1
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
2
|
Horta AL, Gigley J, Boutet M, Lavau G, Weiss LM, Huang H. Memory-like NK Cells Are a Critical Component of Vaccine-Induced Immunity to Trypanosoma cruzi Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:617-631. [PMID: 38197653 PMCID: PMC10872457 DOI: 10.4049/jimmunol.2300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Chagas disease by Trypanosoma cruzi infection is a major public health issue. The available therapeutic agents have limited efficacy and significant side effects. A reliable vaccine would reduce the threat of T. cruzi infections and prevent Chagas disease. Understanding the immune response to this infection would improve vaccine design. We previously demonstrated that adoptively transferred NK cells from mice immunized with highly attenuated T. cruzi, GFP-DDDHA strain, provided potent protection in naive recipients against secondary lethal challenge with various wild-type (WT) strains. To understand the importance of NK cells in protecting mice against T. cruzi infection, we performed an in-depth characterization of NK cell phenotype, responses, and memory-like traits during acute infections due to GFP-DDDHA and WT strains and in immunized mice during a recall response to a WT lethal challenge. NK cells robustly expanded and became more mature and cytolytic during the GFP-DDDHA strain immunization. NK cells in immunized mice responded more robustly after WT lethal challenge than during an acute primary WT infection. In addition, protection by immunization with the GFP-DDDHA strain is significantly weakened in NK cell-deficient mice and did not prevent parasitemia from WT lethal challenge, indicating that NK cells with memory-like traits were a critical component for early control of WT lethal challenge. Prior T. cruzi vaccine development studies have not included studies of this rapid NK response. These findings provide insights into overcoming existing challenges in developing a safe and effective vaccine to prevent this infection.
Collapse
Affiliation(s)
- Aline L. Horta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gregoire Lavau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
3
|
Fol M, Karpik W, Zablotni A, Kulesza J, Kulesza E, Godkowicz M, Druszczynska M. Innate Lymphoid Cells and Their Role in the Immune Response to Infections. Cells 2024; 13:335. [PMID: 38391948 PMCID: PMC10886880 DOI: 10.3390/cells13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Over the past decade, a group of lymphocyte-like cells called innate lymphoid cells (ILCs) has gained considerable attention due to their crucial role in regulating immunity and tissue homeostasis. ILCs, lacking antigen-specific receptors, are a group of functionally differentiated effector cells that act as tissue-resident sentinels against infections. Numerous studies have elucidated the characteristics of ILC subgroups, but the mechanisms controlling protective or pathological responses to pathogens still need to be better understood. This review summarizes the functions of ILCs in the immunology of infections caused by different intracellular and extracellular pathogens and discusses their possible therapeutic potential.
Collapse
Affiliation(s)
- Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Wojciech Karpik
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| | - Agnieszka Zablotni
- Department of Bacterial Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland;
| | - Ewelina Kulesza
- Department of Rheumatology and Internal Diseases, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland; (M.F.); (W.K.); (M.G.)
| |
Collapse
|
4
|
Uhl LFK, Cai H, Oram SL, Mahale JN, MacLean AJ, Mazet JM, Piccirilli T, He AJ, Lau D, Elliott T, Gerard A. Interferon-γ couples CD8 + T cell avidity and differentiation during infection. Nat Commun 2023; 14:6727. [PMID: 37872155 PMCID: PMC10593754 DOI: 10.1038/s41467-023-42455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Effective responses to intracellular pathogens are characterized by T cell clones with a broad affinity range for their cognate peptide and diverse functional phenotypes. How T cell clones are selected throughout the response to retain a breadth of avidities remains unclear. Here, we demonstrate that direct sensing of the cytokine IFN-γ by CD8+ T cells coordinates avidity and differentiation during infection. IFN-γ promotes the expansion of low-avidity T cells, allowing them to overcome the selective advantage of high-avidity T cells, whilst reinforcing high-avidity T cell entry into the memory pool, thus reducing the average avidity of the primary response and increasing that of the memory response. IFN-γ in this context is mainly provided by virtual memory T cells, an antigen-inexperienced subset with memory features. Overall, we propose that IFN-γ and virtual memory T cells fulfil a critical immunoregulatory role by enabling the coordination of T cell avidity and fate.
