1
|
Wang L, Zhang F, Suo B, Han C, Ma Q, Sun J, Wang W. α-Glucosidase inhibitory peptides from the enzymolysis of Semen Ziziphi Spinosae protein using an ultrasound-assisted protease: Preparation and inhibitory mechanism. Food Res Int 2025; 208:116282. [PMID: 40263864 DOI: 10.1016/j.foodres.2025.116282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
Peptides are promising sources of safe hypoglycemic drugs. The potential of Semen Ziziphi Spinosae protein (SZSP) as a natural source of α-glucosidase inhibitory peptides was investigated. SZSP was hydrolyzed using an ultrasound-assisted protease, and the four α-glucosidase inhibitory peptides were purified, identified, and screened. Their inhibitory mechanisms were investigated using molecular docking. Ultrasound-assisted enzymolysis enhanced the α-glucosidase inhibition and protein conversion rates, which cleaved the protein into small molecules. Fourier transform infrared spectroscopy results showed that the protease hydrolysis tended to transform α-helicals into β-sheets. A purification, identification, and screening process finally identified four α-glucosidase inhibitory peptides. The IC50 values of LPLLDK, PRLPEM, LPWK, and FPPR were 120.36 ± 6.73, 139.50 ± 7.21, 248.12 ± 10.27, and 106.67 ± 3.22 μM, respectively. Lineweaver-Burk analyses demonstrated that FPPR was a competitive inhibitor of -glucosidase, while LPLLDK and LPWK exhibited a mixed inhibition mechanism and PRLPEM was a non-competitive inhibitor. Molecular docking studies indicated that polypeptides occupy the active pockets of -glucosidase through hydrogen bonding, hydrophobic interactions, and salt Bridges, preventing -glucosidase from forming complexes with the substrate or non-competitive binding to other sites to form enzyme-substrate inhibitors to inhibit enzyme-substrate intermediates and prevent the release of catalytic reaction products. These results demonstrate that the peptides extracted from SZSP may be beneficial for the treatment of diabetes.
Collapse
Affiliation(s)
- Linnan Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Fan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Bingxin Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Chaoqi Han
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Chen R, Liu XC, Yao X, Wang W, Xiang J, Tomasevic I, Sun W. Effects of high-pressure and CaCl 2 pretreatments on the salt taste-enhancing activity of hydrolysate derived from spent hen meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2978-2986. [PMID: 39643931 DOI: 10.1002/jsfa.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND High-sodium intake has been proven to bring serious risks to public health. A potential sodium substitute of salt taste-enhancing hydrolysate (STEH) of protein has been focused on recently. The salt taste-enhancing activity (STEA) of STEH still needs to be improved. High-pressure and calcium chloride (CaCl2) pretreatments were reported to affect proteolysis and promote the release of bioactive peptides. Hence, we investigated effects of high-pressure and CaCl2 pretreatments on hydrolysis and STEA of STEH derived from spent hen. RESULTS The pretreatments significantly influenced STEA of spent hen meat hydrolysate (SHH), especially 200 MPa pressure and 80 mmol L-1 CaCl2 pretreatments increased 27.1% salt taste intensity of SHH compared to that of blank (without pretreatments) according to sensory evaluation, the SHH umami also increased after pretreatments. In SHH, the proportion of peptides < 1000 Da increased up to 79.37% after the pretreatments compared to 73.68% of the blank. The degree of hydrolysis (DH) increased to 19.45% for moderate high-pressure (200 MPa) from 18.02% for blank, and the DH decreased after higher high-pressure and CaCl2 pretreatments, especially for CaCl2 in 80 mmol L-1. The change in particle size distribution of SHH has similar trends to DH. CONCLUSION High-pressure and CaCl2 pretreatments increased STEA of SHH by affecting hydrolysis process. The STEA increase may be related to increased small-peptide proportion in SHH. Meanwhile, moderate high-pressure may promote protein unfolding and further increase DH according to particle size distribution of SHH. The combination of proteolysis and pretreatments of high-pressure and CaCl2 is a promising method to produce STEH. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixia Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd, Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd, Linyi, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Qingyuan Food Inspection Center, Qingyuan, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
3
|
El-Sofany WI, Alanezi TD, Latif S, Abdelhedi O, Hamden K. Prodigiosin As N-heterocyclic compound: Production optimization, bioactivity evaluation, and in-silico docking against key enzymes related to inflammation, obesity, diabetes, and the insulin signaling pathway. Enzyme Microb Technol 2025; 188:110639. [PMID: 40187164 DOI: 10.1016/j.enzmictec.2025.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is known to cause severe pancreatic inflammation and reduce insulin levels, leading us to investigate the effects of prodigiosin (PG), a red, heterocyclic bacterial compound extracted from Serratia marcescens. The physicochemical and nutritional conditions, along with the extraction solvents for PG, have been optimized for efficient production. PG was produced through bacterial culture, purified by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopy. In vitro, PG effectively inhibited key inflammatory enzymes, such as phospholipase A2 (PLA2) and elastase (ELA), in a dose-dependent manner, achieving maximum inhibition rates of 85.3 and 91.4 % at concentrations of 320 µg/mL, with IC₅₀ values of 63 µg/mL and 54.7 µg/mL, respectively. PG also exhibited a maximum inhibition of 82.4 % for myeloperoxidase (MPO) at a concentration of 160 µg/mL, with an IC₅₀ value of 25.9 µg/mL. This indicates that PG is a good candidate for treating these two metabolic diseases. Moreover, PG shows a significant ability to activate insulin signaling through its capacity to stimulate protein tyrosine phosphatase 1B (PTP1B) and inhibit dipeptidyl peptidase-4 (DPP-4), with IC₅₀ values of 67 and 28 µg/mL, respectively, compared to the specific inhibitors CLM and STG (with IC₅₀ values of 19 and 27 µg/mL, respectively). These powerful affinities, stability, and the durability of PG inhibition of these enzymes are confirmed by the determination of binding energy, ligand efficiency, and estimated inhibition constant (Ki). Conclusion: PG benefits from sustainable, cost-effective biological production and exhibits potent anti-inflammatory, antioxidant, and anti-diabetic properties, positioning it as a promising candidate for pharmaceutical and food applications.
Collapse
Affiliation(s)
- Walaa I El-Sofany
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Tahani D Alanezi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Ola Abdelhedi
- Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia; Higher School of Health Sciences and Technology of Sfax, Sfax university, Tunisia.
| |
Collapse
|
4
|
Hau EH, Chew LY, Yeo SK, Owatworakit A, Teh SS, Mah SH. Oil palm leaf protein hydrolysate and its novel peptides as alternative plant-based α-glucosidase inhibitors. Int J Biol Macromol 2025; 291:138897. [PMID: 39701231 DOI: 10.1016/j.ijbiomac.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Diabetes, particularly type II, is a global health concern, with current treatments like α-glucosidase inhibitors often causing gastrointestinal side effects. This study explored the antihyperglycemic potential of crude protein hydrolysate from oil palm leaves (OPL) as a plant-based α-glucosidase inhibitor. OPL protein hydrolysate was extracted under acidic, neutral, and alkaline conditions, and their α-glucosidase inhibitory activity was assessed. OPL hydrolysate obtained under neutral conditions for 2 h showed the highest inhibitory activity, comparable to the standard drug, acarbose. Bioassay-guided fractionation of the most potent extract revealed that peptides from sub-fractions C1 and C9 exhibited stronger inhibition, with IC50 values of 66.3 and 62.0 μg/mL, respectively. Seven novel peptides were identified from these fractions, and molecular docking confirmed stable interactions between these peptides and the α-glucosidase enzyme via hydrogen bonds and salt bridges. These findings suggest that OPL protein hydrolysate is a plant-based promising natural α-glucosidase inhibitor with potential as an antidiabetic agent. Future studies should focus on in vivo validation of its efficacy and safety for therapeutic use.
Collapse
Affiliation(s)
- Eng Huan Hau
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Lye Yee Chew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Siok Koon Yeo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | | | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Selangor, Malaysia.
