1
|
Althobaiti NA, Al-Abbas NS, Alsharif I, Albalawi AE, Almars AI, Basabrain AA, Jafer A, Ellatif SA, Bauthman NM, Almohaimeed HM, Soliman MH. Gadd45A-mediated autophagy regulation and its impact on Alzheimer's disease pathogenesis: Deciphering the molecular Nexus. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167353. [PMID: 39004381 DOI: 10.1016/j.bbadis.2024.167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia
| | - Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Amany I Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A Basabrain
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayman Jafer
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Nuha M Bauthman
- Department of Obstetric & Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia.
| |
Collapse
|
2
|
Wang T, Sun G, Tao B. Updated insights into the NLRP3 inflammasome in postoperative cognitive dysfunction: emerging mechanisms and treatments. Front Aging Neurosci 2024; 16:1480502. [PMID: 39411285 PMCID: PMC11474915 DOI: 10.3389/fnagi.2024.1480502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) poses a significant threat to patients undergoing anesthesia and surgery, particularly elderly patients. It is characterized by diminished cognitive functions post surgery, such as impaired memory and decreased concentration. The potential risk factors for POCD include age, surgical trauma, anesthetic type, and overall health condition; however, the precise mechanisms underlying POCD remain elusive. Recent studies suggest that neuroinflammation might be a primary pathogenic factor. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes are implicated in exacerbating POCD by promoting the release of inflammatory factors and proteins that initiate pyroptosis, further influencing the disease process. The regulation of NLRP3 inflammasome activity, including its activation and degradation, is tightly controlled through multiple pathways and mechanisms. In addition, autophagy, a protective mechanism, regulates the NLRP3 inflammasome to control the progression of POCD. This review reviews recent findings on the role of the NLRP3 inflammasome in POCD pathogenesis and discusses therapeutic strategies aimed at reducing NLRP3 sources, inhibiting cellular pyroptosis, and enhancing autophagy.
Collapse
Affiliation(s)
| | | | - Bingdong Tao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
He W, Shi X, Dong Z. The roles of RACK1 in the pathogenesis of Alzheimer's disease. J Biomed Res 2024; 38:137-148. [PMID: 38410996 PMCID: PMC11001590 DOI: 10.7555/jbr.37.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 02/28/2024] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease (AD), a prevalent neurodegenerative disease. RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD. Specifically, RACK1 is involved in regulation of the amyloid-β precursor protein processing through α- or β-secretase by binding to different protein kinase C isoforms. Additionally, RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors, thereby preventing neuronal excitotoxicity. RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways, such as nuclear factor-kappa B, tumor necrosis factor-alpha, and NOD-like receptor family pyrin domain-containing 3 pathways. The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy, in which RACK1 is a potential target. In this review, we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
4
|
Salido-Fortuna S, Ruano-Culebras P, Marina ML, Castro-Puyana M. Rapid indirect separation of glutamine enantiomers by micellar electrokinetic chromatography. Analysis of dietary supplements. J Sep Sci 2024; 47:e2300921. [PMID: 38356221 DOI: 10.1002/jssc.202300921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Glutamine is the most abundant free proteinogenic α-amino acid. It is naturally produced in the organism and acts as a precursor for the synthesis of different biologically important molecules (such as proteins or nucleotides). However, under stressful conditions, the organism is unable to produce it in enough amounts to function properly. Thus, glutamine (Gln)-based supplements have become increasingly popular over the last decade. Since legal regulations establish that amino acid-based dietary supplements must contain only the L-enantiomer and not the racemate, adequate chiral methodologies are required to achieve their quality control. In this work, an analytical methodology based on the use of micellar electrokinetic chromatography is proposed for the rapid enantiomeric determination of DL-Gln in dietary supplements. Using (+)-1-(9-fluorenyl)-ethyl chloroformate as a derivatizing agent and ammonium perfluorooctanoate as separation medium, the Gln diastereoisomers formed under optimal conditions were separated in 8 min with a resolution of 2.8. The analytical characteristics of the method were evaluated in terms of linearity, precision, accuracy, and limits of detection/quantitation, and they were found appropriate for the analysis of L-Gln-based dietary supplements.
Collapse
Affiliation(s)
- Sandra Salido-Fortuna
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Paloma Ruano-Culebras
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
5
|
Amidfar M, Askari G, Kim YK. Association of metabolic dysfunction with cognitive decline and Alzheimer's disease: A review of metabolomic evidence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110848. [PMID: 37634657 DOI: 10.1016/j.pnpbp.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The discovery of new biomarkers that can distinguish Alzheimer's disease (AD) from mild cognitive impairment (MCI) in the early stages will help to provide new diagnostic and therapeutic strategies and slow the transition from MCI to AD. Patients with AD may present with a concomitant metabolic disorder, such as diabetes, obesity, and dyslipidemia, as a risk factor for AD that may be involved in the onset of both AD pathology and cognitive impairment. Therefore, metabolite profiling, or metabolomics, can be very useful in diagnosing AD, developing new therapeutic targets, and evaluating both the course of treatment and the clinical course of the disease. In addition, studying the relationship between nutritional behavior and AD requires investigation of the role of conditions such as obesity, hypertension, dyslipidemia, and elevated glucose level. Based on this literature review, nutritional recommendations, including weight loss by reducing calorie and cholesterol intake and omega-3 fatty acid supplementation can prevent cognitive decline and dementia in the elderly. The underlying metabolic causes of the pathology and cognitive decline caused by AD and MCI are not well understood. In this review article, metabolomics biomarkers for diagnosis of AD and MCI and metabolic risk factors for cognitive decline in AD were evaluated.
Collapse
Affiliation(s)
- Meysam Amidfar
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Conn KA, Borsom EM, Cope EK. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease. Gut Microbes 2024; 16:2371950. [PMID: 39008552 PMCID: PMC11253888 DOI: 10.1080/19490976.2024.2371950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The gut microbial ecosystem communicates bidirectionally with the brain in what is known as the gut-microbiome-brain axis. Bidirectional signaling occurs through several pathways including signaling via the vagus nerve, circulation of microbial metabolites, and immune activation. Alterations in the gut microbiota are implicated in Alzheimer's disease (AD), a progressive neurodegenerative disease. Perturbations in gut microbial communities may affect pathways within the gut-microbiome-brain axis through altered production of microbial metabolites including ɣ-aminobutyric acid (GABA), the primary inhibitory mammalian neurotransmitter. GABA has been shown to act on gut integrity through modulation of gut mucins and tight junction proteins and may be involved in vagus nerve signal inhibition. The GABAergic signaling pathway has been shown to be dysregulated in AD, and may be responsive to interventions. Gut microbial production of GABA is of recent interest in neurological disorders, including AD. Bacteroides and Lactic Acid Bacteria (LAB), including Lactobacillus, are predominant producers of GABA. This review highlights how temporal alterations in gut microbial communities associated with AD may affect the GABAergic signaling pathway, intestinal barrier integrity, and AD-associated inflammation.