Collapse
Affiliation(s)
- Lion F K Uhl
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Han Cai
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sophia L Oram
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jagdish N Mahale
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew J MacLean
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Theo Piccirilli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Alexander J He
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Doreen Lau
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audrey Gerard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
OuYang X, Liu P, Zheng Y, Jiang H, Lv Q, Huang W, Hao H, Pian Y, Kong D, Jiang Y. TRIM32 reduced the recruitment of innate immune cells and the killing capacity of Listeria monocytogenes by inhibiting secretion of chemokines. Gut Pathog 2023; 15:32. [PMID: 37415157 DOI: 10.1186/s13099-023-00558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Listeria monocytogenes (Lm) is a facultative, intracellular Gram-positive pathogenic bacterium that causes sepsis, a condition characterized by persistent excessive inflammation and organ dysfunction. However, the pathogenesis of Lm-induced sepsis is unknown. In this research, we discovered that TRIM32 is required for innate immune regulation during Lm infection. Trim32 deficiency remarkably reduced bacteremia and proinflammatory cytokine secretion in mice with severe Lm infection, preventing sepsis. Trim32-/- mice had a lower bacterial burden after Lm infection and survived significantly longer than wild-type (WT) mice, as well as lower serum levels of inflammatory cytokines TNF-α, IL-6, IL-18, IL-12p70, IFN-β, and IFN-γ at 1 day post infection (dpi) compared to WT mice. On the other hand, the chemokines CXCL1, CCL2, CCL7, and CCL5 were enhanced at 3 dpi in Trim32-/- mice than WT mice, reflecting increased recruitment of neutrophils and macrophages. Furthermore, Trim32-/- mice had higher levels of macrophage-associated iNOS to kill Lm. Collectively, our findings suggest that TRIM32 reduces innate immune cells recruitment and Lm killing capabilities via iNOS production.
Collapse
Affiliation(s)
- Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Huaijie Hao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China.
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
6
|
Alginate-chitosan microcapsules improve vaccine potential of gamma-irradiated Listeria monocytogenes against listeriosis in murine model. Int J Biol Macromol 2021; 176:567-577. [PMID: 33581203 DOI: 10.1016/j.ijbiomac.2021.02.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Listeria monocytogenes is a cause of infectious food-borne disease in humans, characterized by neurological manifestations, abortion, and neonatal septicemia. It is intracellular bacterium, which limits the development of protective inactivated vacines. Adjuvants capable of stimulating cellular immune response are important tools for developing novel vaccines against intracellular bacteria. The aim of this study was to evaluate the vaccine potential of L. monocytogenes inactivated by gamma irradiation (KLM-γ) encapsulated in alginate microcapsules associated or not with chitosan against listeriosis in the murine model. At the fourth day after challenge there was a reduction in bacterial recovery in mice vaccinated with KLM-γ encapsulated with alginate or alginate-chitosan, with lower bacterial loads in the spleen (10 fold) and liver (100 fold) when compared to non-vaccinated mice. In vitro stimulation of splenocytes from mice vaccinated with alginate-chitosan-encapsulated KLM-γ resulted in lymphocyte proliferation, increase of proportion of memory CD4+ and CD8+ T cell and production of IL-10 and IFN-γ. Interestingly, the group vaccinated with alginate-chitosan-encapsulated KLM-γ had increased survival to lethal infection with lower L. monocytogenes-induced hepatic inflammation and necrosis. Therefore, KLM-γ encapsulation with alginate-chitosan proved to have potential for development of novel and safe inactivated vaccine formulations against listeriosis.
