1
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
2
|
Zhu C, Boucheron N, Al-Rubaye O, Chung BK, Thorbjørnsen LW, Köcher T, Schuster M, Claudel T, Halilbasic E, Kunczer V, Muscate F, Cavanagh LL, Waltenberger D, Lercher A, Ohradanova-Repic A, Schatzlmaier P, Stojakovic T, Scharnagl H, Bergthaler A, Stockinger H, Huber S, Bock C, Kenner L, Karlsen TH, Ellmeier W, Trauner M. 24-Nor-ursodeoxycholic acid improves intestinal inflammation by targeting T H17 pathogenicity and transdifferentiation. Gut 2025:gutjnl-2024-333297. [PMID: 40032499 DOI: 10.1136/gutjnl-2024-333297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND 24-Nor-ursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid for treating immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC). OBJECTIVE Since PSC strongly associates with T helper-type-like 17 (TH17)-mediated intestinal inflammation, we explored NorUDCA's immunomodulatory potential on TH17 cells. DESIGN NorUDCA's impact on TH17 differentiation was assessed using a CD4+TNaive adoptive transfer mouse model, and on intraepithelial TH17 pathogenicity and transdifferentiation using an αCD3 stimulation model combined with interleukin-17A-fate-mapping. Mechanistic studies used molecular and multiomics approaches, flow cytometry and metabolic assays with pathogenic (p) TH17. Pathogenicity of pTH17 exposed to NorUDCA in vitro was evaluated following adoptive transfer in intestinal tissues or the central nervous system (CNS). Key findings were validated in an αCD3-stimulated humanised NSG mouse model reconstituted with peripheral blood mononuclear cells from patients with PSC. RESULTS NorUDCA suppressed TH17 effector function and enriched regulatory T cell (Treg) abundance upon CD4+TNaive cell transfer. NorUDCA mitigated intraepithelial TH17 pathogenicity and decreased the generation of proinflammatory 'TH1-like-TH17' cells, and enhanced TH17 transdifferentiation into Treg and Tr1 (regulatory type 1) cells in the αCD3-model. In vivo ablation revealed that Treg induction is crucial for NorUDCA's anti-inflammatory effect on TH17 pathogenicity. Mechanistically, NorUDCA restrained pTH17 effector function and simultaneously promoted functional Treg formation in vitro, by attenuating a glutamine-mTORC1-glycolysis signalling axis. Exposure of pTH17 to NorUDCA dampened their pathogenicity and expansion in the intestine or CNS upon transfer. NorUDCA's impact on TH17 inflammation was corroborated in the humanised NSG mouse model. CONCLUSION NorUDCA restricts TH17 inflammation in multiple mouse models, potentiating future clinical applications for treating TH17-mediated intestinal diseases and beyond.
Collapse
Affiliation(s)
- Ci Zhu
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Osamah Al-Rubaye
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Brian K Chung
- Department of Transplantation Medicine, Clinic of Surgery and Specialized Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Liv Wenche Thorbjørnsen
- Department of Transplantation Medicine, Clinic of Surgery and Specialized Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thomas Köcher
- Vienna BioCenter Core Facilities, Metabolomics, Vienna BioCenter, Vienna, Austria
| | - Michael Schuster
- Biomedical Sequencing Facility, Cemm, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunczer
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Fanziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lois L Cavanagh
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Darina Waltenberger
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexander Lercher
- Cemm, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Bergthaler
- Cemm, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Bock
- Biomedical Sequencing Facility, Cemm, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Kenner
- Division of Experimental and Translational Pathology, Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tom H Karlsen
- Department of Transplantation Medicine, Clinic of Surgery and Specialized Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Wilfried Ellmeier
- Institute of Immunology, Center for Pathophysiology Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Wang C, Wang N, Wang D. Structural properties of glucan from Russula griseocarnosa and its immunomodulatory activities mediated via T cell differentiation. Carbohydr Polym 2024; 339:122214. [PMID: 38823900 DOI: 10.1016/j.carbpol.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/03/2024]
Abstract
The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-β-D-Glcp-(1→, →3)-β-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-β-D-Glcp-(1→ by β-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam 000000, Hong Kong.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
The deacetylase SIRT2 contributes to autoimmune disease pathogenesis by modulating IL-17A and IL-2 transcription. Cell Mol Immunol 2022; 19:738-750. [PMID: 35523941 DOI: 10.1038/s41423-022-00874-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant IL-17A expression together with reduced IL-2 production by effector CD4+ T cells contributes to the pathogenesis of systemic lupus erythematosus (SLE). Here, we report that Sirtuin 2 (SIRT2), a member of the family of NAD+-dependent histone deacetylases, suppresses IL-2 production by CD4+ T cells while promoting their differentiation into Th17 cells. Mechanistically, we show that SIRT2 is responsible for the deacetylation of p70S6K, activation of the mTORC1/HIF-1α/RORγt pathway and induction of Th17-cell differentiation. Additionally, SIRT2 was shown to be responsible for the deacetylation of c-Jun and histones at the Il-2 gene, resulting in decreased IL-2 production. We found that the transcription factor inducible cAMP early repressor (ICER), which is overexpressed in T cells from people with SLE and lupus-prone mice, bound directly to the Sirt2 promoter and promoted its transcription. AK-7, a SIRT2 inhibitor, limited the ability of adoptively transferred antigen-specific CD4+ T cells to cause autoimmune encephalomyelitis in mice and limited disease in lupus-prone MRL/lpr mice. Finally, CD4+ T cells from SLE patients exhibited increased expression of SIRT2, and pharmacological inhibition of SIRT2 in primary CD4+ T cells from patients with SLE attenuated the ability of these cells to differentiate into Th17 cells and promoted the generation of IL-2-producing T cells. Collectively, these results suggest that SIRT2-mediated deacetylation is essential in the aberrant expression of IL-17A and IL-2 and that SIRT2 may be a promising molecular target for new SLE therapies.
