1
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
2
|
Kleynhans J, Reeve R, Driver CHS, Marjanovic-Painter B, Sathekge M, Zeevaart JR, Ebenhan T, Millar RP. Synthesis and characterisation of DOTA-kisspeptin-10 as a potential gallium-68/lutetium-177 pan-tumour radiopharmaceutical. J Neuroendocrinol 2025; 37:e13487. [PMID: 39775975 PMCID: PMC11919473 DOI: 10.1111/jne.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Kisspeptin (KISS1) and its cognate receptor (KISS1R) are implicated in the progression of various cancers. A gallium-68 labelled kisspeptin-10 (KP10), the minimal biologically active structure, has potential as a pan-tumour radiopharmaceutical for the detection of cancers. Furthermore, a lutetium-177 labelled KP10 could find therapeutic application in treating oncological diseases. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was attached to the NH2-terminus of KP10 as we posited from our previous publications that this modification would not impair biological activity. Here, we showed that the biological activity, as monitored by stimulation of inositol phosphate accumulation in HEK293 transfected with the KISS1R gene, was indeed similar for KP10 and DOTA-KP10. The optimisation of radiolabelling with gallium-68 and lutetium-177 is described. Stability in serum, plasma and whole blood was also investigated. Pharmacokinetics and biodistribution were established with micro-PET/CT (positron emission tomography/computerised tomography) and ex vivo measurements. Dynamic studies with micro-PET/CT demonstrated that background clearance for the radiopharmaceutical was rapid with a blood half-life of 18 ± 3 min. DOTA-KP10 demonstrated preserved functionality at KISS1R and good blood clearance. These results lay the foundation for the further development of DOTA-KP10 analogues that have high binding affinity along with proteolytic resistance.
Collapse
Affiliation(s)
- Janke Kleynhans
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Robert Reeve
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Cathryn H S Driver
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
| | | | - Mike Sathekge
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine and Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Jan Rijn Zeevaart
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
| | - Thomas Ebenhan
- NuMeRI, Nuclear Medicine Research Infrastructure NPC, Steve Biko Academic Hospital, Pretoria, South Africa
- The South African Nuclear Energy Corporation (NECSA), Pelindaba, South Africa
- Department of Nuclear Medicine and Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Tran HH, Yamaguchi A, Manning HC. Radiotheranostic landscape: A review of clinical and preclinical development. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07103-7. [PMID: 39891713 DOI: 10.1007/s00259-025-07103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Radiotheranostics combines diagnostic imaging with targeted radionuclide therapy, representing a transformative approach in precision oncology. Landmark approvals of Lutathera® and Pluvicto® have catalyzed significant advancements in this field, driving research into novel radionuclides, targeting strategies, and clinical applications. This review evaluates the evolving clinical and preclinical landscape of radiotheranostics, highlighting advancements, emerging trends, and persistent challenges in radionuclide therapy. METHODS A comprehensive analysis was performed, encompassing active clinical trials as of December 2024, sourced from ClinicalTrials.gov and TheranosticTrials.org. Preclinical developments were evaluated through a review of recent literature, focusing on innovations in radionuclide production, targeting molecules, and radiochemistry. RESULTS In reviewing the clinical landscape, agents targeting somatostatin receptors (SSTR) and prostate-specific membrane antigen (PSMA) still dominate the field, but new targets such as fibroblast activation protein (FAP), integrins, and gastrin-releasing peptide receptors (GRPR) are gaining traction in both clinical and preclinical development. While small molecules and peptides remain the most common radionuclide carriers, antibody-based carriers including bispecific antibodies, immunoglobin-derived antigen-binding fragments, and antibody-mimetic proteins are on the rise due to their specificity and adaptability. Innovations in radioligand design are driving a shift from agonists to antagonists, accompanied by the development of modified peptides with enhanced pharmacokinetics and tumor-targeting properties. Next-generation therapeutic radionuclides, such as the beta-emitter terbium-161 and alpha-emitters actinium-225 and lead-212, are under investigation to complement or replace lutetium-177, addressing the need for improved efficacy and reduced toxicity. Paired isotopic radionuclides are gaining popularity for their ability to optimize imaging and therapeutic dosimetry as they offer near-identical specificity, biodistribution, and metabolism. Additionally, radiohybrid systems represent an innovative approach to chelating chemically distinct radionuclide pairs within a single molecule, further enhancing flexibility in radiotheranostic design. CONCLUSION Radiotheranostics has transformed cancer care through its precision and adaptability, but challenges in radionuclide production, regulatory frameworks, and workforce training hinder broader adoption. Advances in isotopic pairing, next-generation radionuclides, and radiohybrid systems in preclinical and clinical settings hold promise to overcome these barriers. Collaborative efforts among academia, industry, and regulatory bodies are critical to accelerating innovation and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Ha H Tran
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aiko Yamaguchi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Tachatumvitoon K, Preuksarattanawut C, Tippayamontri T, Khomein P. Tc-99m labeled PSMA-617 as a potential SPECT radiotracer for prostate cancer diagnostics: Complexation optimization and its in vitro/vivo evaluation. Bioorg Med Chem 2025; 118:118058. [PMID: 39754852 DOI: 10.1016/j.bmc.2024.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Technetium-99m (Tc-99m) is the most employed radionuclide in nuclear imaging diagnostics worldwide for many diseases. The ideal physiochemical properties of Tc-99m (such as half-life and pure gamma energy) make it favorable for Single Photon Emission Computed Tomography (SPECT). In this study, we aim to expand the utilization of Tc-99m radiopharmaceutical toward prostate cancer diagnostics which is currently no FDA approved products and has been intensively examined for a potential candidate. The new formulation for Tc-99m complexation with PSMA-617, a current ligand for radionuclide therapy of prostate cancer with lutetium-177 (Lu-177), has been investigated. Co-complexation with citrate was utilized to improve the labeling efficiency by over 97 %. The stability of the new radiopharmaceutical was in vitro evaluated confirming that the Tc-99m labeled PSMA-617 remained stable for over a single half-life of Tc-99m in normal saline solution and in human serum. The in vivo study in the LNCaP xenografted mouse model confirmed a high selectivity of the new tracer toward prostate cancer.
Collapse
Affiliation(s)
- Kalapaphuk Tachatumvitoon
- Interdisciplinary Program of Biomedical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Charasphat Preuksarattanawut
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Thititip Tippayamontri
- Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Woods JJ, Rigby A, Wacker JN, Arino T, Alvarenga Vasquez JV, Cosby A, Martin KE, Abergel RJ. Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy. J Med Chem 2025; 68:1682-1692. [PMID: 39752149 DOI: 10.1021/acs.jmedchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, p-SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules. This bifunctional chelator was prepared with a 26% overall yield in four steps and conjugated to the human epidermal growth factor receptor 2 targeting antibody, trastuzumab. The resulting immunoconjugate was labeled with [227Th]ThIV (pH 5.5, room temperature, 60 min) with ≥95% radiochemical yield and purity. The conjugate was also labeled with zirconium-89 (89Zr), which can be used for positron emission tomography imaging. The radiometal complexes were subsequently investigated for their biological stability. The results described here provide insight into ligand design strategies and optimization of chelators for the development of the next generation of 89Zr and 227Th radiopharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Rigby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | | | - Alexia Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kirsten E Martin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Saraya JS, Sammons SR, O'Flaherty DK. Aqueous Compatible Post-Synthetic On-Column Conjugation of Nucleic Acids Using Amino-Modifiers. Chembiochem 2025; 26:e202400643. [PMID: 39333054 PMCID: PMC11727021 DOI: 10.1002/cbic.202400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 09/29/2024]
Abstract
Nucleic acid conjugation methodologies involve linking the nucleic acid sequence to other (bio)molecules covalently. This typically allows for nucleic acid property enhancement whether it be for therapeutic purposes, biosensing, etc. Here, we report a streamlined, aqueous compatible, on-column conjugation methodology using nucleic acids containing a site-specific amino-modifier. Both monophosphates and carboxylates were amenable to the conjugation strategy, allowing for the introduction of a variety of useful handles including azide, aryl, and hydrophobic groups in DNA. We find that an on-column approach is superior to post-synthetic template-directed synthesis, mainly with respect to product purification and recovery.
Collapse
Affiliation(s)
- Jagandeep S. Saraya
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| | - Scott R. Sammons
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| | - Derek K. O'Flaherty
- Department of ChemistryUniversity of Guelph50 Stone Rd EGuelph ONN1G 2 W1Canada
| |
Collapse
|
7
|
Pati B, Kumar A, Chowdhury A, Tripathi NM, Gour V, Mukherjee A, Bandyopadhyay A. An Upgraded Solid-Phase Assembly of Chelators (DOTA and NOTA) Enabled Bacterial Uptake Studies of Radiolabeled Peptide. Chembiochem 2025; 26:e202400996. [PMID: 39658876 DOI: 10.1002/cbic.202400996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Among popular radio metal chelators, DOTA and NOTA have been remarkably considered in radionuclide therapy and imaging studies due to several advantages in pharmacology. Here, we developed a practical and general method for assembling DOTA and NOTA in the solid phase peptide (pseudo-dilute conditions) using a wide range of solvents with easily accessible and economical feedstocks, which mitigated unprecedented challenges associated with previously reported methods. This upgraded approach enabled an efficient installation of these two chelators on various bioactive peptide sequences. Finally, we assessed the antimicrobial activity of the DOTA- and NOTA-attached Combi peptides to B. subtilis, which was intact. The authenticity of the assembled DOTA framework was assessed by labeling 177Lu and in vitro bacterial uptake in E. coli and S. aureus. 177Lu-labeled DOTA-Combi peptide exhibited promising uptake for developing a bacterial infection imaging agent while negligible hemolysis activity even at >200 μM. This contribution will be valued for developing peptide radiopharmaceuticals with operational simplicity and economic approaches.
