to be expressed in natural killer (NK) and CD8+ T cells during steady-state conditions. However, little is known about its expression during inflammatory disease states in humans. We have developed an analytic approach capable of not only identifying previously poorly characterized disease-associated genes but also defining regulatory mechanisms controlling their expression. By exploring multiple cohorts of public transcriptome data comprising 43 individual datasets, we showed that CST7 is upregulated in the blood during a diverse set of infectious and non-infectious inflammatory conditions. Interestingly, this upregulation of CST7 was neutrophil-specific, as its expression was unchanged in NK and CD8+ T cells during sepsis. Further analysis demonstrated that known microbial products or cytokines commonly associated with inflammation failed to increase CST7 expression, suggesting that its expression in neutrophils is induced by an endogenous serum factor commonly present in human inflammatory conditions. Overall, through the identification of CST7 upregulation as a marker of acute inflammation in humans, our study demonstrates the value of publicly available transcriptome data in knowledge generation and potential biomarker discovery.
Collapse
Affiliation(s)
- Andrew J Sawyer
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | | | | | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Kim TK, Tirloni L, Bencosme-Cuevas E, Kim TH, Diedrich JK, Yates JR, Mulenga A. Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 2021; 22:152. [PMID: 33663385 PMCID: PMC7930271 DOI: 10.1186/s12864-021-07429-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease (LD) caused by Borrelia burgdorferi is the most prevalent tick-borne disease. There is evidence that vaccines based on tick proteins that promote tick transmission of B. burgdorferi could prevent LD. As Ixodes scapularis nymph tick bites are responsible for most LD cases, this study sought to identify nymph tick saliva proteins associated with B. burgdorferi transmission using LC-MS/MS. Tick saliva was collected using a non-invasive method of stimulating ticks (uninfected and infected: unfed, and every 12 h during feeding through 72 h, and fully-fed) to salivate into 2% pilocarpine-PBS for protein identification using LC-MS/MS. RESULTS We identified a combined 747 tick saliva proteins of uninfected and B. burgdorferi infected ticks that were classified into 25 functional categories: housekeeping-like (48%), unknown function (18%), protease inhibitors (9%), immune-related (6%), proteases (8%), extracellular matrix (7%), and small categories that account for <5% each. Notably, B. burgdorferi infected ticks secreted high number of saliva proteins (n=645) than uninfected ticks (n=376). Counter-intuitively, antimicrobial peptides, which function to block bacterial infection at tick feeding site were suppressed 23-85 folds in B. burgdorferi infected ticks. Similar to glycolysis enzymes being enhanced in mammalian cells exposed to B. burgdorferi : eight of the 10-glycolysis pathway enzymes were secreted at high abundance by B. burgdorferi infected ticks. Of significance, rabbits exposed to B. burgdorferi infected ticks acquired potent immunity that caused 40-60% mortality of B. burgdorferi infected ticks during the second infestation compared to 15-28% for the uninfected. This might be explained by ELISA data that show that high expression levels of immunogenic proteins in B. burgdorferi infected ticks. CONCLUSION Data here suggest that B. burgdorferi infection modified protein content in tick saliva to promote its survival at the tick feeding site. For instance, enzymes; copper/zinc superoxide dismutase that led to production of H2O2 that is toxic to B. burgdorferi were suppressed, while, catalase and thioredoxin that neutralize H2O2, and pyruvate kinase which yields pyruvate that protects Bb from H2O2 killing were enhanced. We conclude data here is an important resource for discovery of effective antigens for a vaccine to prevent LD.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Department of Diagnostic Medicine and Veterinary Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America.
| |
Collapse
|
16
|
van Leeuwen T, Araman C, Pieper Pournara L, Kampstra ASB, Bakkum T, Marqvorsen MHS, Nascimento CR, Groenewold GJM, van der Wulp W, Camps MGM, Janssen GMC, van Veelen PA, van Westen GJP, Janssen APA, Florea BI, Overkleeft HS, Ossendorp FA, Toes REM, van Kasteren SI. Bioorthogonal protein labelling enables the study of antigen processing of citrullinated and carbamylated auto-antigens. RSC Chem Biol 2021; 2:855-862. [PMID: 34212151 PMCID: PMC8190914 DOI: 10.1039/d1cb00009h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Proteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens. Studying proteolysis is difficult, as the oft-used polypeptide reporters are susceptible to proteolytic sequestration themselves. Here we present a new approach that allows the imaging of antigen proteolysis throughout the processing pathway in an unbiased manner. By incorporating bioorthogonal functionalities into the protein in place of methionines, antigens can be followed during degradation, whilst leaving reactive sidechains open to templated and non-templated post-translational modifications, such as citrullination and carbamylation. Using this approach, we followed and imaged the post-uptake fate of the commonly used antigen ovalbumin, as well as the post-translationally citrullinated and/or carbamylated auto-antigen vinculin in rheumatoid arthritis, revealing differences in antigen processing and presentation.
