1
|
Chen Z, Liu L, Guo X, Zhang Y, Zhong M, Xu Y, Peng T, Peng T, Zhang Y, Hou Q, Fan D, Gao T, He L, Tang H, Hu H, Xu K. Upregulating mTOR/S6 K Pathway by CASTOR1 Promotes Astrocyte Proliferation and Myelination in Gpam -/--induced mouse model of cerebral palsy. Mol Neurobiol 2025:10.1007/s12035-025-04901-w. [PMID: 40234290 DOI: 10.1007/s12035-025-04901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
GPAM, a key enzyme for lipid synthesis, is predominantly expressed in astrocytes (ASTs), where it facilitates lipid supply for myelin formation. Our previous studies identified GPAM as a novel causative gene for cerebral palsy (CP) and led to the development of a CP mouse model with GPAM deficiency (Gpam-/-). The model closely recapitulated the clinical phenotype of children with CP, due to the restricted proliferation of ASTs in the brain, reduced the amount of lipid, thinner brain white matter, and myelin dysplasia. The mammalian target of rapamycin (mTOR) pathway plays an important role in cell proliferation and lipid synthesis. Cytosolic arginine sensor (CASTOR1) interacts with GATOR2 to regulate mTOR complex 1 (mTORC1). Targeted degradation of CASTOR1 can activate the mTOR pathway. However, it remains unclear the involvement of mTOR pathway in neurological diseases such as CP. In this study, we demonstrated that the mTOR pathway was inhibited in Gpam-/- mice. Notably, CASTOR1 could regulate the activity of mTOR/S6K pathway, functioning as a negative upstream regulator. Furthermore, inhibition of CASTOR1 upregulated mTOR/S6K signaling, promoting astrocyte proliferation and myelination, which in turn enhanced motor function in the Gpam-/--induced CP mouse model. Collectively, these findings reveal the role of astrocytic mTOR in the pathogenesis of CP mice, broaden the therapeutic strategies, and provide a promising candidate target for CP treatment.
Collapse
Affiliation(s)
- Zhaofang Chen
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaolin Guo
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Yage Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengru Zhong
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yi Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuan Zhang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Qingfen Hou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China
| | - Danxia Fan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Ting Gao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Lin L, Yuan Y, Huang Z, Wang Y. YAP Signaling in Glia: Pivotal Roles in Neurological Development, Regeneration and Diseases. Neurosci Bull 2025; 41:501-519. [PMID: 39503968 PMCID: PMC11876503 DOI: 10.1007/s12264-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 03/04/2025] Open
Abstract
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing. In this review, we aim to summarize the roles and underlying mechanisms of YAP in glia and glia-related neurological diseases in an integrated perspective.
Collapse
Affiliation(s)
- Lin Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinfeng Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
López de Mingo I, Rivera González MX, Ramos Gómez M, Maestú Unturbe C. The Frequency of a Magnetic Field Determines the Behavior of Tumor and Non-Tumor Nerve Cell Models. Int J Mol Sci 2025; 26:2032. [PMID: 40076656 PMCID: PMC11899782 DOI: 10.3390/ijms26052032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The involvement of magnetic fields in basic cellular processes has been studied for years. Most studies focus their results on a single frequency and intensity. Intensity has long been the central parameter in hypotheses of interaction between cells and magnetic fields; however, frequency has always played a secondary role. The main objective of this study was to obtain a specific frequency that allows a reduction in the viability and proliferation of glioblastoma (CT2A) and neuroblastoma (N2A) cell models. These were compared with an astrocyte cell model (C8D1A) (nontumor) to determine whether there is a specific frequency of response for each of the cell lines used. The CT2A, C8D1A, and N2A cell lines were exposed to a magnetic field of 100 µT and a variable frequency range between 20 and 100 Hz for 24, 48 and 72 h. The results fit a biological window model in which the viability and proliferation of N2A and CT2A cells decrease statistically significantly in a 50 Hz center of value window. In addition, the non-tumor cell model showed different behavior from tumor cell models depending on the applied frequency. These results are promising in the use of magnetic fields for therapeutic purposes.
Collapse
Affiliation(s)
- Isabel López de Mingo
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (I.L.d.M.); (M.R.G.)
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain;
| | - Marco-Xavier Rivera González
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain;
- Escuela Técnica Superior de Ingenieros Informáticos (ETSIINF), Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Milagros Ramos Gómez
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (I.L.d.M.); (M.R.G.)
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain;
- Centro de Investigación Biomédica en Red (CIBER-BBN), 28029 Madrid, Spain
| | - Ceferino Maestú Unturbe
- Escuela Técnica Superior de Ingenieros de Telecomunicación (ETSIT), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (I.L.d.M.); (M.R.G.)