Collapse
|
7
|
Böning MAL, Trittel S, Riese P, van Ham M, Heyner M, Voss M, Parzmair GP, Klawonn F, Jeron A, Guzman CA, Jänsch L, Schraven B, Reinhold A, Bruder D. ADAP Promotes Degranulation and Migration of NK Cells Primed During in vivo Listeria monocytogenes Infection in Mice. Front Immunol 2020; 10:3144. [PMID: 32038647 PMCID: PMC6987423 DOI: 10.3389/fimmu.2019.03144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
The adhesion and degranulation-promoting adaptor protein (ADAP) serves as a multifunctional scaffold and is involved in the formation of immune signaling complexes. To date only limited and moreover conflicting data exist regarding the role of ADAP in NK cells. To extend existing knowledge we investigated ADAP-dependency of NK cells in the context of in vivo infection with the intracellular pathogen Listeria monocytogenes (Lm). Ex vivo analysis of infection-primed NK cells revealed impaired cytotoxic capacity in NK cells lacking ADAP as indicated by reduced CD107a surface expression and inefficient perforin production. However, ADAP-deficiency had no global effect on NK cell morphology or intracellular distribution of CD107a-containing vesicles. Proteomic definition of ADAPko and wild type NK cells did not uncover obvious differences in protein composition during the steady state and moreover, similar early response patterns were induced in NK cells upon infection independent of the genotype. In line with protein network analyses that suggested an altered migration phenotype in naïve ADAPko NK cells, in vitro migration assays uncovered significantly reduced migration of both naïve as well as infection-primed ADAPko NK cells compared to wild type NK cells. Notably, this migration defect was associated with a significantly reduced expression of the integrin CD11a on the surface of splenic ADAP-deficient NK cells 1 day post-Lm infection. We propose that ADAP-dependent alterations in integrin expression might account at least in part for the fact that during in vivo infection significantly lower numbers of ADAPko NK cells accumulate in the spleen i.e., the site of infection. In conclusion, we show here that during systemic Lm infection in mice ADAP is essential for efficient cytotoxic capacity and migration of NK cells.
Collapse
Affiliation(s)
- Martha A L Böning
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Trittel
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maxi Heyner
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Voss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald P Parzmair
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frank Klawonn
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Simonović N, Witalisz-Siepracka A, Meissl K, Lassnig C, Reichart U, Kolbe T, Farlik M, Bock C, Sexl V, Müller M, Strobl B. NK Cells Require Cell-Extrinsic and -Intrinsic TYK2 for Full Functionality in Tumor Surveillance and Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 202:1724-1734. [PMID: 30718299 DOI: 10.4049/jimmunol.1701649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a widely expressed receptor-associated kinase that is involved in signaling by a variety of cytokines with important immune regulatory activities. Absence of TYK2 in mice results in impaired NK cell maturation and antitumor activity, although underlying mechanisms are largely unknown. Using conditional ablation of TYK2 in NK cells we show that TYK2 is required for IFN-γ production by NK cells in response to IL-12 and for an efficient immune defense against Listeria monocytogenes Deletion of TYK2 in NK cells did not impact NK cell maturation and IFN-γ production upon NK cell activating receptor (actR) stimulation. Similarly, NK cell-mediated tumor surveillance was unimpaired upon deletion of TYK2 in NK cells only. In line with the previously reported maturation-associated Ifng promoter demethylation, the less mature phenotype of Tyk2-/- NK cells correlated with an increased CpG methylation at the Ifng locus. Treatment with the DNA hypomethylating agent 5-aza-2-deoxycytidine restored the ability of Tyk2-/- NK cells to produce IFN-γ upon actR but not upon IL-12 stimulation. NK cell maturation was dependent on the presence of TYK2 in dendritic cells and could be rescued in Tyk2-deficient mice by treatment with exogenous IL-15/IL-15Rα complexes. IL-15 treatment also rescued the in vitro cytotoxicity defect and the impaired actR-induced IFN-γ production of Tyk2-/- NK cells. Collectively, our findings provide the first evidence, to our knowledge, for a key role of TYK2 in the host environment in promoting NK cell maturation and antitumor activity.