Collapse
Affiliation(s)
- Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085, India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vinod Gour
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085, India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
8
|
Aguirre Quintana LM, Lussier DJ, Wacker JN, Bajaj A, Russo DR, Cosby AG, Gaiser AN, Woods JJ, Peterson AA, Lukens WW, Booth CH, Minasian SG, Shuh DK, Autschbach J, Long JR, Abergel RJ. Slow Magnetic Relaxation in a Californium Complex. J Am Chem Soc 2024; 146:31671-31680. [PMID: 39500515 DOI: 10.1021/jacs.4c10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We report the synthesis and characterization of the macrocyclic californium derivative Na[Cf(H2O)(DOTA)] (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), 1-Cf, which was studied in comparison to its dysprosium counterpart, Na[Dy(H2O)(DOTA)], 1-Dy. Divergent spectroscopic and magnetic behaviors were observed between 1-Cf and 1-Dy. Based upon spectroscopic measurements, we propose that accessible 5f → 6d transitions (potentially operating in tandem with charge-transfer transitions) are the major contributors to the observed broadband photoluminescence in 1-Cf. Dc magnetic susceptibility data for 1-Cf revealed lower magnetic moments than those previously observed for 1-Dy and expected for an f9 free ion, which calculations suggest is the result of greater ligand field effects. Notably, 1-Cf displays slow magnetic relaxation on the time scale of ac susceptibility measurements, making it the first example of a californium-based single-molecule magnet. A side-by-side comparison of the ac susceptibility data reveals magnetic relaxation properties that widely differ between 1-Cf and 1-Dy. This divergent relaxation behavior is attributed mainly to the inherent difference in spin-orbit coupling between Dy3+ and Cf3+.
Collapse
Affiliation(s)
- Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel J Lussier
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ashima Bajaj
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dominic R Russo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alyssa N Gaiser
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie A Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David K Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jeffrey R Long
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Lee KK, Chakraborty M, Hu A, Kanagasundaram T, Thorek DLJ, Wilson JJ. Chelation of [ 111In]In 3+ with the dual-size-selective macrocycles py-macrodipa and py 2-macrodipa. Dalton Trans 2024; 53:14634-14647. [PMID: 39163366 PMCID: PMC11663299 DOI: 10.1039/d4dt02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 μM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.
Collapse
Affiliation(s)
- Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Mou Chakraborty
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
10
|
Wang Y, Lu SC, Wen H, Zhao C, Jiang Y, Cui H. A CuSO 4/Bicinchoninic acid/Reducing sugar based stable and non-ROS catalyst system for the CuAAC reaction in bioanalysis. Bioorg Chem 2024; 150:107557. [PMID: 38878754 DOI: 10.1016/j.bioorg.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
The limitations of commonly used sodium ascorbate-based catalyst system for copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction include excess production of reactive oxygen species and rapid catalyst deactivation. In this study instead of using a highly active reducing agent, such as, sodium ascorbate, we chose reducing sugar as a mild reducing agent to build up the catalyst system for CuAAC reaction. Interestingly, the bicinchoninic acid (BCA) assay system containing reducing sugar satisfies the essential elements of the catalyst system for CuAAC reaction. We found that CuSO4/BCA/Reducing sugar system can catalyze the CuAAC reaction but with low yield. Rational analyses of various parameters in CuSO4/BCA/Glucose catalyst system suggested storage at room temperature might enhance the catalytic activity, which was proven to be the case. Importantly, the system remains stable at room temperature and minimal H2O2 was detected. Notably, our study showed that the coordination between the slow reduction of Cu(I) by reducing sugar and the selective chelation of Cu(I) by BCA is key to developing this system. The CuSO4/BCA/Reducing sugar catalyst system was successfully applied to various CuAAC reaction based bioanalyses, and it is suitable for the CuAAC reaction based bioanalyses that are sensitive to ROS or request long reaction time.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shi-Chao Lu
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No 8, Hangfeng Road, Fengtai District, Beijing 100070, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No 8, Hangfeng Road, Fengtai District, Beijing 100070, China
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
11
|
Chen G, Qin Y, Sheng R. Integrating Prior Chemical Knowledge into the Graph Transformer Network to Predict the Stability Constants of Chelating Agents and Metal Ions. J Chem Inf Model 2024; 64:5867-5877. [PMID: 39075943 DOI: 10.1021/acs.jcim.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The latest advancements in nuclear medicine indicate that radioactive isotopes and associated metal chelators play crucial roles in the diagnosis and treatment of diseases. The development of metal chelators mainly relies on traditional trial-and-error methods, lacking rational guidance and design. In this study, we propose the structure-aware transformer (SAT) combined with molecular fingerprint (SATCMF), a novel graph transformer network framework that incorporates prior chemical knowledge to construct coordination edges and learns the interactions between chelating agents and metal ions. SATCMF is trained on stability data collected from metal ion-ligand complexes, leveraging the SAT network to extract structural features relevant to the binding of ligands with metal ions. It further integrates molecular fingerprint features to refine the prediction of the stability constants of the chelating agents and metal ions. The experimental results on benchmark data set demonstrate that SATCMF achieves state-of-the-art performance based on four different graph neural network architectures. Additionally, visualizing the learned molecular attention distribution provides interpretable insights from the prediction results, offering valuable guidance for the development of novel metal chelators.
Collapse
Affiliation(s)
- Geng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yiyang Qin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Rong Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321036, P. R. China
| |
Collapse
|
12
|
Wood JL, Ghosh S, Houston ZH, Fletcher NL, Humphries J, Mardon K, Akhter DT, Tieu W, Ivashkevich A, Wheatcroft MP, Thurecht KJ, Codd R. A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements. Chem Sci 2024; 15:11748-11760. [PMID: 39092114 PMCID: PMC11290327 DOI: 10.1039/d4sc02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
A covalent adduct of DFOB and DOTA separated by a l-lysine residue (DFOB-l-Lys-N 6-DOTA) exhibited remarkable regioselective metal binding, with {1H}-13C NMR spectral shifts supporting Zr(iv) coordinating to the DFOB unit, and Lu(iii) coordinating to the DOTA unit. This first-in-class, dual-chelator theranostic design could enable the use of imaging-therapy radiometal pairs of different elements, such as 89Zr for positron emission tomography (PET) imaging and 177Lu for low-energy β--particle radiation therapy. DFOB-l-Lys-N 6-DOTA was elaborated with an amine-terminated polyethylene glycol extender unit (PEG4) to give DFOB-N 2-(PEG4)-l-Lys-N 6-DOTA (compound D2) to enable installation of a phenyl-isothiocyanate group (Ph-NCS) for subsequent monoclonal antibody (mAb) conjugation (mAb = HuJ591). D2-mAb was radiolabeled with 89Zr or 177Lu to produce [89Zr]Zr-D2-mAb or [177Lu]Lu-D2-mAb, respectively, and in vivo PET/CT imaging and in vivo/ex vivo biodistribution properties measured with the matched controls [89Zr]Zr-DFOB-mAb or [177Lu]Lu-DOTA-mAb in a murine LNCaP prostate tumour xenograft model. The 89Zr-immuno-PET imaging function of [89Zr]Zr-D2-mAb and [89Zr]Zr-DFOB-mAb showed no significant difference in tumour accumulation at 48 or 120 h post injection. [89Zr]Zr-D2-mAb and [177Lu]Lu-D2-mAb showed similar ex vivo biodistribution properties at 120 h post-injection. Tumour uptake of [177Lu]Lu-D2-mAb shown by SPECT/CT imaging at 48 h and 120 h post-injection supported the therapeutic function of D2, which was corroborated by similar therapeutic efficacy between [177Lu]Lu-D2-mAb and [177Lu]Lu-DOTA-mAb, both showing a sustained reduction in tumour volume (>80% over 65 d) compared to vehicle. The work identifies D2 as a trifunctional chelator that could expand capabilities in mixed-element radiometal theranostics to improve dosimetry and the clinical outcomes of molecularly targeted radiation.
Collapse
Affiliation(s)
- James L Wood
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Karine Mardon
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia
| | | | | | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Rachel Codd
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
| |
Collapse
|
13
|
Fiaccabrino D, Masvikeni T, Jaraquemada-Peláez MDG, Orvig C, Schaffer P. H 3trica: Versatile Macrocyclic Chelator for [ 225Ac]Ac 3+ and [ 155/161Tb]Tb 3+ Theranostics. Inorg Chem 2024; 63:13911-13923. [PMID: 39013439 DOI: 10.1021/acs.inorgchem.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
H3trica is a nonadentate chelating ligand intended for coordinating large radiometal ions, such as those used in nuclear medicine. This chelator, featuring a triaza-18-crown-6 macrocycle with three pendant carboxylic acid functional groups, was synthesized and characterized. Complementary nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray-ionization mass spectroscopy (HR-ESI-MS) studies were used to explore the coordination of H3trica with metal ions such as La3+, Y3+ (as a model for Tb3+), and Lu3+ at the bulk scale. Thermodynamic solution studies provided valuable insights, highlighting robust metal complexation of H3trica with La3+, Tb3+, and Lu3+, with the most noteworthy log KML value observed for Tb3+ (log KTbL = 17.08), followed by La3+ (log KLaL = 16.64) and Lu3+ (log KLuL = 16.25). Concentration-dependent radiolabeling studies with [225Ac]Ac3+, [155Tb]Tb3+, and [161Tb]Tb3+ demonstrated rapid complexation (5-30 min) under mild conditions (pH 6-7, 25 °C). Importantly, the radiolabeled complexes exhibited stability during incubation in human serum for one-half-life of the corresponding radiometal. Thus, H3trica emerges as a valuable chelator, demonstrating its potential to coordinate the theranostic couple [225Ac]Ac3+/[155Tb]Tb3+ as well as the powerful terbium quartet ([149/152/155/161Tb]Tb3+) with efficiency and stability.