Collapse
Affiliation(s)
- Tyrza van Leeuwen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Linda Pieper Pournara
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Thomas Bakkum
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Mikkel H S Marqvorsen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Clarissa R Nascimento
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - G J Mirjam Groenewold
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Willemijn van der Wulp
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Marcel G M Camps
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, LACDR, Leiden University Leiden The Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry and the Oncode Institute, Leiden University Leiden The Netherlands
| | - Bogdan I Florea
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Herman S Overkleeft
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Ferry A Ossendorp
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| |
Collapse
|
17
|
Muthiah A, Housley GD, Klugmann M, Fröhlich D. The Leukodystrophies HBSL and LBSL-Correlates and Distinctions. Front Cell Neurosci 2021; 14:626610. [PMID: 33574740 PMCID: PMC7870476 DOI: 10.3389/fncel.2020.626610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) accurately charge tRNAs with their respective amino acids. As such, they are vital for the initiation of cytosolic and mitochondrial protein translation. These enzymes have become increasingly scrutinized in recent years for their role in neurodegenerative disorders caused by the mutations of ARS-encoding genes. This review focuses on two such genes-DARS1 and DARS2-which encode cytosolic and mitochondrial aspartyl-tRNA synthetases, and the clinical conditions associated with mutations of these genes. We also describe attempts made at modeling these conditions in mice, which have both yielded important mechanistic insights. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a disease caused by a range of mutations in the DARS2 gene, initially identified in 2003. Ten years later, hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by mutations of cytosolic DARS1, was discovered. Multiple parallels have been drawn between the two conditions. The Magnetic Resonance Imaging (MRI) patterns are strikingly similar, but still set these two conditions apart from other leukodystrophies. Clinically, both conditions are characterized by lower limb spasticity, often associated with other pyramidal signs. However, perhaps due to earlier detection, a wider range of symptoms, including peripheral neuropathy, as well as visual and hearing changes have been described in LBSL patients. Both HBSL and LBSL are spectrum disorders lacking genotype to phenotype correlation. While the fatal phenotype of Dars1 or Dars2 single gene deletion mouse mutants revealed that the two enzymes lack functional redundancy, further pursuit of disease modeling are required to shed light onto the underlying disease mechanism, and enable examination of experimental treatments, including gene therapies.
Collapse
Affiliation(s)
| | | | | | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
18
|
Murphy AE, Stokesbury MJW, Easy RH. Exploring epidermal mucus protease activity as an indicator of stress in Atlantic sturgeon (Acipenser oxyrinchus oxyrhinchus). JOURNAL OF FISH BIOLOGY 2020; 97:1354-1362. [PMID: 32789856 DOI: 10.1111/jfb.14489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Atlantic sturgeon are anadromous fish that spend much of their life in near-shore environments. They are designated as "threatened" by the Committee on the Status of Endangered Wildlife in Canada and listed by the IUCN as "near threatened." In Canada, Atlantic sturgeon support small commercial fisheries in the Saint John River, New Brunswick, and the St. Lawrence River, Quebec. While occupying the marine environment, the species is susceptible to various anthropogenic stressors, including by-catch in trawl fisheries and through interactions with coastal engineering projects such as tidal power development. Atlantic sturgeon are also susceptible to implantation of acoustic tags used by researchers to study their movement ecology. These stressors can cause physiological and behavioural changes in the fish that can negatively impact their viability. Because the species are commercially important, and are also of conservation concern, it is important to understand stress responses of Atlantic sturgeon to better mitigate the effects of increased industrial activity in the coastal zone. This study used proteomics to identify and characterize protease activity and identify putative novel protein biomarkers in the epidermal mucus of Atlantic sturgeon. Changes in protein profiles in Atlantic sturgeon epidermal mucus as a result of by-catch and surgery stress were investigated using one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry. Proteolytic activity was identified and characterized using inhibition zymography, which provided information on the classes of proteases that are associated with stress. Samples were collected from Atlantic sturgeon on the Minas Basin, Nova Scotia, Canada, after capture by brush weir and otter trawl, and after surgical implantation of a V16-69 kHz VEMCO acoustic tag. Significant proteins found in the epidermal mucus include various inflammatory proteins, with calmodulin and complement 9 found ubiquitously, and more rarely lysosome C, identified in a brush weir capture sample. Serum albumin, a blood plasma protein, was another ubiquitous protein and verifies how the sample collection method provides a picture of the internal systems. Protease activity was dominantly exhibited by matrix metalloproteases and serine proteases in all sample collections, with serine proteases more active in otter trawl captures than in brush weir captures. By identifying potential protein biomarkers of stress, this study is an example of a non-invasive method for measuring stress in Atlantic sturgeon. Understanding the defence mechanism and release of non-specific biomarkers can be used to improve conservation regulations, as well as to contribute to the limited scientific knowledge on the stress response of Atlantic sturgeon.