Collapse
Affiliation(s)
- Kathryn A. Conn
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily M. Borsom
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
7
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
8
|
Wang LY, Wang XP, Lv JM, Shan YD, Jia SY, Yu ZF, Miao HT, Xin Y, Zhang DX, Zhang LM. NLRP3-GABA signaling pathway contributes to the pathogenesis of impulsive-like behaviors and cognitive deficits in aged mice. J Neuroinflammation 2023; 20:162. [PMID: 37434240 DOI: 10.1186/s12974-023-02845-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND), such as delirium and cognitive impairment, are commonly encountered complications in aged patients. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is aberrantly synthesized from reactive astrocytes following inflammatory stimulation and is implicated in the pathophysiology of neurodegenerative diseases. Additionally, the activation of NOD-like receptor protein 3 (NLRP3) inflammasome is involved in PND. Herein, we aimed to investigate whether the NLRP3-GABA signaling pathway contributes to the pathogenesis of aging mice's PND. METHODS 24-month-old C57BL/6 and astrocyte-specific NLRP3 knockout male mice were used to establish a PND model via tibial fracture surgery. The monoamine oxidase-B (MAOB) inhibitor selegiline (1 mg/kg) was intraperitoneally administered once a day for 7 days after the surgery. PND, including impulsive-like behaviors and cognitive impairment, was evaluated by open field test, elevated plus maze, and fear conditioning. Thereafter, pathological changes of neurodegeneration were explored by western blot and immunofluorescence assays. RESULTS Selegiline administration significantly ameliorated TF-induced impulsive-like behaviors and reduced excessive GABA production in reactive hippocampal astrocytes. Moreover, astrocyte-specific NLRP3 knockout mice reversed TF-induced impulsive-like and cognitive impairment behaviors, decreased GABA levels in reactive astrocytes, ameliorated NLRP3-associated inflammatory responses during the early stage, and restored neuronal degeneration in the hippocampus. CONCLUSIONS Our findings suggest that anesthesia and surgical procedures trigger neuroinflammation and cognitive deficits, which may be due to NLRP3-GABA activation in the hippocampus of aged mice.
Collapse
Affiliation(s)
- Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yu-Dong Shan
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Shi-Yan Jia
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Zhi-Fang Yu
- Department of Anesthesia and Trauma Research, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
9
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Abusudah WF, Almohmadi NH, Eldahshan OA, Ahmed EA, Batiha GES. Insights on benzodiazepines' potential in Alzheimer's disease. Life Sci 2023; 320:121532. [PMID: 36858314 DOI: 10.1016/j.lfs.2023.121532] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia characterized by the deposition of amyloid beta (Aβ) plaque and tau-neurofibrillary tangles (TNTs) in the brain. AD is associated with the disturbances of various neurotransmitters including gamma-aminobutyric acid (GABA). Of note, GABA is reduced in AD, and restoration of GABA effect by benzodiazepines (BDZs) may improve AD outcomes. However, BDZs may adversely affect cognitive functions chiefly in elderly AD patients with sleep disorders. Besides, there is a controversy regarding the use of BDZs in AD. Consequently, the objective of the present review was to disclose the possible role of BDZs on the pathogenesis of AD that might be beneficial, neutral, or detrimental effects on AD. Prolonged use of intermediate-acting BDZ lorazepam exerts amnesic effects due to attenuation of synaptic plasticity and impairment of recognition memory. However, BDZs may have a protective effect against the development of AD by reducing tau phosphorylation, neuroinflammation, and progression of AD neuropathology. On the other side, other findings highlighted that extended use of BDZs was not associated with the development of AD. In conclusion, there are controversial points concerning the use of BDZs and the risk for the progression of AD. Thus, preclinical, and clinical studies are essential in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department Applied Medical Sciences, College Jazan University, Jazan 82817, Saudi Arabia.
| | - Wafaa Fouzi Abusudah
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Al Beheira, Egypt.
| |
Collapse
|
10
|
Wang A, Liu K, Tian M, Yang L. Open Tubular Capillary Electrochromatography-Mass Spectrometry for Analysis of Underivatized Amino Acid Enantiomers with a Porous Layer-Gold Nanoparticle-Modified Chiral Column. Anal Chem 2022; 94:9252-9260. [PMID: 35713648 DOI: 10.1021/acs.analchem.2c00233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By developing a novel chiral column, we integrate open tubular capillary electrochromatography into sheathless mass spectrometry (MS) for efficient analysis of underivatized amino acid enantiomers. The chiral column is easily fabricated by modifying the inner surface of a capillary with a three-dimensional porous layer (PL, thickness ∼ 90 nm, pore size ∼ 30 nm) and gold nanoparticles and by introducing a chiral selector, thiol β-cyclodextrin (SH-β-CD), onto the modified surface via Au-S bonds. This approach greatly enhances the specific surface area and thus the ratio of the stationary phase to mobile phase and interaction between the stationary phase and analytes. The proposed PLOT@Au@CD column is coupled to the sheathless CE-ESI-MS system for chiral analysis of amino acid enantiomers. No derivatization of amino acids is required for chiral analysis, and baseline separation of a total of 15 pairs of amino acid enantiomers is achieved within 17 min with high column efficiencies of 5.60 × 104 to 1.82 × 106 N/m, high resolutions of 1.51-10.0, and low limits of detection between 0.02 and 0.09 μg/mL. The separation efficiency and MS intensity are only slightly decreased over 60 runs or after usage for 15 days, showing excellent repeatability and stability of the PLOT@Au@CD column. The proposed method is successfully applied to the determination of amino acid enantiomers in vinegar samples with satisfactory accuracy. Our study provides a new approach for developing a chiral stationary phase in the chromatographic separation technique, which can be easily coupled to sensitive MS detection, thus it would be of value for various applications in the fields of chiral analysis.