Collapse
Affiliation(s)
- Desiree Fiaccabrino
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia ,V6T 1Z1, Canada
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia ,V6T 2A3, Canada
| | - Tinotenda Masvikeni
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia ,V6T 1Z1, Canada
| | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia ,V6T 1Z1, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia ,V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby ,British Columbia,V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia ,V5Z 1M9, Canada
| |
Collapse
|
14
|
Roy T, Pogorilyy E, Kumarananthan CP, Kvitastein UA, Foscato M, Törnroos KW, Adamsen TCH, Le Roux E. Synthesis and stability of the [ 45Ti]Ti-DOTA complex: en route towards aza-macrocyclic 45Ti-based radiopharmaceuticals. Chem Commun (Camb) 2024; 60:7148-7151. [PMID: 38860653 DOI: 10.1039/d4cc01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We report the use of DOTA as a chelator for titanium. The resulting complex is fully characterised and in vitro stability studies reveal its high kinetic inertness against transmetallation and transchelation. The radiolabeling of DOTA with 45Ti, via a guaiacol-based liquid-liquid extraction method, leads to a high radiochemical conversion up to 98%.
Collapse
Affiliation(s)
- Tamal Roy
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Eduard Pogorilyy
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Chubina P Kumarananthan
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Unni A Kvitastein
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Karl W Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| | - Tom C H Adamsen
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
- Department of Radiology, Haukeland University Hospital, Centre for Nuclear Medicine and PET, Jonas Lies vei 65, Bergen, Norway
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, Bergen, Norway.
| |
Collapse
|
15
|
Pometti MA, Di Natale G, Geremia G, Gauswami N, Garufi G, Ricciardi G, Sciortino M, Scopelliti F, Russo G, Ippolito M. A Kinetically Controlled Bioconjugation Method for the Synthesis of Radioimmunoconjugates and the Development of a Domain Mapping MS-Workflow for Its Characterization. Bioconjug Chem 2024; 35:324-332. [PMID: 38366964 PMCID: PMC10961728 DOI: 10.1021/acs.bioconjchem.3c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Immunoconjugates exploit the high affinity of monoclonal antibodies for a recognized antigen to selectively deliver a cytotoxic payload, such as drugs or radioactive nuclides, at the site of disease. Despite numerous techniques have been recently developed for site-selective bioconjugations of protein structures, reaction of ε-amine group of lysine residues with electrophilic reactants, such as activated esters (NHS), is the main method reported in the literature as it maintains proteins in their native conformation. Since antibodies hold a high number of lysine residues, a heterogeneous mixture of conjugates will be generated, which can result in decreased target affinity. Here, we report an intradomain regioselective bioconjugation between the monoclonal antibody Trastuzumab and the N-hydroxysuccinimide ester of the chelator 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) by a kinetically controlled reaction adding substoichiometric quantities of the activated ester to the mAb working at slightly basic pH. Liquid chromatography-mass spectrometry (LC-MS) analyses were carried out to assess the chelator-antibody ratio (CAR) and the number of chelating moieties linked to the mAb chains. Proteolysis experiments showed four lysine residues mainly involved in bioconjugation (K188 for the light chain and K30, K293, and K417 for the heavy chain), each of which was located in a different domain. Since the displayed intradomain regioselectivity, a domain mapping MS-workflow, based on a selective domain denaturation, was developed to quantify the percentage of chelator linked to each mAb domain. The resulting immunoconjugate mixture showed an average CAR of 0.9. About a third of the heavy chains were found as monoconjugated, whereas conjugation of the chelator in the light chain was negligible. Domain mapping showed the CH3 domain bearing 13% of conjugated DOTA, followed by CH2 and VH respectively bearing 12.5 and 11% of bonded chelator. Bioconjugation was not found in the CH1 domain, whereas for the light chain, only the CL domain was conjugated (6%). Data analysis based on LC-MS quantification of different analytical levels (intact, reduced chains, and domains) provided the immunoconjugate formulation. A mixture of immunoconjugates restricted to 15 species was obtained, and the percentage of each one within the mixture was calculated. In particular, species bearing 1 DOTA with a relative abundance ranging from 4 to 20-fold, in comparison to species bearing 2DOTA, were observed. Pairing of bioconjugation under kinetic control with the developed domain mapping MS-workflow could raise the standard of chemical quality for immunoconjugates obtained with commercially available reactants.
Collapse
Affiliation(s)
- Marco A. Pometti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Giuseppe Di Natale
- CNR-Istituto
di Cristallografia, Via
Paolo Gaifami 18, 95126 Catania, Italy
| | - Giancarlo Geremia
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Nileshgiri Gauswami
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Gianni Garufi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- Parco
scientifico e tecnologico della Sicilia S.C.P.A., Stradale Vincenzo Lancia 57, 95121 Catania, Italy
| | - Giuseppina Ricciardi
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Marcella Sciortino
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
- FORA
S.p.A., Via Alfred Bernhard
Nobel 11/a, 43122 Parma, Italy
| | - Fabrizio Scopelliti
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| | - Giorgio Russo
- IBFM-CNR
Institute of Molecular Bioimaging and Physiology, Contrada Pietra Pollastra, 90015 Cefalù, Italy
| | - Massimo Ippolito
- Nuclear
Medicine Department, Cannizzaro Hospital, Via Messina 829, 95126 Catania, Italy
| |
Collapse
|
16
|
Ashhar Z, Ahmad Fadzil MF, Md Safee Z, Aziz F, Ibarhim UH, Nik Afinde NMF, Mat Ail N, Jamal Harizan MAH, Halib D, Alek Amran A, Adawiyah R, Abd Hamid MHN, Mahamood M, Razali NI, Said MA. Performance evaluation of Gallium-68 radiopharmaceuticals production using liquid target PETtrace 800 cyclotron. Appl Radiat Isot 2024; 205:111161. [PMID: 38163386 DOI: 10.1016/j.apradiso.2023.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Due to increased demand, cyclotron has an expanding role in producing Gallium-68 (68Ga) radiopharmaceuticals using solid and liquid targets. Though the liquid target produces lower end-of-bombardment activity compared to the solid target, our study presents the performance of 68Ga radiopharmaceuticals production using the liquid target by evaluating the end-of-bombardment activity and the end-of-purification activity of [68Ga]GaCl3. We also present the effect of increasing irradiation time, which significantly improves the end-of-synthesis yield. From the result obtained, the end-of-bombardment activity produced was 4.48 GBq, and the [68Ga]GaCl3 end-of-purification activity produced was 2.51 GBq with below-limit metallic impurities. Increasing the irradiation time showed a significant increase in the end-of-synthesis activity from 1.33 GBq to 1.95 GBq for [68Ga]Ga-PSMA-11 and from 1.13 GBq to 1.74 GBq for [68Ga]Ga-DOTA-TATE. Based on the improvements made, the liquid target production of 68Ga radiopharmaceuticals is feasible and reproducible to accommodate up to 5 patients per production. In addition, this work also discusses the issues encountered, together with the possible corrective and preventative measures.
Collapse
Affiliation(s)
- Zarif Ashhar
- Pharmacy Department, National Cancer Institute, Putrajaya, 62250, Malaysia.
| | | | | | - Firdaus Aziz
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia; Chemistry Department, Faculty of Science, Universiti Putra Malaysia, Selangor, Serdang 43400, Malaysia
| | - Ummi Habibah Ibarhim
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Noratikah Mat Ail
- Pharmacy Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Dzulieza Halib
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Rabiatul Adawiyah
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | | - Mazurin Mahamood
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | - Nor Idayu Razali
- Nuclear Medicine Department, National Cancer Institute, Putrajaya, 62250, Malaysia
| | | |
Collapse
|
17
|
Vagaggini C, Petroni D, D'Agostino I, Poggialini F, Cavallini C, Cianciusi A, Salis A, D'Antona L, Francesconi V, Manetti F, Damonte G, Musumeci F, Menichetti L, Dreassi E, Carbone A, Schenone S. Early investigation of a novel SI306 theranostic prodrug for glioblastoma treatment. Drug Dev Res 2024; 85:e22158. [PMID: 38349262 DOI: 10.1002/ddr.22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.