Collapse
Affiliation(s)
- Anna E Murphy
- Department of Biology, Acadia University, Wolfville, Canada
| | | | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, Canada
| |
Collapse
|
19
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
20
|
Tholen M, Yim JJ, Groborz K, Yoo E, Martin BA, Berg NS, Drag M, Bogyo M. Design of Optical‐Imaging Probes by Screening of Diverse Substrate Libraries Directly in Disease‐Tissue Extracts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martina Tholen
- Department of Pathology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
| | - Joshua J. Yim
- Department of Pathology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
- Department of Chemical and System Biology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| | - Euna Yoo
- Department of Pathology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
- Current address: Chemical Biology Laboratory, Center for Cancer Research National Cancer Institute Frederick MD 20850 USA
| | - Brock A. Martin
- Department of Pathology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
| | - Nynke S. Berg
- Department of Otolaryngology-Head and Neck Surgery Stanford University School of Medicine 900 Blake Wilbur Drive Stanford CA 94305 USA
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
- Department of Chemical and System Biology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
- Microbiology and Immunology Stanford University School of Medicine 300 Pasteur Drive Stanford CA 94305 USA
| |
Collapse
|
21
|
Tholen M, Yim JJ, Groborz K, Yoo E, Martin BA, van den Berg NS, Drag M, Bogyo M. Design of Optical-Imaging Probes by Screening of Diverse Substrate Libraries Directly in Disease-Tissue Extracts. Angew Chem Int Ed Engl 2020; 59:19143-19152. [PMID: 32589815 DOI: 10.1002/anie.202006719] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Fluorescently quenched probes that are specifically activated in the cancer microenvironment have great potential application for diagnosis, early detection, and surgical guidance. These probes are often designed to target specific enzymes associated with diseases by direct optimization using single purified enzymes. However, this can result in painstaking chemistry efforts to produce a probe with suboptimal performance when applied in vivo. We describe here an alternate, unbiased activity-profiling approach in which whole tissue extracts are used to directly identify optimal peptide sequences for probe design. Screening of tumor extracts with a hybrid combinatorial substrate library (HyCoSuL) identified a combination of natural and non-natural amino-acid residues that was used to generate highly efficient tumor-specific probes. This new strategy simplifies and enhances the process of probe optimization without any a priori knowledge of enzyme targets and has the potential to be applied to diverse disease states using clinical or animal-model tissue samples.
Collapse
Affiliation(s)
- Martina Tholen
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Joshua J Yim
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Chemical and System Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Euna Yoo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Current address: Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 20850, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Nynke S van den Berg
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, 900 Blake Wilbur Drive, Stanford, CA, 94305, USA
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Chemical and System Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Michiels TJM, Meiring HD, Jiskoot W, Kersten GFA, Metz B. Formaldehyde treatment of proteins enhances proteolytic degradation by the endo-lysosomal protease cathepsin S. Sci Rep 2020; 10:11535. [PMID: 32665578 PMCID: PMC7360561 DOI: 10.1038/s41598-020-68248-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/17/2020] [Indexed: 11/11/2022] Open
Abstract
Enzymatic degradation of protein antigens by endo-lysosomal proteases in antigen-presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could affect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the effect of the formaldehyde detoxification process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, β-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modification sites were identified by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This effect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efficacy of vaccine products containing formaldehyde-inactivated antigens.
Collapse
Affiliation(s)
- Thomas J M Michiels
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC, Leiden, The Netherlands.,Intravacc, Institute for Translational Vaccinology, 3721 MA, Bilthoven, The Netherlands
| | - Hugo D Meiring
- Intravacc, Institute for Translational Vaccinology, 3721 MA, Bilthoven, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC, Leiden, The Netherlands
| | - Gideon F A Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC, Leiden, The Netherlands.,Intravacc, Institute for Translational Vaccinology, 3721 MA, Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc, Institute for Translational Vaccinology, 3721 MA, Bilthoven, The Netherlands.
| |
Collapse
|
23
|
He SW, Du X, Wang GH, Wang JJ, Xie B, Gu QQ, Zhang M, Gu HJ. Identification and characterization of a cathepsin K homologue that interacts with pathogen bacteria in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:499-507. [PMID: 32001355 DOI: 10.1016/j.fsi.2020.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Cathepsin K belongs to the family of cysteine cathepsins. It is well known that the cysteine cathepsins participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin K is very limited. In the present study, a cathepsin K homologue (SsCTSK) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, are existed in SsCTSK. SsCTSK also possesses a peptidase domain with three catalytically essential residues (Cys25, His162 and Asn183). Phylogenetic profiling indicated that SsCTSK was evolutionally close to the cathepsin K of other teleost fish. Expression of SsCTSK occurred in multiple tissues and was induced by bacterial infection. Purified recombinant SsCTSK (rSsCTSK) exhibited apparent maximal peptidase activity at 45 °C, and its enzymatic activity was remarkably declined in the presence of the cathepsin inhibitor E-64. Moreover, rSsCTSK possesses the ability to bind with PAMPs and bacteria. Finally, knockdown of SsCTSK expression facilitated bacterial invasion in black rockfish. Collectively, these results indicated that SsCTSK functions as a cysteine protease and may serves as a target for pathogen manipulation of host defense system.