Collapse
|
5
|
Qin Y, Gao C, Luo J. Metabolism Characteristics of Th17 and Regulatory T Cells in Autoimmune Diseases. Front Immunol 2022; 13:828191. [PMID: 35281063 PMCID: PMC8913504 DOI: 10.3389/fimmu.2022.828191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The abnormal number and functional deficiency of immune cells are the pathological basis of various diseases. Recent years, the imbalance of Th17/regulatory T (Treg) cell underlies the occurrence and development of inflammation in autoimmune diseases (AID). Currently, studies have shown that material and energy metabolism is essential for maintaining cell survival and normal functions and the altered metabolic state of immune cells exists in a variety of AID. This review summarizes the biology and functions of Th17 and Treg cells in AID, with emphasis on the advances of the roles and regulatory mechanisms of energy metabolism in activation, differentiation and physiological function of Th17 and Treg cells, which will facilitate to provide targets for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Yan Qin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
6
|
p70 S6 kinase as a therapeutic target in cancers: More than just an mTOR effector. Cancer Lett 2022; 535:215593. [PMID: 35176419 DOI: 10.1016/j.canlet.2022.215593] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
p70 S6 kinase (p70S6K) is best-known for its regulatory roles in protein synthesis and cell growth by phosphorylating its primary substrate, ribosomal protein S6, upon mitogen stimulation. The enhanced expression/activation of p70S6K has been correlated with poor prognosis in some cancer types, suggesting that it may serve as a biomarker for disease monitoring. p70S6K is a critical downstream effector of the oncogenic PI3K/Akt/mTOR pathway and its activation is tightly regulated by an ordered cascade of Ser/Thr phosphorylation events. Nonetheless, it should be noted that other upstream mechanisms regulating p70S6K at both the post-translational and post-transcriptional levels also exist. Activated p70S6K could promote various aspects of cancer progression such as epithelial-mesenchymal transition, cancer stemness and drug resistance. Importantly, novel evidence showing that p70S6K may also regulate different cellular components in the tumor microenvironment will be discussed. Therapeutic targeting of p70S6K alone or in combination with traditional chemotherapies or other microenvironmental-based drugs such as immunotherapy may represent promising approaches against cancers with aberrant p70S6K signaling. Currently, the only clinically available p70S6K inhibitors are rapamycin analogs (rapalogs) which target mTOR. However, there are emerging p70S6K-selective drugs which are going through active preclinical or clinical trial phases. Moreover, various screening strategies have been used for the discovery of novel p70S6K inhibitors, hence bringing new insights for p70S6K-targeted therapy.
Collapse
|
7
|
Uddin J, Tomar S, Sharma A, Waggoner L, Ganesan V, Marella S, Yang Y, Noah T, Vanoni S, Patterson A, Zeng C, Foster PS, Newberry R, Bishu S, Kao JY, Rosen MJ, Denson L, King PD, Hoebe K, Divanovic S, Munitz A, Hogan SP. PIR-B Regulates CD4 + IL17a + T-Cell Survival and Restricts T-Cell-Dependent Intestinal Inflammatory Responses. Cell Mol Gastroenterol Hepatol 2021; 12:1479-1502. [PMID: 34242819 PMCID: PMC8531983 DOI: 10.1016/j.jcmgh.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.