Collapse
Affiliation(s)
- Chiara Vagaggini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Debora Petroni
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Federica Poggialini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Chiara Cavallini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | | | - Annalisa Salis
- DIMES, Section of Biochemistry, University of Genova, Genova, Italy
| | - Lucia D'Antona
- Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Fabrizio Manetti
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Gianluca Damonte
- DIMES, Section of Biochemistry, University of Genova, Genova, Italy
| | | | - Luca Menichetti
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Genoa, Italy
| | | |
Collapse
|
18
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
19
|
Ritawidya R, Wongso H, Effendi N, Pujiyanto A, Lestari W, Setiawan H, Humani TS. Lutetium-177-Labeled Prostate-Specific Membrane Antigen-617 for Molecular Imaging and Targeted Radioligand Therapy of Prostate Cancer. Adv Pharm Bull 2023; 13:701-711. [PMID: 38022814 PMCID: PMC10676551 DOI: 10.34172/apb.2023.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) represents a promising target for PSMA-overexpressing diseases, especially prostate cancer-a common type of cancer among men worldwide. In response to the challenges in tackling prostate cancers, several promising PSMA inhibitors from a variety of molecular scaffolds (e.g., phosphorous-, thiol-, and urea-based molecules) have been developed. In addition, PSMA inhibitors bearing macrocyclic chelators have attracted interest due to their favorable pharmacokinetic properties. Recently, conjugating a small PSMA molecule inhibitor-bearing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, as exemplified by [177Lu]Lu-PSMA-617 could serve as a molecular imaging probe and targeted radioligand therapy (TRT) of metastatic castration resistant prostate cancer (mCRPC). Hence, studies related to mCRPC have drawn global attention. In this review, the recent development of PSMA ligand-617-labeled with 177Lu for the management of mCRPC is presented. Its molecular mechanism of action, safety, efficacy, and future direction are also described.
Collapse
Affiliation(s)
- Rien Ritawidya
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Nurmaya Effendi
- Faculty of Pharmacy, University of Muslim Indonesia, Kampus II UMI, Jl. Urip Sumoharjo No.225, Panaikang, Panakkukang, Kota, Makassar, Sulawesi Selatan 90231
| | - Anung Pujiyanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Wening Lestari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| | - Titis Sekar Humani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, Setu, Tangerang Selatan, 15314 Indonesia
| |
Collapse
|
20
|
Maier KB, Rust LN, Kupara CI, Woods M. Diastereoselective Synthesis of α-Aryl-Substituted LnDOTA Chelates from Achiral Starting Materials by Deracemization Under Mild Conditions. Chemistry 2023; 29:e202301887. [PMID: 37519104 DOI: 10.1002/chem.202301887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Substituted derivatives of the DOTA framework are of general interest to alter chelate properties and facilitate the conjugation of chelates to other molecular structures. However, the scope of substituents that can be introduced into the α-position has traditionally been limited by the availability of a suitable enantiopure starting materials to facilitate a stereoselective synthesis. Tetra-substituted DOTA derivatives with phenyl and benzoate substituents in the α-position have been prepared. Initial syntheses used enantiopure starting materials but did not afford enantiopure products. This indicates that the integrity of the stereocenters was not preserved during synthesis, despite the homo-chiral diastereoisomer being the major reaction product. The homochiral diastereoisomer could be produced as the major or sole reaction product when starting from racemic or even achiral materials. Deracemization was found to occur during chelation through the formation of an enolate stabilized by the aryl substituent. This general ability of aryl groups to enable deracemization greatly increases the range of substituents that can be introduced into DOTA-type ligands with diastereochemical selectivity.
Collapse
Affiliation(s)
- Karley B Maier
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Lauren N Rust
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Charlene I Kupara
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
| | - Mark Woods
- Department of Chemistry, Portland State University 1719, SW 10th Ave, Portland, OR 97201, USA
- Advanced Imaging Research Center, Oregon Health and Science University, 1381 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
21
|
Duatti A. The DOTA macrocyclic cavity in metallic radiopharmaceuticals: Mythology or reality? EJNMMI Radiopharm Chem 2023; 8:17. [PMID: 37535275 PMCID: PMC10400501 DOI: 10.1186/s41181-023-00202-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The hypothetical concept of 'macrocyclic cavity' is largely employed as useful model to interpret the affinity of metal ions for the macrocyclic chelating ligand 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (H4DOTA). It Is hypothesized that a close matching between the size of the macrocyclic cavity and that of the metallic ion is a key parameter to ensure the high-yield formation of stable coordination metal-DOTA complex. This approach has become popular in the design of radiopharmaceuticals containing radiometals and H4DOTA as chelating group. RESULTS Based on X-ray structural data of metallic complexes formed by the ligand H4DOTA upon coordination with a variety of metals, an elementary argument based on Euclidean geometry is presented here that questions the existence of the hypothetical 'macrocyclic cavity' within the chelator macrocycle. The geometrical analysis was applied to the complex formed by a Ga3+ ion coordinated to H4DOTA as model compound. CONCLUSIONS Application of Euclidean geometry to calculate bond angles in the coordination complex of the ligand H4DOTA with the Ga+3 ion, supposed to incorporate a hypothetical 'macrocyclic cavity', revealed that this conceptual entity has no physical reality and, therefore, cannot be considered a meaningful description of a stable structural arrangement for metallic radiopharmaceuticals.
Collapse
Affiliation(s)
- Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy.
| |
Collapse
|
22
|
Fu Y, Farnham J, Li W, Powers B, Humphries D, Picard F. LC-MS/MS Bioanalysis of Radioligand Therapeutic Drug Candidate for Preclinical Toxicokinetic Assessment. Anal Chem 2023. [PMID: 37402311 DOI: 10.1021/acs.analchem.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Radioligand therapy (RLT) has gained significant momentum in recent years in the diagnosis, treatment, and monitoring of cancers. In preclinical development, the safety profile of RLT drug candidate(s) is investigated at relatively low dose levels using the cold (non-radioactive, e.g., 175Lu) ligand as a surrogate of the hot (radioactive, e.g., 177Lu) one in the "ligand-linker-chelator" complex. The formulation of the test article used in preclinical safety studies contains a mixture of free ligand (i.e., ligand-linker-chelator without metal) and cold ligand (i.e., ligand-linker-chelator with non-radioactive metal) in a similar molar ratio as seen under the manufacturing conditions for the RLT drug for clinical use, where only a fraction of free ligand molecules chelate the radioactive metal to form a hot ligand. In this very first report of LC-MS/MS bioanalysis of RLT molecules in support of a regulated preclinical safety assessment study, a highly selective and sensitive LC-MS/MS bioanalytical method was developed for the simultaneous determination of free ligand (NVS001) and cold ligand (175Lu-NVS001) in rat and dog plasma. Several unexpected technical challenges in relation to LC-MS/MS of RLT molecules were successfully addressed. The challenges include poor assay sensitivity of the free ligand NVS001, formation of the free ligand (NVS001) with endogenous metal (e.g., potassium), Ga loss from the Ga-chelated internal standard during sample extraction and analysis, "instability" of the analytes at low concentrations, and inconsistent IS response in the extracted plasma samples. The methods were validated according to the current regulatory requirements in a dynamic range of 0.5-250 ng/mL for both the free and cold ligands using a 25 μL sample volume. The validated method was successfully implemented in sample analysis in support of regulated safety studies, with very good results from incurred sample reanalysis. The current LC-MS/MS workflow can be expanded to quantitative analysis of other RLTs in support of preclinical RLT drug development.
Collapse
Affiliation(s)
- Yunlin Fu
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - James Farnham
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Wenkui Li
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Brendan Powers
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - David Humphries
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Franck Picard
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| |
Collapse
|
23
|
Development of the First 18F-Labeled Radiohybrid-Based Minigastrin Derivative with High Target Affinity and Tumor Accumulation by Substitution of the Chelating Moiety. Pharmaceutics 2023; 15:pharmaceutics15030826. [PMID: 36986687 PMCID: PMC10054553 DOI: 10.3390/pharmaceutics15030826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18.
Collapse
|
24
|
Bodin S, Previti S, Jestin E, Vimont D, Ait-Arsa I, Lamare F, Rémond E, Hindié E, Cavelier F, Morgat C. Design, Synthesis, and Biological Evaluation of the First Radio-Metalated Neurotensin Analogue Targeting Neurotensin Receptor 2. ACS OMEGA 2023; 8:6994-7004. [PMID: 36844603 PMCID: PMC9948202 DOI: 10.1021/acsomega.2c07814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Neurotensin receptor 2 (NTS2) is a well-known mediator of central opioid-independent analgesia. Seminal studies have highlighted NTS2 overexpression in a variety of tumors including prostate cancer, pancreas adenocarcinoma, and breast cancer. Herein, we describe the first radiometalated neurotensin analogue targeting NTS2. JMV 7488 (DOTA-(βAla)2-Lys-Lys-Pro-(D)Trp-Ile-TMSAla-OH) was prepared using solid-phase peptide synthesis, then purified, radiolabeled with 68Ga and 111In, and investigated in vitro on HT-29 cells and MCF-7 cells, respectively, and in vivo on HT-29 xenografts. [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 were quite hydrophilic (logD7.4 = -3.1 ± 0.2 and -2.7 ± 0.2, respectively, p < 0.0001). Saturation binding studies showed good affinity toward NTS2 (K D = 38 ± 17 nM for [68Ga]Ga-JMV 7488 on HT-29 and 36 ± 10 nM on MCF-7 cells; K D = 36 ± 4 nM for [111In]In-JMV 7488 on HT-29 and 46 ± 1 nM on MCF-7 cells) and good selectivity (no NTS1 binding up to 500 nM). On cell-based evaluation, [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 showed high and fast NTS2-mediated internalization of 24 ± 5 and 25 ± 11% at 1 h for [111In]In-JMV 7488, respectively, along with low NTS2-membrane binding (<8%). Efflux was as high as 66 ± 9% at 45 min for [68Ga]Ga-JMV 7488 on HT-29 and increased for [111In]In-JMV 7488 up to 73 ± 16% on HT-29 and 78 ± 9% on MCF-7 cells at 2 h. Maximum intracellular calcium mobilization of JMV 7488 was 91 ± 11% to that of levocabastine, a known NTS2 agonist on HT-29 cells demonstrating the agonist behavior of JMV 7488. In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV 7488 showed a moderate but promising significant tumor uptake in biodistribution studies that competes well with other nonmetalated radiotracers targeting NTS2. Significant uptake was also depicted in lungs. Interestingly, mice prostate also demonstrated [68Ga]Ga-JMV 7488 uptake although the mechanism was not NTS2-mediated.