Collapse
Affiliation(s)
- Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qin-Qin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Han-Jie Gu
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
24
|
Wang GH, He SW, Du X, Xie B, Gu QQ, Zhang M, Hu YH. Characterization, expression, enzymatic activity, and functional identification of cathepsin S from black rockfish Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2019; 93:623-630. [PMID: 31400512 DOI: 10.1016/j.fsi.2019.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin S belong to the cathepsin L-like family of cysteine cathepsins. It is well known that Cathepsin S participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin S is less investigated. In the present study, a cathepsin S homologue (SsCTSS) from the teleost fish black rockfish (Sebastes schlegelii) were identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, were existed in the cathepsin. SsCTSS possesses a peptidase domain with three catalytically essential residues (Cys25, His162, and Asn183). Phylogenetic profiling indicated that SsCTSS are evolutionally close to the cathepsin S of other teleost fish. The expression of SsCTSS in immune-related tissues was upregulated in a time-dependent manner upon bacterial pathogen infection. Purified recombinant SsCTSS (rSsCTSS) exhibited apparent peptidase activity, which was remarkably declined in the presence of the cathepsin inhibitor E-64. rSsCTSS showed strong binding ability to LPS and PGN, the major constituents of the outer membranes of Gram-negative and Gram-positive bacteria, respectively. rSsCTSS also exhibited the capability of agglutination to different bacteria. The knockdown of SsCTSS attenuated the ability of host to eliminate pathogenic bacteria. Taken together, our results suggested that SsCTSS functions as cysteine protease which might be involved in the antibacterial immunity of black rockfish.
Collapse
Affiliation(s)
- Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qin-Qin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
25
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
26
|
In Vitro Digestion with Proteases Producing MHC Class II Ligands. Methods Mol Biol 2019. [PMID: 31147948 DOI: 10.1007/978-1-4939-9450-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4+ T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen-presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important for example for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of techniques (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands.
Collapse
|
27
|
Li M, Wang J, Huang Q, Li C. Proteomic analysis highlights the immune responses of the hepatopancreas against Hematodinium infection in Portunus trituberculatus. J Proteomics 2019; 197:92-105. [DOI: 10.1016/j.jprot.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
|
28
|
Martínez-Fábregas J, Prescott A, van Kasteren S, Pedrioli DL, McLean I, Moles A, Reinheckel T, Poli V, Watts C. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun 2018; 9:5343. [PMID: 30559339 PMCID: PMC6297226 DOI: 10.1038/s41467-018-07741-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Diverse cellular processes depend on the lysosomal protease system but how cells regulate lysosomal proteolytic capacity is only partly understood. We show here that cells can respond to protease/substrate imbalance in this compartment by de novo expression of multiple lysosomal hydrolases. This response, exemplified here either by loss of asparagine endopeptidase (AEP) or other lysosomal cysteine proteases, or by increased endocytic substrate load, is not dependent on the transcription factor EB (TFEB) but rather is triggered by STAT3 activation downstream of lysosomal oxidative stress. Similar lysosomal adaptations are seen in mice and cells expressing a constitutively active form of STAT3. Our results reveal how cells can increase lysosomal protease capacity under ‘fed’ rather than ‘starved’ conditions that activate the TFEB system. In addition, STAT3 activation due to lysosomal stress likely explains the hyperproliferative kidney disease and splenomegaly observed in AEP-deficient mice. How cells regulate their lysosomal proteolytic capacity is only partly understood. Here, the authors show that lysosomal protease deficiency or substrate overload induces lysosomal stress leading to activation of a STAT3-dependent, TFEB-independent pathway of lysosomal hydrolase expression.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Sander van Kasteren
- Division of Bio-Organic Chemistry, Leiden Institute of Chemistry, Einsteinweg 55, Leiden, 2333CC, Netherlands
| | - Deena Leslie Pedrioli
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurestrasse190, 8057 Zurich, Switzerland
| | - Irwin McLean
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anna Moles
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Biomedical Research of Barcelona, Spanish Research Council, Barcelona, 08036, Spain
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert-Ludwigs-University, Freiburg, D-79104, Germany
| | - Valeria Poli
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Colin Watts
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
29
|
Kos J, Nanut MP, Prunk M, Sabotič J, Dautović E, Jewett A. Cystatin F as a regulator of immune cell cytotoxicity. Cancer Immunol Immunother 2018; 67:1931-1938. [PMID: 29748898 PMCID: PMC11028163 DOI: 10.1007/s00262-018-2165-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.
Collapse
Affiliation(s)
- Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | | | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California-Los Angeles, Los Angeles, USA
| |
Collapse
|
30
|
Pišlar A, Jewett A, Kos J. Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Semin Cancer Biol 2018; 53:168-177. [DOI: 10.1016/j.semcancer.2018.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
|
31
|
Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 2018; 71:233-249. [DOI: 10.1007/s00251-018-1090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
32
|
He S, Johnston PR, Kuropka B, Lokatis S, Weise C, Plarre R, Kunte HJ, McMahon DP. Termite soldiers contribute to social immunity by synthesizing potent oral secretions. INSECT MOLECULAR BIOLOGY 2018; 27:564-576. [PMID: 29663551 DOI: 10.1111/imb.12499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The importance of soldiers to termite society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies.