Collapse
Affiliation(s)
- Anping Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Kexin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.,Hangzhou Puyu Technology Development Co. Ltd, Hangzhou, Zhejiang Province, 311300, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, 3050 Kaixuan Road, Changchun, Jilin Province, 130052, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| |
Collapse
|
11
|
Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022; 21:339-358. [PMID: 35173313 PMCID: PMC9081171 DOI: 10.1038/s41573-022-00390-x] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell-cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Is the Brain Undernourished in Alzheimer's Disease? Nutrients 2022; 14:nu14091872. [PMID: 35565839 PMCID: PMC9102563 DOI: 10.3390/nu14091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrospinal fluid (CSF) amino acid (AA) levels and CSF/plasma AA ratios in Alzheimer Disease (AD) in relation to nutritional state are not known. Methods: In 30 fasting patients with AD (46% males, 74.4 ± 8.2 years; 3.4 ± 3.2 years from diagnosis) and nine control (CTRL) matched subjects, CSF and venous blood samples were drawn for AA measurements. Patients were stratified according to nutritional state (Mini Nutritional Assessment, MNA, scores). Results: Total CSF/plasma AA ratios were lower in the AD subpopulations than in NON-AD (p < 0.003 to 0.017. In combined malnourished (16.7%; MNA < 17) and at risk for malnutrition (36.6%, MNA 17−24) groups (CG), compared to CTRL, all essential amino acids (EAAs) and 30% of non-EAAs were lower (p < 0.018 to 0.0001), whereas in normo-nourished ADs (46.7%, MNA > 24) the CSF levels of 10% of EAAs and 25% of NON-EAAs were decreased (p < 0.05 to 0.00021). CG compared to normo-nourished ADs, had lower CSF aspartic acid, glutamic acid and Branched-Chain AA levels (all, p < 0.05 to 0.003). CSF/plasma AA ratios were <1 in NON-AD but even lower in the AD population. Conclusions: Compared to CTRL, ADs had decreased CSF AA Levels and CSF/plasma AA ratios, the degree of which depended on nutritional state.
Collapse
|
13
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Lopes CR, Cunha RA, Agostinho P. Astrocytes and Adenosine A 2A Receptors: Active Players in Alzheimer's Disease. Front Neurosci 2021; 15:666710. [PMID: 34054416 PMCID: PMC8155589 DOI: 10.3389/fnins.2021.666710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, through their numerous processes, establish a bidirectional communication with neurons that is crucial to regulate synaptic plasticity, the purported neurophysiological basis of memory. This evidence contributed to change the classic “neurocentric” view of Alzheimer’s disease (AD), being astrocytes increasingly considered a key player in this neurodegenerative disease. AD, the most common form of dementia in the elderly, is characterized by a deterioration of memory and of other cognitive functions. Although, early cognitive deficits have been associated with synaptic loss and dysfunction caused by amyloid-β peptides (Aβ), accumulating evidences support a role of astrocytes in AD. Astrocyte atrophy and reactivity occurring at early and later stages of AD, respectively, involve morphological alterations that translate into functional changes. However, the main signals responsible for astrocytic alterations in AD and their impact on synaptic function remain to be defined. One possible candidate is adenosine, which can be formed upon extracellular catabolism of ATP released by astrocytes. Adenosine can act as a homeostatic modulator and also as a neuromodulator at the synaptic level, through the activation of adenosine receptors, mainly of A1R and A2AR subtypes. These receptors are also present in astrocytes, being particularly relevant in pathological conditions, to control the morphofunctional responses of astrocytes. Here, we will focus on the role of A2AR, since they are particularly associated with neurodegeneration and also with memory processes. Furthermore, A2AR levels are increased in the AD brain, namely in astrocytes where they can control key astrocytic functions. Thus, unveiling the role of A2AR in astrocytes function might shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Cátia R Lopes
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Ma C, Hunt JB, Kovalenko A, Liang H, Selenica MLB, Orr MB, Zhang B, Gensel JC, Feola DJ, Gordon MN, Morgan D, Bickford PC, Lee DC. Myeloid Arginase 1 Insufficiency Exacerbates Amyloid-β Associated Neurodegenerative Pathways and Glial Signatures in a Mouse Model of Alzheimer's Disease: A Targeted Transcriptome Analysis. Front Immunol 2021; 12:628156. [PMID: 34046031 PMCID: PMC8144303 DOI: 10.3389/fimmu.2021.628156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-β (Aβ) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aβ associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aβ plaque burden. We also observed that Aβ preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.
Collapse
Affiliation(s)
- Chao Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Jerry B. Hunt
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Andrii Kovalenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Huimin Liang
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Maj-Linda B. Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
- Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael B. Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J. Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Marcia N. Gordon
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Dave Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Research Service, James A. Haley Veterans Affairs Hospital, Tampa, FL, United States
| | - Daniel C. Lee
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
16
|
Ma C, Hunt JB, Selenica MLB, Sanneh A, Sandusky-Beltran LA, Watler M, Daas R, Kovalenko A, Liang H, Placides D, Cao C, Lin X, Orr MB, Zhang B, Gensel JC, Feola DJ, Gordon MN, Morgan D, Bickford PC, Lee DC. Arginase 1 Insufficiency Precipitates Amyloid- β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front Immunol 2021; 11:582998. [PMID: 33519806 PMCID: PMC7840571 DOI: 10.3389/fimmu.2020.582998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aβ deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis.
Collapse
Affiliation(s)
- Chao Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Jerry B Hunt
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Maj-Linda B Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Awa Sanneh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Leslie A Sandusky-Beltran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Mallory Watler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Rana Daas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Andrii Kovalenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Huimin Liang
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Devon Placides
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States.,Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Marcia N Gordon
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Dave Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Research Service, James A. Haley Veterans Affairs Hospital, Tampa, FL, United States
| | - Daniel C Lee
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Wei JP, Wen W, Dai Y, Qin LX, Wen YQ, Duan DD, Xu SJ. Drinking water temperature affects cognitive function and progression of Alzheimer's disease in a mouse model. Acta Pharmacol Sin 2021; 42:45-54. [PMID: 32451415 PMCID: PMC7921420 DOI: 10.1038/s41401-020-0407-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
Lifestyle factors may affect mental health and play a critical role in the development of neurodegenerative diseases including Alzheimer's disease (AD). However, whether the temperatures of daily beverages have any impact on cognitive function and AD development has never been studied. In this study, we investigated the effects of daily drinking water temperatures on cognitive function and AD development and progression in mice and the underlying mechanisms. Cognitive function of mice was assessed using passive avoidance test, open field test, and Morris water maze. Wild-type Kunming mice receiving intragastric water (IW, 10 mL/kg, 2 times/day) at 0 °C for consecutive 15 days displayed significant cognitive defects accompanied by significant decrease in gain of body weight, gastric emptying rate, pepsin activity, and an increase in the energy charge in the cortex when compared with mice receiving the same amount of IW at 25 °C (a temperature mimicking most common drinking habits in human), suggesting the altered neuroenergetics may cause cognitive decline. Similarly, in the transgenic APPwse/PS1De9 familial AD mice and their age- and gender-matched wild-type C57BL/6 mice, receiving IW at 0 °C, but not at 25 °C, for 35 days caused a significant time-dependent decrease in body weight and cognitive function, accompanied by a decreased expression of PI3K, Akt, the glutamate/GABA ratio, as well as neuropathy with significant amyloid lesion in the cortex and hippocampus. All of these changes were significantly aggravated in the APPwse/PS1De9 mice than in the control C57BL/6 mice. These data demonstrate that daily beverage at 0 °C may alter brain insulin-mediated neuroenergetics, glutamate/GABA ratio, cause cognitive decline and neuropathy, and promote AD progression.