Collapse
Affiliation(s)
- Jazib Uddin
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan; Graduate Program in Immunology, Ann Arbor, Michigan
| | - Sunil Tomar
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Ankit Sharma
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Varsha Ganesan
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Sahiti Marella
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Yanfen Yang
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Taeko Noah
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati, Ohio
| | | | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - John Y Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati, Ohio
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati, Ohio
| | - Philip D King
- Department of Microbiology and Immunology, Ann Arbor, Michigan
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati, Ohio; Janssen, Inc, Janssen R@D, Discovery, Innate Immunology Spring House, Pennsylvania
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati, Ohio; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Simon P Hogan
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors? Front Immunol 2021; 11:595818. [PMID: 33552053 PMCID: PMC7857022 DOI: 10.3389/fimmu.2020.595818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.
Collapse
Affiliation(s)
- Ebru Aydin
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Faehling
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mariam Saleh
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Molecular Medicine, Ulm University, Ulm, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Prasad M, Brzostek J, Gautam N, Balyan R, Rybakin V, Gascoigne NRJ. Themis regulates metabolic signaling and effector functions in CD4 + T cells by controlling NFAT nuclear translocation. Cell Mol Immunol 2020; 18:2249-2261. [PMID: 33177694 PMCID: PMC8429700 DOI: 10.1038/s41423-020-00578-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 01/13/2023] Open
Abstract
Themis is a T cell lineage-specific molecule that is involved in TCR signal transduction. The effects of germline Themis deletion on peripheral CD4+ T cell function have not been described before. In this study, we found that Themis-deficient CD4+ T cells had poor proliferative responses, reduced cytokine production in vitro and weaker inflammatory potential, as measured by their ability to cause colitis in vivo. Resting T cells are quiescent, whereas activated T cells have high metabolic demands. Fulfillment of these metabolic demands depends upon nutrient availability and upregulation of nutrient intake channels after efficient TCR signal transduction, which leads to metabolic reprogramming in T cells. We tested whether defects in effector functions were caused by impaired metabolic shifts in Themis-deficient CD4+ T cells due to inefficient TCR signal transduction, in turn caused by the lack of Themis. We found that upon TCR stimulation, Themis-deficient CD4+ T cells were unable to upregulate the expression of insulin receptor (IR), glucose transporter (GLUT1), the neutral amino acid transporter CD98 and the mTOR pathway, as measured by c-Myc and pS6 expression. Mitochondrial analysis of activated Themis-deficient CD4+ T cells showed more oxidative phosphorylation (OXPHOS) than aerobic glycolysis, indicating defective metabolic reprogramming. Furthermore, we found reduced NFAT translocation in Themis-deficient CD4+ T cells upon TCR stimulation. Using previously reported ChIP-seq and RNA-seq data, we found that NFAT nuclear translocation controls IR gene expression. Together, our results describe an internal circuit between TCR signal transduction, NFAT nuclear translocation, and metabolic signaling in CD4+ T cells.
Collapse
Affiliation(s)
- Mukul Prasad
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Joanna Brzostek
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Namrata Gautam
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Renu Balyan
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Torque Therapeutics, Cambridge, MA, USA
| | - Nicholas R J Gascoigne
- Translational Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
10
|
Balyan R, Gautam N, Gascoigne NR. The Ups and Downs of Metabolism during the Lifespan of a T Cell. Int J Mol Sci 2020; 21:E7972. [PMID: 33120978 PMCID: PMC7663011 DOI: 10.3390/ijms21217972] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding the various mechanisms that govern the development, activation, differentiation, and functions of T cells is crucial as it could provide opportunities for therapeutic interventions to disrupt immune pathogenesis. Immunometabolism is one such area that has garnered significant interest in the recent past as it has become apparent that cellular metabolism is highly dynamic and has a tremendous impact on the ability of T cells to grow, activate, and differentiate. In each phase of the lifespan of a T-cell, cellular metabolism has to be tailored to match the specific functional requirements of that phase. Resting T cells rely on energy-efficient oxidative metabolism but rapidly shift to a highly glycolytic metabolism upon activation in order to meet the bioenergetically demanding process of growth and proliferation. However, upon antigen clearance, T cells return to a more quiescent oxidative metabolism to support T cell memory generation. In addition, each helper T cell subset engages distinct metabolic pathways to support their functional needs. In this review, we provide an overview of the metabolic changes that occur during the lifespan of a T cell and discuss several important studies that provide insights into the regulation of the metabolic landscape of T cells and how they impact T cell development and function.