Collapse
Affiliation(s)
- Natalija Simonović
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Katrin Meissl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Caroline Lassnig
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ursula Reichart
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Department of Agrobiotechnology IFA Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; and
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.,Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Birgit Strobl
- Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
9
|
Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, Tripathy SK, Snyder CM, Xue HH, Griffith TS, Houtman JC, Badovinac VP. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog 2018; 14:e1007405. [PMID: 30379932 PMCID: PMC6231673 DOI: 10.1371/journal.ppat.1007405] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/12/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022] Open
Abstract
The sepsis-induced cytokine storm leads to severe lymphopenia and reduced effector capacity of remaining/surviving cells. This results in a prolonged state of immunoparalysis, that contributes to enhanced morbidity/mortality of sepsis survivors upon secondary infection. The impact of sepsis on several lymphoid subsets has been characterized, yet its impact on NK-cells remains underappreciated-despite their critical role in controlling infection(s). Here, we observed numerical loss of NK-cells in multiple tissues after cecal-ligation-and-puncture (CLP)-induced sepsis. To elucidate the sepsis-induced lesions in surviving NK-cells, transcriptional profiles were evaluated and indicated changes consistent with impaired effector functionality. A corresponding deficit in NK-cell capacity to produce effector molecules following secondary infection and/or cytokine stimulation (IL-12,IL-18) further suggested a sepsis-induced NK-cell intrinsic impairment. To specifically probe NK-cell receptor-mediated function, the activating Ly49H receptor, that recognizes the murine cytomegalovirus (MCMV) m157 protein, served as a model receptor. Although relative expression of Ly49H receptor did not change, the number of Ly49H+ NK-cells in CLP hosts was reduced leading to impaired in vivo cytotoxicity and the capacity of NK-cells (on per-cell basis) to perform Ly49H-mediated degranulation, killing, and effector molecule production in vitro was also severely reduced. Mechanistically, Ly49H adaptor protein (DAP12) activation and clustering, assessed by TIRF microscopy, was compromised. This was further associated with diminished AKT phosphorylation and capacity to flux calcium following receptor stimulation. Importantly, DAP12 overexpression in NK-cells restored Ly49H/D receptors-mediated effector functions in CLP hosts. Finally, as a consequence of sepsis-dependent numerical and functional lesions in Ly49H+ NK-cells, host capacity to control MCMV infection was significantly impaired. Importantly, IL-2 complex (IL-2c) therapy after CLP improved numbers but not a function of NK-cells leading to enhanced immunity to MCMV challenge. Thus, the sepsis-induced immunoparalysis state includes numerical and NK-cell-intrinsic functional impairments, an instructive notion for future studies aimed in restoring NK-cell immunity in sepsis survivors.
Collapse
Affiliation(s)
- Isaac J. Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Christina S. Winborn
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Micaela G. Fosdick
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Mikaela M. Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qiang Shan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sandeep Kumar Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher M. Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas S. Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Urology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Health Care, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jon C. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
10
|
Jeron A, Boehme JD, Volckmar J, Gereke M, Yevsa T, Geffers R, Guzmán CA, Schreiber J, Stegemann-Koniszewski S, Bruder D. Respiratory Bordetella bronchiseptica Carriage is Associated with Broad Phenotypic Alterations of Peripheral CD4⁺CD25⁺ T Cells and Differentially Affects Immune Responses to Secondary Non-Infectious and Infectious Stimuli in Mice. Int J Mol Sci 2018; 19:E2602. [PMID: 30200513 PMCID: PMC6165163 DOI: 10.3390/ijms19092602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
The respiratory tract is constantly exposed to the environment and displays a favorable niche for colonizing microorganisms. However, the effects of respiratory bacterial carriage on the immune system and its implications for secondary responses remain largely unclear. We have employed respiratory carriage with Bordetella bronchiseptica as the underlying model to comprehensively address effects on subsequent immune responses. Carriage was associated with the stimulation of Bordetella-specific CD4⁺, CD8⁺, and CD4⁺CD25⁺Foxp3⁺ T cell responses, and broad transcriptional activation was observed in CD4⁺CD25⁺ T cells. Importantly, transfer of leukocytes from carriers to acutely B. bronchiseptica infected mice, resulted in a significantly increased bacterial burden in the recipient's upper respiratory tract. In contrast, we found that respiratory B. bronchiseptica carriage resulted in a significant benefit for the host in systemic infection with Listeria monocytogenes. Adaptive responses to vaccination and influenza A virus infection, were unaffected by B. bronchiseptica carriage. These data showed that there were significant immune modulatory processes triggered by B. bronchiseptica carriage, that differentially affect subsequent immune responses. Therefore, our results demonstrated the complexity of immune regulation induced by respiratory bacterial carriage, which can be beneficial or detrimental to the host, depending on the pathogen and the considered compartment.