Collapse
Affiliation(s)
- Jiang-Ping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Xia Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue-Qiang Wen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Shi-Jun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
19
|
Wang W, Bai R, Zhang H, Cai X. Study of the effect of culture mediums on the amino acid metabolites for
Corynebacterium glutamicum
using high‐speed micellar electrokinetic chromatography. Electrophoresis 2019; 40:2665-2671. [DOI: 10.1002/elps.201900010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Ruiguang Bai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Huimin Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| | - Xiaoyu Cai
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and BiologySchool of ChemistryFuzhou University Fuzhou P. R. China
| |
Collapse
|
20
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
21
|
Zhang YQ, Tang YB, Dammer E, Liu JR, Zhao YW, Zhu L, Ren RJ, Chen HZ, Wang G, Cheng Q. Dysregulated Urinary Arginine Metabolism in Older Adults With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2019; 11:90. [PMID: 31105552 PMCID: PMC6492563 DOI: 10.3389/fnagi.2019.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Urine samples, which capture an individual's metabolic profile, are ideal for the exploration of non-invasive biomarkers to confirm the amnestic mild cognitive impairment (aMCI) status of patients vs. unimpaired ones. Objective: We aimed to detect differentially metabolized amino acids, which are important objectives in metabolomics, garnering particular attention in biomedical pathogenesis from the urine of aMCI patients, which may give clinicians the possibility to intervene with early treatments that curb Alzheimer's disease (AD). Methods: The study included 208 subjects, 98 of whom were aMCI patients, and 110 who were control subjects without dementia. Urine samples were taken from each participant and supernatant was obtained for analysis. The concentrations of amino acids were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Urinary arginine levels in aMCI patients are obviously lower than in normal controls (q < 0.2 and p < 0.05). Meanwhile, aMCI patients had significant reduced urinary global arginine bioavailability ratio (GABR), and GABR in urine displayed a positive correlation with the score of CMMSE. Conclusion: Urinary dysregulated arginine metabolism that may serve as a helpful clinical diagnostic biomarker for aMCI in older adults.
Collapse
Affiliation(s)
- Yue-Qi Zhang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Bin Tang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eric Dammer
- Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Wu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Cheng
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Lee S, Kim SJ, Bang E, Na YC. Chiral separation of intact amino acids by capillary electrophoresis-mass spectrometry employing a partial filling technique with a crown ether carboxylic acid. J Chromatogr A 2018; 1586:128-138. [PMID: 30558847 DOI: 10.1016/j.chroma.2018.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/24/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022]
Abstract
An enantiomeric separation method for underivatized free amino acids (AAs) using a partial filling technique with CE-MS was developed for the determination of D-AAs in vinegars. A typical chiral separation method was performed with different concentrations of (18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H4) dissolved in water or formic acid as the background electrolyte. Seventeen AAs, excluding proline and asparagine, were separated, showing chiral resolution values (Rs) ranging from 0.5 to 21.0. These results included baseline separations of 11 AAs, the peaks of which were observed as the ions [AA+18C6H4+H]+. The migration order of the chiral AAs was also evaluated, and the L-AAs migrated faster than the counterpart D-AAs except for serine, threonine and methionine when using (+)-18C6H4. To reduce contamination of the ESI source by the nonvolatile chiral selector and improve the ionization efficiency in partial filling technique, the separation zone length was adjusted to 70% of the capillary, which was filled with 30 mM 18C6H4 in water. This method showed a similar separation efficiency as the typical method, and the separated AA peaks were observed as free AA ions, [AA+H]+. The optimized method provided limits of detection (LODs) ranging from 0.07 to 1.03 μg/mL and good linearity (R2 > 0.99) up to 50 μg/mL for DL-AAs. The developed method was utilized to determine DL-AAs in vinegars with a simple pretreatment process. It may be extended to sensitive AA analysis in the determination of minor enantiomeric impurities in the major component.
Collapse
Affiliation(s)
- Sul Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Jin Kim
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea; Department of Food Science & Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Eunjung Bang
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea; Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
23
|
Next-generation biomarker discovery in Alzheimer's disease using metabolomics - from animal to human studies. Bioanalysis 2018; 10:1525-1546. [PMID: 30198770 DOI: 10.4155/bio-2018-0135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease driven mainly by neuronal loss due to accumulation of intracellular neurofibrillary tangles and amyloid β aggregates in the brain. The diagnosis of AD currently relies on clinical symptoms while the disease can only be confirmed at autopsy. The few available biomarkers allowing for diagnosis are typically detected many years after the onset of the disease. New diagnostic approaches, particularly in easily-accessible biofluids, are essential. By providing an exhaustive information of the phenotype, metabolomics is an ideal approach for identification of new biomarkers. This review investigates the current position of metabolomics in the field of AD research, focusing on animal and human studies, and discusses the improvements carried out over the past decade.
Collapse
|
24
|
Prior A, van de Nieuwenhuijzen E, de Jong GJ, Somsen GW. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection. J Sep Sci 2018; 41:2983-2992. [PMID: 29785784 PMCID: PMC6099287 DOI: 10.1002/jssc.201800204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
Abstract
Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30 nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of 12 proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis.
