1
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
3
|
Henkel R. Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility. J Clin Med 2024; 13:2841. [PMID: 38792382 PMCID: PMC11122306 DOI: 10.3390/jcm13102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the "gold standard", while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including "silent" infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility.
Collapse
Affiliation(s)
- Ralf Henkel
- LogixX Pharma Ltd., Merlin House, Brunel Road, Theale, Reading RG7 4AB, UK;
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
4
|
Jia L, Gong Y, Jiang X, Fan X, Ji Z, Ma T, Li R, Liu F. Ginkgolide C inhibits ROS-mediated activation of NLRP3 inflammasome in chondrocytes to ameliorate osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117887. [PMID: 38346525 DOI: 10.1016/j.jep.2024.117887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba, as the most widely available medicinal plant worldwide, has been frequently utilized for treat cardiovascular, cerebrovascular, diabetic and other diseases. Due to its distinct pharmacological effects, it has been broadly applications in pharmaceuticals, health products, dietary supplements, and so on. Ginkgolide C (GC), a prominent extract of Ginkgo biloba, possesses potential in anti-inflammatory and anti-oxidant efficacy. AIMS OF THE STUDY To determine whether GC mitigated the progressive degeneration of articular cartilage in a Monosodium Iodoacetate (MIA)-induced osteoarthritis (OA) rat model by inhibiting the activation of the NLRP3 inflammasome, and the specific underlying mechanisms. MATERIALS AND METHODS In vivo, an OA rat model was established by intra-articular injection of MIA. The protective effect of GC (10 mg/kg) on articular cartilage was evaluated. Application of ATDC5 cells to elucidate the mechanism of the protective effect of GC on articular cartilage. Specifically, the expression levels of molecules associated with cartilage ECM degrading enzymes, OS, ERS, and NLRP3 inflammasome activation were analyzed. RESULTS In vivo, GC ameliorated MIA-induced OA rat joint pain, and exhibited remarkable anti-inflammatory and anti- ECM degradation effects via inhibition of the activation of NLRP3 inflammasome, the release of inflammatory factors, and the expression of matrix-degrading enzymes in cartilage. Mechanically, GC inhibited the activation of NLRP3 inflammasome by restraining ROS-mediated p-IRE1α and activating Nrf2/NQO1 signal path, thereby alleviating OA. The ROS scavenger NAC was as effective as GC in reducing ROS production and inhibiting the activation of NLRP3 inflammasome. CONCLUSIONS GC have exerted chondroprotective effects by inhibiting the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Yingchao Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Xinru Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Xianan Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Zhenghua Ji
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China
| | - Fangping Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Alabarse PG, Oliveira P, Qin H, Yan T, Migaud M, Terkeltaub R, Liu-Bryan R. The NADase CD38 is a central regulator in gouty inflammation and a novel druggable therapeutic target. Inflamm Res 2024; 73:739-751. [PMID: 38493256 PMCID: PMC11058052 DOI: 10.1007/s00011-024-01863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVES Cellular NAD+ declines in inflammatory states associated with increased activity of the leukocyte-expressed NADase CD38. In this study, we tested the potential role of therapeutically targeting CD38 and NAD+ in gout. METHODS We studied cultured mouse wild type and CD38 knockout (KO) murine bone marrow derived macrophages (BMDMs) stimulated by monosodium urate (MSU) crystals and used the air pouch gouty inflammation model. RESULTS MSU crystals induced CD38 in BMDMs in vitro, associated with NAD+ depletion, and IL-1β and CXCL1 release, effects reversed by pharmacologic CD38 inhibitors (apigenin, 78c). Mouse air pouch inflammatory responses to MSU crystals were blunted by CD38 KO and apigenin. Pharmacologic CD38 inhibition suppressed MSU crystal-induced NLRP3 inflammasome activation and increased anti-inflammatory SIRT3-SOD2 activity in macrophages. BMDM RNA-seq analysis of differentially expressed genes (DEGs) revealed CD38 to control multiple MSU crystal-modulated inflammation pathways. Top DEGs included the circadian rhythm modulator GRP176, and the metalloreductase STEAP4 that mediates iron homeostasis, and promotes oxidative stress and NF-κB activation when it is overexpressed. CONCLUSIONS CD38 and NAD+ depletion are druggable targets controlling the MSU crystal- induced inflammation program. Targeting CD38 and NAD+ are potentially novel selective molecular approaches to limit gouty arthritis.
Collapse
Affiliation(s)
- Paulo Gil Alabarse
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Patricia Oliveira
- University of California San Diego, La Jolla, San Diego, CA, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, La Jolla, San Diego, CA, USA
| | - Huaping Qin
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tiffany Yan
- University of California San Diego, La Jolla, San Diego, CA, USA
- Gritstone Bio, Emeryville, CA, USA
| | - Marie Migaud
- Department of Pharmacology, F. Whiddon College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- University of California San Diego, La Jolla, San Diego, CA, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
- University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
6
|
Queiroz MIC, Lazaro CM, Dos Santos LMB, Rentz T, Virgilio-da-Silva JV, Moraes-Vieira PMM, Cunha FAS, Santos JCC, Vercesi AE, Leite ACR, Oliveira HCF. In vivo chronic exposure to inorganic mercury worsens hypercholesterolemia, oxidative stress and atherosclerosis in the LDL receptor knockout mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116254. [PMID: 38547729 DOI: 10.1016/j.ecoenv.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.
Collapse
Affiliation(s)
- Maiara I C Queiroz
- Institute of Chemistry and Biotecnology, Federal University do Alagoas (UFAL), AL, Brazil
| | - Carolina M Lazaro
- Dept of Structural and Functional Biology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil
| | - Lohanna M B Dos Santos
- Dept of Structural and Functional Biology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil
| | - Thiago Rentz
- Dept of Structural and Functional Biology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil
| | - João V Virgilio-da-Silva
- Dept Genetics and Evolution, Microbiology and Immunology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil
| | - Pedro M M Moraes-Vieira
- Dept Genetics and Evolution, Microbiology and Immunology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil
| | - Francisco A S Cunha
- Institute of Chemistry and Biotecnology, Federal University do Alagoas (UFAL), AL, Brazil; Institute of Chemistry, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Josué C C Santos
- Institute of Chemistry and Biotecnology, Federal University do Alagoas (UFAL), AL, Brazil
| | - Anibal E Vercesi
- Dept of Pathology, Faculty of Medical Sciences, State University of Campinas (Unicamp), SP, Brazil
| | - Ana Catarina R Leite
- Institute of Chemistry and Biotecnology, Federal University do Alagoas (UFAL), AL, Brazil.
| | - Helena C F Oliveira
- Dept of Structural and Functional Biology, Biology Institute, State University of Campinas (Unicamp), SP, Brazil.
| |
Collapse
|
7
|
Charles DA, Prince SE. Deciphering the molecular mechanism of NLRP3 in BPA-mediated toxicity: Implications for targeted therapies. Heliyon 2024; 10:e28917. [PMID: 38596095 PMCID: PMC11002687 DOI: 10.1016/j.heliyon.2024.e28917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Bisphenol-A (BPA), a pervasive industrial chemical used in polymer synthesis, is found in numerous consumer products including food packaging, medical devices, and resins. Detectable in a majority of the global population, BPA exposure occurs via ingestion, inhalation, and dermal routes. Extensive research has demonstrated the adverse health effects of BPA, particularly its disruption of immune and endocrine systems, along with genotoxic potential. This review focuses on the complex relationship between BPA exposure and the NOD-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex central to inflammatory disease processes. We examine how BPA induces oxidative stress through the generation of intracellular free radicals, subsequently activating NLRP3 signaling. The mechanistic details of this process are explored, including the involvement of signaling cascades such as PI3K/AKT, JAK/STAT, AMPK/mTOR, and ERK/MAPK, which are implicated in NLRP3 inflammasome activation. A key focus of this review is the wide-ranging organ toxicities associated with BPA exposure, including hepatic, renal, gastrointestinal, and cardiovascular dysfunction. We investigate the immunopathogenesis and molecular pathways driving these injuries, highlighting the interplay among BPA, oxidative stress, and the NLRP3 inflammasome. Finally, this review explores the emerging concept of targeting NLRP3 as a potential therapeutic strategy to mitigate the organ toxicities stemming from BPA exposure. This work integrates current knowledge, emphasizes complex molecular mechanisms, and promotes further research into NLRP3-targeted interventions.