Collapse
Affiliation(s)
- S He
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - P R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - B Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - S Lokatis
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - R Plarre
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - H-J Kunte
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - D P McMahon
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| |
Collapse
|
33
|
Liang FR, He HS, Zhang CW, Xu XM, Zeng ZP, Yuan JP, Hong YH, Wang JH. Molecular cloning and functional characterization of cathepsin B from Nile tilapia (Oreochromis niloticus). Int J Biol Macromol 2018; 116:71-83. [PMID: 29730007 DOI: 10.1016/j.ijbiomac.2018.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 02/08/2023]
Abstract
Cathepsin B (CatB) has been widely known for its hydrolytic ability and involvement in the innate immunity. However, the mechanism of CatB from teleosts participating in immunoregulation remains poorly understood; and the sequence of CatB from Nile tilapia (NtCatB) has not been cloned and characterized. In this study, the coding sequence of NtCatB was cloned, and then characterized by bioinformatic analysis and heterologous expression. The deduced amino acid sequence (330-aa) of NtCatB contains the representative features of CatB. Quantitative real-time PCR revealed the extensive mRNA expression of NtCatB in six tissues of healthy Nile tilapia, and its transcription level was significantly up-regulated after Streptococcus agalactiae challenge. NtCatB may interact with some immunological function proteins and take part in the regulatory pathway. These results suggest that NtCatB is likely to be involved in the immune reaction. The mature region (residues 79-328, mNtCatB) of NtCatB was cloned and transferred to pET-28a for expressing the recombinant protein. The purified recombinant mNtCatB was verified with the activity of 992.34 U mg-1 min-1 under the optimal condition using a substrate hydrolyzing assay. The recombinant cystatin-A1-like can effectively inhibit the activity of the recombinant mNtCatB, and their binding form was predicted by molecular docking. Our results contribute to elucidating the immunological functions of NtCatB.
Collapse
Affiliation(s)
- Fu-Rui Liang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Hui-Shi He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Chu-Wen Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Xiao-Ming Xu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Zhao-Ping Zeng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Jian-Ping Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China; South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Yue-Hui Hong
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China; South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
34
|
Onming S, Thongda W, Li C, Sawatdichaikul O, McMillan N, Klinbunga S, Peatman E, Poompuang S. Bioinformatics characterization of a cathepsin B transcript from the giant river prawn, Macrobrachium rosenbergii: Homology modeling and expression analysis after Aeromonas hydrophila infection. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:18-28. [PMID: 29649577 DOI: 10.1016/j.cbpb.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cathepsin B is a lysosomal proteolytic enzyme that has been suggested to play a role in pathological processes of immune system. In this study, the full-length cDNA sequence of cathepsin B transcript in the giant river prawn Macrobrachium rosenbergii (MrCTSB) was obtained from 454 pyrosequencing of cDNAs from hepatopancreas and muscle. It was 1158 bp in length, containing an open reading frame (ORF) of 987 bp corresponding to 328 amino acids. The predicted molecular mass and pI of MrCTSB protein was 36.04 kDa and 4.73. The major characteristics of MrCTSB protein consisted of a propeptide of C1 peptidase family at the N-terminus and a cysteine protease (Pept_C1) domain at the C-terminus. The 3-dimentional structure of MrCTSB was constructed by computer-assisted homology modeling. The folding of MrCTSB was highly conserved to human CTSB structure and the modeled MrCTSB displayed characteristics of cysteine proteinases superfamily. The docking study was performed to investigate binding interactions between known inhibitors against MrCTSB. Known inhibitors were oriented in the groove of catalytic site cleft. They bound to subsites from S2, S1, S1', and S2', respectively, with key residues in each subsite. Challenge of juvenile prawns with Aeromonas hydrophila revealed that the MrCTSB transcript in hepatopancreas significantly increased at 60-96 h post injection (hpi). This suggested that MrCTSB may play roles in innate immunity of M. rosenbergii. Our results provide useful information for a more comprehensive study in immune-related functions of MrCTSB.
Collapse
Affiliation(s)
- Saowalak Onming
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Nichanun McMillan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand.
| |
Collapse
|
35
|
Zaitseva LG, Bekhalo VA, Kireeva IV, Shaposhnikova GM, Nagurskaya EV, Barinskii IF, Nesterenko VG. Local and Systemic Functional Responses of Mouse Macrophages to Intravaginal Infection with Type 2 Herpes Simplex Virus and Vaccination. Bull Exp Biol Med 2017; 163:68-72. [DOI: 10.1007/s10517-017-3740-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Indexed: 12/01/2022]
|
36
|
Bischof J, Westhoff MA, Wagner JE, Halatsch ME, Trentmann S, Knippschild U, Wirtz CR, Burster T. Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol 2017; 39:1010428317692227. [PMID: 28347245 DOI: 10.1177/1010428317692227] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One major obstacle in cancer therapy is chemoresistance leading to tumor recurrence and metastasis. Cancer stem cells, in particular glioblastoma stem cells, are highly resistant to chemotherapy, radiation, and immune recognition. In case of immune recognition, several survival mechanisms including, regulation of autophagy, proteases, and cell surface major histocompatibility complex class I molecules, are found in glioblastoma stem cells. In different pathways, cathepsins play a crucial role in processing functional proteins that are necessary for several processes and proper cell function. Consequently, strategies targeting these pathways in glioblastoma stem cells are promising approaches to interfere with tumor cell survival and will be discussed in this review.