Collapse
Affiliation(s)
- Amir Prior
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Erik van de Nieuwenhuijzen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules, Medicines and SystemsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
25
|
Kawaharada S, Nakanishi M, Nakanishi N, Hazama K, Higashino M, Yasuhiro T, Lewis A, Clark GS, Chambers MS, Maidment SA, Katsumata S, Kaneko S. ONO-8590580, a Novel GABA Aα5 Negative Allosteric Modulator Enhances Long-Term Potentiation and Improves Cognitive Deficits in Preclinical Models. J Pharmacol Exp Ther 2018; 366:58-65. [PMID: 29674331 DOI: 10.1124/jpet.117.247627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 03/08/2025] Open
Abstract
GABAA receptors containing α5 subunits (GABAAα5) are highly expressed in the hippocampus and negatively involved in memory processing, as shown by the fact that GABAAα5-deficient mice show higher hippocampus-dependent performance than wild-type mice. Accordingly, small-molecule GABAAα5 negative allosteric modulators (NAMs) are known to enhance spatial learning and memory in rodents. Here we introduce a new, orally available GABAAα5 NAM that improves hippocampal functions. ONO-8590580 [1-(cyclopropylmethyl)-5-fluoro-4-methyl-N-[5-(1-methyl-1H-imidazol-4-yl)-2-pyridinyl]-1H-benzimidazol-6-amine] binds to the benzodiazepine binding sites on recombinant human α5-containing GABAA receptors with a Ki of 7.9 nM, and showed functionally selective GABAAα5 NAM activity for GABA-induced Cl- channel activity with a maximum 44.4% inhibition and an EC50 of 1.1 nM. In rat hippocampal slices, tetanus-induced long-term potentiation of CA1 synapse response was significantly augmented in the presence of 300 nM ONO-8590580. Orally administered ONO-8590580 (1-20 mg/kg) dose-dependently occupied hippocampal GABAAα5 in a range of 40%-90% at 1 hour after intake. In the rat passive avoidance test, ONO-8590580 (3-20 mg/kg, by mouth) significantly prevented (+)-MK-801 hydrogen maleate (MK-801)-induced memory deficit. In addition, ONO-8590580 (20 mg/kg, p.o.) was also effective in improving the cognitive deficit induced by scopolamine and MK-801 in the rat eight-arm radial maze test with equal or greater activity than 0.5 mg/kg donepezil. No anxiogenic-like or proconvulsant effect was associated with ONO-8590580 at 20 mg/kg p.o. in the elevated plus maze test or pentylenetetrazole-induced seizure test, respectively. In sum, ONO-8590580 is a novel GABAAα5 NAM that enhances hippocampal memory function without an anxiogenic or proconvulsant risk.
Collapse
Affiliation(s)
- Soichi Kawaharada
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Miki Nakanishi
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Nobuto Nakanishi
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Keisuke Hazama
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Masato Higashino
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Tetsuya Yasuhiro
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Arwel Lewis
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Gary S Clark
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Mark S Chambers
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Scott A Maidment
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Seishi Katsumata
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| | - Shuji Kaneko
- Discovery Research Laboratories I (So.K., M.N., N.N., K.H., T.Y., Se.K.) and Medicinal Chemistry Research Laboratories (M.H.), ONO Pharmaceutical Co., Ltd., Shimamoto-cho, Mishima-gun, Osaka, Japan; Charles River Laboratories International, Inc., Saffron Walden, Essex, United Kingdom (A.L., G.S.C., M.S.C., S.A.M.); and Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan (So.K., Sh.K.)
| |
Collapse
|
26
|
Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonyl-derivatized amino acids. Anal Bioanal Chem 2018; 410:4979-4990. [PMID: 29808298 PMCID: PMC6061710 DOI: 10.1007/s00216-018-1148-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 10/29/2022]
Abstract
The potential of capillary electrophoresis (CE) with ultraviolet (UV)-excited fluorescence detection for sensitive chiral analysis of amino acids (AAs) was investigated. DL-AAs were derivatized with 9-fluorenylmethoxycarbonyl chloride (FMOC)-Cl to allow their fluorescence detection and enhance enantioseparation. Fluorescence detection was achieved employing optical fibers, leading UV excitation light (< 300 nm) from a Xe-Hg lamp to the capillary window, and fluorescence emission to a spectrograph equipped with a charge-coupled device (CCD). Signal averaging over time and emission wavelength intervals was carried out to improve the signal-to-noise ratio of the FMOC-AAs. A background electrolyte (BGE) of 40 mM sodium tetraborate (pH 9.5), containing 15% isopropanol (v/v), 30 mM sodium dodecyl sulfate (SDS), and 30 mM β-cyclodextrin (β-CD), was found optimal for AA chemo- and enantioseparation. Enantioresolutions of 1.0 or higher were achieved for 16 proteinogenic DL-AAs. Limits of detection (LODs) were in the 10-100-nM range (injected concentration) for the D-AA enantiomers, except for FMOC-D-tryptophan (536 nM) which showed intramolecular fluorescence quenching. Linearity (R2 > 0.997) and repeatability for peak height (relative standard deviations (RSDs) < 7.0%; n = 5) and electrophoretic mobility (RSDs < 0.6%; n = 5) of individual AA enantiomers were established for chiral analysis of DL-AA mixtures. The applicability of the method was investigated by the analysis of cerebrospinal fluid (CSF). Next to L-AAs, endogenous levels of D-glutamine and D-aspartic acid could be measured in CSF revealing enantiomeric ratios of 0.35 and 19.6%, respectively. This indicates the method's potential for the analysis of low concentrations of D-AAs in presence of abundant L-AAs.
Collapse
|
27
|
Enantioselective determination of aspartate and glutamate in biological samples by ultrasonic-assisted derivatization coupled with capillary electrophoresis and linked to Alzheimer’s disease progression. J Chromatogr A 2018; 1550:68-74. [DOI: 10.1016/j.chroma.2018.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
28
|
Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, Chang M, Thompson SM, Khoury N, Gonnella R, Trotz M, Moore DB, Harms E, Perry G, Clunes L, Ortiz A, Friedrich JO, Murray IV. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res 2018; 15:164-181. [PMID: 28933272 PMCID: PMC5769087 DOI: 10.2174/1567205014666170921122458] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic dysfunction are increasingly implicated in AD. OBJECTIVE Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. METHODS Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, without date restrictions, for the keywords "AD", "CSF", and "human" plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration's Review Manager software. RESULTS Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were included comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and metabolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01- 1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. CONCLUSION This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given observed unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of further in silico evaluation and generation of novel hypotheses in the AD field.