Collapse
Affiliation(s)
- Doveit Antony Charles
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Kim MJ, Oh CJ, Hong CW, Jeon JH. Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:61-73. [PMID: 38351610 DOI: 10.12701/jyms.2023.01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 05/08/2024]
Abstract
Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| |
Collapse
|
9
|
Ghasempouri SK, Askari Z, Mohammadi H. Ameliorative effect of diazepam against ethanol-induced mitochondrial disruption in brains of the mice. Toxicol Rep 2023; 11:405-412. [PMID: 37955036 PMCID: PMC10632119 DOI: 10.1016/j.toxrep.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Brain oxidative damage and neurodegeneration by ethanol (ETH) are considered as important factors that triggered by oxidative stress. Recently, the abuse of diazepam (DZM) has increased by alcoholism-addicted patients. The present study evaluated the effects of combination treatment of ETH with DZM on oxidative damage induced in brain mitochondria of the mice. Only ETH (0.3, 0.6, and 2.5 g / kg) and ETH+ DZM (2.5 mg / kg) were administered intraperitoneally (ip) to the mice. Pathological changes and oxidative stress biomarkers including ROS, lipid peroxidation, carbonyl protein, mitochondrial function, and glutathione content were evaluated in brain mitochondria after 42 days. Results indicated that co-treatment of DZM and ETH significantly reduced mitochondrial toxicity, oxidative damage, pathological changes and increased level of glutathione. Subchronic ETH administration induced brain oxidative damage, mitochondrial disruption, and serious damage to the brain cells. Whereas, combination treatment improved oxidative damage, mitochondrial function, and pathological changes in brain cells after intoxication by ETH. These findings suggest antioxidant effect of DZM in combination with ETH and can be considered in reducing oxidative stress and mitochondrial damage attenuation in the brain. Combination therapy may be a better therapeutic candidate for prevention of brain oxidative damage induced by ETH.
Collapse
Affiliation(s)
- Seyed Khosro Ghasempouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Askari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Blagov AV, Summerhill VI, Sukhorukov VN, Popov MA, Grechko AV, Orekhov AN. Type 1 diabetes mellitus: Inflammation, mitophagy, and mitochondrial function. Mitochondrion 2023; 72:11-21. [PMID: 37453498 DOI: 10.1016/j.mito.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease characterized by the damage of insulin-secreting β-cells in the pancreatic islets of Langerhans. To date, its etiology is not fully understood, despite decades of active search for root causes, and that underlines the complexity of the disease pathogenesis. It was found that mitophagy plays a regulatory role in the development of autoimmune response during T1DM pathogenesis by preventing the accumulation of defective/dysfunctional mitochondria in pancreatic cells. Mitochondrial dysfunction due to impaired mitophagy with the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) contributes to initiating an inflammatory response by elevating pro-inflammatory cytokines and interacting with receptors like those involved in the pathogen-associated response. Moreover, mtROS and mtDNA activate pathways leading to the development of chronic inflammation, which is tightly implicated in T1DM autoimmunity. In this review, we summarized the evidence highlighting the functional role of mitophagy and mitochondria in the development of immune response and chronic inflammation during T1DM pathogenesis. Several anti-inflammatory and mitophagy-related treatment options have been explored.
Collapse
Affiliation(s)
- Alexander V Blagov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia.
| | - Volha I Summerhill
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin Street, Moscow 129110, Russia.
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3, Solyanka Street, Moscow 109240, Russia.
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| |
Collapse
|
11
|
Fini MA, Monks JA, Li M, Gerasimovskaya E, Paucek P, Wang K, Frid MG, Pugliese SC, Bratton D, Yu YR, Irwin D, Karin M, Wright RM, Stenmark KR. Macrophage Xanthine Oxidoreductase Links LPS Induced Lung Inflammatory Injury to NLRP3 Inflammasome Expression and Mitochondrial Respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550055. [PMID: 37502951 PMCID: PMC10370167 DOI: 10.1101/2023.07.21.550055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.
Collapse
|
12
|
Gumpp AM, Behnke A, Ramo-Fernández L, Radermacher P, Gündel H, Ziegenhain U, Karabatsiakis A, Kolassa IT. Investigating mitochondrial bioenergetics in peripheral blood mononuclear cells of women with childhood maltreatment from post-parturition period to one-year follow-up. Psychol Med 2023; 53:3793-3804. [PMID: 35311632 PMCID: PMC10317795 DOI: 10.1017/s0033291722000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Childhood maltreatment (CM) exerts various long-lasting psychological and biological changes in affected individuals, with inflammation being an interconnecting element. Besides chronic low-grade inflammation, CM might also affect the energy production of cells by altering the function and density of mitochondria, i.e. the body's main energy suppliers. Here, we compared mitochondrial respiration and density in intact peripheral blood mononuclear cells (PBMC), from women with and without CM between two time points, i.e. at the highly inflammatory phase within 1 week after parturition (t0) and again after 1 year (t2). METHODS CM exposure was assessed with the Childhood Trauma Questionnaire. Whole blood was collected from n = 52 healthy women within the study 'My Childhood - Your Childhood' at both time points to isolate and cryopreserve PBMC. Thawed PBMC were used to measure mitochondrial respiration and density by high-resolution respirometry followed by spectrophotometric analyses of citrate-synthase activity. RESULTS Over time, quantitative respiratory parameters increased, while qualitative flux control ratios decreased, independently of CM. Women with CM showed higher mitochondrial respiration and density at t0, but not at t2. We found significant CM group × time interaction effects for ATP-turnover-related respiration and mitochondrial density. CONCLUSIONS This is the first study to longitudinally investigate mitochondrial bioenergetics in postpartum women with and without CM. Our results indicate that CM-related mitochondrial alterations reflect allostatic load, probably due to higher inflammatory states during parturition, which normalize later. However, later inflammatory states might moderate the vulnerability for a second-hit on the level of mitochondrial bioenergetics, at least in immune cells.