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Liu X, Mao S, Yuan Y, Wang Z, Tian Y, Tao L, Dai J. Antin-diabetic cognitive dysfunction effects and underpinning mechanisms of phytogenic bioactive peptides: a review. Front Nutr 2025; 11:1517087. [PMID: 39867560 PMCID: PMC11758632 DOI: 10.3389/fnut.2024.1517087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Diabetic cognitive dysfunction is one of the important comorbidities and complications of diabetes, which is mainly manifested by loss of learning ability and memory, behavioural disorders, and may even develop into dementia. While traditional anti-diabetic medications are effective in improving cognition and memory, long-term use of these medications can be accompanied by undesirable side effects. Therefore, there is an urgent need to find safe and effective alternative therapies. Accumulating evidence suggests that phytogenic bioactive peptides play an important role in the regulation of cognitive dysfunction in diabetes. In this review, we explored the relationship between diabetes mellitus and cognitive dysfunction, and the potential and underlying mechanisms of plant-derived bioactive peptides to improve diabetic cognitive dysfunction. We found that plant-derived active peptides alleviate diabetic cognitive impairment by inhibiting key enzymes (e.g., α-glucosidase, α-amylase) to improve blood glucose levels and increase antioxidant activity, modulate inflammatory mediators, and address intestinal dysbiosis. In conclusion, plant-derived active peptides show strong potential to improve diabetic cognitive impairment.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shenglian Mao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yuxue Yuan
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Pu’er College, Pu’er, China
| | - Liang Tao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Prajapati P, Garg M, Singh N, Chopra R, Mittal A, Sabharwal PK. Transforming plant proteins into plant-based meat alternatives: challenges and future scope. Food Sci Biotechnol 2024; 33:3423-3443. [PMID: 39493399 PMCID: PMC11525364 DOI: 10.1007/s10068-024-01683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
The global transition towards sustainable living has led to a growing demand for innovative food products that enhance environmental sustainability. Traditional meat production is known for its high energy consumption and significant carbon emissions, necessitating alternative approaches. Plant-based meat (PBM) offers a promising solution to reduce the ecological footprint of animal agriculture. This paper examines various challenges in PBM development, including nutritional equivalence, industrial scalability, organoleptic properties, and digestibility. Addressing these challenges requires interdisciplinary collaboration to ensure consumer acceptance, regulatory compliance, and environmental stewardship. Advanced technologies like nanotechnology, fermentation, and enzymatic hydrolysis, along with automation and repurposing cattle farms, offer solutions to enhance PBM's quality and production efficiency. By integrating these innovations, PBM has the potential to revolutionize the food industry, offering sustainable and nutritious alternatives that meet global dietary needs while significantly reducing environmental impact. Graphical abstract
Collapse
Affiliation(s)
- Priyanka Prajapati
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Meenakshi Garg
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Neha Singh
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Rajni Chopra
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - Avneesh Mittal
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Prabhjot K. Sabharwal
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Chen R, Xiang J, Liu XC, Yao X, Tomasevic I, Wang W, Sun W. Effect of NaCl partial replacement by KCl, Ca-ascorbate, and spent hen meat hydrolysate on the physicochemical properties and quality of Cantonese sausage. J Food Sci 2024; 89:8385-8397. [PMID: 39437311 DOI: 10.1111/1750-3841.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
A large amount of NaCl is usually used to provide a unique flavor and extend the shelf life of meat products. However, excessive sodium intake may cause diseases such as cardiovascular diseases. Spent hen meat hydrolysate (SHH) as an efficient NaCl substitute was developed with inefficient research related to SHH application in food systems. Therefore, the effects of NaCl replacement with SHH, KCl, and Ca-ascorbate on the quality of low-sodium Cantonese sausage were investigated. Four groups of salt formulation, I (100% NaCl), II (NaCl/KCl/Ca-ascorbate = 60%/30%/10%), III (NaCl/KCl/Ca-ascorbate/SHH = 50%/30%/10%/10%), and IV (NaCl/KCl/Ca-ascorbate/SHH = 30%/30%/10%/30%), were used to produce Cantonese sausages. The moisture and nitrite content decreased, the microbiological growth was inhibited, and the protein content increased after adding SHH for Cantonese sausages with NaCl substitution degrees of 50% and 70%. The saltiness, overall flavor, color, and texture of low-sodium Cantonese sausages with SHH were maintained or improved compared to the Cantonese sausage without sodium replacement. The proportion of peptides with molecular weight <1 kDa in Cantonese sausages increased after adding SHH, which may improve the overall flavor by interacting with peptides or other compounds. SHH combined with KCl and Ca-ascorbate is an efficient NaCl substitute, which can maintain and even improve Cantonese sausage quality and reduce sodium content up to 70%. These findings offer a promising reference for SHH application in the food industry and promote the development of salt taste-enhancing hydrolysate in food science.
Collapse
Affiliation(s)
- Ruixia Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Qingyuan Food Inspection Center, Qingyuan, China
| | - Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
8
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
9
|
Rochín-Medina JJ, Ramírez-Serrano ES, Ramírez K. Inhibition of α-glucosidase activity by potential peptides derived from fermented spent coffee grounds. Food Chem 2024; 454:139791. [PMID: 38795616 DOI: 10.1016/j.foodchem.2024.139791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The control of α-glucosidase activity has been associated with managing diabetes. We previously identified three peptides with high bioactive indices derived from protein hydrolysates of fermented spent coffee grounds. In this study, the peptides YGF, GMCC, and RMYRY were synthesized and tested in vitro for their α-glucosidase inhibition activity, complemented by in silico analyses. Two of the three peptides significantly inhibited α-glucosidase activity, with the more efficient peptides being YGF and GMCC (0.42 mg/mL), resulting in decreased enzymatic activity of 95.31% and 89.79%, respectively. These peptides exhibited binding free energies with the α-glucosidase complex of -8.5 and - 6.6 kcal/mol, respectively, through hydrogen bonds and van der Waals interactions with amino acids from the active site. Pharmacokinetic analysis indicated that YGF and GMCC profiles were unrelated to toxicity. These results underscore the importance of focusing on food waste bioprocessing products to expand the range of alternatives that could aid in diabetes treatment.
Collapse
Affiliation(s)
- Jesús J Rochín-Medina
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| | - Estéphany S Ramírez-Serrano
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| | - Karina Ramírez
- Laboratorio de Microbiología Molecular y Bioactivos, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, 80220 Culiacán, Mexico.
| |
Collapse
|
10
|
Xue S, Yang L, Xu M, Zhang Y, Liu H. The screening of α-glucosidase inhibitory peptides from β-conglycinin and hypoglycemic mechanism in HepG2 cells and zebrafish larvae. Int J Biol Macromol 2024; 278:134678. [PMID: 39137852 DOI: 10.1016/j.ijbiomac.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. β-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, β-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 μg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.
Collapse
Affiliation(s)
- Sen Xue
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Mengnan Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Yangyang Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
11
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
12
|
Mehmood A, Iftikhar A, Chen X. Food-derived bioactive peptides with anti-hyperuricemic activity: A comprehensive review. Food Chem 2024; 451:139444. [PMID: 38678657 DOI: 10.1016/j.foodchem.2024.139444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Hyperuricemia (HU) is a metabolic disorder caused by the overproduction or underexcretion of uric acid (UA) in the human body. Several approved drugs for the treatment of HU are available in the market; however, all these allopathic drugs exhibit multiple side effects. Therefore, the development of safe and effective anti-HU drugs is an urgent need. Natural compounds derived from foods and plants have the potential to decrease UA levels. Recently, food-derived bioactive peptides (FBPs) have gained attention as a functional ingredient owing to their biological activities. In the current review, we aim to explore the urate-lowering potential and the underlying mechanisms of FBPs. We found that FBPs mitigate HU by reducing blood UA levels through inhibiting key enzymes such as xanthine oxidase, increasing renal UA excretion, inhibiting renal UA reabsorption, increasing anti-oxidant activities, regulating inflammatory mediators, and addressing gut microbiota dysbiosis. In conclusion, FBPs exhibit strong potential to ameliorate HU.
Collapse
Affiliation(s)
- Arshad Mehmood
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan and Akhtar Saeed College of Pharmacy, Rawalpindi, Pakistan
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
14
|
Nganso Ditchou YO, Leutcha PB, Miaffo D, Mamoudou H, Ali MS, Amang À Ngnoung GA, Soh D, Agrawal M, Darbawa R, Zondegoumba Nkwengoua Tchouboun E, Meli Lannang A, Siwe Noundou X. In vitro and in silico assessment of antidiabetic and antioxidant potencies of secondary metabolites from Gymnema sylvestre. Biomed Pharmacother 2024; 177:117043. [PMID: 38941896 DOI: 10.1016/j.biopha.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
This study investigated the chemical constituents, antioxidant potential, and in vitro and in silico antidiabetic activity of Gymnema sylvestre. Column chromatography and spectroscopic techniques identified twelve compounds from the methanol extract, including 4 sterols (1-4), 5 triterpenoids (5-9), and 3 flavonoids (10-12). The chemophenetic significance of all compounds was also investigated. The antioxidant capacity of the extract and compounds (1-4) was evaluated using FRAP and DPPH assays. The extract exhibited strong free radical scavenging activity (IC50 = 48.34 µg/mL), while compounds (1-4) displayed varying degrees of efficacy (IC50 = 98.30-286.13 µg/mL). The FRAP assay indicated significant reducing power for both extract and compounds (58.54, 47.61, 56.61, and 49.11 mg Eq.VitC/g for extract and compounds 1 & 2, 3, and 4, respectively). The antidiabetic potential was assessed through α-amylase and α-glucosidase enzyme inhibition assays. The crude extract demonstrated the most potent inhibition (IC50 = 218.46 and 57.42 µg/mL for α-glucosidase and α-amylase respectively) suggesting its potential for managing postprandial hyperglycaemia. In silico studies employed molecular docking and dynamics simulations to elucidate the interactions between identified compounds and α-amylase/α-glucosidase enzymes. The results revealed promising binding affinities between the compounds and target enzymes, with compound 6 demonstrating the highest predicted inhibitory activity with -10 kcal/mol and -9.1 kcal/mol for α-amylase and α-glucosidase, respectively. This study highlights the presence of diverse bioactive compounds in Gymnema sylvestre. The extract exhibits antioxidant properties and inhibits carbohydrate-digesting enzymes, suggesting its potential as a complementary therapeutic approach for managing hyperglycaemia associated with type 2 diabetes.