Collapse
Affiliation(s)
- Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia D Boehme
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Julia Volckmar
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Marcus Gereke
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Tetyana Yevsa
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| | - Jens Schreiber
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Sabine Stegemann-Koniszewski
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
- Experimental Pneumology, University Hospital for Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
11
|
Stoolman JS, Duncker PC, Huber AK, Giles DA, Washnock-Schmid JM, Soulika AM, Segal BM. An IFNγ/CXCL2 regulatory pathway determines lesion localization during EAE. J Neuroinflammation 2018; 15:208. [PMID: 30012158 PMCID: PMC6048869 DOI: 10.1186/s12974-018-1237-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Background Myelin oligodendrocyte glycoprotein (MOG)-reactive T-helper (Th)1 cells induce conventional experimental autoimmune encephalomyelitis (cEAE), characterized by ascending paralysis and monocyte-predominant spinal cord infiltrates, in C57BL/6 wildtype (WT) hosts. The same T cells induce an atypical form of EAE (aEAE), characterized by ataxia and neutrophil-predominant brainstem infiltrates, in syngeneic IFNγ receptor (IFNγR)-deficient hosts. Production of ELR+ CXC chemokines within the CNS is required for the development of aEAE, but not cEAE. The cellular source(s) and localization of ELR+ CXC chemokines in the CNS and the IFNγ-dependent pathways that regulate their production remain to be elucidated. Methods The spatial distribution of inflammatory lesions and CNS expression of the ELR+ CXC chemokines, CXCL1 and CXCL2, were determined via immunohistochemistry and/or in situ hybridization. Levels of CXCL1 and CXCL2, and their cognate receptor CXCR2, were measured in/on leukocyte subsets by flow cytometric and quantitative PCR (qPCR) analysis. Bone marrow neutrophils and macrophages were cultured with inflammatory stimuli in vitro prior to measurement of CXCL2 and CXCR2 by qPCR or flow cytometry. Results CNS-infiltrating neutrophils and monocytes, and resident microglia, are a prominent source of CXCL2 in the brainstem of IFNγRKO adoptive transfer recipients during aEAE. In WT transfer recipients, IFNγ directly suppresses CXCL2 transcription in microglia and myeloid cells, and CXCR2 transcription in CNS-infiltrating neutrophils. Consequently, infiltration of the brainstem parenchyma from the adjacent meninges is blocked during cEAE. CXCL2 directly stimulates its own expression in cultured neutrophils, which is enhanced by IL-1 and suppressed by IFNγ. Conclusions We provide evidence for an IFNγ-regulated CXCR2/CXCL2 autocrine/paracrine feedback loop in innate immune cells that determines the location of CNS infiltrates during Th1-mediated EAE. When IFNγ signaling is impaired, myeloid cell production of CXCL2 increases, which promotes brainstem inflammation and results in clinical ataxia. IFNγ, produced within the CNS of WT recipients, suppresses myeloid cell CXCR2 and CXCL2 production, thereby skewing the location of neuroinflammatory infiltrates to the spinal cord and the clinical phenotype to an ascending paralysis. These data reveal a novel mechanism by which IFNγ and CXCL2 interact to direct regional recruitment of leukocytes in the CNS, resulting in distinct clinical presentations. Electronic supplementary material The online version of this article (10.1186/s12974-018-1237-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua S Stoolman
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.,Division of Allergy-Immunology, Division of Pulmonary and Critical Care, Northwestern University, Feinberg School of Medicine, 240 E. Huron Street, McGaw M410, Chicago, IL, 60611, USA
| | - Patrick C Duncker
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Jesse M Washnock-Schmid
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Athena M Soulika
- Institute for Pediatric Regenerative Medicine, UC Davis School of Medicine and Shriners Hospital, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA. .,Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA. .,Graduate Program in Neuroscience, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA. .,Neurology Service, VA Ann Arbor Health Care System, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Pierson ER, Wagner CA, Goverman JM. The contribution of neutrophils to CNS autoimmunity. Clin Immunol 2018; 189:23-28. [PMID: 27377536 PMCID: PMC5203971 DOI: 10.1016/j.clim.2016.06.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is believed to be initiated when myelin-specific T cells infiltrate the central nervous system (CNS), triggering subsequent recruitment of inflammatory leukocytes to the CNS. The contribution of neutrophils to CNS autoimmune disease has been underappreciated, but several studies in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, indicate that neutrophils have an important role in inflammation. Neutrophils are hypothesized to contribute to the pathogenesis of EAE by producing cytokines and promoting breakdown of the blood brain barrier. Neutrophils may also influence the manifestation of EAE by facilitating parenchymal brain inflammation. This review summarizes evidence supporting a functional role for neutrophils in EAE and MS, highlighting the differential regulation of neutrophil recruitment in the brain and spinal cord.