Collapse
Affiliation(s)
- Anja M. Gumpp
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Behnke
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Laura Ramo-Fernández
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Harald Gündel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Ute Ziegenhain
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Ulm, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Clinical Psychology, Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
13
|
Miallot R, Millet V, Groult Y, Modelska A, Crescence L, Roulland S, Henri S, Malissen B, Brouilly N, Panicot-Dubois L, Vincentelli R, Sulzenbacher G, Finetti P, Dutour A, Blay JY, Bertucci F, Galland F, Naquet P. An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Sci Alliance 2023; 6:e202201767. [PMID: 37024121 PMCID: PMC10078952 DOI: 10.26508/lsa.202201767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Collapse
Affiliation(s)
- Richard Miallot
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Virginie Millet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yann Groult
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Angelika Modelska
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Sandrine Roulland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sandrine Henri
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Renaud Vincentelli
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Aurélie Dutour
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
| | - Jean-Yves Blay
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
- Department of Medicine, Centre Léon Bérard, UNICANCER & University Lyon I, Lyon, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Franck Galland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Naquet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
14
|
Kumar D, Shandilya AK, Srivastava S. The journey of F1000Research since inception: through bibliometric analysis. F1000Res 2023; 12:516. [PMID: 37274828 PMCID: PMC10238821 DOI: 10.12688/f1000research.134244.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Bibliometric analysis is an approach adopted by researchers to understand the various analytics such as year-wise publications, their citations, most impactful authors and their contributions, identification of emerging keywords, multiple themes (niche, motor, basic, and emerging or declining) etc. F1000Research is one of the Q1 category journals that publishes articles in various domains, but a detailed journal analysis is yet to be done. Methods: This study is an effort to extract the F1000Research journey information through bibliometric analysis using VOS-viewer and Biblioshiny (R-studio) interface. The F1000Research journal started its journey in 2012; since then, 5767 articles have been published until the end of 2022. Most of the published articles are from medical science, covering Biochemistry, Genetics & Molecular Biology, Immunology & Pharmacology, Toxicology & Pharmaceutics. To understand the research journey, various analyses such as publication & citation trends, leading authors, institutions, countries, most frequent keywords, bibliographic coupling between authors, countries and documents, emerging research themes, and trending keywords were performed. Results: The United States is the biggest contributor, and COVID-19 is the most commonly occurred keyword. Conclusions: The present study may help future researchers to understand the emerging medical science domain. It will also help the editors and journal to focus more on developing or emerging areas and to understand their importance towards society. Future researchers can contribute their quality research studies, focusing on emerging themes. These authors' research can guide future researchers to develop their research area around the most impacted articles. They can collaborate with them to bring that emerging theme forward.
Collapse
Affiliation(s)
- Dilip Kumar
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhinav Kumar Shandilya
- Department of Hotel Management and Catering Technology, Birla Institute of Technology, Ranchi, Jharkhand, 835215, India
| | - Sandeep Srivastava
- Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
15
|
Liu L, Feng L, Gao J, Hu J, Li A, Zhu Y, Zhang C, Qiu B, Shen Z. Parthenolide targets NLRP3 to treat inflammasome-related diseases. Int Immunopharmacol 2023; 119:110229. [PMID: 37167640 DOI: 10.1016/j.intimp.2023.110229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Natural products have attracted extensive attention from researchers in medical fields due to their abundant biological activities. Parthenolide (PTL) is a sesquiterpene lactone originally purified from herb Feverfew (Tanacetum parthenium), recent studies have showed its potential activities of anti-cancer and anti-inflammatory. Acting as the most studied inflammasome, NLRP3 inflammasome played an important role in human diseases including type-2 diabetes (T2D), Alzheimer's disease (AD) and cryopyrin-associated periodic syndromes (CAPS). In this article, we show that PTL specially inhibits the activation of NLRP3 inflammation by block the upstream signal and prevent the assembly of NLRP3 inflammasome complex. Furthermore, we showed the treatment of PTL significantly attenuates the symptoms of lipopolysaccharide (LPS)-induced systemic inflammation and dextran sulfate sodium (DSS)-induced colitis in mice models. Thus, our results demonstrate that PTL alleviates inflammation by targeting NLRP3 inflammasome, which indicate that PTL acting as a promising natural product for the treatment of NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Liu Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Linxiang Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jiahui Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jie Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ang Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yangyang Zhu
- School of Medicine & Institute for Life Sciences, South China University of Technology, Guangzhou 510006, China
| | - Changlong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230026, China
| | - Zuojun Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
16
|
Long COVID and Mitochondrial Dysfunction. Holist Nurs Pract 2023; 37:51-53. [PMID: 36378091 DOI: 10.1097/hnp.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Pironti G, Gastaldello S, Rassier DE, Lanner JT, Carlström M, Lund LH, Westerblad H, Yamada T, Andersson DC. Citrullination is linked to reduced Ca 2+ sensitivity in hearts of a murine model of rheumatoid arthritis. Acta Physiol (Oxf) 2022; 236:e13869. [PMID: 36002394 PMCID: PMC9788013 DOI: 10.1111/apha.13869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/29/2023]
Abstract
AIMS Cardiac contractile dysfunction is prevalent in rheumatoid arthritis (RA), with an increased risk for heart failure. A hallmark of RA has increased levels of peptidyl arginine deaminases (PAD) that convert arginine to citrulline leading to ubiquitous citrullination, including in the heart. We aimed to investigate whether PAD-dependent citrullination in the heart was linked to contractile function in a mouse model of RA during the acute inflammatory phase. METHODS We used hearts from the collagen-induced arthritis (CIA) mice, with overt arthritis, and control mice to analyze cardiomyocyte Ca2+ handling and fractional shortening, the force-Ca2+ relationship in isolated myofibrils, the levels of PAD, protein post-translational modifications, and Ca2+ handling protein. Then, we used an in vitro model to investigate the role of TNF-α in the PAD-mediated citrullination of proteins in cardiomyocytes. RESULTS Cardiomyocytes from CIA mice displayed larger Ca2+ transients than controls, whereas cell shortening was similar in the two groups. Myofibrils from CIA hearts required higher [Ca2+ ] to reach 50% of maximum shortening, ie Ca2+ sensitivity was lower. This was associated with increased PAD2 expression and α-actin citrullination. TNF-α increased PAD-mediated citrullination which was blocked by pre-treatment with the PAD inhibitor 2-chloroacetamide. CONCLUSION Using a mouse RA model we found evidence of impaired cardiac contractile function linked to reduced Ca2+ sensitivity, increased expression of PAD2, and citrullination of α-actin, which was triggered by TNF-α. This provides molecular and physiological evidence for acquired cardiomyopathy and a potential mechanism for RA-associated heart failure.
Collapse
Affiliation(s)
- Gianluigi Pironti
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Department of Medicine, Cardiology Research UnitKarolinska InstitutetStockholmSweden
| | - Stefano Gastaldello
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealCanada
| | - Johanna T. Lanner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Mattias Carlström
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Lars H. Lund
- Department of Medicine, Cardiology Research UnitKarolinska InstitutetStockholmSweden,Heart, Vascular and Neurology Theme, Cardiology UnitKarolinska University HospitalStockholmSweden
| | - Håkan Westerblad
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Takashi Yamada
- School of Health Sciences, Sapporo Medical UniversitySapporoJapan
| | - Daniel C. Andersson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Heart, Vascular and Neurology Theme, Cardiology UnitKarolinska University HospitalStockholmSweden
| |
Collapse
|
18
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
19
|
Khot M, Sood A, Tryphena KP, Khan S, Srivastava S, Singh SB, Khatri DK. NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in Parkinson's disease. Eur J Pharmacol 2022; 934:175300. [PMID: 36167151 DOI: 10.1016/j.ejphar.2022.175300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition for which no approved treatment exists to prevent collective neuronal death. There is ample evidence that mitochondrial dysfunction, reactive oxygen species (ROS), and associated caspase activity underlie the pathology observed. Neurons rely on mitochondrial activity since they have such high energy consumption. Therefore, it is not surprising that mitochondrial alterations favour neuronal degeneration. In particular, mitochondrial dysregulation contributes to PD, based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Also, it is known that inflammatory cytokine-mediated neuroinflammation is the key pathogenic mechanism in neuronal loss. In recent years, the research has focussed on mitochondria being the platform for nucleotide-binding oligomerization domain-like receptors 3 (NLRP3) inflammasome activation. Mitochondrial dysfunction and NLRP3 activation are emerging as critical players in inducing and sustaining neuroinflammation. Moreover, mitochondrial-derived ROS and mitochondrial DNA (mtDNA) could serve as the priming signal for forming inflammasome complexes responsible for the activation, maturation, and release of pro-inflammatory cytokines, including interleukin-1(IL-1) and interleukin-18 (IL-18). The current review takes a more comprehensive approach to elucidating the link between mitochondrial dysfunction and aberrant NLRP3 activation in PD. In addition, we focus on some inhibitors of NLRP3 inflammatory pathways to alleviate the progression of PD.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
20
|
Novel Role of CETP in Macrophages: Reduction of Mitochondrial Oxidants Production and Modulation of Cell Immune-Metabolic Profile. Antioxidants (Basel) 2022; 11:antiox11091734. [PMID: 36139808 PMCID: PMC9495589 DOI: 10.3390/antiox11091734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 01/22/2023] Open
Abstract
Plasma cholesteryl ester transfer protein (CETP) activity diminishes HDL-cholesterol levels and thus may increase atherosclerosis risk. Experimental evidence suggests CETP may also exhibit anti-inflammatory properties, but local tissue-specific functions of CETP have not yet been clarified. Since oxidative stress and inflammation are major features of atherogenesis, we investigated whether CETP modulates macrophage oxidant production, inflammatory and metabolic profiles. Comparing macrophages from CETP-expressing transgenic mice and non-expressing littermates, we observed that CETP expression reduced mitochondrial superoxide anion production and H2O2 release, increased maximal mitochondrial respiration rates, and induced elongation of the mitochondrial network and expression of fusion-related genes (mitofusin-2 and OPA1). The expression of pro-inflammatory genes and phagocytic activity were diminished in CETP-expressing macrophages. In addition, CETP-expressing macrophages had less unesterified cholesterol under basal conditions and after exposure to oxidized LDL, as well as increased HDL-mediated cholesterol efflux. CETP knockdown in human THP1 cells increased unesterified cholesterol and abolished the effects on mitofusin-2 and TNFα. In summary, the expression of CETP in macrophages modulates mitochondrial structure and function to promote an intracellular antioxidant state and oxidative metabolism, attenuation of pro-inflammatory gene expression, reduced cholesterol accumulation, and phagocytosis. These localized functions of CETP may be relevant for the prevention of atherosclerosis and other inflammatory diseases.