Collapse
Affiliation(s)
- Joachim Bischof
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Mike-Andrew Westhoff
- 2 Department Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Johanna Elisabeth Wagner
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Marc-Eric Halatsch
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Stephanie Trentmann
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Uwe Knippschild
- 1 Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Christian Rainer Wirtz
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Timo Burster
- 3 Department of Neurosurgery, Surgery Center, Ulm University Medical Center, Ulm University, Ulm, Germany
| |
Collapse
|
37
|
Schröder B, Saftig P. Intramembrane proteolysis within lysosomes. Ageing Res Rev 2016; 32:51-64. [PMID: 27143694 DOI: 10.1016/j.arr.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid β production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.
Collapse
|
38
|
Valdez HA, Oviedo JM, Gorgojo JP, Lamberti Y, Rodriguez ME. Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis 2016; 74:ftw073. [PMID: 27465637 DOI: 10.1093/femspd/ftw073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/14/2023] Open
Abstract
Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.
Collapse
Affiliation(s)
- Hugo Alberto Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
39
|
Abstract
In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.
Collapse
Affiliation(s)
- Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
40
|
Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A, Puertollano R. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016; 12:1240-58. [PMID: 27171064 DOI: 10.1080/15548627.2016.1179405] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response.
Collapse
Affiliation(s)
- Nunzia Pastore
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital , Houston , TX , USA
| | - Owen A Brady
- c Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - Heba I Diab
- c Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - José A Martina
- c Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - Lu Sun
- c Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| | - Tuong Huynh
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital , Houston , TX , USA
| | - Jeong-A Lim
- d Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Hossein Zare
- d Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Nina Raben
- d Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Andrea Ballabio
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital , Houston , TX , USA.,e Telethon Institute of Genetics and Medicine (TIGEM) , Naples , Italy.,f Medical Genetics, Department of Translational Medicine, Federico II University , Naples , Italy
| | - Rosa Puertollano
- c Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
41
|
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 2016; 473:1405-22. [DOI: 10.1042/bcj20160156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Intramembrane proteolysis of CD74 by SPPL2a is essential for B- and dendritic cells. We show that CD74 is proteolysed in the luminal third of the transmembrane segment and identify determinants within its transmembrane and luminal membrane-proximal domain facilitating this cleavage.
Collapse
|
42
|
Shen K, Sidik H, Talbot WS. The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia. Cell Rep 2016; 14:547-559. [PMID: 26774477 PMCID: PMC4731305 DOI: 10.1016/j.celrep.2015.12.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
Microglia are resident macrophages of the CNS that are essential for phagocytosis of apoptotic neurons and weak synapses during development. We show that RagA and Lamtor4, two components of the Rag-Ragulator complex, are essential regulators of lysosomes in microglia. In zebrafish lacking RagA function, microglia exhibit an expanded lysosomal compartment, but they are unable to properly digest apoptotic neuronal debris. Previous biochemical studies have placed the Rag-Ragulator complex upstream of mTORC1 activation in response to cellular nutrient availability. Nonetheless, RagA and mTOR mutant zebrafish have distinct phenotypes, indicating that the Rag-Ragulator complex has functions independent of mTOR signaling. Our analysis reveals an essential role of the Rag-Ragulator complex in proper lysosome function and phagocytic flux in microglia.
Collapse
Affiliation(s)
- Kimberle Shen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harwin Sidik
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Stubljar D, Skvarc M. Helicobacter pylori vs immune system or antibiotics. World J Immunol 2015; 5:142-151. [DOI: 10.5411/wji.v5.i3.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection has often no clinical signs and is one of the most common bacterial infections. All infected subjects have histology of active chronic gastritis. In some cases patients develop peptic ulcer and minority of them develop gastric cancer. Gastric cancer is multifactorial disease, thus various progressions of H. pylori infection and disease are dependent on the host genetic factors, the characteristics of the individual’s immune response, environmental factors, and different bacterial virulence factors of the individual bacterial strains. Eradication of the bacteria plays a crucial role in the treatment of these cases however antibiotic therapy does not always help. Bacteria often develop resistance to antibiotics so we recommend that not only screening for H. pylori also the strain determination should have some diagnostic value, especially in the patients who already developed gastritis. Furthermore, for such patients assessment of disease progression (atrophic or metaplastic gastritis) could be followed by polymorphism determination. Until now we cannot predict the disease based only on single polymorphism. Bacteria successfully neutralize the responses of the immune systems using different enzymes or even components of the host immune response. However, the influence of immune system and its components could represent new ways of treatments and could help to eradicate the infection.