Collapse
Affiliation(s)
| | | | - Nicholas R.J. Gascoigne
- Immunology Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (R.B.); (N.G.)
| |
Collapse
|
11
|
Kang S, Tang H. HIV-1 Infection and Glucose Metabolism Reprogramming of T Cells: Another Approach Toward Functional Cure and Reservoir Eradication. Front Immunol 2020; 11:572677. [PMID: 33117366 PMCID: PMC7575757 DOI: 10.3389/fimmu.2020.572677] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
With the emerging of highly active antiretroviral therapy, HIV-1 infection has transferred from a fatal threat to a chronic disease that could be managed. Nevertheless, inextricable systemic immune activation and chronic inflammation despite viral suppression render patients still at higher risk of HIV-1-associated non-AIDS complications. Immunometabolism has nowadays raised more and more attention for that targeting metabolism may become a promising approach to modulate immune system and play a role in treating cancer, HIV-1 infection and autoimmune diseases. HIV-1 mainly infects CD4+ T cells and accumulating evidence has brought to light the association between T cell metabolism reprogramming and HIV-1 pathogenesis. Here, we will focus on the interplay of glycometabolism reprogramming of T cells and HIV-1 infection, making an effort to delineate the possibility of utilizing immunometabolism as a new target towards HIV-1 management and even sterilizing cure through eliminating viral reservoir.
Collapse
Affiliation(s)
- Shuang Kang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1027. [PMID: 32528480 PMCID: PMC7257669 DOI: 10.3389/fimmu.2020.01027] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
The Th17/T-regulatory (Treg) cell imbalance is involved in the occurrence and development of organ inflammation in systemic lupus erythematosus (SLE). Metabolic pathways can regulate T cell differentiation and function, thus contributing to SLE inflammation. Increasingly, data have shown metabolism influences and reprograms the Th17/Treg cell balance, and the metabolic pattern of T cells is different in SLE. Notably, metabolic characteristics of SLE T cells, such as enhanced glycolysis, lipid synthesis, glutaminolysis, and highly activated mTOR, all favored Th17 differentiation and function, which underlie the Th17/Treg cell imbalance in SLE patients. Targeting metabolic pathways to reverse Th17/Treg imbalance offer a promising method for SLE therapy.
Collapse
Affiliation(s)
- Juan Shan
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Hong Jin
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Yan Xu
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
15
|
Guo S, Liu C, Yu J, Chai Z, Wang Q, Mi X, Song G, Li Y, Yang P, Feng L, Xiao B, Ma C. Nasal delivery of Fasudil-modified immune cells exhibits therapeutic potential in experimental autoimmune encephalomyelitis. CNS Neurosci Ther 2019; 25:783-795. [PMID: 30779332 PMCID: PMC6515703 DOI: 10.1111/cns.13111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
AIM Multiple sclerosis (MS) is a relapsing-remitting inflammatory demyelinating disease that requires long-term treatment. Although Rho kinase inhibitor Fasudil shows good therapeutic effect in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, certain side effects may limit its clinical use. This study aimed at observing the therapeutic potential of Fasudil-modified encephalitogenic mononuclear cells (MNCs) via nasal delivery in EAE and exploring possible mechanisms of action. METHODS Experimental autoimmune encephalomyelitis was induced with myelin oligodendrocyte glycoprotein 35-55 in C57BL/6 mice, and encephalitogenic MNCs were treated with Fasudil in vitro. Mice received 3 × 106 cells/10 μL per nasal cavity on day 3 and 11 postimmunization, respectively. RESULTS Fasudil-modified MNCs reduced clinical severity of EAE, improved demyelination, and decreased inflammatory cells in spinal cords. Immunohistochemical results indicated that CD4+ T cells and CD68+ macrophages were barely detected in Fasudil-MNCs group. Fasudil-modified MNCs decreased CD4+ IFN-γ+ and CD4+ IL-17+ T cells, increased CD4+ IL-10+ T cells, restrained M1 markers CD16/32, CCR7, IL-12, CD8a, enhanced M2 markers CD206, CD200, CD14 in spleen. Fasudil-modified MNCs inhibited the activation of inflammatory signaling p-NF-kB/P38, accompanied by the decrease of COX-2 and the increase of Arg-1 in spinal cord, as well as the reduction of IL-17, TNF-α, IL-6 and the elevation of IL-10 in cultured supernatant of splenocytes. Fasudil-modified MNCs enhanced the levels of neurotrophic factors BDNF and NT-3 in spinal cord. CONCLUSION Our results indicate that intranasal delivery of Fasudil-modified MNCs have therapeutic potential in EAE, providing a safe and effective cell therapeutic strategy to MS and/or other related disorders.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Administration, Intranasal
- Animals
- Cell- and Tissue-Based Therapy/methods
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/transplantation
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Protein Kinase Inhibitors/pharmacology