Collapse
Affiliation(s)
- Roni Manyevitch
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Protas
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Sean Scarpiello
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Marisa Deliso
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Brittany Bass
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Anthony Nanajian
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Chang
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Stefani M. Thompson
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Neil Khoury
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Rachel Gonnella
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Margit Trotz
- Department of Biochemistry, School of Medicine, St George’s University, Grenada, W.I., USA
| | - D. Blaine Moore
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - Emily Harms
- Department of Educational Services, St George’s University, Grenada, W.I., USA
| | - George Perry
- Department of Biology, University of Texas San Antonio, TX, USA
| | - Lucy Clunes
- Department of Pharmacology, School of Medicine, St George’s University, Grenada, W.I., USA
| | - Angélica Ortiz
- Department of Anatomy, School of Medicine, St George’s University, Grenada, W.I., USA
| | | | - Ian V.J. Murray
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
- Department of Biology, University of Texas San Antonio, TX, USA
| |
Collapse
|
29
|
Maffei F, Brancatelli G, Barboza T, Dalcanale E, Geremia S, Pinalli R. Inherently chiral phosphonate cavitands as enantioselective receptors for mono-methylated L-amino acids. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1417991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francesca Maffei
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma and INSTM UdR Parma, Parma, Italy
| | - Giovanna Brancatelli
- CEB Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Tahnie Barboza
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma and INSTM UdR Parma, Parma, Italy
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma and INSTM UdR Parma, Parma, Italy
| | - Silvano Geremia
- CEB Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma and INSTM UdR Parma, Parma, Italy
| |
Collapse
|
30
|
Sex- and age-specific modulation of brain GABA levels in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 62:168-179. [PMID: 29154037 DOI: 10.1016/j.neurobiolaging.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 01/12/2023]
Abstract
Age and sex are risk factors of Alzheimer's disease (AD). Among the neurotransmitter systems, gamma-aminobutyric acid (GABA) has been implicated in AD pathogenesis but the relevance of sex-specific GABAergic dysfunction during AD progression remains unknown. In the present study, we utilized state-of-the-art high-resolution magic angle spinning nuclear magnetic resonance to systematically monitor the brain region-, age-, and sex-specific modulation of GABA levels in wild-type and Tg2576 mice with amyloid pathology. In addition, we followed the possible role of reactive astrocytes in sex-specific GABA modulation. In female Tg2576 mice, hippocampal GABA levels were significantly elevated, along with higher number of reactive astrocytes and amyloid deposition. The elevated GABA was found to be produced via the monoamine oxidase-B route from putrescine in reactive astrocytes, more substantially in female than male mice, thus suggesting a role of astrocytes in memory impairment and sex-related differences in AD. Our results paint a coherent model of memory impairment in AD and signify that dynamic changes in regional GABA may be at the root of marked sex disparities observed in AD.
Collapse
|
31
|
Mousavi Majd A, Ebrahim Tabar F, Afghani A, Ashrafpour S, Dehghan S, Gol M, Ashrafpour M, Pourabdolhossein F. Inhibition of GABA A receptor improved spatial memory impairment in the local model of demyelination in rat hippocampus. Behav Brain Res 2017; 336:111-121. [PMID: 28866129 DOI: 10.1016/j.bbr.2017.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
Cognitive impairment and memory deficit are common features in multiple Sclerosis patients. The mechanism of memory impairment in MS is unknown, but neuroimaging studies suggest that hippocampal demyelination is involved. Here, we investigate the role of GABA A receptor on spatial memory in the local model of hippocampal demyelination. Demyelination was induced in male Wistar rats by bilaterally injection of lysophosphatidylcholine (LPC) 1% into the CA1 region of the hippocampus. The treatment groups were received daily intraventricular injection of bicuculline (0.025, 0.05μg/2μl/animal) or muscimol (0.1, 0.2μg/2μl/animal) 5days after LPC injection. Morris Water Maze was used to evaluate learning and memory in rats. We used Luxol fast blue staining and qPCR to assess demyelination extention and MBP expression level respectively. Immunohistochemistry (IHC) for CD45 and H&E staining were performed to assess inflammatory cells infiltration. Behavioral study revealed that LPC injection in the hippocampus impaired learning and memory function. Animals treated with both doses of bicuculline improved spatial learning and memory function; however, muscimol treatment had no effect. Histological and MBP expression studies confirmed that demylination in LPC group was maximal. Bicuculline treatment significantly reduced demyelination extension and increased the level of MBP expression. H&E and IHC results showed that bicuculline reduced inflammatory cell infiltration in the lesion site. Bicuculline improved learning and memory and decreased demyelination extention in the LPC-induced hippocampal demyelination model. We conclude that disruption of GABAergic homeostasis in hippocampal demyelination context may be involved in memory impairment with the implications for both pathophysiology and therapy.
Collapse
Affiliation(s)
- Alireza Mousavi Majd
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Forough Ebrahim Tabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Arghavan Afghani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahand Ashrafpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samaneh Dehghan
- Physiology Departments, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Gol
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Physiology Departments, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
32
|
Moldovan RC, Bodoki E, Servais AC, Crommen J, Oprean R, Fillet M. (+) or (-)-1-(9-fluorenyl)ethyl chloroformate as chiral derivatizing agent: A review. J Chromatogr A 2017; 1513:1-17. [PMID: 28756893 DOI: 10.1016/j.chroma.2017.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
Abstract
Over the last 30years, (±)-1-(9-fluorenyl)ethyl chloroformate ((±)-FLEC) was used as a chiral derivatizing agent in various analytical applications involving a wide range of endogenous, pharmaceutical and environmentally relevant molecules. This comprehensive review aims to present all the significant aspects related to the state of the art in FLEC labeling and subsequent chiral separation of the resulting diastereomers using LC, SFC and CE techniques.