Collapse
Affiliation(s)
| | - Peron Bosco Leutcha
- Department of Chemistry, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - David Miaffo
- Department of Life and Earth Science, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Hamadou Mamoudou
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | | | - Désiré Soh
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Rosalie Darbawa
- Department of Chemistry, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | | | - Alain Meli Lannang
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa.
| |
Collapse
|
15
|
Zheng K, Wu Y, Dai Q, Yan X, Liu Y, Sun D, Yu Z, Jiang S, Ma Q, Jiang W. Extraction, identification, and molecular mechanisms of α-glucosidase inhibitory peptides from defatted Antarctic krill (Euphausia superba) powder hydrolysates. Int J Biol Macromol 2024; 266:131126. [PMID: 38527682 DOI: 10.1016/j.ijbiomac.2024.131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The objective of this study was to explore the potential of Antarctic krill-derived peptides as α-glucosidase inhibitors for the treatment of type 2 diabetes. The enzymolysis conditions of α-glucosidase inhibitory peptides were optimized by response surface methodology (RSM), a statistical method that efficiently determines optimal conditions with a limited number of experiments. Gel chromatography and LC-MS/MS techniques were utilized to determine the molecular weight (Mw) distribution and sequences of the hydrolysates. The identification and analysis of the mechanism behind α-glucosidase inhibitory peptides were conducted through conventional and computer-assisted techniques. The binding affinities between peptides and α-glucosidase were further validated using BLI (biolayer interferometry) assay. The results revealed that hydrolysates generated by neutrase exhibited the highest α-glucosidase inhibition rate. Optimal conditions for hydrolysis were determined to be an enzyme concentration of 6 × 103 U/g, hydrolysis time of 5.4 h, and hydrolysis temperature of 45 °C. Four peptides (LPFQR, PSFD, PSFDF, VPFPR) with strong binding affinities to the active site of α-glucosidase, primarily through hydrogen bonding and hydrophobic interactions. This study highlights the prospective utility of Antarctic krill-derived peptides in curtailing α-glucosidase activity, offering a theoretical foundation for the development of novel α-glucosidase inhibitors and related functional foods to enhance diabetes management.
Collapse
Affiliation(s)
- Kewei Zheng
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuanyuan Wu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingfei Dai
- Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaojun Yan
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China; Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Di Sun
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongjie Yu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
16
|
Li Y, Wang X, Guo X, Wei L, Cui H, Wei Q, Cai J, Zhao Z, Dong J, Wang J, Liu J, Xia Z, Hu Z. Rapid screening of the novel bioactive peptides with notable α-glucosidase inhibitory activity by UF-LC-MS/MS combined with three-AI-tool from black beans. Int J Biol Macromol 2024; 266:130982. [PMID: 38522693 DOI: 10.1016/j.ijbiomac.2024.130982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
This work aimed to propose a rapid method to screen the bioactive peptides with anti-α-glucosidase activity instead of traditional multiple laborious purification and identification procedures. 242 peptides binding to α-glycosidase were quickly screened and identified by bio-affinity ultrafiltration combined with LC-MS/MS from the double enzymatic hydrolysate of black beans. Top three peptides with notable anti-α-glucosidase activity, NNNPFKF, RADLPGVK and FLKEAFGV were further rapidly screened and ranked by the three artificial intelligence tools (three-AI-tool) BIOPEP database, PeptideRanker and molecular docking from the 242 peptides. Their IC50 values were in order as 4.20 ± 0.11 mg/mL, 2.83 ± 0.03 mg/mL, 1.32 ± 0.09 mg/mL, which was opposite to AI ranking, for the hydrophobicity index of the peptides was not included in the screening criteria. According to the kinetics, FT-IR, CD and ITC analyses, the binding of the three peptides to α-glucosidase is a spontaneous and irreversible endothermic reaction that results from hydrogen bonds and hydrophobic interactions, which mainly changes the α-helix structure of α-glucosidase. The peptide-activity can be evaluated vividly by AFM in vitro. In vivo, the screened FLKEAFGV and RADLPGVK can lower blood sugar levels as effectively as acarbose, they are expected to be an alternative to synthetic drugs for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Xumeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Haichen Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Qingkai Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Jingyi Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China
| | - Zhihui Zhao
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianfang Dong
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jiashu Wang
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Jianhua Liu
- Ningxiahong Gouqi Industry Company Limited, Zhongwei 755100, China
| | - Zikun Xia
- Hanyin County Inspection and Testing Center, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Ding L, Zheng X, Zhao L, Cai S. Identification of Novel Peptides in Distillers' Grains as Antioxidants, α-Glucosidase Inhibitors, and Insulin Sensitizers: In Silico and In Vitro Evaluation. Nutrients 2024; 16:1279. [PMID: 38732526 PMCID: PMC11085682 DOI: 10.3390/nu16091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Distillers' grains are rich in protein and constitute a high-quality source of various bioactive peptides. The purpose of this study is to identify novel bioactive peptides with α-glucosidase inhibitory, antioxidant, and insulin resistance-ameliorating effects from distiller's grains protein hydrolysate. Three novel peptides (YPLPR, AFEPLR, and NDPF) showed good potential bioactivities, and the YPLPR peptide had the strongest bioactivities, whose IC50 values towards α-glucosidase inhibition, radical scavenging rates of 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were about 5.31 mmol/L, 6.05 mmol/L, and 7.94 mmol/L, respectively. The glucose consumption of HepG2 cells treated with YPLPR increased significantly under insulin resistance condition. Moreover, the YPLPR peptide also had a good scavenging effect on intracellular reactive oxygen species (ROS) induced by H2O2 (the relative contents: 102.35% vs. 100%). Molecular docking results showed that these peptides could stably combine with α-glucosidase, ABTS, and DPPH free radicals, as well as related targets of the insulin signaling pathway through hydrogen bonding and van der Waals forces. This research presents a potentially valuable natural resource for reducing oxidative stress damage and regulating blood glucose in diabetes, thereby increasing the usage of distillers' grains peptides and boosting their economic worth.
Collapse
Affiliation(s)
- Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiuqing Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (L.D.); (X.Z.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
18
|
Sutopo CCY, Hung WT, Hsu JL. A simple tandem bioassay-guided SCX-RP SPE fractionation for efficient active peptide screening from Inca nut cake protein hydrolysate. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124061. [PMID: 38430604 DOI: 10.1016/j.jchromb.2024.124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Typically, bioactive peptides were uncovered from complex hydrolysates using sequential bioassay-guided fractionation. To increase the efficiency of bioactive peptide screening, a simple and convenient tandem bioassay-guided fractionation based on solid-phase extraction (SPE) was conducted to screen the angiotensin-I-converting enzyme (ACE) inhibitory peptides from the hydrolysate of Inca nut cake protein (INCP). The so-called SCX-RP SPE system was constructed by assembling SCX (strong cation exchange) and RP (reversed phase) SPE cartridges. Using this tandem SCX-RP SPE, the INCP digested with combined gastrointestinal protease (INCP GP) was fractionated into 30 fractions. The fraction F11 exhibited the highest ACE inhibitory activity among 30 fractions. The ACE IC50 of fraction F11 was calculated to be 6.6 ± 0.5 µg/mL. The ACEI activity of fraction F11 was stronger than the INCP GP hydrolysate (ACE IC50 of 12.7 ± 0.4 µg/mL). The tandem SCX-RP SPE fractionation reduced the number of ACE inhibitory (ACEI) peptide candidates from 127 peptides in the INCP GP hydrolysate to only ten peptides in fraction F11. Subsequently, WALPTQSW (WW-8) and WLPTKSW (WW-7) from fraction F11 were synthesized, and their ACE IC50 was determined to be 4.7 ± 0.1 and 7.9 ± 0.1 µM, respectively. The dipeptidyl peptidase-4 (DPP4) inhibitory and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of WALPTQSW (WW-8) were also explored to give IC50 values of 131.7 ± 5.2 and 191.8 ± 7.0 µM, respectively. The molecular docking and inhibition mechanism studies indicated that WW-8 inhibited ACE and DPP4 as competitive and non-competitive inhibitors, respectively. The pre-incubation experiment of WW-8 toward ACE and DPP4 demonstrated that WW-8 was a true-inhibitor type. Additionally, the amount of WW-8 was quantified to be 5.8 ± 0.2 and 35 ± 0.4 µg per milligram hydrolysate and fraction F11, respectively. This study demonstrated tandem bioassay-guided SCX-RP SPE fractionation efficiently screened ACEI peptide derived from INCP GP hydrolysate, adding more value to Inca nut cake (a leftover of the oil industry) as a bioactive peptide precursor.