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Shang‐De Guo
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Chun‐Yun Liu
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Jing‐Wen Yu
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Zhi Chai
- Research Center of NeurobiologyShanxi University of Traditional Chinese MedicineTaiyuanChina
| | - Qing Wang
- Research Center of NeurobiologyShanxi University of Traditional Chinese MedicineTaiyuanChina
| | - Xi‐Ting Mi
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Guo‐Bin Song
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Yan‐Hua Li
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Peng‐Wei Yang
- Research Center of NeurobiologyShanxi University of Traditional Chinese MedicineTaiyuanChina
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
| | - Bao‐Guo Xiao
- Institute of NeurologyHuashan HospitalInstitutes of Brain Science and State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Cun‐Gen Ma
- Department of Neurology, Institute of Brain Science, Medical SchoolShanxi Datong UniversityDatongChina
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain ScienceShanxi Datong UniversityDatongChina
- Research Center of NeurobiologyShanxi University of Traditional Chinese MedicineTaiyuanChina
| |
Collapse
|
16
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
17
|
Shen H, Shi LZ. Metabolic regulation of T H17 cells. Mol Immunol 2019; 109:81-87. [PMID: 30903829 PMCID: PMC7059830 DOI: 10.1016/j.molimm.2019.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
IL-17-producing TH17 cells have been associated with autoimmune diseases such as multiple sclerosis (MS), psoriasis, Crohn's disease, and ulcerative colitis (Han et al., 2015), many of which lack effective therapies. Identifying effective approaches to selectively suppress TH17 cell development and function represents a legitimate strategy to cure these autoimmune disorders. TH17 cell differentiation requires rewiring of their metabolic program, transition from the oxidative phosphorylation-dominant catabolic phenotype in quiescent naïve T cells to glucose metabolism-orchestrated anabolic phenotype including lipogenesis. Here, we provide a focused review on the glycolytic-lipogenic pathway in TH17 development and pathogenicity. These studies reveal several metabolic checkpoints with specific regulation of TH17 cells (but not other T cell lineages), manifesting potential therapeutic opportunities to TH17 cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Hongxing Shen
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35233, United States
| | - Lewis Zhichang Shi
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35233, United States; Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35233, United States; Programs in Immunology, The University of Alabama at Birmingham, Birmingham, AL, 35233, United States; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, 35233, United States.
| |
Collapse
|
18
|
Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol 2018; 179:260-272. [PMID: 29573406 DOI: 10.1111/bjd.16561] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Disintegration of the infundibula of terminal hair follicles (HFs) in intertriginous skin areas exhibits the histological hallmark of hidradenitis suppurativa (HS)/acne inversa, featuring a dissecting terminal hair folliculitis. Elevated serum levels of interleukin (IL)-17 and local increase in the ratio of proinflammatory T helper (Th)17 cells and anti-inflammatory regulatory T cells (Tregs) have been reported. Perifollicular Tregs play a key role in HF stem cell homeostasis and infundibular integrity. OBJECTIVES In this review, we evaluate the Th17/Treg ratio in HS, its aggravating conditions and associated comorbidities. Furthermore, we intended to clarify whether drugs with reported beneficial effects in the treatment of HS readjust the deviated Th17/Treg axis. METHODS PubMed-listed, peer-reviewed original research articles characterizing Th17/Treg regulation in HS/acne inversa and associated comorbidities were selected for this review. RESULTS This review presents HS as a disease that exhibits an increased Th17/Treg ratio. Perifollicular deficiencies in Treg numbers or function may disturb HF stem cell homeostasis, initiating infundibular dissection of terminal HFs and perifollicular inflammation. The Th17/Treg imbalance is aggravated by obesity, smoking and decreased Notch signalling. In addition, HS-associated autoimmune diseases exhibit a disturbed Th17/Treg axis resulting in a Th17-dominant state. All drugs that have beneficial effects in the treatment of HS normalize the Th17/Treg ratio. CONCLUSIONS HS immunopathogenesis is closely related to deviations of the Th17/Treg balance, which may negatively affect Treg-controlled HF stem cell homeostasis and infundibular integrity. Pharmacological intervention should not only attenuate Th17/IL-17 signalling, but should also improve Treg function in order to stabilize HF stem cell homeostasis and infundibular integrity.