Collapse
|
21
|
Different platforms for mitomiRs in mitochondria: Emerging facets in regulation of mitochondrial functions. Mitochondrion 2022; 66:67-73. [DOI: 10.1016/j.mito.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
|
22
|
Liu J, Chen J, Xu B, Lin L, Liu S, Ma X, Liu J. 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages. Mol Immunol 2022; 147:187-198. [PMID: 35633614 DOI: 10.1016/j.molimm.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Damage to normal tissues caused by excessive ionizing radiation (IR) exposure is the major side effect of radiotherapy. Several recent studies have shown that IR-induced damage to tissues leads to a systemic immune response and NLRP3 inflammasome activation in immune cells. 3,4,5-O-tricaffeoylquinic acid (tCQA), extracted from the natural plant Azolla imbricata, relieves inflammation and has radioprotective function. Here, we aimed to investigate the inhibitory effect and molecular mechanism of tCQA on IR-induced NLRP3 inflammasome activation. First, the results of ELISA and qPCR assays showed that tCQA has anti-inflammatory effects in THP-1 cell line and healthy human peripheral blood mononuclear cells. Western blotting and ELISA suggested tCQA could inhibit NF-κB/MAPK signaling pathway, NLRP3 expression and the secretion of IL-1β in lipopolysaccharide (LPS)-stimulated THP-1 macrophages. Then, flow cytometry, LDH assay and western blotting demonstrated that tCQA could inhibit LPS- and nigericin-induced Caspase-1 activation and gasdermin D cleavage, thereby suppressing inflammatory cell death. Furthermore, we found that the autophagy inhibitor chloroquine, not the proteasome inhibitor MG132, could counteract the promoting effect of tCQA on NLRP3 degradation and the inhibitory effect on cell death. Western blotting and autophagosome staining results suggested tCQA could significantly enhance LPS-induced autophagic flux in macrophages and ATG5/ATG7 knockdown reverses the inhibitory effect of tCQA on NLRP3 expression and Caspase-1 activation, indicating that tCQA induces NLRP3 degradation via autophagy. Finally, THP-1 macrophages and BALB/c mice were irradiated with 137Cs γ-rays and tCQA could inhibit IR-induced NLRP3 inflammasome activation both in vitro and in vivo. To conclude, tCQA controls inflammation and NLRP3 inflammasome activation in vitro via NF-κB/MAPK signaling pathway and autophagy, meanwhile inhibits IR-induced NLRP3 inflammasome activation in vivo. Overall, our study provides an experimental and theoretical basis for the application of tCQA as a radioprotectant in clinical radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shaoqun Liu
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hosipital & AHS, Fudan University, Shanghai, 201199, PR China; Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China.
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
23
|
Singh S, Gautam U, Manvi FV. Protective Impact of Edaravone Against ZnO NPs-induced Oxidative Stress in the Human Neuroblastoma SH-SY5Y Cell Line. Cell Mol Neurobiol 2022; 42:1189-1210. [PMID: 33222098 PMCID: PMC11441218 DOI: 10.1007/s10571-020-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce oxidative stress, inflammation, and apoptosis in neurons. Edaravone applies antioxidant agent and anti-inflammatory impacts in the different cells, as evaluated in both in vitro and in vivo experimental models. This study is designed to explore, how edaravone would avert mitochondrial impairment in human neuronal cells against ZnO NPs-induced toxicity. Accordingly, we analyzed here whether a pretreatment (for 24 h) with edaravone (10-100 μM) would enhance mitochondrial protection in the human neuroblastoma cells SH-SY5Y against ZnO NPs-induced toxicity. We found that edaravone at 25 μM averted the ZnO NPs-induced decrease in the amounts of adenosine triphosphate (ATP), just as on the activity of the complexes I and V. Also, edaravone induced an antioxidant activity by diminishing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Edaravone blocked the ZnO NPs-induced transcription factor nuclear factor-κB (NF-κB) upregulation. The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 μM) smothered the preventive impacts brought about by edaravone with respect to mitochondrial function and inflammation. After this examination, it can be concluded that edaravone caused cytoprotective impacts in an HO-1-dependent manner in SH-SY5Y cells against ZnO NPs-induced toxicity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, Bihar, India.
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India.