Collapse
Affiliation(s)
- Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wei-Ting Hung
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Tropical Agriculture Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
19
|
Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, Hermansen E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon ( Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Mar Drugs 2024; 22:151. [PMID: 38667768 PMCID: PMC11050766 DOI: 10.3390/md22040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).
Collapse
Affiliation(s)
- Christian Bjerknes
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | | | | | | | - Crawford Currie
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Bomi Framroze
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Erland Hermansen
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Larsgårdsvegen 2, 6009 Ålesund, Norway
| |
Collapse
|
20
|
Abdella FI, Toumi A, Boudriga S, Alanazi TY, Alshamari AK, Alrashdi AA, Hamden K. Antiobesity and antidiabetes effects of Cyperus rotundus rhizomes presenting protein tyrosine phosphatase, dipeptidyl peptidase 4, metabolic enzymes, stress oxidant and inflammation inhibitory potential. Heliyon 2024; 10:e27598. [PMID: 38486768 PMCID: PMC10937842 DOI: 10.1016/j.heliyon.2024.e27598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetes is a significant global health concern that increases the vulnerability to various chronic illnesses. In view of this issue, the current research aimed to examine the effects of administering an extract derived from the tubers of Cyperus rotundus L (CrE) on obesity, type 1 diabetes, and liver-kidney toxicity. Through the utilization of HPLC-DAD analysis, it was discovered that the extract contained several components, including quercetin (47.8%), luteolin glucoside (17%), luteolin (7.56%), apigenin-7-glucoside (6.29%), naringinin (4.52%), and seven others. In vitro experiments they have demonstrated that CrE effectively inhibited key digestive enzymes associated with obesity and type 2 diabetes, such as DPP-4, PTP1B, lipase, and α-amylase, as evidenced by their respective IC50 values are about 23, 51,83, and 67 μg/ml respectively. Furthermore, when diabetic rats were administered CrE, the activity of pancreatic enzymes linked to inflammation, namely 5-lipoxygenase (5-LO), hyaluronidase (HAase), and myeloperoxidase (MPO), was significantly suppressed by 48, 41, 75, and 47%, respectively. Moreover, CrE exhibited protective effects on pancreatic β-cells by inhibiting the formation of thiobarbituric acid reactive substances (TBARS) by 65% and the induction of superoxide Dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities by 62, 108, and 112% respectively as compared to diabetic untreated rat. Additionally, CrE significantly inhibited the activities of intestinal, pancreatic, and serum lipase and α-amylase activities. In diabetic rats, CrE administration suppressed glycogen phosphorylase (GP) stimulated glycogen synthase (GS) activities by 45 and 30%; and this increased liver glycogen content by 45%. Furthermore, CrE modulated key hepatic enzymes involved in carbohydrate metabolism, including hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), glucose-6-phosphatase (G6P), and fructose-1,6-bisphosphatase (FBP). Notably, the average food and water intake (AFI and AWI) of diabetic rats treated with CrE was reduced by 15 and 16% respectively as compared to those without any treatment. Therefore, this study demonstrated the effectiveness of Cyperus rotundus tubers in preventing and treating obesity and diabetes.
Collapse
Affiliation(s)
- Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir, 5019, Tunisia
| | - Tahani Y.A. Alanazi
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha'il University, Ha'il, 81451, Saudi Arabia
| | | | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
21
|
Al-Bukhaiti WQ, Al-Dalali S, Li H, Yao L, Abed SM, Zhao L, Qiu SX. Identification and in vitro Characterization of Novel Antidiabetic Peptides Released Enzymatically from Peanut Protein. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:66-72. [PMID: 37994988 DOI: 10.1007/s11130-023-01118-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
Bioactive peptides derived from proteins found in various foods provide significant health benefits, including regulating blood sugar levels by inhibiting carbohydrate-hydrolyzing enzymes. Hydrolysates of peanut protein were prepared using alcalase (AH) or trypsin (TH) to generate antidiabetic peptides with high activity against α-amylase (IC50 of 6.46 and 5.71 mg/mL) and α-glucosidase (IC50 of 6.30 and 5.57 mg/mL), as well as antiradical activity to scavenge DPPH• (IC50 of 4.18 and 3.12 mg/mL) and ABTS•+ (IC50 of 2.87 and 2.56 mg/mL), respectively. The bioactivities of hydrolysates were greatest in the ultrafiltration-generated F3 fraction (< 3 kDa). The most active fraction was TH-F3, which was purified by gel filtration chromatography to generate sub-fractions (SF). With IC50 values of 1.05 and 0.69 mg/mL, the F3-SF8 fraction was the most effective at inhibiting the activity of α-amylase and α-glucosidase, respectively. This fraction was further purified using RP-HPLC to generate sub-subfractions (SSF), the most active of which were F3-SF8-SSF9 and SSF10. The peptide sequences F3-SF8-SSF9 and SSF10 were determined using LC-MS/MS. Two novel antidiabetic peptides with the potential to inhibit α-amylase and α-glucosidase were identified, with the sequences Asp-Trp-Arg (476.22 Da, IC50 of 0.78, and 0.35 mg/mL) and Phe-Tyr (329.15 Da, IC50 of 0.91, and 0.41 mg/mL). These results suggest that peptides derived from peanut protein are attractive natural ingredients for diabetes management applications.
Collapse
Affiliation(s)
- Wedad Q Al-Bukhaiti
- Program of Natural Product Medicinal Chemistry, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sam Al-Dalali
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen
| | - Hanxiang Li
- Institutional Center for Shared Technologies and Facilities, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou, 510650, PR China
| | - Liyuan Yao
- Program of Natural Product Medicinal Chemistry, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Sherif M Abed
- Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science, Arish University, North Sinai, 45526, Egypt
| | - Liyun Zhao
- Program of Natural Product Medicinal Chemistry, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Sheng-Xiang Qiu
- Program of Natural Product Medicinal Chemistry, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Garzón AG, Pontoni SM, Mamone G, Drago SR, Cian RE. Xanthan gum and pectin as beverage stabilizers reduce the digestive enzyme hydrolysis of antioxidant and antihypertensive peptides obtained from a brewery byproduct. Food Res Int 2024; 177:113836. [PMID: 38225113 DOI: 10.1016/j.foodres.2023.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.
Collapse
Affiliation(s)
- A G Garzón
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| | - S M Pontoni
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| | - G Mamone
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy
| | - S R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina.
| | - R E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, 1° de Mayo 3250, 3000 Santa Fe, Argentina
| |
Collapse
|
23
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
24
|
Cai L, Wu S, Jia C, Cui C, Sun-Waterhouse D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L) protein through identification, molecular docking, and virtual screening. Food Chem 2023; 429:136912. [PMID: 37480780 DOI: 10.1016/j.foodchem.2023.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Hemp (Cannabis sativa L) seeds are rich in proteins of high nutritional value, which makes the study of beneficial properties of hemp seed proteins and peptides, such as hypotensive and hypoglycemic effects, increasingly attractive. The present results confirm the good processability and stability of the hemp protein hydrolysate obtained by enzymatic hydrolysis of non-dehulled hemp seed meal (NDHM). Six peptides with potential hypoglycemic activity were obtained by ethanol-graded precipitation, Nano LC-Q-Orbitrap-MS/MS mass spectrometry, and computerized virtual screening. Further, validation experiments for in vitro synthesis showed that TGLGR, SPVI, FY, and FR exhibited good α-glucosidase inhibitory activity, respectively. Animal experiments showed that the hemp protein peptides modulated blood glucose and blood lipids in hyperglycemic rats. These results indicate that hemp protein peptides can reduce blood glucose levels in hyperglycemic rats, suggesting that hemp proteins may be a promising natural source for the prevention and treatment of hyperglycemia.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Shengwen Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chenggang Jia
- Guilin Sanjin Pharmaceutical Co., Ltd, Guilin 541100, Guangxi, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
25
|
Tang X, Chen X, Wang H, Yang J, Li L, Zhu J, Liu Y. Virtual Screening Technology for Two Novel Peptides in Soybean as Inhibitors of α-Amylase and α-Glucosidase. Foods 2023; 12:4387. [PMID: 38137191 PMCID: PMC10743026 DOI: 10.3390/foods12244387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Soybean peptides (SPs) have bioactivities of enzyme inhibition that are beneficial to human health, but their mechanism is not clear. This study aimed to identify peptide fragments in SPs that simultaneously inhibit α-amylase and α-glucosidase and to explore their enzyme inhibition mechanism. Firstly, the inhibitory activity of SPs against the enzymes was determined. And two octapeptides, LDQTPRVF and SRNPIYSN, were identified for the first time by using HPLC-QTOF-MS/MS and virtual screening. Molecular simulation results showed that hydrogen bonds and π-π bonds were the key factors, and the N-terminal (Leu and Ser) and C-terminal (Phe) of peptide were important inhibiting sites. Both octapeptides were synthesized, and their IC50 values were 3.08 and 5.58 mmol/L for α-amylase, and 2.52 and 4.57 mmol/L for α-glucosidase, respectively. This study provided evidence for SPs as a potential inhibitor of α-amylase and α-glucosidase in special dietary foods.