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, 28223 Madrid, Spain;
- Centro de Investigación Biomédica en Red (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
4
|
Sojka C, Wang HLV, Bhatia TN, Li Y, Chopra P, Sing A, Voss A, King A, Wang F, Joseph K, Ravi VM, Olson J, Hoang K, Nduom E, Corces VG, Yao B, Sloan SA. Mapping the developmental trajectory of human astrocytes reveals divergence in glioblastoma. Nat Cell Biol 2025; 27:347-359. [PMID: 39779941 DOI: 10.1038/s41556-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
6
|
Deak T, Burzynski HE, Nunes PT, Day SM, Savage LM. Adolescent Alcohol and the Spectrum of Cognitive Dysfunction in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:257-298. [PMID: 40128483 DOI: 10.1007/978-3-031-81908-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Among the many changes associated with aging, inflammation in the central nervous system (CNS) and throughout the body likely contributes to the constellation of health-related maladies associated with aging. Genetics, lifestyle factors, and environmental experiences shape the trajectory of aging-associated inflammation, including the developmental timing, frequency, and intensity of alcohol consumption. This chapter posits that neuroinflammatory processes form a critical link between alcohol exposure and the trajectory of healthy aging, at least in part through direct or indirect interactions with cholinergic circuits that are crucial to cognitive integrity. In this chapter, we begin with a discussion of how inflammation changes from early development through late aging; discuss the role of inflammation and alcohol in the emergence of mild cognitive impairment (MCI); elaborate on critical findings on the contribution of alcohol-related thiamine deficiency to the loss of cholinergic function and subsequent development of Wernicke-Korsakoff syndrome (WKS); and present emerging findings at the intersection of alcohol and Alzheimer's disease and related dementias (ADRD). In doing so, our analysis points toward inflammation-mediated compromise of basal forebrain cholinergic function as a key culprit in cognitive dysfunction associated with chronic alcohol exposure, effects that may be rescuable through either pharmacological or behavioral approaches. Furthermore, our chapter reveals an interesting dichotomy in the effects of alcohol on neuropathological markers of ADRD that depend upon both biological sex and genetic vulnerability.
Collapse
Affiliation(s)
- Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA.
| | - Hannah E Burzynski
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Polliana T Nunes
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Stephen M Day
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, NY, USA
| |
Collapse
|
7
|
Xiao L, Wang M, Shi Y, Huang X, Zhang W, Wu Y, Deng H, Xiong B, Pan W, Zhang J, Wang W. Neuroinflammation-mediated white matter injury in Parkinson's disease and potential therapeutic strategies targeting NLRP3 inflammasome. Int Immunopharmacol 2024; 143:113483. [PMID: 39488915 DOI: 10.1016/j.intimp.2024.113483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, severely affecting the quality of life of patients. Recent studies have shown that white matter (WM) plays a vital role in higher neurological functions such as behavior and cognition. In PD patients, neurodegeneration occurs not only in neuronal soma, but also in WM fiber bundles, which are composed of neural axons. The clinical symptoms of PD patients are related not only to the degeneration of neuronal soma, but also to the degeneration of WM. Most previous studies have focused on neuronal soma in substantia nigra (SN), while WM injury (WMI) in PD has been less studied. Moreover, most previous studies have focused on intracerebral lesions in PD, while less attention has been paid to the spinal cord distal to the brain. The above-mentioned factors may be one of the reasons for the poor treatment of previous drug outcomes. Neuroinflammation has been shown to exert a significant effect on the pathological process of brain and spinal cord neurodegeneration in PD. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome has been shown to activate and mediate neuroinflammation and exacerbate neurodegeneration in PD. NLRP3 inflammasome inhibition may be a potential strategy for the treatment of WMI in PD. This review summarizes recent advances and future directions regarding neuroinflammation-mediated WMI in PD and potential therapeutic strategies for targeting NLRP3 inflammasome in the brain and spinal cord, providing new insights for researchers to develop more effective therapeutic approaches for PD patients.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xinyuejia Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
9
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
10
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
11
|