| | - Upendr Gautam
- Vinayaka Mission's Research Foundation, Ariyanur, Tamil Nadu, India
| | - F V Manvi
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India
| |
Collapse
|
24
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
25
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Molecular Hydrogen as a Medical Gas for the Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Possible Efficacy Based on a Literature Review. Front Neurol 2022; 13:841310. [PMID: 35493814 PMCID: PMC9042428 DOI: 10.3389/fneur.2022.841310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disorder that is characterized by fatigue that persists for more than 6 months, weakness, sleep disturbances, and cognitive dysfunction. There are multiple possible etiologies for ME/CFS, among which mitochondrial dysfunction plays a major role in abnormal energy metabolism. The potential of many substances for the treatment of ME/CFS has been examined; however, satisfactory outcomes have not yet been achieved. The development of new substances for curative, not symptomatic, treatments is desired. Molecular hydrogen (H2) ameliorates mitochondrial dysfunction by scavenging hydroxyl radicals, the most potent oxidant among reactive oxygen species. Animal experiments and clinical trials reported that H2 exerted ameliorative effects on acute and chronic fatigue. Therefore, we conducted a literature review on the mechanism by which H2 improves acute and chronic fatigue in animals and healthy people and showed that the attenuation of mitochondrial dysfunction by H2 may be involved in the ameliorative effects. Although further clinical trials are needed to determine the efficacy and mechanism of H2 gas in ME/CFS, our literature review suggested that H2 gas may be an effective medical gas for the treatment of ME/CFS.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, Kamakura, Japan
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, Kamakura, Japan
- MiZ Inc., Newark, CA, United States
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, Kamakura, Japan
- MiZ Inc., Newark, CA, United States
| | - Yoshiyasu Takefuji
- Professor Emeritus, Keio University, Tokyo, Japan
- Faculty of Data Science, Musashino University, Tokyo, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, Kamakura, Japan
- MiZ Inc., Newark, CA, United States
| |
Collapse
|
26
|
Artificial Mitochondrial Transfer (AMT) for the Management of Age-related Musculoskeletal Degenerative Disorders: An Emerging Avenue for Bone and Cartilage Metabolism Regulation. Stem Cell Rev Rep 2022; 18:2195-2201. [PMID: 35230643 DOI: 10.1007/s12015-022-10357-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Musculoskeletal system disorders are among the most common age-related conditions worldwide. All associated with a degeneration of the supporting tissues under pro-inflammatory micro- and macro-environments, the erosion of cartilage and later of bones, are the main hallmarks of these pathologies. Affected chondrocytes, osteoblasts and synoviocytes, that are all critical actors in the bone and cartilage defects exhibit mitochondrial dysfunction that develops immediately following cartilage and bone injury, and leads to tissue residing specific cell death, cartilage degeneration, bone erosion, and ultimately post-traumatic musculoskeletal degeneration. Herein, we would like to introduce a novel concept for bone and cartilage related defects treatment based on artificial transfer of exogeneous functional mitochondria (AMT). Particularly, we believe that because mitochondrial failure critically contributes to degenerative disorders onset and progression, replacing malfunctioning mitochondria with their healthy and functional counterparts can represent a novel, and effective therapeutic solution for the management of bone and cartilage related degenerative diseases. Artificial mitochondrial transfer (AMT) may reverse the failed metabolic status of musculoskeletal tissues cells and reduce bone and cartilage tissues defects by restoring mitochondrial bioenergetics.
Collapse
|
27
|
Ahmed S, Panda SR, Kwatra M, Sahu BD, Naidu VGM. Perillyl Alcohol Attenuates NLRP3 Inflammasome Activation and Rescues Dopaminergic Neurons in Experimental In Vitro and In Vivo Models of Parkinson's Disease. ACS Chem Neurosci 2022; 13:53-68. [PMID: 34904823 DOI: 10.1021/acschemneuro.1c00550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NLRP3 activation plays a key role in the initiation and progression of a variety of neurodegenerative diseases. However, understanding the molecular mechanisms involved in the bidirectional signaling required to activate the NLRP3 inflammasomes is the key to treating several diseases. Hence, the present study aimed to investigate the role of lipopolysaccharide (LPS) and hydrogen peroxide (H2O2) in activating NLRP3 inflammasome-driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in in vitro and in vivo models of Parkinson's disease (PD). Initial priming of microglial cells with LPS following treatment with H2O2 induced NF-κB translocation to the nucleus with a robust generation of free radicals that act as signal 2 in augmenting NLRP3 inflammasome assembly and its downstream targets. PA treatment suppresses the nuclear translocation of NF-κB, enhances PARKIN translocation into the mitochondria, and maintains cellular redox homeostasis in both mouse and human microglial cells that limit NLRP3 inflammasome activation along with processing of active caspase-1, IL-1β, and IL-18. To further correlate the in vitro study with the in vivo MPTP model, treatment with PA also inhibited the nuclear translocation of NF-κB and downregulated the NLRP3 inflammasome activation. PA administration upregulated various antioxidant enzymes' levels and restored the level of dopamine and other neurotransmitters in the striatum of the mouse brain, subsequently improving the behavioral activities. Therefore, we conclude that NLRP3 inflammasome activation required a signal from damaged mitochondria for its activation. Further pharmacological scavenging of free radicals restricts microglia activation and simultaneously supports neuronal survival via targeting the NLRP3 inflammasome pathway in PD.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - VGM Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| |
Collapse
|
28
|
Mitochondrial calpain-1 activates NLRP3 inflammasome by cleaving ATP5A1 and inducing mitochondrial ROS in CVB3-induced myocarditis. Basic Res Cardiol 2022; 117:40. [PMID: 35997820 PMCID: PMC9399059 DOI: 10.1007/s00395-022-00948-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 (CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac troponin I, lactate dehydrogenase, interleukin-18, interleukin-1β, prevention of the infiltration of inflammatory cells, and improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapitalized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain appears as a promising target for the treatment of viral myocarditis.
Collapse
|
29
|
Toro-Pérez J, Rodrigo R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep 2021; 26:35-44. [PMID: 33622196 PMCID: PMC7906620 DOI: 10.1080/13510002.2021.1891808] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The extent of the damage following surgery has been subject of study for several years. Numerous surgical complications can impact postoperative quality of life of patients and even can cause mortality. Although these complications are generally due to multifactorial mechanisms, oxidative stress plays a key pathophysiological role. Moreover, oxidative stress could be an unavoidable effect derived even from the surgical procedure itself. METHODS A systematic review was performed following an electronic search of Pubmed and ScienceDirect databases. Keywords such as sepsis, oxidative stress, organ dysfunction, antioxidants, outcomes in postoperative complications, among others, were used. Review articles were preferably used between the years 2015 onwards, not excluding older ones. RESULTS The vast majority point to the role of oxidative stress in generating greater damage and worse prognosis in postoperative patients without the necessary care and precautions, taking importance on the use of antioxidants to prevent this problem. DISCUSSIONS Oxidative stress represents a common final pathway related to pathological processes such as inflammation or ischemia-reperfusion, among others. The expression of greater severity of these complications can result in multiple organ dysfunction or sepsis. The aim of this study was to present an update of the role of oxidative stress on surgical postoperative complications.
Collapse
Affiliation(s)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
30
|
Zhang L, Xu H, Ding N, Li X, Chen X, Chen Z. Beneficial Effects on Brain Micro-Environment by Caloric Restriction in Alleviating Neurodegenerative Diseases and Brain Aging. Front Physiol 2021; 12:715443. [PMID: 34899367 PMCID: PMC8660583 DOI: 10.3389/fphys.2021.715443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Aging and neurodegenerative diseases are frequently associated with the disruption of the extracellular microenvironment, which includes mesenchyme and body fluid components. Caloric restriction (CR) has been recognized as a lifestyle intervention that can improve long-term health. In addition to preventing metabolic disorders, CR has been shown to improve brain health owing to its enhancing effect on cognitive functions or retarding effect on the progression of neurodegenerative diseases. This article summarizes current findings regarding the neuroprotective effects of CR, which include the modulation of metabolism, autophagy, oxidative stress, and neuroinflammation. This review may offer future perspectives for brain aging interventions.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ning Ding
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Medical College, Kunming University of Science and Technology, Kunming, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuangfei Chen
- Medical College, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
31
|
Ge Y, Liu W, Yin W, Wang X, Wang J, Zhu X, Xu S. Circular RNA circ_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cells. Bioengineered 2021; 12:10837-10848. [PMID: 34637670 PMCID: PMC8809982 DOI: 10.1080/21655979.2021.1989260] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease caused by multiple factors. Multiple circRNAs are involved in the development of AS. The present study focusses on delineating the role of circ_0090231 in AS. Human aortic endothelial cells (HAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct an in vitro AS model. Real-time quantitative polymerase-chain reaction (RT-qPCR) was used to detect the levels of circ_0090231, IL-1β, and IL-18 transcripts. CircRNA/target gene interactions were predicted using StarBase and TargetScan and confirmed using an RNA pull-down assay and dual-luciferase reporter assay. Further, 3-(4,5)-dimethylthiahiazo(-2)-3,5-diphenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH) release assays were performed to evaluate cell viability and damage in the AS model, respectively. Cell pyroptosis and protein expression were determined using flow cytometry and western blotting respectively. The treatment of HAECs with ox-LDL not only led to significant increase in the levels of circ_0090231 but also resulted in improved cell viability as well as reduced cell injury and pyroptosis as compared to that in non-treated cells. The circ_0090231 was also identified to function as a sponge for miR-635, knockdown of which reverses the effects of circ_0090231 inhibition. Furthermore, our results revealed that levels of NLRP3, a miR-635 target, are not only augmented in the AS model but its overexpression also weakens the miR-635 regulatory effects in the AS development. Taken together, the circ_0090231/miR-635/NLRP3 axis affects the development of AS by regulating cell pyroptosis, thus providing new insights into the mechanism of AS development.