Collapse
|
44
|
Riquelme SA, Pogu J, Anegon I, Bueno SM, Kalergis AM. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol 2015; 45:3269-88. [DOI: 10.1002/eji.201545671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/18/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Sebastián A. Riquelme
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Julien Pogu
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Ignacio Anegon
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
- Departamento de Inmunología Clínica y Reumatología; Facultad de Medicina, Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
45
|
Transcriptome Analysis of the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval, 1867) (Acari: Tetranychidae), and Its Response to β-Sitosterol. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794718. [PMID: 26078964 PMCID: PMC4442410 DOI: 10.1155/2015/794718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/12/2015] [Indexed: 11/17/2022]
Abstract
Tetranychus cinnabarinus (Acari: Tetranychidae) is a worldwide polyphagous agricultural pest that has the title of resistance champion among arthropods. We reported previously the identification of the acaricidal compound β-sitosterol from Mentha piperita and Inula japonica. However, the acaricidal mechanism of β-sitosterol is unclear. Due to the limited genetic research carried out, we de novo assembled the transcriptome of T. cinnabarinus using Illumina sequencing and conducted a differential expression analysis of control and β-sitosterol-treated mites. In total, we obtained >5.4 G high-quality bases for each sample with unprecedented sequencing depth and assembled them into 22,941 unigenes. We identified 617 xenobiotic metabolism-related genes involved in detoxification, binding, and transporting of xenobiotics. A highly expanded xenobiotic metabolic system was found in mites. T. cinnabarinus detoxification genes-including carboxyl/cholinesterase and ABC transporter class C-were upregulated after β-sitosterol treatment. Defense-related proteins, such as Toll-like receptor, legumain, and serine proteases, were also activated. Furthermore, other important genes-such as the chloride channel protein, cytochrome b, carboxypeptidase, peritrophic membrane chitin binding protein, and calphostin-may also play important roles in mites' response to β-sitosterol. Our results demonstrate that high-throughput-omics tool facilitates identification of xenobiotic metabolism-related genes and illustration of the acaricidal mechanisms of β-sitosterol.
Collapse
|
46
|
Cathepsin Gene Family Reveals Transcriptome Patterns Related to the Infective Stages of the Salmon Louse Caligus rogercresseyi. PLoS One 2015; 10:e0123954. [PMID: 25923525 PMCID: PMC4414500 DOI: 10.1371/journal.pone.0123954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/09/2015] [Indexed: 01/03/2023] Open
Abstract
Cathepsins are proteases involved in the ability of parasites to overcome and/or modulate host defenses so as to complete their own lifecycle. However, the mechanisms underlying this ability of cathepsins are still poorly understood. One excellent model for identifying and exploring the molecular functions of cathepsins is the marine ectoparasitic copepod Caligus rogercresseyi that currently affects the Chilean salmon industry. Using high-throughput transcriptome sequencing, 56 cathepsin-like sequences were found distributed in five cysteine protease groups (B, F, L, Z, and S) as well as in an aspartic protease group (D). Ontogenic transcriptome analysis evidenced that L cathepsins were the most abundant during the lifecycle, while cathepsins B and K were mostly expressed in the larval stages and adult females, thus suggesting participation in the molting processes and embryonic development, respectively. Interestingly, a variety of cathepsins from groups Z, L, D, B, K, and S were upregulated in the infective stage of copepodid, corroborating the complexity of the processes involved in the parasitic success of this copepod. Putative functional roles of cathepsins were conjectured based on the differential expressions found and on roles previously described in other phylogenetically related species. Moreover, 140 single nucleotide polymorphisms (SNP) were identified in transcripts annotated for cysteine and aspartic proteases located into untranslated regions, or the coding region. This study reports for the first time the presence of cathepsin-like genes and differential expressions throughout a copepod lifecycle. The identification of cathepsins together with functional validations represents a valuable strategy for pinpointing target molecules that could be used in the development of new delousing drugs or vaccines against C. rogercresseyi.
Collapse
|
47
|
Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, Bracho-Sanchez E, Chu D, Su H, Zhang SC, Le Gall S. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 2015; 11:e1004725. [PMID: 25781895 PMCID: PMC4364612 DOI: 10.1371/journal.ppat.1004725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. Pathogens such as HIV can enter cells by fusion at the plasma membrane for delivery in the cytosol, or by internalization in endolysosomal vesicles. Pathogens can be degraded in these various compartments into peptides (epitopes) displayed at the cell surface by MHC-I. The presentation of pathogen-derived peptides triggers the activation of T cell immune responses and the clearance of infected cells. How the diversity of compartments in which HIV traffics combined with the diversity of HIV sequences affects the degradation of HIV and the recognition of infected cells by immune cells is not understood. We compared the degradation of HIV proteins in subcellular compartments of dendritic cells and macrophages, two cell types targeted by HIV and the subsequent presentation of epitopes to T cells. We show variable degradation patterns of HIV according to compartments, and the preferential production and superior intracellular stability of immunodominant epitopes corresponding to stronger T cell responses. Frequent mutations in immunodominant epitopes during acute infection resulted in decreased production and intracellular stability of these epitopes. Together these results demonstrate the importance of protein degradation patterns in shaping immunodominant epitopes and the contribution of impaired epitope production in all cellular compartments to immune escape during HIV infection.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicole Y. Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Matthew J. Berberich
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Duong Chu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hang Su
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kilpatrick BS, Eden ER, Hockey LN, Futter CE, Patel S. Methods for monitoring lysosomal morphology. Methods Cell Biol 2015; 126:1-19. [PMID: 25665438 DOI: 10.1016/bs.mcb.2014.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomes are abundant organelles best known for their crucial role in macromolecule turnover. Lysosome dysfunction features in several diseases exemplified by the lysosomal storage disorders and is often associated with marked changes in lysosome structure. Lysosomal morphology may therefore serve as a sensitive readout of endocytic well-being. Here we describe methods for monitoring lysosome morphology in fixed and live cells using fluorescent probes and electron microscopy.