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca,4 Louis Pasteur street, 400349 Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege,Avenue Hippocrate 15, B36-+3-T4, 4000 Liege, Belgium.
| |
Collapse
|
33
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
34
|
Corso G, Cristofano A, Sapere N, la Marca G, Angiolillo A, Vitale M, Fratangelo R, Lombardi T, Porcile C, Intrieri M, Di Costanzo A. Serum Amino Acid Profiles in Normal Subjects and in Patients with or at Risk of Alzheimer Dementia. Dement Geriatr Cogn Dis Extra 2017; 7:143-159. [PMID: 28626469 PMCID: PMC5471778 DOI: 10.1159/000466688] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Abnormalities in the plasma amino acid profile have been reported in Alzheimer disease (AD), but no data exist for the prodromal phase characterized by subjective memory complaint (SMC). It was our aim to understand if serum amino acid levels change along the continuum from normal to AD, and to identify possible diagnostic biomarkers. METHODS Serum levels of 15 amino acids and 2 organic acids were determined in 4 groups of participants - 29 with probable AD, 18 with mild cognitive impairment (MCI), 24 with SMC, and 46 cognitively healthy subjects (HS) - by electrospray tandem mass spectrometry. RESULTS Glutamate, aspartate, and phenylalanine progressively decreased, while citrulline, argi-ninosuccinate, and homocitrulline progressively increased, from HS over SMC and MCI to AD. The panel including these 6 amino acids and 4 ratios (glutamate/citrulline, citrulline/phenylalanine, leucine plus isoleucine/phenylalanine, and arginine/phenylalanine) discriminated AD from HS with about 96% accuracy. Other panels including 20 biomarkers discriminated SMC or MCI from AD or HS with an accuracy ranging from 88 to 75%. CONCLUSION Amino acids contribute to a characteristic metabotype during the progression of AD along the continuum from health to frank dementia, and their monitoring in elderly individuals might help to detect at-risk subjects.
Collapse
Affiliation(s)
- Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Adriana Cristofano
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Nadia Sapere
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer Children's Hospital, Florence, Italy
- Department of Neurosciences, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Michela Vitale
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Roberto Fratangelo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Teresa Lombardi
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Carola Porcile
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| |
Collapse
|
35
|
Enantiomeric Ratio of Amino Acids as a Tool for Determination of Aging and Disease Diagnostics by Chromatographic Measurement. SEPARATIONS 2016. [DOI: 10.3390/separations3040030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
36
|
Chiral separations for d -amino acid analysis in biological samples. J Pharm Biomed Anal 2016; 130:100-109. [DOI: 10.1016/j.jpba.2016.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
|
37
|
Yun HM, Park KR, Kim EC, Kim S, Hong JT. Serotonin 6 receptor controls Alzheimer's disease and depression. Oncotarget 2016; 6:26716-28. [PMID: 26449188 PMCID: PMC4694947 DOI: 10.18632/oncotarget.5777] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/29/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Ran Park
- Department of Oral & Maxillofacial Regeneration, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, Rockville, MD, USA
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, Republic of Korea
| |
Collapse
|
38
|
Loosse C, Pawlas M, Bukhari HS, Maghnouj A, Hahn S, Marcus K, Müller T. Nuclear spheres modulate the expression of BEST1 and GADD45G. Cell Signal 2016; 28:100-9. [DOI: 10.1016/j.cellsig.2015.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 11/28/2022]
|
39
|
Fico D, Pennetta A, De Benedetto GE. Bioanalytical Application of Amino Acid Detection by Capillary Electrophoresis. Methods Mol Biol 2016; 1483:249-276. [PMID: 27645741 DOI: 10.1007/978-1-4939-6403-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of amino acids, and both normal and chiral separations are covered. In order to provide a general description of the main results and challenges in the biomedical field, some relevant applications and reviews on CE of amino acids are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of amino acids in body fluids, in microdialysate, and released upon hydrolysis of proteins. In particular, the protocols will deal with the following compounds: (1) underivatized aminoacids in blood; (2) γ-Aminobutyric acid, glutamate, and L-Aspartate derivatized with Naphthalene-2,3-dicarboxaldehyde; (3) hydrolysate from bovine serum albumine derivatized with phenylisothiocyanate. By examining these applications on real matrices, the capillary electrophoresis efficiency as tool for Amino Acid analysis can be ascertained.
Collapse
Affiliation(s)
- Daniela Fico
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Antonio Pennetta
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy
| | - Giuseppe E De Benedetto
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università degli Studi del Salento, Edificio M, Campus Ecotekne, S.P. Lecce-Monteroni, Lecce, 73100, Italy.
| |
Collapse
|
40
|
Babić M, Svob Štrac D, Mück-Šeler D, Pivac N, Stanić G, Hof PR, Simić G. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat Med J 2015; 55:347-65. [PMID: 25165049 PMCID: PMC4157375 DOI: 10.3325/cmj.2014.55.347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Goran Simić
- Goran Šimić, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia,
| |
Collapse
|
41
|
Contino A, Maccarrone G, Zimbone M, Musumeci P, Calcagno L, Pannitteri S. Fine tuning the pH triggers the enantiorecognition of underivatized amino acids by silver nanoparticles: a novel approach based on the focused use of solution equilibria. J Colloid Interface Sci 2015; 443:30-5. [PMID: 25528532 DOI: 10.1016/j.jcis.2014.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022]
Abstract
Stereoselective amino acid analysis is still a challenging task. In this work, we report a study on the chiral recognition of D,L-Trp and D,L-His using L-Cys capped silver nanoparticles (AgNPs) and copper(II) ion. The AgNPs have been characterized by TEM, UV-Vis spectra and dynamic light scattering (DLS) measurements and used for chiral discrimination. In the L-Cys capped AgNPs, the α-amino and α-carboxyl groups of the surface-confined amino acid, besides showing either a negative or a neutral charge as a function of the pH, can coordinate the copper(II) ion, which in turn, binds the L- or D-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV-Vis spectroscopy, exploiting the zwitterionic nature of the cysteine to obtain enantiodiscrimination by a fine tuning of the pH. The analysis of the UV-Vis data by using a multiwavelength approach allows us to determine the kinetic constants ruling the processes.
Collapse
Affiliation(s)
- Annalinda Contino
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Giuseppe Maccarrone
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Lucia Calcagno
- Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania, Italy
| | | |
Collapse
|
42
|
|
43
|
Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer's disease by direct infusion mass spectrometry. J Pharm Biomed Anal 2014; 102:425-35. [PMID: 25459942 DOI: 10.1016/j.jpba.2014.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/07/2014] [Accepted: 10/09/2014] [Indexed: 12/24/2022]
Abstract
The identification of pathological mechanisms underlying to Alzheimer's disease is of great importance for the discovery of potential markers for diagnosis and disease monitoring. In this study, we investigated regional metabolic alterations in brain from the APP/PS1 mice, a transgenic model that reproduces well some of the neuropathological and cognitive deficits observed in human Alzheimer's disease. For this purpose, hippocampus, cortex, cerebellum and olfactory bulbs were analyzed using a high-throughput metabolomic approach based on direct infusion mass spectrometry. Metabolic fingerprints showed significant differences between transgenic and wild-type mice in all brain tissues, being hippocampus and cortex the most affected regions. Alterations in numerous metabolites were detected including phospholipids, fatty acids, purine and pyrimidine metabolites, acylcarnitines, sterols and amino acids, among others. Furthermore, metabolic pathway analysis revealed important alterations in homeostasis of lipids, energy management, and metabolism of amino acids and nucleotides. Therefore, these findings demonstrate the potential of metabolomic screening and the use of transgenic models for understanding pathogenesis of Alzheimer's disease.