Collapse
Affiliation(s)
- Yishan Ge
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wenwu Liu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Wei Yin
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xuebin Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Wang
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoqing Zhu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| | - Shengkai Xu
- Department of Cardiology, Affiliated Suzhou Science and Technology City Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
32
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Soliman AM, Das S, Mahakkanukrauh P. Inflammatory Molecular Mediators and Pathways Involved in Vascular Aging and Stroke: A Comprehensive Review. Curr Med Chem 2021; 29:5522-5542. [PMID: 34488579 DOI: 10.2174/0929867328666210901122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
There is an increase in the incidence of cardiovascular diseases with aging and it is one of the leading causes of death worldwide. The main cardiovascular pathologies include atherosclerosis, stroke, myocardial infarction, hypertension and stroke. Chronic inflammation is one of the significant contributors to the age-related vascular diseases. Therefore, it is important to understand the molecular mechanisms of the persistent inflammatory conditions occurring in the blood vessels as well as the signaling pathways involved. Herein, we performed an extant search of literature involving PubMed, ISI, WoS and Scopus databases for retrieving all relevant articles with the most recent findings illustrating the potential role of various inflammatory mediators along with their proposed activated pathways in the pathogenesis and progression of vascular aging. We also highlight the major pathways contributing to age-related vascular disorders. The outlined molecular mechanisms, pathways and mediators of vascular aging represent potential drug targets that can be utilized to inhibit and/or slow the pathogenesis and progression of vascular aging.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3. Canada
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, P.C. 123, Al Khoud, Muscat. Oman
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence center of Osteology Research and Training, Cadaveric Surgical and Training Center, Chiang Mai University, Chiang Mai 50200. Thailand
| |
Collapse
|
34
|
Zaiatz Bittencourt V, Jones F, Tosetto M, Doherty GA, Ryan EJ. Dysregulation of Metabolic Pathways in Circulating Natural Killer Cells Isolated from Inflammatory Bowel Disease Patients. J Crohns Colitis 2021; 15:1316-1325. [PMID: 33460436 PMCID: PMC8328302 DOI: 10.1093/ecco-jcc/jjab014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBD], comprising Crohn's disease [CD] and ulcerative colitis [UC], are chronic conditions characterized by severe dysregulation of innate and adaptive immunity resulting in the destruction of the intestinal mucosa. Natural killer [NK] cells play a pivotal role in the dynamic interaction between the innate and adaptive immune response. There is an increasing appreciation for the key role immunometabolism plays in the regulation of NK cell function, yet little remains known about the metabolic profile, cytokine secretion, and killing capacity of human NK cells during active IBD. METHODS Peripheral blood mononuclear cells were isolated from peripheral blood of patients with moderate to severely active IBD and healthy controls. NK cells were stained with a combination of cell surface receptors, intracellular cytokines, and proteins and analyzed by flow cytometry. For measurements of NK cell cytotoxicity, the calcein-AM release assay was performed. The metabolic profile was analyzed by an extracellular flux analyzer. RESULTS NK cells from IBD patients produce large quantities of pro-inflammatory cytokines, IL-17A and TNF-α ex vivo, but have limited killing capability. Furthermore, patient NK cells have reduced mitochondrial mass and oxidative phosphorylation. mTORC1, an important cell and metabolic regulator, demonstrated limited activity in both freshly isolated cells and cytokine-stimulated cells. CONCLUSIONS Our results demonstrate that circulating NK cells of IBD patients have an unbalanced metabolic profile, with faulty mitochondria and reduced capacity to kill. These aberrations in NK cell metabolism may contribute to defective killing and thus the secondary infections and increased risk of cancer observed in IBD patients.
Collapse
Affiliation(s)
- Vanessa Zaiatz Bittencourt
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Fiona Jones
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St Vincent’s University Hospital, School of Medicine, University College Dublin, Dublin, Ireland
- Department of Biological Sciences, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Yamamoto H, Ichikawa Y, Hirano SI, Sato B, Takefuji Y, Satoh F. Molecular Hydrogen as a Novel Protective Agent against Pre-Symptomatic Diseases. Int J Mol Sci 2021; 22:7211. [PMID: 34281264 PMCID: PMC8268741 DOI: 10.3390/ijms22137211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Mibyou, or pre-symptomatic diseases, refers to state of health in which a disease is slowly developing within the body yet the symptoms are not apparent. Common examples of mibyou in modern medicine include inflammatory diseases that are caused by chronic inflammation. It is known that chronic inflammation is triggered by the uncontrolled release of proinflammatory cytokines by neutrophils and macrophages in the innate immune system. In a recent study, it was shown that molecular hydrogen (H2) has the ability to treat chronic inflammation by eliminating hydroxyl radicals (·OH), a mitochondrial reactive oxygen species (ROS). In doing so, H2 suppresses oxidative stress, which is implicated in several mechanisms at the root of chronic inflammation, including the activation of NLRP3 inflammasomes. This review explains these mechanisms by which H2 can suppress chronic inflammation and studies its applications as a protective agent against different inflammatory diseases in their pre-symptomatic state. While mibyou cannot be detected nor treated by modern medicine, H2 is able to suppress the pathogenesis of pre-symptomatic diseases, and thus exhibits prospects as a novel protective agent.
Collapse
Affiliation(s)
- Haru Yamamoto
- Department of Molecular & Cell Biology, University of California, Berkeley, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720-3140, USA
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Yusuke Ichikawa
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa 252-0882, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 134-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| |
Collapse
|
36
|
Sales CH, Rogero MM, Sarti FM, Fisberg RM. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients 2021; 13:1888. [PMID: 34072813 PMCID: PMC8226555 DOI: 10.3390/nu13061888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Anemia is a worldwide concern. This cross-sectional population-based study examined the prevalence of iron-deficiency anemia (IDA) among residents of São Paulo (n = 898; 12-93 years), considering sociodemographic factors, dietary iron inadequacy, and food contributors to iron intake. Blood cell count and iron biomarkers were quantified. Dietary iron intake was measured using two 24-h dietary recalls. Iron intake inadequacy was estimated using a probabilistic approach. The prevalence of anemia was 6.7%, depleted iron stores 5.1%, and IDA 1.1%. Women of all age groups, older adults, and those who were underweight or obese had the highest prevalence of anemia, and female adolescents had the highest prevalence of depleted iron stores. Female adolescents and adults were more vulnerable to depleted iron stores. Male adults and older adults had a considerable prevalence of iron overload. Except for female adolescents and adults, all groups had mild probabilities of inadequate iron intake. The main food iron contributor was wheat flour. Hemoglobin concentrations were directly associated with being an adult, having a higher income, and inversely associated with being female. Serum ferritin concentrations were directly associated with age and inversely correlated with female sex. Residents of São Paulo had a low prevalence of anemia, iron deficiency, and IDA, and sociodemographic factors interfered with these parameters.