Collapse
Affiliation(s)
- B C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - S M John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - W Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
19
|
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol 2018; 97:379-392. [PMID: 29773345 DOI: 10.1016/j.ejcb.2018.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis has always been considered as a big challenge for pharmaceutical companies in terms of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, a stage of immunosuppression is also observed during sepsis even in the patients who have recovered from it. This stage of immunosuppression is observed due to the loss of conventional (i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This process also impacts metabolic processes controlling immune cell metabolism called immunometabolism. The present review is focused on the T cell-mediated immune response, their immunometabolism and targeting T cell immunometabolism during sepsis as future therapeutic approach. The first part of the manuscripts describes an impact of sepsis on conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) under normal conditions and during sepsis-induced immunosuppression. The article ends with the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) during sepsis as a future immunomodulatory approach for its management.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
20
|
Elahi A, Sabui S, Narasappa NN, Agrawal S, Lambrecht NW, Agrawal A, Said HM. Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4 + T Lymphocytes via Activation of the mTOR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2563-2570. [PMID: 29531163 PMCID: PMC5893381 DOI: 10.4049/jimmunol.1701200] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/09/2018] [Indexed: 12/18/2022]
Abstract
Biotin (vitamin B7) is essential for human health because of its involvement, as a cofactor, in a variety of critical cellular metabolic reactions. Previous studies have shown that biotin deficiency enhances inflammation, and certain chronic inflammatory diseases are associated with biotin deficiency; however, the mechanisms that mediate the association between biotin status and inflammation are not well understood. In this study, we examined the effect of biotin deficiency on human CD4+ T cell responses to determine their role in biotin deficiency-associated inflammation. Our investigations revealed that anti-CD3/CD28-stimulated CD4+ T cells cultured in biotin-deficient medium secreted significantly enhanced levels of the proinflammatory cytokines IFN-γ, TNF, and IL-17. Expression of the transcription factors T-bet and RORγt was increased, whereas Foxp3 expression was decreased, in biotin-deficient CD4+ T cells. The percentage of T regulatory cells was also decreased under biotin-deficient condition. A similar increase in T-bet, RORγt, and proinflammatory cytokine levels, as well as a decrease in Foxp3, was observed in inguinal lymph nodes of mice fed a biotin-deficient diet relative to pair-fed controls. Furthermore, differentiation of CD4+ T cells toward Th1 and Th17 cells was also enhanced. In vitro and in vivo investigations indicated that the increased inflammatory response was due to enhanced activation of the mammalian target of rapamycin signaling pathway in biotin-deficient CD4+ T cells. In summary, these results demonstrate that biotin deficiency enhances the inflammatory responses in CD4+ T cells, which may contribute to inflammation associated with biotin deficiency.
Collapse
Affiliation(s)
- Asif Elahi
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Subrata Sabui
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Nell N Narasappa
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
| | - Sudhanshu Agrawal
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
| | - Nils W Lambrecht
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
| | - Hamid M Said
- Department of Medical Research, Veterans Affairs Medical Center, Long Beach, CA 90822;
- Department of Medicine, University of California, Irvine, Irvine, CA 92697; and
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
21
|
Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A 2018; 115:2478-2483. [PMID: 29463741 DOI: 10.1073/pnas.1714717115] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glutaminolysis is a well-known source of energy for effector T cells but its contribution to each T cell subset and the mechanisms which are responsible for the control of involved metabolic enzymes are not fully understood. We report that Th17 but not Th1, Th2, or Treg cell induction in vitro depends on glutaminolysis and the up-regulation of glutaminase 1 (Gls1), the first enzyme in the glutaminolysis pathway. Both pharmacological and siRNA-based selective inhibition of Gls1 reduced in vitro Th17 differentiation and reduced the CD3/TCR-mediated increase of the mammalian target of rapamycin complex 1 activity. Treatment of mice with a Gls1 inhibitor ameliorated experimental autoimmune encephalomyelitis. Furthermore, RAG1-deficient mice that received Gls1-shRNA-transfected 2D2 T cells had reduced experimental autoimmune encephalomyelitis scores compared with those that received control-shRNA-treated cells. Next we found that T cells deficient in inducible cAMP early repressor (ICER), a transcriptional factor known to promote Th17 differentiation, display reduced activity of oxidative phosphorylation rates in the presence of glutamine and reduced Gls1 expression, both of which could be restored by ICER overexpression. Finally, we demonstrate that ICER binds to the gls1 promoter directly and increases its activity. These findings demonstrate the importance of glutaminolysis in the generation of Th17 and the direct control of Gls1 activity by the IL-17-promoting transcription factor ICER. Pharmaceutical modulation of the glutaminolysis pathway should be considered to control Th17-mediated pathology.