Collapse
Affiliation(s)
- Xiyao Tang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China (Y.L.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China (Y.L.)
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinyi Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China (Y.L.)
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China (Y.L.)
| | - Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China (Y.L.)
| |
Collapse
|
26
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
27
|
Mohd Rodhi A, Yap PG, Olalere OA, Gan CY. Exploring α-Glucosidase Inhibitory Peptides: Structure-Activity Relationship Analysis and Perspectives for Designing Potential Anti-diabetic Agents. Jundishapur J Nat Pharm Prod 2023; 18. [DOI: 10.5812/jjnpp-139988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 01/04/2025] Open
Abstract
Context: α-Glucosidase (AG) inhibitory peptides represent a promising new class of therapeutic agents for the treatment of diabetes. However, there is a need to further understand the mechanisms and properties of these peptides. Evidence Acquisition: In this comprehensive review, AG inhibitory peptides were categorized into three groups based on their length: Short, medium, and long peptides. Data from the BioPEP-UWM database and recent publications were gathered to conduct a structure-activity relationship analysis for these peptides, focusing on identifying their reactive residues and AG binding sites. Results: Through extensive examination, five substrate analogs (Trp376, Asp404, Ile441, Met519, and Phe649) and two catalytic residues (Asp518 and Asp616) were identified as the preferred inhibitory sites on AG. Furthermore, amino acid preferences and their positionings at different terminals on peptides, including the ultimate (N1 and C1), penultimate (N2 and C2), and antepenultimate (N3 and C3), were explored. Our findings revealed that these peptides were predominantly hydrophobic and tended to contain hydrophobic amino acids with hydrophobic alkyl/aryl side chains (such as lysine, glutamine, proline, and/or arginine). To gain further insights into peptide-AG interactions, docking analysis was performed, which highlighted the significance of hydrophobic bonds as the primary mode of interaction. Conclusions: By pooling all the findings, this review provided essential and practical information for the design and discovery of peptide-based anti-diabetic agents.
Collapse
|
28
|
Busso D, González A, Santander N, Saavedra F, Quiroz A, Rivera K, González J, Olmos P, Marette A, Bazinet L, Illanes S, Enrione J. A Quinoa Protein Hydrolysate Fractionated by Electrodialysis with Ultrafiltration Membranes Improves Maternal and Fetal Outcomes in a Mouse Model of Gestational Diabetes Mellitus. Mol Nutr Food Res 2023; 67:e2300047. [PMID: 37667444 DOI: 10.1002/mnfr.202300047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/08/2023] [Indexed: 09/06/2023]
Abstract
SCOPE Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.
Collapse
Affiliation(s)
- Dolores Busso
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Adrián González
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Nicolás Santander
- Health Science Institute, Universidad de O´Higgins, Rancagua, 2841959, Chile
| | - Fujiko Saavedra
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Alonso Quiroz
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Katherine Rivera
- PhD Program in Medical Sciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Javier González
- Immersion in Science Program, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| | - Pablo Olmos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Québec G1V 0A6, Canada
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
| | - Laurent Bazinet
- Department of Anatomy and Physiology, Faculty of Medicine, Laval Hospital Research Center, Université Laval, Québec, Québec G1V 4G5, Canada
- Department of Food Science and Nutrition, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaire (LTAPEM, Laboratory of Food Processing and Electro-Membrane Processes) Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sebastián Illanes
- Program of Reproductive Biology, Research and Innovation Center, School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
| | - Javier Enrione
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Santiago, 7550000, Chile
- Biopolymer Research and Engineering Lab (BiopREL), Research and Innovation Center, School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Santiago, 7550000, Chile
| |
Collapse
|
29
|
Li Z, Zhang S, Meng W, Zhang J, Zhang D. Screening and Activity Analysis of α-Glucosidase Inhibitory Peptides Derived from Coix Seed Prolamins Using Bioinformatics and Molecular Docking. Foods 2023; 12:3970. [PMID: 37959088 PMCID: PMC10649794 DOI: 10.3390/foods12213970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Hydrolysates of coix seed prolamins (CHPs) have an excellent hypoglycemic effect and can effectively inhibit α-glucosidase, which is the therapeutic target enzyme for type 2 diabetes mellitus. However, its hypoglycemic components and molecular mechanisms remain unclear, and its stability in food processing needs to be explored. In this study, four potential α-glucosidase inhibitory peptides (LFPSNPLA, FPCNPLV, HLPFNPQ, LLPFYPN) were identified and screened from CHPs using LC-MS/MS and virtual screening techniques. The results of molecular docking showed that the four peptides mainly inhibited α-glucosidase activity through hydrogen bonding and hydrophobic interactions, with Pro and Leu in the peptides playing important roles. In addition, CHPs can maintain good activity under high temperatures (40~100 °C) and weakly acidic or weakly alkaline conditions (pH 6.0~8.0). The addition of glucose (at 100 °C) and NaCl increased the inhibitory activity of α-glucosidase in CHPs. The addition of metal ions significantly decreased the inhibitory activity of α-glucosidase by CHPs, and their effects varied in magnitude with Cu2+ having the largest effect followed by Zn2+, Fe3+, K+, Mg2+, and Ca2+. These results further highlight the potential of CHPs as a foodborne hypoglycemic ingredient, providing a theoretical basis for the application of CHPs in the healthy food industry.
Collapse
Affiliation(s)
- Zhiming Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Weihong Meng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Jiayu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Lu 5, Daqing 163319, China; (Z.L.); (S.Z.); (W.M.); (J.Z.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
30
|
Deng F, Liang Y, Lei Y, Xiong S, Rong J, Hu Y. Development and Identification of Novel α-Glucosidase Inhibitory Peptides from Mulberry Leaves. Foods 2023; 12:3917. [PMID: 37959036 PMCID: PMC10649714 DOI: 10.3390/foods12213917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The mulberry leaf is a botanical resource that possesses a substantial quantity of protein. In this study, alcalase hydrolysis conditions of mulberry leaf protein were optimized using the response surface method. The results showed that the optimum conditions were as follows: substrate protein concentration was 0.5% (w/v), enzymatic hydrolysis temperature was 53.0 °C, enzymatic hydrolysis time was 4.7 h, enzyme amount was 17,800 U/g, and pH was 10.5. Then mulberry leaf peptides were separated by ultrafiltration according to molecular weight. Peptides (<3 kDa) were screened and subsequently identified using LC-MS/MS after the evaluation of α-glucosidase inhibition across various fractions. Three novel potential bioactive peptides RWPFFAFM (1101.32 Da), AAGRLPGY (803.91 Da), and VVRDFHNA (957.04 Da) with the lowest average docking energy were screened for molecular dynamics simulation to examine their binding stability with enzymes in a 37 °C simulated human environment. Finally, they were prepared by solid phase synthesis for in vitro verification. The former two peptides exhibited better IC50 values (1.299 mM and 1.319 mM, respectively). These results suggest that the α-glucosidase inhibitory peptides from mulberry leaf protein are potential functional foods or drugs for diabetes treatment, but further in vivo studies are needed to identify the bioavailability and toxicity.
Collapse
Affiliation(s)
- Fanghui Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yihao Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuelei Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Bioactive Peptide Technology Hubei Engineering Research Center, Jingzhou 434000, China
| |
Collapse
|
31
|
Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023; 15:4267. [PMID: 37836551 PMCID: PMC10574726 DOI: 10.3390/nu15194267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
With the change in people's lifestyle, diabetes has emerged as a chronic disease that poses a serious threat to human health, alongside tumor, cardiovascular, and cerebrovascular diseases. α-glucosidase inhibitors, which are oral drugs, have proven effective in preventing and managing this disease. Studies have suggested that bioactive peptides could serve as a potential source of α-glucosidase inhibitors. These peptides possess certain hypoglycemic activity and can effectively regulate postprandial blood glucose levels by inhibiting α-glucosidase activity, thus intervening and regulating diabetes. This paper provides a systematic summary of the sources, isolation, purification, bioavailability, and possible mechanisms of α-glucosidase inhibitory peptides. The sources of the α-glucosidase inhibitory peptides were introduced with emphasis on animals, plants, and microorganisms. This paper also points out the problems in the research process of α-glucosidase inhibitory peptide, with a view to providing certain theoretical support for the further study of this peptide.