Yuan Z, Lu B, Zhang M, Lu Y, Wang Z, Zhang W, Cheng H, Wu Z, Ji Q. Effect of NLRP3 inflammasome induced astrocyte phenotype alteration in morphine tolerance. Front Pharmacol 2024; 15:1434295. [PMID: 39600361 PMCID: PMC11588488 DOI: 10.3389/fphar.2024.1434295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Morphine is a widely used analgesic, but its prolonged use often leads to tolerance, limiting its therapeutic efficacy. Research implicates the NLRP3 inflammasome and reactive astrocytes in the development of morphine tolerance, with reactive astrocytes classified into A1 neurotoxic and A2 neuroprotective phenotypes. This study explores the role of the NLRP3 inflammasome and the transformation of astrocyte phenotypes in the progression of morphine tolerance. Methods A model of morphine tolerance was established by administering morphine intrathecally for seven consecutive days. To inhibit NLRP3 inflammasome activation, we coadministered MCC950, a selective NLRP3 inhibitor. Thermal withdrawal latency was used to assess tolerance development. Protein and mRNA levels of GFAP, IL-18, NLRP3, C3 (A1 marker), and S100A10 (A2 marker) in the spinal cord were measured using Western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR). Immunofluorescence was employed to assess the colocalization of C3 and GFAP. Results Seven days of morphine administration induced tolerance, which was associated with increased levels of GFAP, IL-18, NLRP3, and C3, and a decreased level of S100A10. Coadministration of morphine and MCC950 significantly slowed the development of morphine tolerance and reversed changes in NLRP3, IL-18, GFAP, C3, and S100A10 protein levels. Discussion Our findings indicate a significant link between NLRP3 inflammasome activation and morphine tolerance, suggesting that NLRP3 contributes to the transformation of astrocytes to the A1 phenotype. Inhibiting NLRP3 inflammasome activation holds promise in reversing astrocyte phenotype changes, potentially mitigating morphine tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhifang Wu
- Department of Anesthesiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Ji
- Department of Anesthesiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Lin S, Guo M, Liang Q, Lin X, Chen S, Li Y, Chen P, Qiu Y. Evaluation of Glymphatic System Development in Neonatal Brain via Diffusion Analysis along the Perivascular Space Index. Ann Neurol 2024; 96:970-980. [PMID: 39096048 DOI: 10.1002/ana.27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Glymphatic system is a recently discovered macroscopic waste clearance system associated with numerous neurological diseases. However, little is known about glymphatic system development in neonates. We sought to evaluate diffusion along the perivascular space (ALPS) index, a proxy for glymphatic system function, in neonates and investigate its potential associations with maturation, sex, and preterm birth. METHODS Diffusion magnetic resonance imaging (MRI) data in 418 neonates, including 92 preterm neonates (57 males) and 326 term neonates (175 males), from the Developing Human Connectome Project were used for evaluating ALPS index. Linear regression modeling was performed to assess group differences in the ALPS index according to preterm birth and sex. Pearson's and partial correlation analysis were performed to assess the association between the ALPS index and gestational age (GA) as well as postmenstrual age (PMA) at MRI. Moderation analysis was performed to assess the moderation effect of preterm birth on the relationship between the ALPS index and PMA. RESULTS Compared to term neonates, preterm neonates exhibited lower ALPS indices (p < 0.001). The ALPS index positively correlated with PMA (p = 0.004) and GA (p < 0.001). Preterm birth (p = 0.013) had a significant moderation effect on the relationship between the ALPS index and PMA. Sex had no significant direct effect (p = 0.639) or moderation effect (p = 0.333) on ALPS index. INTERPRETATION Glymphatic system development is a dynamic process in neonates, which can be moderated by preterm birth, the ALPS index could serve as a sensitive biomarker for monitoring this process. ANN NEUROL 2024;96:970-980.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meifen Guo
- Department of Radiology, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qunjun Liang
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ying Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Peiqi Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
13
|
Schroeder ME, McCormack DM, Metzner L, Kang J, Li KX, Yu E, Levandowski KM, Zaniewski H, Zhang Q, Boyden ES, Krienen FM, Feng G. Astrocyte regional specialization is shaped by postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617802. [PMID: 39416060 PMCID: PMC11482951 DOI: 10.1101/2024.10.11.617802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Astrocytes are an abundant class of glial cells with critical roles in neural circuit assembly and function. Though many studies have uncovered significant molecular distinctions between astrocytes from different brain regions, how this regionalization unfolds over development is not fully understood. We used single-nucleus RNA sequencing to characterize the molecular diversity of brain cells across six developmental stages and four brain regions in the mouse and marmoset brain. Our analysis of over 170,000 single astrocyte nuclei revealed striking regional heterogeneity among astrocytes, particularly between telencephalic and diencephalic regions, at all developmental time points surveyed in both species. At the stages sampled, most of the region patterning was private to astrocytes and not shared with neurons or other glial types. Though astrocytes were already regionally patterned in late embryonic stages, this region-specific astrocyte gene expression signature changed dramatically over postnatal development, and its composition suggests that regional astrocytes further specialize postnatally to support their local neuronal circuits. Comparing across species, we found divergence in the expression of astrocytic region- and age-differentially expressed genes and the timing of astrocyte maturation relative to birth between mouse and marmoset, as well as hundreds of species differentially expressed genes. Finally, we used expansion microscopy to show that astrocyte morphology is largely conserved across gray matter regions of prefrontal cortex, striatum, and thalamus in the mouse, despite substantial molecular divergence.