Collapse
Affiliation(s)
- Emily R Pierson
- Department of Immunology, University of Washington, Box 358059, 750 Republican St., Seattle, WA 98109-8509, USA
| | - Catriona A Wagner
- Department of Immunology, University of Washington, Box 358059, 750 Republican St., Seattle, WA 98109-8509, USA
| | - Joan M Goverman
- Department of Immunology, University of Washington, Box 358059, 750 Republican St., Seattle, WA 98109-8509, USA.
| |
Collapse
|
14
|
Mowel WK, McCright SJ, Kotzin JJ, Collet MA, Uyar A, Chen X, DeLaney A, Spencer SP, Virtue AT, Yang E, Villarino A, Kurachi M, Dunagin MC, Pritchard GH, Stein J, Hughes C, Fonseca-Pereira D, Veiga-Fernandes H, Raj A, Kambayashi T, Brodsky IE, O'Shea JJ, Wherry EJ, Goff LA, Rinn JL, Williams A, Flavell RA, Henao-Mejia J. Group 1 Innate Lymphoid Cell Lineage Identity Is Determined by a cis-Regulatory Element Marked by a Long Non-coding RNA. Immunity 2017; 47:435-449.e8. [PMID: 28930659 PMCID: PMC5761663 DOI: 10.1016/j.immuni.2017.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.
Collapse
Affiliation(s)
- Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Magalie A Collet
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Xin Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Alexandra DeLaney
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P Spencer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony T Virtue
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Makoto Kurachi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C Dunagin
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Judith Stein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Cynthia Hughes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Diogo Fonseca-Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisbon, Portugal
| | - Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisbon, Portugal; Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Arjun Raj
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John L Rinn
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | - Richard A Flavell
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 2017; 214:1973-1989. [PMID: 28588016 PMCID: PMC5502438 DOI: 10.1084/jem.20170495] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
Becattini et al. provide evidence that a diverse gut microbiota antagonizes the foodborne pathogen Listeria monocytogenes in the intestinal lumen, thereby reducing bloodstream invasion. Microbiota perturbation by antibiotic treatment increases susceptibility to listeriosis, with dramatic effects in immunocompromised hosts. Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric R Littmann
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rebecca A Carter
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sohn G Kim
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sejal M Morjaria
- Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lilan Ling
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Yangtsho Gyaltshen
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Emily Fontana
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ying Taur
- Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY .,Lucille Castori Center for Microbes Inflammation and Cancer, Molecular Microbiology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY.,Infectious Diseases Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Ahn JJ, Selvanantham T, Zhang MA, Mallevaey T, Dunn SE. Experimental Infection with Listeria monocytogenes as a Model for Studying Host Interferon-γ Responses. J Vis Exp 2016. [PMID: 27911410 DOI: 10.3791/54554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
L. monocytogenes is a gram-positive bacterium that is a cause of food borne disease in humans. Experimental infection of mice with this pathogen has been highly informative on the role of innate and adaptive immune cells and specific cytokines in host immunity against intracellular pathogens. Production of IFN-γ by innate cells during sublethal infection with L. monocytogenes is important for activating macrophages and early control of the pathogen1-3. In addition, IFN-γ production by adaptive memory lymphocytes is important for priming the activation of innate cells upon reinfection4. The L. monocytogenes infection model thus serves as a great tool for investigating whether new therapies that are designed to increase IFN-γ production have an impact on IFN-γ responses in vivo and have productive biological effects such as increasing bacterial clearance or improving mouse survival from infection. Described here is a basic protocol for how to conduct intraperitoneal infections of C57BL/6J mice with the EGD strain of L. monocytogenes and to measure IFN-γ production by NK cells, NKT cells, and adaptive lymphocytes by flow cytometry. In addition, procedures are described to: (1) grow and prepare the bacteria for inoculation, (2) measure bacterial load in the spleen and liver, and (3) measure animal survival to endpoints. Representative data are also provided to illustrate how this infection model can be used to test the effect of specific agents on IFN-γ responses to L. monocytogenes and survival of mice from this infection.
Collapse
Affiliation(s)
| | | | | | | | - Shannon E Dunn
- Department of Immunology, University of Toronto; Toronto General Research Institute, University Health Network; Women's College Research Institute;
| |
Collapse
|
17
|
Schmidt S, Ullrich E, Bochennek K, Zimmermann SY, Lehrnbecher T. Role of natural killer cells in antibacterial immunity. Expert Rev Hematol 2016; 9:1119-1127. [DOI: 10.1080/17474086.2016.1254546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Jiao Y, Huntington ND, Belz GT, Seillet C. Type 1 Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells. Front Immunol 2016; 7:426. [PMID: 27785129 PMCID: PMC5059362 DOI: 10.3389/fimmu.2016.00426] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise the natural killer (NK) cells and ILC1s that reside within peripheral tissues. Several different ILC1 subsets have recently been characterized; however, no unique markers have been identified that uniquely define these subsets. Whether ILC1s and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILCs and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumor immunosurveillance. Here, we review the diversity of the Group 1 ILC subsets in their transcriptional regulation, localization, mobility, and receptor expression, and highlight the challenges in unraveling the individual functions of these different populations of cells.