Collapse
Affiliation(s)
- Cristiane Hermes Sales
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| | - Flávia Mori Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil; (M.M.R.); (R.M.F.)
| |
Collapse
|
37
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
38
|
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595:1184-1204. [PMID: 33742459 DOI: 10.1002/1873-3468.14077] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin-related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
Collapse
Affiliation(s)
- Nethmi M B Yapa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
39
|
Childers GM, Perry CA, Blachut B, Martin N, Bortner CD, Sieber S, Li JL, Fessler MB, Harry GJ. Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47015. [PMID: 33929904 PMCID: PMC8086801 DOI: 10.1289/ehp8314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mitochondrial function is implicated as a target of environmental toxicants and found in disease or injury models, contributing to acute and chronic inflammation. One mechanism by which mitochondrial damage can propagate inflammation is via activation of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing receptor (NLRP)3 inflammasome, a protein complex that processes mature interleukin (IL)-1β. IL-1β plays an important role in the innate immune response and dysregulation is associated with autoinflammatory disorders. OBJECTIVE The objective was to evaluate whether mitochondrial toxicants recruit inflammasome activation and IL-1β processing. METHOD Murine macrophages (RAW 264.7) exposed to tri-organotins (triethyltin bromide (TETBr), trimethyltin hydroxide (TMTOH), triphenyltin hydroxide (TPTOH), bis(tributyltin)oxide) [Bis(TBT)Ox] were examined for pro-inflammatory cytokine induction. TMTOH and TETBr were examined in RAW 264.7 and bone marrow-derived macrophages for mitochondrial bioenergetics, reactive oxygen species (ROS) production, and inflammasome activation via visualization of aggregate formation, caspase-1 flow cytometry, IL-1β enzyme-linked immunosorbent assay and Western blots, and microRNA (miRNA) and mRNA arrays. RESULTS TETBr and TMTOH induced inflammasome aggregate formation and IL-1β release in lipopolysaccharide (LPS)-primed macrophages. Mitochondrial bioenergetics and mitochondrial ROS were suppressed. Il1a and Il1b induction with LPS or LPS+ATP challenge was diminished. Differential miRNA and mRNA profiles were observed. Lower miR-151-3p targeted cyclic adenosine monophosphate (cAMP)-mediated and AMP-activated protein kinase signaling pathways; higher miR-6909-5p, miR-7044-5p, and miR-7686-5p targeted Wnt beta-catenin signaling, retinoic acid receptor activation, apoptosis, signal transducer and activator of transcription 3, IL-22, IL-12, and IL-10 signaling. Functional enrichment analysis identified apoptosis and cell survival canonical pathways. CONCLUSION Select mitotoxic tri-organotins disrupted murine macrophage transcriptional response to LPS, yet triggered inflammasome activation. The differential response pattern suggested unique functional changes in the inflammatory response that may translate to suppressed host defense or prolong inflammation. We posit a framework to examine immune cell effects of environmental mitotoxic compounds for adverse health outcomes. https://doi.org/10.1289/EHP8314.
Collapse
Affiliation(s)
- Gabrielle M. Childers
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Caroline A. Perry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Barbara Blachut
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Negin Martin
- Laboratory of Neurobiology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Carl D. Bortner
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Stella Sieber
- Molecular Genomics Core Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Michael B. Fessler
- Immunity, Inflammation, and Disease Laboratory, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - G. Jean Harry
- Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
40
|
Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021; 11:life11030232. [PMID: 33799853 PMCID: PMC7998235 DOI: 10.3390/life11030232] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, Ann Arbor, MI 48109, USA
- Correspondence:
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|
41
|
Potential Therapeutic Applications of Hydrogen in Chronic Inflammatory Diseases: Possible Inhibiting Role on Mitochondrial Stress. Int J Mol Sci 2021; 22:ijms22052549. [PMID: 33806292 PMCID: PMC7961517 DOI: 10.3390/ijms22052549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are the largest source of reactive oxygen species (ROS) and are intracellular organelles that produce large amounts of the most potent hydroxyl radical (·OH). Molecular hydrogen (H2) can selectively eliminate ·OH generated inside of the mitochondria. Inflammation is induced by the release of proinflammatory cytokines produced by macrophages and neutrophils. However, an uncontrolled or exaggerated response often occurs, resulting in severe inflammation that can lead to acute or chronic inflammatory diseases. Recent studies have reported that ROS activate NLRP3 inflammasomes, and that this stimulation triggers the production of proinflammatory cytokines. It has been shown in literature that H2 can be based on the mechanisms that inhibit mitochondrial ROS. However, the ability for H2 to inhibit NLRP3 inflammasome activation via mitochondrial oxidation is poorly understood. In this review, we hypothesize a possible mechanism by which H2 inhibits mitochondrial oxidation. Medical applications of H2 may solve the problem of many chronic inflammation-based diseases, including coronavirus disease 2019 (COVID-19).
Collapse
|
42
|
Kumar P, Patel M, Oster RA, Yarlagadda V, Ambrosetti A, Assimos DG, Mitchell T. Dietary Oxalate Loading Impacts Monocyte Metabolism and Inflammatory Signaling in Humans. Front Immunol 2021; 12:617508. [PMID: 33732242 PMCID: PMC7959803 DOI: 10.3389/fimmu.2021.617508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Diet has been associated with several metabolic diseases and may impact immunity. Increased consumption of meals with high oxalate content may stimulate urinary calcium oxalate (CaOx) crystals, which are precursors to CaOx kidney stones. We previously reported that CaOx stone formers have decreased monocyte cellular bioenergetics compared to healthy participants and oxalate reduces monocyte metabolism and redox status in vitro. The purpose of this study was to investigate whether dietary oxalate loading impacts monocyte cellular bioenergetics, mitochondrial complex activity, and inflammatory signaling in humans. Healthy participants (n = 40; 31.1 ± 1.3 years) with a BMI of 24.9 ± 0.6 kg/m2 consumed a controlled low oxalate diet for 3 days before drinking a blended preparation of fruits and vegetables containing a large amount of oxalate. Blood and urine were collected before (pre-oxalate) and for 5 h after the oxalate load to assess urinary oxalate levels, monocyte cellular bioenergetics and mitochondrial complex activity, and plasma cytokine/chemokine levels. Urinary oxalate levels significantly increased in post-oxalate samples compared to pre-oxalate samples. Monocyte cellular bioenergetics, mitochondrial complex I activity, and plasma cytokine and chemokine levels were altered to varying degrees within the study cohort. We demonstrate for the first time that dietary oxalate loading may impact monocyte metabolism and immune response in a cohort of healthy adults, but these response are variable. Further studies are warranted to understand oxalate mediated mechanisms on circulating monocytes and how this potentially influences CaOx kidney stone formation.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikita Patel
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert A Oster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vidhush Yarlagadda
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam Ambrosetti
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
43
|
Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, Inflammation, Immune System, and Hypertension. Am J Hypertens 2021; 34:15-27. [PMID: 32820797 PMCID: PMC7891246 DOI: 10.1093/ajh/hpaa137] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Aldosterone is a mineralocorticoid hormone that controls body fluid and electrolyte balance. Excess aldosterone is associated with cardiovascular and metabolic diseases. Inflammation plays a critical role on vascular damage promoted by aldosterone and aggravates vascular abnormalities, including endothelial dysfunction, vascular remodeling, fibrosis and oxidative stress, and other manifestations of end-organ damage that are associated with hypertension, other forms of cardiovascular disease, and diabetes mellitus and the metabolic syndrome. Over the past few years, many studies have consistently shown that aldosterone activates cells of the innate and adaptive immune systems. Macrophages and T cells accumulate in the kidneys, heart, and vasculature in response to aldosterone, and infiltration of immune cells contributes to end-organ damage in cardiovascular and metabolic diseases. Aldosterone activates various subsets of innate immune cells such as dendritic cells and monocytes/macrophages, as well as adaptive immune cells such as T lymphocytes, and, by activation of mineralocorticoid receptors stimulates proinflammatory transcription factors and the production of adhesion molecules and inflammatory cytokines and chemokines. This review will briefly highlight some of the studies on the involvement of aldosterone in activation of innate and adaptive immune cells and its impact on the cardiovascular system. Since aldosterone plays a key role in many cardiovascular and metabolic diseases, these data will open up promising perspectives for the identification of novel biomarkers and therapeutic targets for prevention and treatment of diseases associated with increased levels of aldosterone, such as arterial hypertension, obesity, the metabolic syndrome, and heart failure.