Collapse
Affiliation(s)
- Sacha Bodin
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Santo Previti
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Emmanuelle Jestin
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Delphine Vimont
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Imade Ait-Arsa
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Frédéric Lamare
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Emmanuelle Rémond
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Elif Hindié
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Clément Morgat
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| |
Collapse
|
25
|
Falcone E, Faller P. Thermodynamics-based rules of thumb to evaluate the interaction of chelators and kinetically-labile metal ions in blood serum and plasma. Dalton Trans 2023; 52:2197-2208. [PMID: 36734607 DOI: 10.1039/d2dt03875g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal ions play a very important role in nature and their homeostasis is crucial. A lot of metal-related chemical research activities are ongoing that concern metal-based drugs or tools, such as chelation therapy, metal- and metabolite sensors, metallo-drugs and prodrugs, PET and MRI imaging agents, etc. In most of these cases, the applied chelator/ligand (L) or metal-ligand complex (M-L) has at least to pass the blood plasma to reach the target. Hence it is exposed to several metal-binding proteins (mainly serum albumin and transferrin) and to all essential metal ions (zinc, copper, iron, etc.). This holds also for studies in cultured cells when fetal calf serum is used in the medium. There is a risk that the applied compound (L or M-L) in the serum is transformed into a different entity, due to trans-metallation and/or ligand exchange reactions. This depends on the thermodynamics and kinetics. For kinetically-labile complexes, the complex stability with all the ligands and all metal ions present in serum is decisive in evaluating the thermodynamic driving force towards a certain fate of the chelator or metal-ligand complex. To consider that, an integrative view is needed on the stability constants, by taking into account all the metal ions present and all the main proteins to which they are bound, as well as the non-occupied metal binding site in proteins. Only then, a realistic estimation of the complex stability, and hence its potential fate, can be done. This perspective aims to provide a simple approach to estimate the thermodynamic stability of labile metal-ligand complexes in a blood plasma/serum environment. It gives a guideline to obtain an estimation of the plasma and serum complex stability and metal selectivity starting from the chemical stability constants of metal-ligand complexes. Although of high importance, it does not focus on the more complex kinetic aspects of metal-transfer reactions. The perspective should help for a better design of such compounds, to perform test tube assays which are relevant to the conditions in the plasma/serum and to be aware of the importance of ternary complexes, kinetics and competition experiments.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000, Strasbourg, France. .,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
26
|
Gao Y, Jennifer G A, Varathan E, Schreckenbach G. Understanding the Coordination Chemistry of Am III/Cm III in the DOTA Cavity: Insights from Energetics and Electronic Structure Theory. Inorg Chem 2023; 62:3229-3237. [PMID: 36748113 DOI: 10.1021/acs.inorgchem.2c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The minor actinides Am/Cm show multiple possibilities for coordination, providing great opportunities for their extraction and adsorption separation. Herein, we report complexation in an aqueous medium of AmIII/CmIII in the DOTA (H4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cavity with axial ligands (OH-, F-, and H2O), based on the energetics and electronic structure properties using density functional theory (DFT). The formation and substitution reactions of OH--capped complexes are more likely to occur due to their enhanced hydration Gibbs free energies, followed by F-, and then H2O. Both the longer An-ODOTA bond lengths and the larger bite angle (∠O-An-O) in the OH--capped complexes reflect the enhanced coordination provided by the axial ligand, slightly less so for F-. Energy decomposition analysis based on the electronic structure supports the preference for OH--capped complexes with a near-perfect balance between attractive and repulsive contributions toward the interaction. Furthermore, molecular orbital analysis revealed that the frontier molecular orbitals of Am and Cm complexes are substantially different; that is, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) compositions of the Am complexes are all contributed by 5f, while the HOMO and LUMO compositions of the Cm complexes are derived from 5f and 6d, respectively. Finally, the metal-exchange reactions demonstrate competitive complexation of DOTA toward AmIII over CmIII for the OH--capped system. These results imply the importance of coordination chemistry in actinide chemistry in general and specifically in AmIII/CmIII solution chemistry.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.,National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abigail Jennifer G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
27
|
Therapeutic Performance Evaluation of 213Bi-Labelled Aminopeptidase N (APN/CD13)-Affine NGR-Motif ([ 213Bi]Bi-DOTAGA-cKNGRE) in Experimental Tumour Model: A Treasured Tailor for Oncology. Pharmaceutics 2023; 15:pharmaceutics15020491. [PMID: 36839813 PMCID: PMC9968005 DOI: 10.3390/pharmaceutics15020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Since NGR-tripeptides (asparagine-glycine-arginine) selectively target neoangiogenesis-associated Aminopeptidase N (APN/CD13) on cancer cells, we aimed to evaluate the in vivo tumour targeting capability of radiolabelled, NGR-containing, ANP/CD13-selective [213Bi]Bi-DOTAGA-cKNGRE in CD13pos. HT1080 fibrosarcoma-bearing severe combined immunodeficient CB17 mice. 10 ± 1 days after cancer cell inoculation, positron emission tomography (PET) was performed applying [68Ga]Ga-DOTAGA-cKNGRE for tumour verification. On the 7th, 8th, 10th and 12th days the treated group of tumourous mice were intraperitoneally administered with 4.68 ± 0.10 MBq [213Bi]Bi-DOTAGA-cKNGRE, while the untreated tumour-bearing animals received 150 μL saline solution. In addition to body weight (BW) and tumour volume measurements, ex vivo biodistribution studies were conducted 30 and 90 min postinjection (pi.). The following quantitative standardised uptake values (SUV) confirmed the detectability of the HT1080 tumours: SUVmean and SUVmax: 0.37 ± 0.09 and 0.86 ± 0.14, respectively. Although no significant difference (p ≤ 0.05) was encountered between the BW of the treated and untreated mice, their tumour volumes measured on the 9th, 10th and 12th days differed significantly (p ≤ 0.01). Relatively higher [213Bi]Bi-DOTAGA-cKNGRE accumulation of the HT1080 neoplasms (%ID/g: 0.80 ± 0.16) compared with the other organs at 90 min time point yields better tumour-to-background ratios. Therefore, the therapeutic application of APN/CD13-affine [213Bi]Bi-DOTAGA- cKNGRE seems to be promising in receptor-positive fibrosarcoma treatment.
Collapse
|
28
|
Peters SMB, Mink MCT, Privé BM, de Bakker M, de Lange F, Muselaers CHJ, Mehra N, Witjes JA, Gotthardt M, Nagarajah J, Konijnenberg MW. Optimization of the radiation dosimetry protocol in Lutetium-177-PSMA therapy: toward clinical implementation. EJNMMI Res 2023; 13:6. [PMID: 36692682 PMCID: PMC9873880 DOI: 10.1186/s13550-023-00952-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Dosimetry in [177Lu]Lu-PSMA therapy is a valuable tool to assess treatment efficacy and toxicity. This study aims to develop a clinically implementable protocol to determine the absorbed dose in organs and tumor lesions after [177Lu]Lu-PSMA-617 therapy, by reducing the imaging time points and utilizing population-based kinetics with a single scan, with evaluation of its influence on the uncertainty in absorbed dose. METHODS Ten patients with metastatic hormone-sensitive prostate cancer received two cycles of [177Lu]Lu-PSMA-617. Post-treatment imaging was performed at 1 h, 24 h, 48 h, 72 h and 168 h, consisting of three-bed positions SPECT/CT and a whole-body planar scan. Five-time point SPECT dosimetry was performed for lesions and organs with physiological uptake (kidneys, liver and salivary glands) and used as the reference standard. Absorbed dose values for various simplified protocols were compared to the reference standard. RESULTS Accurate lesion dosimetry is possible using one-time point SPECT imaging at 168 h, with an increase in uncertainty (20% vs. 14% for the reference standard). By including a second time point, uncertainty was comparable to the reference standard (13%). Organ dosimetry can be performed using a single SPECT at 24 h or 48 h. Dosimetry based on planar scans did not provide accurate dose estimations. CONCLUSION Accurate lesion dosimetry in [177Lu]Lu-PSMA therapy can be performed using a one- or two-time point protocol, making dosimetry assessments more suitable for routine clinical implementation, although dosimetry based om multiple time points is more accurate. Clinical trial registration This study was approved by the Medical Review Ethics Committee Region Arnhem-Nijmegen on January 23, 2018 and was registered on clinicaltrials.gov (NCT03828838).