Collapse
|
22
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
24
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170:605-635. [PMID: 28802037 PMCID: PMC5726441 DOI: 10.1016/j.cell.2017.07.029] [Citation(s) in RCA: 1828] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Shubha Bagrodia
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
25
|
Hosokawa T, Kimura T, Nada S, Okuno T, Ito D, Kang S, Nojima S, Yamashita K, Nakatani T, Hayama Y, Kato Y, Kinehara Y, Nishide M, Mikami N, Koyama S, Takamatsu H, Okuzaki D, Ohkura N, Sakaguchi S, Okada M, Kumanogoh A. Lamtor1 Is Critically Required for CD4 + T Cell Proliferation and Regulatory T Cell Suppressive Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:2008-2019. [PMID: 28768723 DOI: 10.4049/jimmunol.1700157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Mechanistic target of rapamycin complex (mTORC)1 integrates intracellular sufficiency of nutrients and regulates various cellular functions. Previous studies using mice with conditional knockout of mTORC1 component proteins (i.e., mTOR, Raptor, and Rheb) gave conflicting results on the roles of mTORC1 in CD4+ T cells. Lamtor1 is the protein that is required for amino acid sensing and activation of mTORC1; however, the roles of Lamtor1 in T cells have not been investigated. In this article, we show that Lamtor1-deficient CD4+ T cells exhibited marked reductions in proliferation, IL-2 production, mTORC1 activity, and expression of purine- and lipid-synthesis genes. Polarization of Th17 cells, but not Th1 and Th2 cells, diminished following the loss of Lamtor1. Accordingly, CD4-Cre-driven Lamtor1-knockout mice exhibited reduced numbers of CD4+ and CD8+ T cells at rest, and they were completely resistant to experimental autoimmune encephalomyelitis. In contrast, genetic ablation of Lamtor1 in Foxp3+ T cells resulted in severe autoimmunity and premature death. Lamtor1-deficient regulatory T cells survived ex vivo as long as wild-type regulatory T cells; however, they exhibited a marked loss of suppressive function and expression of signature molecules, such as CTLA-4. These results indicate that Lamtor1 plays essential roles in CD4+ T cells. Our data suggest that Lamtor1 should be considered a novel therapeutic target in immune systems.
Collapse
Affiliation(s)
- Takashi Hosokawa
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Tetsuya Kimura
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan.,Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsusada Okuno
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Ito
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Sujin Kang
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Satoshi Nojima
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Yamashita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Nakatani
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yoshitomo Hayama
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Kato
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yuhei Kinehara
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Masayuki Nishide
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Syohei Koyama
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; and
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; .,Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,The Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| |
Collapse
|
26
|
Han R, Luo J, Shi Y, Yao Y, Hao J. PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury. Stroke 2017; 48:2255-2262. [PMID: 28706113 DOI: 10.1161/strokeaha.117.016705] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage (ICH) is a neurologically destructive stroke, for which no valid treatment is available. This preclinical study examined the therapeutic effect of PD-L1 (programmed death ligand 1), a B7 family member and a ligand for both PD-1 (programmed death 1) and B7-1 (CD80), in a murine ICH model. METHODS ICH was induced by injecting autologous blood into 252 male C57BL/6 and Rag1-/- mice. One hour later, ICH mice were randomly assigned to receive an intraperitoneal injection of vehicle, PD-L1, or anti-PD-L1 antibody. Neurological function was assessed along with brain edema, brain infiltration of immune cells, blood-brain barrier integrity, neuron death, and mTOR (mammalian target of rapamycin) pathway products. RESULTS PD-L1 significantly attenuated neurological deficits, reduced brain edema, and decreased hemorrhage volume in ICH mice. PD-L1 specifically downsized the number of brain-infiltrating CD4+ T cells and the percentages of Th1 and Th17 cells but increased the percentages of Th2 and regulatory T cells. In the PD-L1-treated group, we observed an amelioration of the inflammatory milieu, decreased cell death, and enhanced blood-brain barrier integrity. PD-L1 also inhibited the mTOR pathway. The administration of anti-PD-L1 antibody produced the opposite effects to those of PD-L1 in ICH mice. CONCLUSIONS PD-L1 provided protection from the damaging consequences of ICH.
Collapse
Affiliation(s)
- Ranran Han
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | - Jiaying Luo
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | - Yanchao Shi
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | - Yang Yao
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | - Junwei Hao
- From the Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, China.
| |
Collapse
|
27
|
|
28
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
29
|
Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 2016; 28:514-524. [PMID: 27825556 DOI: 10.1016/j.smim.2016.10.009] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in the field of immunometabolism support the concept that fundamental processes in T cell biology, such as TCR-mediated activation and T helper lineage differentiation, are closely linked to changes in the cellular metabolic programs. Although the major task of the intermediate metabolism is to provide the cell with a constant supply of energy and molecular precursors for the production of biomolecules, the dynamic regulation of metabolic pathways also plays an active role in shaping T cell responses. Key metabolic processes such as glycolysis, fatty acid and mitochondrial metabolism are now recognized as crucial players in T cell activation and differentiation, and their modulation can differentially affect the development of T helper cell lineages. In this review, we describe the diverse metabolic processes that T cells engage during their life cycle from naïve towards effector and memory T cells. We consider in particular how the cellular metabolism may actively support the function of T cells in their different states. Moreover, we discuss how molecular regulators such as mTOR or AMPK link environmental changes to adaptations in the cellular metabolism and elucidate the consequences on T cell differentiation and function.