Collapse
Affiliation(s)
- Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya School of Medicine, Central South University, Changsha 410008, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
32
|
Kazempour-Dizaji M, Mojtabavi S, Sadri A, Ghanbarpour A, Faramarzi MA, Navidpour L. Arylureidoaurones: Synthesis, in vitro α-glucosidase, and α-amylase inhibition activity. Bioorg Chem 2023; 139:106709. [PMID: 37442042 DOI: 10.1016/j.bioorg.2023.106709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Because of the colossal global burden of diabetes, there is an urgent need for more effective and safer drugs. We designed and synthesized a new series of aurone derivatives possessing phenylureido or bis-phenylureido moieties as α-glucosidase and α-amylase inhibitors. Most of the synthesized phenylureidoaurones have demonstrated superior inhibition activities (IC50s of 9.6-339.9 μM) against α-glucosidase relative to acarbose (IC50 = 750.0 μM) as the reference drug. Substitution of aurone analogues with two phenylureido substituents at the 5-position of the benzofuranone moiety and the 3' or 4' positions of the 2-phenyl ring resulted in compounds with almost 120-180 times more potent inhibitory activities than acarbose. The aurone analogue possessing two phenylureido substitutions at 5 and 4' positions (13) showed the highest inhibition activity with an IC50 of 4.2 ± 0.1 μM. Kinetic studies suggested their inhibition mode to be competitive. We also investigated the binding mode of the most potent compounds using the consensually docked 4D-QSAR methodology. Furthermore, these analogues showed weak-to-moderate non-competitive inhibitory activity against α-amylase. 5-Methyl substituted aurone with 4'-phenylureido moiety (6e) demonstrated the highest inhibition activity on α-amylase with an IC50 of 142.0 ± 1.6 μM relative to acarbose (IC50 = 108 ± 1.2 μM). Our computational studies suggested that these analogues interact with a hydrophilic allosteric site in α-amylase, located far from the enzyme active site at the N-terminal.
Collapse
Affiliation(s)
- Mohammad Kazempour-Dizaji
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176, Iran
| | - Arash Sadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran; Interdisciplinary Neuroscience Research Program, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Lyceum Scientific Charity, Iran
| | - Araz Ghanbarpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176, Iran
| | - Latifeh Navidpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran.
| |
Collapse
|
33
|
Branco P, Maurício EM, Costa A, Ventura D, Roma-Rodrigues C, Duarte MP, Fernandes AR, Prista C. Exploring the Multifaceted Potential of a Peptide Fraction Derived from Saccharomyces cerevisiae Metabolism: Antimicrobial, Antioxidant, Antidiabetic, and Anti-Inflammatory Properties. Antibiotics (Basel) 2023; 12:1332. [PMID: 37627752 PMCID: PMC10451726 DOI: 10.3390/antibiotics12081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction's cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through α-amylase and α-glucosidase inhibitory assays. The results demonstrate that the 2-10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 ± 32.5 µM TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNFα gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes α-amylase (IC50 of 199.3 ± 0.9 µg/mL) and α-glucosidase (IC20 of 270.6 ± 6.0 µg/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.
Collapse
Affiliation(s)
- Patrícia Branco
- School of Engineering, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unit of Bioenergy and Biorefinary, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal
| | - Elisabete Muchagato Maurício
- School of Engineering, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Elisa Câmara, Lda, Dermocosmética, Centro Empresarial de Talaíde, n°7 e 8, 2785-723 São Domingos de Rana, Portugal
| | - Ana Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Diogo Ventura
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO—Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Paula Duarte
- MEtRICs, Departamento de Química, NOVA School of Science and Technology|FCTNOVA, Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO—Applied Molecular Biosciences Unit, Department Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- i4HB, Associate Laboratory—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Catarina Prista
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
34
|
Li Z, Zhang S, Bai L, Tang H, Zhang G, Zhang J, Meng W, Zhang D. Flexible processing technology of coix seed prolamins by combined heat-ultrasound: Effects on their enzymatic hydrolysis characteristics and the hypoglycemic activities of derived peptides. ULTRASONICS SONOCHEMISTRY 2023; 98:106526. [PMID: 37515909 PMCID: PMC10407440 DOI: 10.1016/j.ultsonch.2023.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
The self-assembled structures of coix seeds affected the enzymatic efficiency and doesn't facilitate the release of more active peptides. The influence of heating combined with ultrasound pretreatment (HT + US) on the structure, enzymatic properties and hydrolysates (CHPs) of coix seed prolamin was investigated. Results showed that the structural of coix seed prolamins has changed after HT + US, including increased surface hydrophobicity, reduced α-helix and random coil content, and a decrease in particle size. So that, leads to changes in thermodynamic parameters such as an increase in the reaction rate constant and a decrease in activation energy, enthalpy and enthalpy. The fractions of <1000 Da, degree of hydrolysis and α-glucosidase inhibitory were increased in the HT + US group compared to single pretreatment by 0.68%-17.34%, 12.69%-34.43% and 30.00%-53.46%. The peptide content and α-glucosidase inhibitory activity of CHPs could be maintained at 72.21 % and 57.97 % of the initial raw materials after in vitro digestion. Thus, the findings indicate that HT + US provides a feasible and efficient approach to can effectively enhance the enzymatic hydrolysis efficiency and hypoglycaemic efficacy of CHPs.
Collapse
Affiliation(s)
- Zhiming Li
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Shu Zhang
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Lu Bai
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Huacheng Tang
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Guifang Zhang
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Jiayu Zhang
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Weihong Meng
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dongjie Zhang
- College of Food Science in Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China; Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China.
| |
Collapse
|
35
|
Zhang Y, Chen Y, Liu X, Wang W, Wang J, Li X, Sun S. Preparation and Identification of Peptides with α-Glucosidase Inhibitory Activity from Shiitake Mushroom ( Lentinus edodes) Protein. Foods 2023; 12:2534. [PMID: 37444272 DOI: 10.3390/foods12132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The shiitake mushroom is the most commonly cultivated edible mushroom in the world, and is rich in protein. This study aims to obtain the peptides with α-glucosidase inhibition activity from shiitake mushroom protein hydrolysate. The conditions of enzymatic hydrolysis of shiitake mushroom protein were optimized by response surface test. The results showed that the optimal conditions were as follows: the E/S was 3390 U/g, the solid-liquid ratio was 1:20, the hydrolysis temperature and time were 46 °C and 3.4 h, respectively, and the pH was 7. The active peptides were separated by gel filtration and identified by LC-MS/MS analysis and virtual screening. The results indicated that fourteen peptides were identified by LC-MS/MS. Among them, four new peptides (EGEPKLP, KDDLRSP, TPELKL, and LDYGKL) with the higher docking score were selected and chemically synthesized to verify their inhibition activity. The IC50 values of EGEPKLP, KDDLRSP, TPELKL, and LDYGKL for α-glucosidase inhibition activity ranged from 452 ± 36 μmol/L to 696 ± 39 μmol/L. The molecular docking results showed that the hydrogen bond and arene-cation bond were the two major interactions between four peptides and 2QMJ. The hydrogen bonds were crucial to the inhibition activity of α-glucosidase. The results indicate the potential of using the peptides from shiitake mushroom protein as functional food with α-glucosidase inhibition activity.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou 310021, China
| | - Yu Chen
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xinyang Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Wine, North West Agriculture and Forestry University, Xi'an 712199, China
| | - Wei Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China
| | - Junhong Wang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou 310021, China
| | - Suling Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
36
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
37
|
Mashayekh F, Pourahmad R, Eshaghi MR, Akbari‐Adergani B. Improving effect of soy whey-derived peptide on the quality characteristics of functional yogurt. Food Sci Nutr 2023; 11:3287-3296. [PMID: 37324889 PMCID: PMC10261726 DOI: 10.1002/fsn3.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
The purpose of this research was to investigate the effect of bioactive peptides isolated from soy whey on the physicochemical, sensory, and microbiological characteristics of yogurt during storage. Trypsin was utilized to hydrolyze soy whey protein at 45°C for 4 h. Then, the resulting protein hydrolysate was fractionated using reversed phase-high performance liquid chromatography (RP-HPLC). Since the F7 fraction showed the best antioxidant and antibacterial capabilities, different levels (6.5, 13, and 17 mg/mL) of this peptide fraction were added to yogurt. A control sample (without the bioactive peptide) was also prepared. Yogurt samples were stored for 3 weeks. With the increase in peptide concentration, the antioxidant activity of yogurt increased while viscosity and syneresis decreased (p < .05). During storage, yogurt acidity, syneresis, and viscosity increased while pH and antioxidant activity declined (p < .05). The addition of bioactive peptide reduced the quantity of Escherichia coli and Staphylococcus aureus bacteria in yogurt during storage (p < .05), and the reduction in bacterial quantity was stronger as the peptide content was increased. The sample containing the largest concentration of peptide (17 mg/mL) got the lowest overall acceptability score. The level of 13 mg/mL of the peptide was chosen as the best concentration for yogurt fortification in terms of overall acceptance and functional properties. Therefore, soy whey-derived peptide can be utilized as a functional component as well as a natural preservative in yogurt.