Collapse
Affiliation(s)
- Steffie M B Peters
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Maaike C T Mink
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Physics and Astronomy, Radboud University, Nijmegen, The Netherlands
| | - Bastiaan M Privé
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten de Bakker
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
29
|
Suthiram J, Pieters A, Mohamed Moosa Z, Zeevaart JR, Sathekge MM, Ebenhan T, Anderson RC, Newton CL. Tachykinin Receptor-Selectivity of the Potential Glioblastoma-Targeted Therapy, DOTA-[Thi 8,Met(O 2) 11]-Substance P. Int J Mol Sci 2023; 24:2134. [PMID: 36768456 PMCID: PMC9916806 DOI: 10.3390/ijms24032134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Radiopharmaceutical development hinges on the affinity and selectivity of the biological component for the intended target. An analogue of the neuropeptide Substance P (SP), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8,Met(O2)11]-SP (DOTA-[Thi8,Met(O2)11]SP), in the theranostic pair [68Ga]Ga-/ [213Bi]Bi-DOTA-[Thi8,Met(O2)11]SP has shown promising clinical results in the treatment of inoperable glioblastoma. As the theranostic targeting component, modifications to SP that affect the selectivity of the resulting analogue for the intended target (neurokinin-1 receptor [NK1R]) could be detrimental to its therapeutic potential. In addition to other closely related tachykinin receptors (neurokinin-2 receptor [NK2R] and neurokinin-3 receptor [NK3R]), SP can activate a mast cell expressed receptor Mas-related G protein-coupled receptor subtype 2 (MRGPRX2), which has been implicated in allergic-type reactions. Therefore, activation of these receptors by SP analogues has severe implications for their therapeutic potential. Here, the receptor selectivity of DOTA-[Thi8,Met(O2)11]SP was examined using inositol phosphate accumulation assay in HEK293-T cells expressing NK1R, NK2R, NK3R or MRGPRX2. DOTA-[Thi8,Met(O2)11]SP had similar efficacy and potency as native SP at NK1R, but displayed greater NK1R selectivity. DOTA-[Thi8,Met(O2)11]SP was unable to elicit significant activation of the other tachykinin receptors nor MRGPRX2 at high concentrations nor did it display antagonistic behaviour at these receptors. DOTA-[Thi8,Met(O2)11]SP, therefore has high potency and selectivity for NK1R, supporting its potential for targeted theranostic use in glioblastoma multiforme and other conditions characterised by NK1R overexpression.
Collapse
Affiliation(s)
- Janine Suthiram
- Department of Radiochemistry, The South African Nuclear Energy Corporation SOC Ltd. (Necsa), Brits 0240, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
| | - Ané Pieters
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
| | - Zulfiah Mohamed Moosa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
| | - Jan Rijn Zeevaart
- Department of Radiochemistry, The South African Nuclear Energy Corporation SOC Ltd. (Necsa), Brits 0240, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Nuclear Medicine Research Infrastructure NPC, Level 5 Bridge A, Capital Park, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Nuclear Medicine Research Infrastructure NPC, Level 5 Bridge A, Capital Park, Pretoria 0001, South Africa
- Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Nuclear Medicine Research Infrastructure NPC, Level 5 Bridge A, Capital Park, Pretoria 0001, South Africa
| | - Ross C. Anderson
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
| | - Claire L. Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
30
|
Singh P, kumari N, Kaul A, Srivastava A, Singh VK, Srivastava K, Tiwari AK. Acetamidobenzoxazolone conjugated DOTA system for assessing 18 kDa translocator protein during pulmonary inflammation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Nanabala R, Pillai MRA, Gopal B. Preparation of Patient Doses of [ 177Lu]Lu-DOTATATE and [ 177Lu]Lu-PSMA-617 with Carrier Added (CA) and No Carrier Added (NCA) 177Lu. Nucl Med Mol Imaging 2022; 56:313-322. [PMID: 36425271 PMCID: PMC9679127 DOI: 10.1007/s13139-022-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/10/2022] Open
Abstract
Purpose [177Lu]Lu-DOTATATE and [177Lu]Lu-PSMA-617 used for targeted radionuclide therapy are very often prepared in the hospital radiopharmacy. The preparation parameters vary depending upon the specific activity of the 177Lu used. The aim of this study was to develop optimized protocols to be used in the nuclear medicine department for the preparation of patient doses of the above radiopharmaceuticals. Method 177Lu (CA and NCA) were used for radiolabeling DOTATATE and PSMA-617. Parameters studied are 177Lu of different specific activity and different peptide concentrations and two different buffer systems. Paper and thin layer chromatography systems were used for estimating the radiochemical yield as well as radiochemical purity. Solid-phase extraction was used for the purification of the labeled tracers. Results [177Lu]Lu-DOTATATE was prepared with CA 177Lu (n = 13) and NCA177Lu (n = 6). Four batches each of [177Lu]Lu-PSMA-617 were prepared using CA and NCA 177Lu. Radiochemical yields > 80% and final product with less than < 1% radiochemical impurity could be obtained in all batches which were used for therapy. Conclusion Robust protocols for the preparation of clinical doses of [177Lu]Lu-DOTATATE and [177Lu]Lu-PSMA-617 were developed and used for the preparation of clinical doses. The quality of the SPECT images of both the tracers are consistent with the expected uptake in respective diseases.
Collapse
Affiliation(s)
- Raviteja Nanabala
- Molecular Cyclotrons Private Limited, Puthuvype, Ernakulam, Kerala 682508 India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, Tamil Nadu 632014 India
| | | | - Buvaneswari Gopal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
32
|
Khachatryan DS, Kolotaev AV, Malyutina ER, Osipov VN. Synthesis of precursors for obtaining targeted radiopharmaceuticals based on short peptides, analogs of the hormone somatostatin. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
33
|
AlHokbany N, AlJammaz I, AlOtaibi B, AlMalki Y, AlJammaz B, Okarvi SM. Development of new copper-64 labeled rhodamine: a potential PET myocardial perfusion imaging agent. EJNMMI Radiopharm Chem 2022; 7:19. [PMID: 35870027 PMCID: PMC9308844 DOI: 10.1186/s41181-022-00171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Myocardial perfusion imaging (MPI) is one of the most commonly performed investigations in nuclear medicine procedures. Due to the longer half-life of the emerging positron emitter copper-64 and its availability from low energy cyclotron, together with its well-known coordination chemistry, we have synthesized 64Cu-labeled NOTA- and 64Cu-NOTAM-rhodamine conjugates as potential cardiac imaging agents using PET. Results 64Cu-NOTA- and 64Cu-NOTAM-rhodamine conjugates were synthesized using a traightforward and one-step simple reaction. Radiochemical yields were greater than 97% (decay corrected), with a total synthesis time of less than 25 min. Radiochemical purities were always greater than 98% as assessed by TLC and HPLC. These synthetic approaches hold considerable promise as a simple method for 64Cu-rhodamine conjugates synthesis, with high radiochemical yield and purity. Biodistribution studies in normal Fischer rats at 60 min post-injection, demonstrated significant heart uptake and a good biodistribution profile for both the radioconjugates. However, the 64Cu-NOTAM-rhodamine conjugate has shown more heart uptake (~ 10% ID/g) over the 64Cu-NOTA-rhodamine conjugate (5.6% ID/g). Conclusions These results demonstrate that these radioconjugates may be useful probes for the PET evaluation of MPI.
Collapse
|
34
|
Khan M, Liu H, Sacco P, Marsich E, Li X, Djaker N, Spadavecchia J. DOTAREM (DOTA)-Gold-Nanoparticles: Design, Spectroscopic Evaluation to Build Hybrid Contrast Agents to Applications in Nanomedecine. Int J Nanomedicine 2022; 17:4105-4118. [PMID: 36111314 PMCID: PMC9469803 DOI: 10.2147/ijn.s368458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The realization of MRI contrast agents through chemical protocols of functionalization is a strong domain of research. In this work, we developed and formulated a novel hybrid gold nanoparticle system in which a gold salt (HAuCl4) is combined with dotarem, an MRI contrast agent (DOTA) by chelation (Method IN) and stabilized by a lactose-modified chitosan polymer (CTL; Chitlac) to form DOTA IN-CTL AuNPs. Result and Discussion The authors demonstrate the biological efficiency of these nanoparticles in the case of three cell lines: Mia PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line). DOTA IN-CTL AuNPs are stable under physiological conditions, are nontoxic, and are very efficient as PTT agents. The highlights, such as high stability and preliminary MRI in vitro and in vivo models, may be suitable for diagnosis and therapy. Conclusion We proved that DOTA IN-CTL AuNPs have several advantages: i) Biological efficacy on three cell lines: MIA PaCa-2 (human pancreatic cancer cell line), TIB-75 (murine liver cell line) and KKU-M213 (cholangiocarcinoma cell line); ii) high stability, and no-toxicity; iii) high efficiency as a PPT agent. The study conducted on MRI in vitro and in vivo models will be suitable for diagnosis and therapy.
Collapse
Affiliation(s)
- Memona Khan
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Hui Liu
- Department of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases& Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Trieste, I-34127, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, I-34129, Italy
| | - Eleonora Marsich
- Department of Life Sciences, University of Trieste, Trieste, I-34127, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, I-34129, Italy
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases& Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
35
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
36
|
Design, synthesis, and preclinical evaluation of a novel bifunctional macrocyclic chelator for theranostics of cancers. Eur J Nucl Med Mol Imaging 2022; 49:2618-2633. [DOI: 10.1007/s00259-022-05750-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
|
37
|
Avraham E, Meyerstein D, Lerner A, Yardeni G, Pevzner S, Zilbermann I, Moisy P, Maimon E, Popivker I. Reactions of methyl, hydroxyl and peroxyl radicals with the DOTA chelating agent used in medical imaging. Free Radic Biol Med 2022; 180:134-142. [PMID: 34973364 DOI: 10.1016/j.freeradbiomed.2021.12.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
The mechanism of reaction of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) with ·CH3, CH3O2· and ·OH radicals were studied. The radicals were formed in situ radiolytically. The methyl radicals react orders of magnitude slower with DOTA and with MIII(DOTA)- than the hydroxyl radicals. The various final products were identified and mechanisms for their formation are proposed. CH3O2· radicals do not react, or react too slowly to be observed, with DOTA and with MIII(DOTA)- as long as the central cation is not oxidized by the peroxyl radical. The results imply that synthesis of the MIII(DOTA)-(MIII = radioisotope) complexes in a water-organic solvent (ethanol or 2-propanol or acetonitrile) mixture is not only kinetically desired but the so formed complex also decreases the radiolytic decomposition of DOTA.