Collapse
|
30
|
Gabrion A, Hmitou I, Moshous D, Neven B, Lefèvre-Utile A, Diana JS, Suarez F, Picard C, Blanche S, Fischer A, Cavazzana M, Touzot F. Mammalian target of rapamycin inhibition counterbalances the inflammatory status of immune cells in patients with chronic granulomatous disease. J Allergy Clin Immunol 2016; 139:1641-1649.e6. [PMID: 27702670 DOI: 10.1016/j.jaci.2016.08.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defective production of reactive oxygen species in phagocytic cells that results in life-threatening infections and severe inflammatory manifestations. The treatment of inflammatory manifestations remains challenging because it can be associated with an increased risk of infections. Previous studies have shown that phagocytes from patients with CGD display a defect in autophagy and a reactive oxygen species-independent activation of the inflammasome. OBJECTIVE Because the intersections between autophagy and the inflammasome have been observed in patients with various diseases and microbial infections, we investigated the possible benefit of restoring the autophagy defect through rapamycin, a potent autophagy inducer, in the setting of CGD. METHODS We studied 15 patients given a diagnosis of CGD and followed in our institution. All patients were free of any active infection at the time of the study. RESULTS We show that patients with CGD present a consistent inflammatory phenotype defined by (1) increased nonclassical and intermediate monocytes, (2) a proinflammatory state of mononuclear phagocytes with increased IL-1β and TNF-α content, (3) a TH17 bias of CD4+ T cells, (4) and an increase in IL-17A-secreting neutrophil numbers. We document the reversion of CGD inflammatory status by the mammalian target of rapamycin inhibitor rapamycin on the different immune cell subsets. We also provide evidence for the enhancement of rapamycin's inhibitory effect on IL-1β secretion by the IL-1 receptor antagonist anakinra in phagocytes of patients with CGD. CONCLUSION Altogether, these data open new therapeutic approaches for CGD-related inflammatory manifestations.
Collapse
Affiliation(s)
- Aurélie Gabrion
- Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP, Paris, France
| | - Isabelle Hmitou
- Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP, Paris, France
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France
| | - Alain Lefèvre-Utile
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Jean-Sébastien Diana
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Félipe Suarez
- University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France; Department of Hematology, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Capucine Picard
- University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France; Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Stéphane Blanche
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Alain Fischer
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France; Collège de France, Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France
| | - Fabien Touzot
- Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, AP-HP, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Inserm UMR 1163, Paris, France.
| |
Collapse
|
31
|
Pai C, Walsh CM, Fruman DA. Context-Specific Function of S6K2 in Th Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2016; 197:3049-3058. [PMID: 27613697 DOI: 10.4049/jimmunol.1600167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
The mammalian target of rapamycin (mTOR) is essential for Th cell proliferation and effector differentiation, making the mTOR signaling network an attractive immunomodulatory target for autoimmune-related diseases. Although direct targeting of mTOR complex-1 (mTORC1) with rapamycin can provide clinical benefit, targeting downstream enzymes has the potential to offer more selective immunosuppression. In this study, we evaluated p70 ribosomal protein S6 Kinase 2 (S6K2), a downstream effector of mTORC1, for its role in T cell function and autoimmunity. S6K2 is a direct substrate of mTORC1, with a potential role in Th17 differentiation suggested by biochemical studies. Using a genetic approach with S6K2 knockout mice, we found that S6K2 loss reduces Th17 skewing and increases regulatory T cell differentiation in vitro when cultured in RPMI 1640 media. However, S6K2 was dispensable for Th17 differentiation in IMDM. In an in vivo experimental autoimmune encephalomyelitis model in which rapamycin suppresses disease, S6K2 knockout mice did not exhibit differences in clinical score or Th17 differentiation. These results suggest that S6K2 is dispensable for Th17-driven autoimmunity and highlight how distinct experimental conditions can produce significantly different results in T cell differentiation.
Collapse
Affiliation(s)
- Christine Pai
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
32
|
Wang R, Solt LA. Metabolism of murine TH 17 cells: Impact on cell fate and function. Eur J Immunol 2016; 46:807-16. [PMID: 26893133 DOI: 10.1002/eji.201545788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases.
Collapse
Affiliation(s)
- Ran Wang
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura A Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|