Collapse
Affiliation(s)
- Fatemeh Mashayekh
- Department of Food Science and TechnologyVaramin‐ Pishva Branch, Islamic Azad UniversityVaraminIran
| | - Rezvan Pourahmad
- Department of Food Science and TechnologyVaramin‐ Pishva Branch, Islamic Azad UniversityVaraminIran
| | - Mohammad Reza Eshaghi
- Department of Food Science and TechnologyVaramin‐ Pishva Branch, Islamic Azad UniversityVaraminIran
| | - Behrouz Akbari‐Adergani
- Water Safety Research CenterFood and Drug Administration, Ministry of Health and Medical EducationTehranIran
| |
Collapse
|
38
|
Mirzapour-Kouhdasht A, McClements DJ, Taghizadeh MS, Niazi A, Garcia-Vaquero M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci Food 2023; 7:22. [PMID: 37231034 DOI: 10.1038/s41538-023-00198-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Protein hydrolysis is a process used in the food industry to generate bioactive peptides of low molecular weight and with additional health benefits, such as antihypertensive, antidiabetic, and antioxidant properties that are often associated with their content on hydrophobic amino acids. This results in an increased bitterness of the products, making them less desirable for their use in food formulations. This review summarizes the main dietary sources of bitter bioactive peptides, including methods to determine their bitterness, such as the Q-values and electronic tongue; and the main factors and mechanisms underlying the bitterness of these compounds. The main strategies currently used to improve the taste and oral delivery of bioactive peptides are also discussed together with the main advantages and drawbacks of each technique. Debittering and masking techniques are reported in detail, including active carbon treatments, alcohol extraction, isoelectric precipitation, chromatographic methods, and additional hydrolytic processes. Other masking or blocking techniques, including the use of inhibitors, such as modified starch, taurine, glycine, and polyphosphates, as well as chemical modifications, such as amination, deamination, acetylation, or cross-linking were also discussed. The findings of this work highlight encapsulation as a highly effective method for masking the bitter taste and promoting the bioactivity of peptides compared to other traditional debittering and masking processes. In conclusion, the article suggests that advanced encapsulation technologies can serve as an effective means to mitigate the bitterness associated with bioactive peptides, while simultaneously preserving their biological activity, increasing their viability in the development of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland.
| |
Collapse
|
39
|
Zhang S, Jiang X, Li C, Qiu L, Chen Y, Yu Z, Ni D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods 2023; 12:foods12081726. [PMID: 37107521 PMCID: PMC10138149 DOI: 10.3390/foods12081726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effect of different fermentation humidities (55%, 65%, 75%, 85% and 95%) on congou black tea quality and bioactivity. Fermentation humidity mainly affected the tea's appearance, aroma and taste quality. The tea fermented at low humidity (75% or below) showed a decrease in tightness, evenness and moistening degree, as well as a heavy grassy and greenish scent, plus a green, astringent and bitter taste. The tea fermented at a high humidity (85% or above) presented a sweet and pure aroma, as well as a mellow taste, plus an increase of sweetness and umami. With increasing fermentation humidity, the tea exhibited a drop in the content of flavones, tea polyphenols, catechins (EGCG, ECG) and theaflavins (TF, TF-3-G), contrasted by a rise in the content of soluble sugars, thearubigins and theabrownins, contributing to the development of a sweet and mellow taste. Additionally, the tea showed a gradual increase in the total amount of volatile compounds and in the content of alcohols, alkanes, alkenes, aldehydes, ketones and acids. Moreover, the tea fermented at a low humidity had stronger antioxidant activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and a higher inhibiting capability on the activities of α-amylase and α-glucosidase. Overall results indicated the desirable fermentation humidity of congou black tea should be 85% or above.
Collapse
Affiliation(s)
- Sirui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Li Qiu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
40
|
Tawalbeh D, Al-U’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023; 28:2423. [PMID: 36985395 PMCID: PMC10056053 DOI: 10.3390/molecules28062423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Consumption of legumes has been shown to enhance health and lower the risk of cardiovascular disease and specific types of cancer. ACE inhibitors, antioxidants, and synthetic anti-inflammatories are widely used today; however, they have several undesirable side effects. Thus, researchers have focused on finding ACE inhibitors, antioxidant, and anti-inflammatory peptides from natural sources, such as legumes. Recently, in vitro and in vivo research has shown the bioactive peptides generated from legume protein hydrolysates, such as antioxidant, anti-hypertensive, anticancer, anti-proliferative, anti-inflammatory, etc., in the context of different disease mitigation. Therefore, this review aims to describe the recent advances in in vitro and in vivo studies of antioxidant, anti-hypertensive and anti-inflammatory peptides isolated from legume-derived protein hydrolysates. The results indicated that antioxidant legumes peptides are characterized by short-chain sequence amino acids and possess anti-hypertensive properties by reducing systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR).
Collapse
Affiliation(s)
- Deia Tawalbeh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Muhammad H. Al-U’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | | | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
41
|
Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
42
|
Mirzaee H, Ahmadi Gavlighi H, Nikoo M, Udenigwe CC, Khodaiyan F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci Nutr 2023; 11:1257-1271. [PMID: 36911847 PMCID: PMC10003021 DOI: 10.1002/fsn3.3160] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
New mixed Alcalase-hydrolysates were developed using corn gluten meal (CP) and soy protein (SP) hydrolysates, namely CPH, SPH, SPH30:CPH70, SPH70:CPH30, and SPH50:CPH50. Amino acid profile, surface hydrophobicity (H 0), molecular weight (MW) distribution, antioxidant activity, angiotensin-converting enzyme (ACE), α-amylase, and α-glucosidase inhibitory activities, and functional characteristics of hydrolysates were determined. Hydrolysis changed the amount of hydrophilic and hydrophobic amino acid composition and significantly increased the H 0 values of hydrolysates, especially for CPH. The DPPH radical scavenging activity (RSA) was higher for CPH, SPH30:CPH70, and SPH50:CPH50 than SPH and SPH70:CPH30. Moreover, SPH, SPH70:CPH30, and SPH50:CPH50 showed lower MW than CPH, and this correlated with the higher hydrophilicity, and ABTS and hydroxyl RSA values obtained for SPH and the mixed hydrolysates with predominantly SPH. SPH70:CPH30 exhibited higher ACE, α-glucosidase, and α-amylase inhibitory activities among all samples due to its specific peptides with high capacity to interact with amino acid residues located at the enzyme active site and also low binding energy. At 15% degree of hydrolysis, both SPH and CPH showed enhanced solubility at pH 4.0, 7.0 and 9.0, emulsifying activity, and foaming capacity. Taken together, SPH70:CPH30 displayed strong antioxidant, antihypertensive, and antidiabetic attributes, emulsifying activity and stability indexes, and foaming capacity and foaming stability, making it a promising multifunctional ingredient for the development of functional food products.
Collapse
Affiliation(s)
- Homaira Mirzaee
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
- Institute for Natural Products and Medicinal PlantsTarbiat Modares UniversityTehranIran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | | | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and EngineeringUniversity of TehranKarajIran
| |
Collapse
|
43
|
Cotabarren J, Ozón B, Claver S, Geier F, Rossotti M, Garcia-Pardo J, Obregón WD. A Multifunctional Trypsin Protease Inhibitor from Yellow Bell Pepper Seeds: Uncovering Its Dual Antifungal and Hypoglycemic Properties. Pharmaceutics 2023; 15:pharmaceutics15030781. [PMID: 36986642 PMCID: PMC10054557 DOI: 10.3390/pharmaceutics15030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Fungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper (Capsicum annuum L.) seeds. The inhibitor not only showed potent and specific activity against the pathogenic fungus Candida albicans, but was also found to be non-toxic against human cells. Furthermore, this inhibitor is unique in that it also inhibits α-1,4-glucosidase, positioning it as one of the first plant-derived protease inhibitors with dual biological activity. This exciting discovery opens new avenues for the development of this inhibitor as a promising antifungal agent and highlights the potential of plant-derived protease inhibitors as a rich source for the discovery of novel multifunctional bioactive molecules.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Florencia Geier
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Martina Rossotti
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Javier Garcia-Pardo
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| |
Collapse
|
44
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
45
|
Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates. Foods 2023; 12:foods12030663. [PMID: 36766195 PMCID: PMC9914213 DOI: 10.3390/foods12030663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Hot-pressed peanut meal protein hydrolysates are rich in Arg residue, but there is a lack of research on their α-glucosidase inhibitory activity. In this study, different proteases were used to produce hot-pressed peanut meal protein hydrolysates (PMHs) to evaluate the α-glucosidase inhibitory activity. All PMHs showed good α-glucosidase inhibitory activity with the best inhibition effect coming from the dual enzyme system of Alcalase and Neutrase with an IC50 of 5.63 ± 0.19 mg/mL. The fractions with the highest inhibition effect were separated and purified using ultrafiltration and cation exchange chromatography. Four novel α-glucosidase inhibitory peptides (FYNPAAGR, PGVLPVAS, FFVPPSQQ, and FSYNPQAG) were identified by nano-HPLC-MS/MS and molecular docking. Molecular docking showed that peptides could occupy the active pocket of α-glucosidase through hydrogen bonding, hydrophobic interaction, salt bridges, and π-stacking, thus preventing the formation of complexes between α-glucosidase and the substrate. In addition, the α-glucosidase inhibitory activity of PMHs was stable against hot, pH treatment and in vitro gastrointestinal digestion. The study demonstrated that PMHs might be used as a natural anti-diabetic material with the potential to inhibit α-glucosidase.