Collapse
Affiliation(s)
- Yuhao Jiao
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; School of Medicine, Tsinghua University, Beijing, China
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gabrielle T Belz
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cyril Seillet
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Clark SE, Filak HC, Guthrie BS, Schmidt RL, Jamieson A, Merkel P, Knight V, Cole CM, Raulet DH, Lenz LL. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection. PLoS Pathog 2016; 12:e1005708. [PMID: 27295349 PMCID: PMC4905663 DOI: 10.1371/journal.ppat.1005708] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. Natural killer (NK) cells are an innate immune cell population known to promote antiviral immunity through cytolysis and production of cytokines. Yet, some pathogens encode proteins that cause increased NK cell activation. Here, using a model of systemic infection by the bacterial pathogen Listeria monocytogenes (Lm), we show that NK cell activation increases host susceptibility. Activated NK cells increased bacterial burdens in infected tissues despite their early production of the pro-inflammatory cytokine IFNγ. We found that the ability of NK cells to exacerbate infection was independent from their production of IFNγ and instead due to subsequent production of the anti-inflammatory cytokine IL-10. A single bacterial protein, p60, was sufficient to elicit NK cell production of both early IFNγ and delayed IL-10. IL-10-production by NK cells has been shown to occur in other systems, but our studies are first to show how this “regulatory” response impacts the course of a bacterial infection. We found that IL-10 producing NK cells suppress accumulation and activation of inflammatory myeloid cells. Our studies suggest that the exploitation of NK cell regulatory activity provides selective pressure for the evolution of pathogen proteins that promote NK cell activation.
Collapse
Affiliation(s)
- Sarah E. Clark
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Holly C. Filak
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - Brandon S. Guthrie
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Rebecca L. Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
| | - Amanda Jamieson
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, Berkeley, California, United States of America
| | - Patricia Merkel
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Vijaya Knight
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Caroline M. Cole
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - David H. Raulet
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, Berkeley, California, United States of America
| | - Laurel L. Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rosenheinrich M, Heine W, Schmühl CM, Pisano F, Dersch P. Natural Killer Cells Mediate Protection against Yersinia pseudotuberculosis in the Mesenteric Lymph Nodes. PLoS One 2015; 10:e0136290. [PMID: 26296209 PMCID: PMC4546584 DOI: 10.1371/journal.pone.0136290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/02/2015] [Indexed: 01/11/2023] Open
Abstract
Natural killer cells play a crucial role in the initial defense against bacterial pathogens. The crosstalk between host cells infected with intracellular pathogens and NK cells has been studied intensively, but not much attention has been given to characterize the role of NK cells in the response to extracellular bacterial pathogens such as yersiniae. In this study we used antibody-mediated NK cell depletion to address the importance of this immune cell type in controlling a Y. pseudotuberculosis infection. Analysis of the bacterial counts was used to follow the infection and flow cytometry was performed to characterize the composition and dynamic of immune cells. Depletion of NK cells led to higher bacterial loads within the mesenteric lymph nodes. We further show that in particular CD11b+ CD27+ NK cells which express higher levels of the activation marker CD69 increase within the mesenteric lymph nodes during a Y. pseudotuberculosis infection. Moreover, in response to the activation NK cells secrete higher levels of IFNy, which in turn triggers the production of the proinflammatory cytokine TNFα. These results suggest, that NK cells aid in the clearance of Y. pseudotuberculosis infections mainly by triggering the expression of proinflammatory cytokines manipulating the host immune response.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/microbiology
- B-Lymphocytes/pathology
- Female
- Gene Expression
- Immunophenotyping
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/microbiology
- Killer Cells, Natural/pathology
- Lymph Nodes/immunology
- Lymph Nodes/microbiology
- Lymph Nodes/pathology
- Lymphocyte Count
- Lymphocyte Depletion
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/pathology
- Mesentery/immunology
- Mesentery/microbiology
- Mesentery/pathology
- Mice
- Mice, Inbred C57BL
- Neutrophils/immunology
- Neutrophils/microbiology
- Neutrophils/pathology
- Spleen/immunology
- Spleen/microbiology