Collapse
Affiliation(s)
- Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Emily R Eden
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Leanne N Hockey
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Clare E Futter
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
49
|
Che R, Wang R, Xu T. Comparative genomic of the teleost cathepsin B and H and involvement in bacterial induced immunity of miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2014; 41:163-171. [PMID: 25181651 DOI: 10.1016/j.fsi.2014.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
Cathepsins are a family of lysosomal proteases play different roles at physiological and pathological states and present in almost all animals as well as other organisms. Cathepsins B and H are both cysteine proteases of cathepsins. Cathepsin B and H have been studied playing parts in protein degradation/turnover, antigen presentation/processing and hormone maturation in mammals. However, little is known about the structures and functions of cathepsin B and H in teleosts. In the present study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) cathepsin B and H genes. The sequence analysis results showed that both cathepsin B and H contain the characteristics of papain family with a signal peptide, propeptide and mature peptide regions. The comparison of the genomic organizations and locations indicated the conserved synteny and mild evolution in the cathepsin B and H genes adjacent regions. In addition, the gene synteny analysis showed that miiuy croaker cathepsin B has a closer relationship to stickleback and fugu than to cave fish and zebrafish, and cathepsin H was most similar with the 2 subtype in tilapia and fugu. By phylogenetic analysis, miiuy croaker cathepsin B and H were all assigned to cysteine proteases, and with a close relationship to Salmo salar cathepsin B and Oplegnathus fasciatus cathepsin H, respectively. Quantitative real-time RT-PCR analysis results confirmed that cathepsin B and H genes expressed ubiquitously in all tested healthy tissues from miiuy croaker. Furthermore, up-regulated expression of the cathepsin B and H transcripts in liver, spleen and kidney after exposure upon Vibrio anguillarum suggested that they may play important roles in innate immune response and antigen processing of miiuy croaker.
Collapse
Affiliation(s)
- Rongbo Che
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
50
|
Kim S, Becker J, Bechheim M, Kaiser V, Noursadeghi M, Fricker N, Beier E, Klaschik S, Boor P, Hess T, Hofmann A, Holdenrieder S, Wendland JR, Fröhlich H, Hartmann G, Nöthen MM, Müller-Myhsok B, Pütz B, Hornung V, Schumacher J. Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nat Commun 2014; 5:5236. [PMID: 25327457 DOI: 10.1038/ncomms6236] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in innate immunity. Apart from their function in host defense, dysregulation in TLR signalling can confer risk to autoimmune diseases, septic shock or cancer. Here we report genetic variants and transcripts that are active only during TLR signalling and contribute to interindividual differences in immune response. Comparing unstimulated versus TLR4-stimulated monocytes reveals 1,471 expression quantitative trait loci (eQTLs) that are unique to TLR4 stimulation. Among these we find functional SNPs for the expression of NEU4, CCL14, CBX3 and IRF5 on TLR4 activation. Furthermore, we show that SNPs conferring risk to primary biliary cirrhosis (PBC), inflammatory bowel disease (IBD) and celiac disease are immune response eQTLs for PDGFB and IL18R1. Thus, PDGFB and IL18R1 represent plausible candidates for studying the pathophysiology of these disorders in the context of TLR4 activation. In summary, this study presents novel insights into the genetic basis of the innate immune response and exemplifies the value of eQTL studies in the context of exogenous cell stimulation.
Collapse
Affiliation(s)
- Sarah Kim
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany [3] Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Jessica Becker
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Matthias Bechheim
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Vera Kaiser
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nadine Fricker
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Esther Beier
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Sven Klaschik
- Department for Anesthesiology and Intensive Care Medicine, University of Bonn, Bonn 53127, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Clinic of RWTH Aachen, Aachen 52074, Germany
| | - Timo Hess
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Andrea Hofmann
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Stefan Holdenrieder
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Jens R Wendland
- Worldwide R&D, Pfizer Inc., Cambridge, Massachusetts 02139, USA
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (B-IT), University of Bonn, Bonn 53113, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Markus M Nöthen
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Bertram Müller-Myhsok
- 1] Statistical Genetics, Max Planck Institute of Psychiatry, Munich 80804, Germany [2] Munich Cluster for Systems Neurology (SyNergy), Munich 80804, Germany [3] Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GL, UK
| | - Benno Pütz
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Johannes Schumacher
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| |
Collapse
|