Collapse
|
46
|
In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023; 12:foods12030631. [PMID: 36766167 PMCID: PMC9914741 DOI: 10.3390/foods12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Almost 65% of the human protein supply in the world originates from plants, with legumes being one of the highest contributors, comprising between 20 and 40% of the protein supply. Bioactive peptides from various food sources including legumes have been reported to show efficacy in modulating starch digestion and glucose absorption. This paper will provide a comprehensive review on recent in vitro studies that have been performed on leguminous antidiabetic peptides, focusing on the α-amylase inhibitor, α-glucosidase inhibitor, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Variations in legume cultivars and methods affect the release of peptides. Different methods have been used, such as in sample preparation, including fermentation (t, T), germination (t), and pre-cooking; in protein extraction, alkaline extraction, isoelectric precipitation, phosphate buffer extraction, and water extraction; in protein hydrolysis enzyme types and combination, enzyme substrate ratio, pH, and time; and in enzyme inhibitory assays, positive control type and concentration, inhibitor or peptide concentration, and the unit of inhibitory activity. The categorization of the relative scale of inhibitory activities among legume samples becomes difficult because of these method differences. Peptide sequences in samples were identified by means of HPLC/MS. Software and online tools were used in bioactivity prediction and computational modelling. The identification of the types and locations of chemical interactions between the inhibitor peptides and enzymes and the type of enzyme inhibition were achieved through computational modelling and enzyme kinetic studies.
Collapse
|
47
|
Quah Y, Tong SR, Bojarska J, Giller K, Tan SA, Ziora ZM, Esatbeyoglu T, Chai TT. Bioactive Peptide Discovery from Edible Insects for Potential Applications in Human Health and Agriculture. Molecules 2023; 28:molecules28031233. [PMID: 36770900 PMCID: PMC9921607 DOI: 10.3390/molecules28031233] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the past decade, there has been fast-growing interest among researchers to discover bioactive peptides from edible insects and to evaluate their potential applications in the management of human, livestock, and plant health. This review summarizes current knowledge of insect-derived peptides and their potential role in tackling human health issues and solving agriculture problems by protecting crops and livestock against their pathogens. Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Although most of the experiments were performed in vitro, evidence for the in vivo efficacy of some peptides is emerging. Evidence of the protective effects of insect-derived endogenous antimicrobial peptides in combating farm animal and plant pathogens is available. The ability of insect-derived endogenous neuropeptides to protect plants against herbivorous insects has been demonstrated as well. Nevertheless, the potency of peptides identified from insect protein hydrolysates in modulating livestock and plant health remains a knowledge gap to be filled.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Shi-Ruo Tong
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Joanna Bojarska
- Department of Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katrin Giller
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Setapak, Kuala Lumpur 53300, Malaysia
| | - Zyta Maria Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
- Correspondence:
| |
Collapse
|
48
|
Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis. Foods 2023; 12:foods12020393. [PMID: 36673484 PMCID: PMC9857891 DOI: 10.3390/foods12020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes.
Collapse
|
49
|
Göksu AG, Çakır B, Gülseren İ. Sequence alterations affect the antidiabetic attributes of hazelnut peptide fractions during the industrial manufacture and simulated digestion of hazelnut paste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:171-180. [PMID: 36618060 PMCID: PMC9813299 DOI: 10.1007/s13197-022-05601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 02/01/2023]
Abstract
Press cakes are by-products of cold press oil manufacture and are characterized by significant protein concentrations. Our group has previously demonstrated potential bioactive attributes of hazelnut protein hydrolysates including their antidiabetic activities. Here, an effort was made to utilize DPP-IV (Dipeptidyl peptidase-IV)-inhibitory hazelnut peptides in industrial food manufacture. Hazelnut protein isolates (approx. 95% protein) were obtained via an alkali extraction-isoelectric precipitation method. Papain, bromelain and pepsin were used in the enzymatic hydrolysis and hydrolysates were fractionated via Fast Protein Liquid Chromatography. As a general observation, although fractionation lead to dilution of the samples, fractions were observed to be more bioactive than the total hydrolysates. In vitro antidiabetic activities of the fractions were tested and 3 antidiabetic fractions were added to hazelnut paste. Afterwards simulated gastrointestinal digestion and antidiabetic activity assays were performed. DPP-IV inhibition was the major antidiabetic mechanism in the fractions and digested paste, while some fractions were characterized by comparable IC50 values as the positive controls. Alpha-glucosidase inhibition was limited by digestion trials, whereas alpha-amylase inhibition was only slight in the digested paste (< %6). In silico analyses predicted partial degradation of the peptides, whereas the interactions between DPP-IV or alpha-glucosidase and hazelnut peptides were predicted to be significant (p < 0.05). Consequently hazelnut press cakes were regarded as a potential source of antidiabetic peptides that can be used in industrial manufacture of functional foods, while food processing conditions or gastrointestinal digestion could largely affect peptide bioactivity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05601-2.
Collapse
Affiliation(s)
- Ayşe Gülden Göksu
- Department of Food Engineering, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
| | - Bilal Çakır
- Halal Food R&D Center, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
- Sabri Ülker R&D Center Bldg., İZÜ Food and Agricultural Research Center (GTAUM), Halkalı, Küçükçekmece, İstanbul, Turkey
| | - İbrahim Gülseren
- Department of Food Engineering, Sabri Ülker R&D Center Bldg., İstanbul S. Zaim University (İZÜ), Halkalı, Küçükçekmece, İstanbul, Turkey
- Sabri Ülker R&D Center Bldg., İZÜ Food and Agricultural Research Center (GTAUM), Halkalı, Küçükçekmece, İstanbul, Turkey
| |
Collapse
|
50
|
Wanezaki S, Taniwaki T, Miyamoto J, Hosokawa M. Dietary Combination of Fish Oil and Soy β-Conglycinin Inhibits Fat Accumulation and Reduces Blood Glucose Levels by Altering Gut Microbiome Composition in Diabetic/Obese KK-A y Mice. J Oleo Sci 2023; 72:303-312. [PMID: 36878584 DOI: 10.5650/jos.ess22363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dietary fish oil containing n-3 polyunsaturated fatty acids provides health benefits by lowering lipid levels in the liver and serum. β-Conglycinin (βCG) is a major constituent protein in soybean with many physiological effects, such as lowering blood triglyceride levels, preventing obesity and diabetes, and improving hepatic lipid metabolism. However, the combined effects of fish oil and βCG remain unclear. Here, we investigated the effects of a dietary combination of fish oil and βCG on lipid and glucose parameters in diabetic/obese KK-A y mice. KK-A y mice were divided into three groups: control, fish oil, and fish oil + βCG; these groups were fed a casein-based diet containing 7% (w/w) soybean oil, a casein-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, and a βCG-based diet containing 2% (w/w) soybean oil and 5% (w/w) fish oil, respectively. The effects of the dietary combination of fish oil and βCG on blood biochemical parameters, adipose tissue weight, expression levels of fat- and glucose metabolism-related genes, and cecal microbiome composition were evaluated. The total white adipose tissue weight (p < 0.05), levels of total serum cholesterol (p < 0.01), triglyceride (p < 0.01), and blood glucose (p < 0.05), and expression levels of fatty acid synthesis-related genes (including Fasn (p < 0.05) and Acc (p < 0.05)), and glucose metabolism-related genes (such as Pepck (p < 0.05)) were lower in the fish oil and fish oil + βCG groups than in the control group. Furthermore, the relative abundance of Bacteroidaceae and Coriobacteriaceae differed significantly between the fish oil + βCG and control groups. These findings suggest that dietary intake of fish oil + βCG may prevent obesity and diabetes, alleviate lipid abnormalities, and alter the gut microbiome composition in diabetic/obese KK-A y mice. Further research is needed to build on this study to evaluate the health benefits of major components of Japanese food.
Collapse
Affiliation(s)
| | | | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | | |
Collapse
|