- Spleen/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Yersinia pseudotuberculosis/immunology
- Yersinia pseudotuberculosis Infections/immunology
- Yersinia pseudotuberculosis Infections/microbiology
- Yersinia pseudotuberculosis Infections/pathology
Collapse
Affiliation(s)
- Maik Rosenheinrich
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wiebke Heine
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carina M. Schmühl
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabio Pisano
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
21
|
Seregin SS, Chen GY, Laouar Y. Dissecting CD8+ NKT Cell Responses to Listeria Infection Reveals a Component of Innate Resistance. THE JOURNAL OF IMMUNOLOGY 2015; 195:1112-20. [PMID: 26116500 DOI: 10.4049/jimmunol.1500084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022]
Abstract
A small pool of NK1.1(+) CD8(+) T cells is harbored among the conventional CD8(+) T cell compartment. Conclusions drawn from the analysis of immune responses mediated by cytotoxic CD8(+) T cells are often based on the total population, which includes these contaminating NK1.1(+) CD8(+) T cells. An unresolved question is whether NK1.1(+) CD8(+) cells are conventional T cells that acquire NK1.1 expression upon activation or delineation into memory phenotype or whether they are a distinct cell population that induces immune responses in a different manner than conventional T cells. To address this question, we used the Listeria monocytogenes model of infection and followed CD8(+) NK1.1(+) T cells and NK1.1(-) CD8(+) T cells during each phase of the immune response: innate, effector, and memory. Our central finding is that CD8(+) NK1.1(+) cells and conventional NK1.1(-) CD8(+) T cells both contribute to the adaptive immune response to Listeria, but only CD8(+) NK1.1(+) cells were equipped with the ability to provide a rapid innate immune response, as demonstrated by early and Ag-independent IFN-γ production, granzyme B expression, and degranulation. More importantly, purified conventional CD8(+) T cells alone, in the absence of any contaminating CD8(+) NK1.1(+) cells, were not sufficient to provide early protection to lethally infected mice. These results highlight the role of CD8(+) NK1.1(+) T cells in mounting early innate responses that are important for host defense and support the therapeutic potential of this subset to improve the effectiveness of protective immunity.
Collapse
Affiliation(s)
- Sergey S Seregin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Grace Y Chen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| |
Collapse
|
22
|
Stoolman JS, Duncker PC, Huber AK, Segal BM. Site-specific chemokine expression regulates central nervous system inflammation and determines clinical phenotype in autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:564-70. [PMID: 24928987 PMCID: PMC4091641 DOI: 10.4049/jimmunol.1400825] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adoptive transfer of myelin-reactive T cells into wild-type hosts results in spinal cord inflammation and ascending paralysis, referred to as conventional experimental autoimmune encephalomyelitis (EAE), as opposed to brainstem inflammation and ataxia, which characterize disease in IFN-γRKO hosts (atypical EAE). In this article, we show that atypical EAE correlates with preferential upregulation of CXCL2 in the brainstem, and is driven by CXCR2-dependent recruitment of neutrophils. In contrast, conventional EAE is associated with upregulation of CCL2 in the spinal cord, and is driven by recruitment of monocytes via a partially CCR2-dependent pathway. This study illustrates how regional differences in chemokine expression within a target organ shape the spatial pattern and composition of autoimmune infiltrates, leading to disparate clinical outcomes.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Brain Stem/immunology
- Brain Stem/metabolism
- Brain Stem/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Chemokines/biosynthesis
- Chemokines/immunology
- Demyelinating Diseases/genetics
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Flow Cytometry
- Immunophenotyping
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Monocytes/immunology
- Monocytes/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Neutrophils/immunology
- Neutrophils/metabolism
- Peptide Fragments
- Receptors, CCR2/deficiency
- Receptors, CCR2/genetics
- Receptors, CCR2/immunology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Receptors, Interleukin-8B/immunology
- Receptors, Interleukin-8B/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Joshua S Stoolman
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and
| | - Patrick C Duncker
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and
| | - Amanda K Huber
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Benjamin M Segal
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, University of Michigan School of Medicine, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; and Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|