Collapse
Affiliation(s)
- Elad Avraham
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Department of Chemical Sciences, The Radical Research Center and the Schlesinger Family, Center for Compact Accelerators, Radiation Sources and Application, Ariel University, Ariel, Israel; Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ana Lerner
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Israel Atomic Energy Commission, Tel Aviv, Israel
| | - Guy Yardeni
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Israel Zilbermann
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Eric Maimon
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Inna Popivker
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel.
| |
Collapse
|
38
|
Kaur J, Arroub K, Drzezga A, Schomäcker K, Mathur S. Synthesis, proteolytic stability, and in vitro evaluation of DOTA conjugated p160 peptide based radioconjugates: [ 177Lu]Lu-DOTA-p160. Org Biomol Chem 2021; 19:9849-9854. [PMID: 34755753 DOI: 10.1039/d1ob01812d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we describe the synthesis, in vitro stability, and preliminary biological evaluation of [177Lu]Lu-DOTA-p160 peptide-based radiopharmaceuticals. Our findings highlight that all DOTA-p160-peptide radioconjugates exhibit favorable proteolytic and enzymatic stability with a prolonged half-life in human plasma and serum. Cell uptake studies carried out on MCF-7 cell line revealed saturable binding of the radioconjugates in the nanomolar range, thereby demonstrating their promising potential in the imaging and therapy of breast tumors.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Sector-125, Amity University, Noida, 201313, Uttar Pradesh, India. .,University Clinic of Cologne, Clinic of Nuclear Medicine, Cologne, Germany
| | - Karim Arroub
- Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- University Clinic of Cologne, Clinic of Nuclear Medicine, Cologne, Germany
| | - Klaus Schomäcker
- University Clinic of Cologne, Clinic of Nuclear Medicine, Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Grieve ML, Davey PRWJ, Forsyth CM, Paterson BM. The Synthesis of a Bis(thiosemicarbazone) Macrocyclic Ligand and the Mn(II), Co(II), Zn(II) and 68Ga(III) Complexes. Molecules 2021; 26:3646. [PMID: 34203751 PMCID: PMC8232287 DOI: 10.3390/molecules26123646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystallography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic mixtures of the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex exists as the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory calculations indicated that the relative energies of the diastereomers are within 10 kJ mol-1. Magnetic susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand was radiolabelled with gallium-68, in the interest of developing new positron emission tomography imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 °C for 10 min.
Collapse
Affiliation(s)
- Melyssa L. Grieve
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (M.L.G.); (P.R.W.J.D.); (C.M.F.)
| | - Patrick R. W. J. Davey
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (M.L.G.); (P.R.W.J.D.); (C.M.F.)
| | - Craig M. Forsyth
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (M.L.G.); (P.R.W.J.D.); (C.M.F.)
| | - Brett M. Paterson
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (M.L.G.); (P.R.W.J.D.); (C.M.F.)
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
40
|
Dovrat G, Pevzner S, Berthon C, Lerner A, Maimon E, Vainer R, Karpasas M, Ben-Elyiahu Y, Moisy P, Bettelheim A, Zilbermann I. Oligomers Intermediates in Between Two New Distinct Homonuclear Uranium(IV) DOTP Complexes*. Chemistry 2021; 27:8264-8267. [PMID: 33822408 DOI: 10.1002/chem.202005350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Two new aqueous UIV complexes were synthesized by the interaction between the tetravalent uranium cation and the (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP) macrocyclic ligand. Two distinct homonuclear complexes were identified; the first was characterized by X-ray crystallography as a unique "out-of-cage", [U(DOTPH6 )2 ] complex, in which the UIV cation is octa-coordinated to 4 phosphonic arms from each ligand in a square anti-prism geometry, with a C4 symmetry. The second is the "in-cage" [U(DOTPH4 )] complex, in which the tetravalent cation is located between the macrocycle O4 and N4 planes. With the help of UV-Vis absorption, 1 H/31 P NMR, ATR-IR, and MALDI-TOFMS analytical techniques, the chemical interchange between both species is presented. It is shown that the one-way transition is governed by the formation of a multiple number of soluble oligomeric species consisting of varied stoichiometric ratios of both characterized homonuclear complexes.
Collapse
Affiliation(s)
- Gev Dovrat
- Energy Engineering Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Ana Lerner
- Israeli Atomic Energy Commission, Tel-Aviv, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Radion Vainer
- Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Mark Karpasas
- Research Support Laboratories, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| |
Collapse
|
41
|
Heing‐Becker I, Grötzinger C, Beindorff N, Prasad S, Erdmann S, Exner S, Haag R, Licha K. A Cyanine-Bridged Somatostatin Hybrid Probe for Multimodal SSTR2 Imaging in Vitro and in Vivo: Synthesis and Evaluation. Chembiochem 2021; 22:1307-1315. [PMID: 33238069 PMCID: PMC8048842 DOI: 10.1002/cbic.202000791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Multimodal imaging probes have attracted the interest of ongoing research, for example, for the surgical removal of tumors. Modular synthesis approaches allow the construction of hybrid probes consisting of a radiotracer, a fluorophore and a targeting unit. We present the synthesis of a new asymmetric bifunctional cyanine dye that can be used as a structural and functional linker for the construction of such hybrid probes. 68 Ga-DOTATATE, a well-characterized radiopeptide targeting the overexpressed somatostatin receptor subtype 2 (SSTR2) in neuroendocrine tumors, was labeled with our cyanine dye, thus providing additional information along with the data obtained from the radiotracer. We tested the SSTR2-targeting and imaging properties of the resulting probe 68 Ga-DOTA-ICC-TATE in vitro and in a tumor xenograft mouse model. Despite the close proximity between dye and pharmacophore, we observed a high binding affinity towards SSTR2 as well as elevated uptake in SSTR2-overexpressing tumors in the positron emission tomography (PET) scan and histological examination.
Collapse
Affiliation(s)
- Isabelle Heing‐Becker
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Carsten Grötzinger
- Department of Hepatology and GastroenterologyCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Nicola Beindorff
- BERIC – Berlin Experimental Radionuclide Imaging CenterCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Sonal Prasad
- BERIC – Berlin Experimental Radionuclide Imaging CenterCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
- Department of Nuclear MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Sarah Erdmann
- Department of Hepatology and GastroenterologyCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Samantha Exner
- Department of Hepatology and GastroenterologyCharité – Universitätsmedizin BerlinAugustenburger Platz 113353BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Kai Licha
- Institut für Chemie und BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
42
|
Silva F, Cabral Campello MP, Paulo A. Radiolabeled Gold Nanoparticles for Imaging and Therapy of Cancer. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E4. [PMID: 33375074 PMCID: PMC7792784 DOI: 10.3390/ma14010004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In the Last decades, nanotechnology has provided novel and alternative methodologies and tools in the field of medical oncology, in order to tackle the issues regarding the control and treatment of cancer in modern society. In particular, the use of gold nanoparticles (AuNPs) in radiopharmaceutical development has provided various nanometric platforms for the delivery of medically relevant radioisotopes for SPECT/PET diagnosis and/or radionuclide therapy. In this review, we intend to provide insight on the methodologies used to obtain and characterize radiolabeled AuNPs while reporting relevant examples of AuNPs developed during the last decade for applications in nuclear imaging and/or radionuclide therapy, and highlighting the most significant preclinical studies and results.