Collapse
|
44
|
González-Domínguez R, García A, García-Barrera T, Barbas C, Gómez-Ariza JL. Metabolomic profiling of serum in the progression of Alzheimer's disease by capillary electrophoresis-mass spectrometry. Electrophoresis 2014; 35:3321-30. [DOI: 10.1002/elps.201400196] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/27/2014] [Accepted: 08/04/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Raúl González-Domínguez
- Department of Chemistry and CC.MM; Faculty of Experimental Science; University of Huelva; Huelva Spain
- Campus of Excellence International ceiA3; University of Huelva; Spain
- Research Center of Health and Environment (CYSMA); University of Huelva; Huelva Spain
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Pharmacy Faculty; Universidad San Pablo CEU; Madrid Spain
| | - Tamara García-Barrera
- Department of Chemistry and CC.MM; Faculty of Experimental Science; University of Huelva; Huelva Spain
- Campus of Excellence International ceiA3; University of Huelva; Spain
- Research Center of Health and Environment (CYSMA); University of Huelva; Huelva Spain
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Pharmacy Faculty; Universidad San Pablo CEU; Madrid Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry and CC.MM; Faculty of Experimental Science; University of Huelva; Huelva Spain
- Campus of Excellence International ceiA3; University of Huelva; Spain
- Research Center of Health and Environment (CYSMA); University of Huelva; Huelva Spain
| |
Collapse
|
45
|
Horak J, Gerhardt H, Theiner J, Lindner W. Correlation between amino acid racemization and processing conditions for various wheat products, oil seed press cakes and lignin samples. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2013.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Giuffrida A, Maccarrone G, Cucinotta V, Orlandini S, Contino A. Recent advances in chiral separation of amino acids using capillary electromigration techniques. J Chromatogr A 2014; 1363:41-50. [DOI: 10.1016/j.chroma.2014.08.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023]
|
47
|
The pivotal role of copper(II) in the enantiorecognition of tryptophan and histidine by gold nanoparticles. Anal Bioanal Chem 2014; 406:481-91. [PMID: 24232750 DOI: 10.1007/s00216-013-7466-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 12/18/2022]
Abstract
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral recognition of D,L-Trp and D,L-His using L -Cys-capped gold nanoparticles (AuNPs) and copper(II) ion. In the L -Cys-capped AuNPs, the thiol group of the amino acid interacts with AuNPs through the formation of Au–S bond, whereas the α-amino and α-carboxyl groups of the surface-confined cysteine can coordinate the copper(II) ion, which in turn, binds the L- or D-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV–Vis spectra and dynamic light scattering measurements, obtaining different results for L- and D-Trp, as well as for L- and D-His. The knowledge of the solution equilibria of the investigated systems allowed us to accurately calculate in advance the concentrations of the species presentin solution and to optimize the system performances, highlighting the pivotal role of copper(II) ion in the enantiodiscrimination processes.
Collapse
|
48
|
Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park HJ, Lee DY, Hong J, Kim HY, Oh SJ, Park SJ, Lee H, Yoon BE, Kim Y, Jeong Y, Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 2014; 20:886-96. [PMID: 24973918 DOI: 10.1038/nm.3639] [Citation(s) in RCA: 581] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.
Collapse
Affiliation(s)
- Seonmi Jo
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. [2] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [3]
| | - Oleg Yarishkin
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2]
| | - Yu Jin Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Ye Eun Chun
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Mijeong Park
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Dong Ho Woo
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Taekeun Kim
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jaekwang Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heejung Chun
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Da Yong Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jinpyo Hong
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Yun Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Seung Ju Park
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyo Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Bo-Eun Yoon
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - YoungSoo Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jeiwon Cho
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Neil W Kowall
- 1] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [2] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [3] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Hoon Ryu
- 1] Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea. [2] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [3] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [4] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Eunmi Hwang
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - C Justin Lee
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [3] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea. [4] KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Casado M, Molero M, Sierra C, García-Cazorla A, Ormazabal A, Artuch R. Analysis of cerebrospinal fluid γ-aminobutyric acid by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2014; 35:1181-7. [PMID: 24338894 DOI: 10.1002/elps.201300261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 01/04/2023]
Abstract
The measurement of γ-aminobutyric acid (GABA) is suitable for investigating various neurological disorders. In this study, a sensitive and selective method for free GABA quantification in cerebrospinal fluid (CSF) has been standardised. This method is based on CE with LIF detection using 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a derivatisating agent. The reaction conditions (NBD-F concentration, pH, temperature and reaction time) and the electrophoretic parameters (run buffer composition and pH and separation voltage) were optimised to obtain the maximum derivatisation efficiency and electrophoretic resolution. The best resolution was obtained using 200 mM sodium borate, 10 mM SDS, 8.5 mM β-CD, pH 10 and 20 kV voltage. The method was linear in the concentration range of 2.5-1000 nM with good inter- and intra-assay precision values. The effects of CSF handling on free GABA concentrations were also evaluated. Our results show that the time delay between CSF collection and freezing strongly increases the CSF GABA values. Age-related reference values were established in 55 paediatric controls. The influence of antiepileptic therapy on free CSF GABA was studied in 38 neuropaediatric patients. Significantly, higher GABA values were obtained in patients taking valproic acid or vigabatrin therapy, which are antiepileptic drugs that modulate GABA metabolism.
Collapse
Affiliation(s)
- Mercedes Casado
- Department of Clinical Biochemistry and Neuropaediatrics, Hospital Sant Joan de Déu-CIBERER-ISCIII, Barcelona, Spain; Department of Biochemistry and Molecular Biology, UAB, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Sánchez-Hernández L, Guijarro-Diez M, Marina ML, Crego AL. New approaches in sensitive chiral CE. Electrophoresis 2013; 35:12-27. [DOI: 10.1002/elps.201300355] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Laura Sánchez-Hernández
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - Miguel Guijarro-Diez
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - María Luisa Marina
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| | - Antonio L. Crego
- Department of Analytical Chemistry; Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá; Alcalá de Henares Madrid Spain
| |
Collapse
|