Collapse
Affiliation(s)
- Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
44
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
45
|
Yu H, Sun C, Gong Q, Feng D. Mitochondria-Associated Endoplasmic Reticulum Membranes in Breast Cancer. Front Cell Dev Biol 2021; 9:629669. [PMID: 33634130 PMCID: PMC7902067 DOI: 10.3389/fcell.2021.629669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondria-associated ER membranes (MAMs) represent a crucial intracellular signaling hub, that regulates various cellular events including Ca2+ homeostasis, lipid metabolism, mitochondrial function, and cellular survival and death. All of these MAM-mediated cellular events contribute to carcinogenesis. Indeed, altered functions of MAMs in several types of cancers have been documented, in particular for breast cancer. Over the past years, altered expression of many MAM-resident proteins have been reported in breast cancer. These MAM-resident proteins play an important role in regulation of breast cancer initiation and progression. In the current review, we discuss our current knowledge about the functions of MAMs, and address the underlying mechanisms through which MAM-resident proteins regulate breast cancer. A fuller understanding of the pathways through which MAMs regulate breast cancer, and identification of breast cancer-specific MAM-resident proteins may help to develop novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chaonan Sun
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
46
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
47
|
Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, Cheng B, Bai B. The Role of Mitophagy in Ischemic Stroke. Front Neurol 2020; 11:608610. [PMID: 33424757 PMCID: PMC7793663 DOI: 10.3389/fneur.2020.608610] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important places for eukaryotes to carry out energy metabolism and participate in the processes of cell differentiation, cell information transmission, and cell apoptosis. Autophagy is a programmed intracellular degradation process. Mitophagy, as a selective autophagy, is an evolutionarily conserved cellular process to eliminate dysfunctional or redundant mitochondria, thereby fine-tuning the number of mitochondria and maintaining energy metabolism. Many stimuli could activate mitophagy to regulate related physiological processes, which could ultimately reduce or aggravate the damage caused by stimulation. Stroke is a common disease that seriously affects the health and lives of people around the world, and ischemic stroke, which is caused by cerebral vascular stenosis or obstruction, accounts for the vast majority of stroke. Abnormal mitophagy is closely related to the occurrence, development and pathological mechanism of ischemic stroke. However, the exact mechanism of mitophagy involved in ischemic stroke has not been fully elucidated. In this review, we discuss the process and signal pathways of mitophagy, the potential role of mitophagy in ischemic stroke and the possible signal transduction pathways. It will help deepen the understanding of mitophagy and provide new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ziqi Shao
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiqing Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, China
| |
Collapse
|
48
|
Abstract
Hydrogen (H2) is promising as an energy source for the next generation. Medical applications using H2 gas can be also considered as a clean and economical technology. Since the H2 gas based on electrolysis of water production has potential to expand the medical applications, the technology has been developed in order to safely dilute it and to supply it to the living body by inhalation, respectively. H2 is an inert molecule which can scavenge the highly active oxidants including hydroxyl radical (·OH) and peroxynitrite (ONOO−), and which can convert them into water. H2 is clean and causes no adverse effects in the body. The mechanism of H2 is different from that of traditional drugs because it works on the root of many diseases. Since H2 has extensive and various effects, it may be called a “wide spectrum molecule” on diseases. In this paper, we reviewed the current medical applications of H2 including its initiation and development, and we also proposed its prospective medical applications. Due to its marked efficacy and no adverse effects, H2 will be a next generation therapy candidate for medical applications.
Collapse
|
49
|
NLRP3 inflammasome deficiency attenuates metabolic disturbances involving alterations in the gut microbial profile in mice exposed to high fat diet. Sci Rep 2020; 10:21006. [PMID: 33273482 PMCID: PMC7712828 DOI: 10.1038/s41598-020-76497-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity-related diseases (e.g. type 2 diabetes mellitus and cardiovascular disorders) represent an increasing health problem worldwide. NLRP3 inflammasome activation may underlie obesity-induced inflammation and insulin resistance, and NLRP3 deficient mice exposed to high fat diet (HFD) appear to be protected from left ventricle (LV) concentric remodeling. Herein, we investigated if these beneficial effects were associated with alterations in plasma metabolites, using metabolomic and lipidomic analysis, and gut microbiota composition, using 16S rRNA sequencing of cecum content, comparing NLRP3 deficient and wild type (WT) mice on HFD and control diet. Obese NLRP3 deficient mice had lower systemic ceramide levels, potentially resulting attenuating inflammation, altered hepatic expression of fatty acids (FA) with lower mono-saturated FA and higher polyunsaturated FA levels, potentially counteracting development of liver steatosis, downregulated myocardial energy metabolism as assessed by proteomic analyses of LV heart tissue, and different levels of bile acids as compared with WT mice. These changes were accompanied by an altered composition of gut microbiota associated with decreased systemic levels of tri-methylamine-N-oxide and lipopolysaccharide, potentially inducing attenuating systemic inflammation and beneficial effects on lipid metabolism. Our findings support a role of NLRP3 inflammasome in the interface between metabolic and inflammatory stress, involving an altered gut microbiota composition.
Collapse
|
50
|
Xu Y, Tang Y, Lu J, Zhang W, Zhu Y, Zhang S, Ma G, Jiang P, Zhang W. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic Biol Med 2020; 160:871-886. [PMID: 32947010 DOI: 10.1016/j.freeradbiomed.2020.09.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Activation of nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) inflammasome in Kupffer cells (KCs) contributes significantly to hepatic ischemia/reperfusion (I/R) injury, while the mechanism of how NLRP3 inflammasome is regulated remains less well defined. Recent evidence has showed that mitophagy acts as a central player for maintaining mitochondrial homeostatis through elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 activation. In this study, we aimed at investigating the potential role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in hepatic I/R injury. C57BL/6 mice subjected to partial warm hepatic I/R or primary KCs exposed to anoxia/reoxygenation (A/R) was used as in vivo or in vitro model, respectively. Mitophagy was measured by protein levels of PINK1, Parkin, LC3B-II, TOMM20 and p62. NLRP3, caspase-1 and IL-1β at mRNA and/or protein levels were used as indicators of inflammasome activation. Our results demonstrated remarkable hepatic inflammation and NLRP3 inflammasome activation during hepatic I/R, along with increased PINK1-mediated mitophagy. Notably, overexpression of PINK1 in vivo attenuated hepatic I/R injury, ROS production, NLRP3 activation and hepatic inflammation. In parallel, A/R challenge in vitro also triggered NLRP3 activation in KCs accompanied by increase in mitophagy. Enhanced mitophagy mediated by PINK1 overexpression further inhibited NLRP3 activation and reversed the KC-mediated inflammatory injury to hepatocytes. Kinase-dead mutation of PINK1 completely abolished the above protective effects by PINK1. Blocking of mitophagy/autophagy by silencing of PINK1/Parkin, ATG5, NDP52 or OPTN showed the totally opposite effects, respectively. Treatment with different autophagic inhibitors also consistently reversed the PINK1-mediated effects, suggesting that an intact PINK1-mediated mitophagy signaling was crucial for ablation of NLRP3 signaling in the presence of A/R. Together, these results support a critical role of PINK1-mediated mitophagy in mitochondrial quality control for KC activation and function in hepatic I/R.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yinbing Tang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiawei Lu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Weiya Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Respiration, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|