Collapse
Affiliation(s)
- Francisco Silva
- CTN—Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela, Portugal; (F.S.); (M.P.C.C.)
| | - Maria Paula Cabral Campello
- CTN—Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela, Portugal; (F.S.); (M.P.C.C.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela, Portugal
| | - António Paulo
- CTN—Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela, Portugal; (F.S.); (M.P.C.C.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela, Portugal
| |
Collapse
|
43
|
Aghevlian S, Cai Z, Hedley D, Winnik MA, Reilly RM. Radioimmunotherapy of PANC-1 human pancreatic cancer xenografts in NOD/SCID or NRG mice with Panitumumab labeled with Auger electron emitting, 111In or β-particle emitting, 177Lu. EJNMMI Radiopharm Chem 2020; 5:22. [PMID: 33169241 PMCID: PMC7652961 DOI: 10.1186/s41181-020-00111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptors (EGFR) are overexpressed on > 90% of pancreatic cancers (PnCa) and represent an attractive target for the development of novel therapies, including radioimmunotherapy (RIT). Our aim was to study RIT of subcutaneous (s.c.) PANC-1 human PnCa xenografts in mice using the anti-EGFR monoclonal antibody, panitumumab labeled with Auger electron (AE)-emitting, 111In or β-particle emitting, 177Lu at amounts that were non-toxic to normal tissues. RESULTS Panitumumab was conjugated to DOTA chelators for complexing 111In or 177Lu (panitumumab-DOTA-[111In]In and panitumumab-DOTA-[177Lu]Lu) or to a metal-chelating polymer (MCP) with multiple DOTA to bind 111In (panitumumab-MCP-[111In]In). Panitumumab-DOTA-[177Lu]Lu was more effective per MBq exposure at reducing the clonogenic survival in vitro of PANC-1 cells than panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In. Panitumumab-DOTA-[177Lu]Lu caused the greatest density of DNA double-strand breaks (DSBs) in the nucleus measured by immunofluorescence for γ-H2AX. The absorbed dose in the nucleus was 3.9-fold higher for panitumumab-DOTA-[177Lu]Lu than panitumumab-DOTA-[111In]In and 7.7-fold greater than panitumumab-MCP-[111In]In. No normal tissue toxicity was observed in NOD/SCID mice injected intravenously (i.v.) with 10.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In or in NRG mice injected i.v. with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu. There was no decrease in complete blood cell counts (CBC) or increased serum alanine aminotransferase (ALT) or creatinine (Cr) or decreased body weight. RIT inhibited the growth of PANC-1 tumours but a 5-fold greater total amount of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In (30 MBq; 30 μg; ~ 0.21 nmoles) administered in three fractionated amounts every three weeks was required to achieve greater or equivalent tumour growth inhibition, respectively, compared to a single amount of panitumumab-DOTA-[177Lu]Lu (6 MBq; 10 μg; ~ 0.07 nmoles). The tumour doubling time (TDT) for NOD/SCID mice with s.c. PANC-1 tumours treated with panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In was 51.8 days and 28.1 days, respectively. Panitumumab was ineffective yielding a TDT of 15.3 days vs. 15.6 days for normal saline treated mice. RIT of NRG mice with s.c. PANC-1 tumours with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu increased the TDT to 20.9 days vs. 11.5 days for panitumumab and 9.1 days for normal saline. The absorbed doses in PANC-1 tumours were 8.8 ± 3.0 Gy and 2.6 ± 0.3 Gy for panitumumab-DOTA-[111In]In and panitumumab-MCP-[111In]In, respectively, and 11.6 ± 4.9 Gy for panitumumab-DOTA-[177Lu]Lu. CONCLUSION RIT with panitumumab labeled with Auger electron-emitting, 111In or β-particle-emitting, 177Lu inhibited the growth of s.c. PANC-1 tumours in NOD/SCID or NRG mice, at administered amounts that caused no normal tissue toxicity. We conclude that EGFR-targeted RIT is a promising approach to treatment of PnCa.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - David Hedley
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada.
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Katkova MA, Zhigulin GY, Rumyantcev RV, Zabrodina GS, Shayapov VR, Sokolov MN, Ketkov SY. Water-Soluble Bismuth(III) Polynuclear Tyrosinehydroximate Metallamacrocyclic Complex: Structural Parallels to Lanthanide Metallacrowns. Molecules 2020; 25:E4379. [PMID: 32977712 PMCID: PMC7582670 DOI: 10.3390/molecules25194379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 02/02/2023] Open
Abstract
Recently there has been a great deal of interest and associated research into aspects of the coordination chemistry of lanthanides and bismuth-elements that show intriguing common features. This work focuses on the synthesis and characterization of a novel bismuth(III) polynuclear metallamacrocyclic complex derived from aminohydroxamic acid, in order to compare the coordination ability of Bi3+ with the similarly sized La3+ ions. A polynuclear tyrosinehydroximate Bi(OH)[15-MCCu(II)Tyrha-5](NO3)2 (1) was obtained according to the synthetic routes previously described for water-soluble Ln(III)-Cu(II) 15-MC-5 metallacrowns. Correlations between structural parameters of Bi(III) and Ln(III) complexes were analyzed. DFT calculations confirmed the similarity between molecular structures of the model bismuth(III) and lanthanum(III) tyrosinehydroximate 15-metallacrowns-5. Analysis of the electronic structures revealed, however, stronger donor-acceptor interactions between the central ion and the metallamacrocycle in the case of the lanthanum analogue. Thermochromic properties of 1 were studied.
Collapse
Affiliation(s)
- Marina A. Katkova
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, 603950 Nizhny Novgorod, Russia; (G.Y.Z.); (R.V.R.); (G.S.Z.); (S.Y.K.)
| | - Grigory Y. Zhigulin
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, 603950 Nizhny Novgorod, Russia; (G.Y.Z.); (R.V.R.); (G.S.Z.); (S.Y.K.)
| | - Roman V. Rumyantcev
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, 603950 Nizhny Novgorod, Russia; (G.Y.Z.); (R.V.R.); (G.S.Z.); (S.Y.K.)
| | - Galina S. Zabrodina
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, 603950 Nizhny Novgorod, Russia; (G.Y.Z.); (R.V.R.); (G.S.Z.); (S.Y.K.)
| | - Vladimir R. Shayapov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, Russia; (V.R.S.); (M.N.S.)
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, Russia; (V.R.S.); (M.N.S.)
- Chemistry Department, Kazan (Volga Region) Federal University, 420097 Kazan, Russia
| | - Sergey Y. Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, 603950 Nizhny Novgorod, Russia; (G.Y.Z.); (R.V.R.); (G.S.Z.); (S.Y.K.)
| |
Collapse
|
45
|
Eychenne R, Bouvry C, Bourgeois M, Loyer P, Benoist E, Lepareur N. Overview of Radiolabeled Somatostatin Analogs for Cancer Imaging and Therapy. Molecules 2020; 25:4012. [PMID: 32887456 PMCID: PMC7504749 DOI: 10.3390/molecules25174012] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways. Interestingly, the expression of SSTRs is significantly enhanced in many solid tumors, especially gastro-entero-pancreatic neuroendocrine tumors (GEP-NET). Thus, somatostatin analogs (SSAs) have been developed to improve the stability of the endogenous ligand and so extend its half-life. Radiolabeled analogs have been developed with several radioelements such as indium-111, technetium-99 m, and recently gallium-68, fluorine-18, and copper-64, to visualize the distribution of receptor overexpression in tumors. Internal metabolic radiotherapy is also used as a therapeutic strategy (e.g., using yttrium-90, lutetium-177, and actinium-225). With some radiopharmaceuticals now used in clinical practice, somatostatin analogs developed for imaging and therapy are an example of the concept of personalized medicine with a theranostic approach. Here, we review the development of these analogs, from the well-established and authorized ones to the most recently developed radiotracers, which have better pharmacokinetic properties and demonstrate increased efficacy and safety, as well as the search for new clinical indications.
Collapse
Affiliation(s)
- Romain Eychenne
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Univ Rennes, F-35000 Rennes, France
| | - Mickael Bourgeois
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint Herblain, France;
- CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Inserm, Université de Nantes, F-44000 Nantes, France
| | - Pascal Loyer
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| | - Eric Benoist
- UPS, CNRS, SPCMIB (Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique)—UMR 5068, Université de Toulouse, F-31062 Toulouse, France; (R.E.); (E.B.)
| | - Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, F-35000, France;
- INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Inserm, Univ Rennes, F-35000 Rennes, France;
| |
Collapse
|
46
|
DOTA-ZOL: A Promising Tool in Diagnosis and Palliative Therapy of Bone Metastasis-Challenges and Critical Points in Implementation into Clinical Routine. Molecules 2020; 25:molecules25132988. [PMID: 32629930 PMCID: PMC7412164 DOI: 10.3390/molecules25132988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/17/2023] Open
Abstract
The novel compound 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-ZOL (DOTA-conjugated zoledronic acid) is a promising candidate for the diagnosis and therapy of bone metastasis. The combination of the published methodology for this bisphosphonate with pharmaceutical and regulatory requirements turned out to be unexpectedly challenging. The scope of this work is the presentation and discussion of problems encountered during this process. Briefly, the radiolabelling process and purification, as well as the quality control published, did not meet the expectations. The constant effort setting up an automated radiolabelling procedure resulted in (a) an enhanced manual method using coated glass reactors, (b) a combination of three different reliable radio thin-layer chromatography (TLC) methods instead of the published and (c) a preliminary radio high-pressure liquid chromatography (HPLC) method for identification of the compound. Additionally, an automated radiolabelling process was developed, but it requires further improvement, e.g., in terms of a reactor vessel or purification of the crude product. The published purification method was found to be unsuitable for clinical routine, and an intense screening did not lead to a satisfactory result; here, more research is necessary. To sum up, implementation of DOTA-ZOL was possible but revealed a lot of critical points, of which not all could be resolved completely yet.
Collapse
|
47
|
Tickner BJ, Stasiuk GJ, Duckett SB, Angelovski G. The use of yttrium in medical imaging and therapy: historical background and future perspectives. Chem Soc Rev 2020; 49:6169-6185. [DOI: 10.1039/c9cs00840c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Yttrium presents a wide palette of isotopes with interesting coordination and radiochemical properties. We review its most prominent isotopes and their diverse medical uses in therapy and imaging.
Collapse
Affiliation(s)
- Ben J. Tickner
- Centre for Hyperpolarisation in Magnetic Resonance
- Department of Chemistry
- University of York
- Heslington
- UK
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology
- School of Biomedical Engineering and Imaging
- King's College London
- London
- UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance
- Department of Chemistry
- University of York
- Heslington
- UK
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tuebingen
- Germany
| |
Collapse
|