Collapse
Affiliation(s)
- Margaret E Schroeder
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | | | - Lukas Metzner
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Jinyoung Kang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Katelyn X Li
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Eunah Yu
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Kirsten M Levandowski
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Qiangge Zhang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Yang Tan Collective, MIT, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
14
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
15
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Rahmati-Dehkordi F, Khanifar H, Najari N, Tamtaji Z, Talebi Taheri A, Aschner M, Shafiee Ardestani M, Mirzaei H, Dadgostar E, Nabavizadeh F, Tamtaji OR. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Neurochem Res 2024; 49:2668-2681. [PMID: 38918332 DOI: 10.1007/s11064-024-04199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahre-kord University of Medical Sciences, Shahre-kord, Iran
| | - Nazanin Najari
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
18
|
Juráková V, Széky B, Zapletalová M, Fehér A, Zana M, Pandey S, Kučera R, Šerý O, Hudeček J, Dinnyés A, Lochman J. Assessment and Evaluation of Contemporary Approaches for Astrocyte Differentiation from hiPSCs: A Modeling Paradigm for Alzheimer's Disease. Biol Proced Online 2024; 26:30. [PMID: 39342077 PMCID: PMC11437813 DOI: 10.1186/s12575-024-00257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key players in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Numerous differentiation protocols have been developed to study human astrocytes in vitro. However, the properties of the resulting glia are inconsistent, making it difficult to select an appropriate method for a given research question. Therefore, we compared three approaches for the generation of iPSC-derived astrocytes. We performed a detailed analysis using a widely used long serum-free (LSFP) and short serum-free (SSFP) protocol, as well as a TUSP protocol using serum for a limited time of differentiation. RESULTS We used RNA sequencing and immunochemistry to characterize the cultures. Astrocytes generated by the LSFP and SSFP methods differed significantly in their characteristics from those generated by the TUSP method using serum. The TUSP astrocytes had a less neuronal pattern, showed a higher degree of extracellular matrix formation, and were more mature. The short-term presence of FBS in the medium facilitated the induction of astroglia characteristics but did not result in reactive astrocytes. Data from cell-type deconvolution analysis applied to bulk transcriptomes from the cultures assessed their similarity to primary and fetal human astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol for solving specific research tasks or drug discovery studies with iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Veronika Juráková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Omar Šerý
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic
| | - Jiří Hudeček
- Psychiatric Clinic, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - András Dinnyés
- BioTalentum Ltd, Godollo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, The Czech Academy of Science, Veveří 97, 60200, Brno, Czech Republic.
| |
Collapse
|
19
|
Zhao Y, Huang Y, Cao Y, Yang J. Astrocyte-Mediated Neuroinflammation in Neurological Conditions. Biomolecules 2024; 14:1204. [PMID: 39456137 PMCID: PMC11505625 DOI: 10.3390/biom14101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Astrocytes are one of the key glial types of the central nervous system (CNS), accounting for over 20% of total glial cells in the brain. Extensive evidence has established their indispensable functions in the maintenance of CNS homeostasis, as well as their broad involvement in neurological conditions. In particular, astrocytes can participate in various neuroinflammatory processes, e.g., releasing a repertoire of cytokines and chemokines or specific neurotrophic factors, which result in both beneficial and detrimental effects. It has become increasingly clear that such astrocyte-mediated neuroinflammation, together with its complex crosstalk with other glial cells or immune cells, designates neuronal survival and the functional integrity of neurocircuits, thus critically contributing to disease onset and progression. In this review, we focus on the current knowledge of the neuroinflammatory responses of astrocytes, summarizing their common features in neurological conditions. Moreover, we highlight several vital questions for future research that promise novel insights into diagnostic or therapeutic strategies against those debilitating CNS diseases.
Collapse
Affiliation(s)
- Yanxiang Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- The Affiliated High School, Peking University, Beijing 100080, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Third Hospital Cancer Center, Beijing 100191, China
| |
Collapse
|
20
|
Theophanous S, Sargiannidou I, Kleopa KA. Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis. Int J Mol Sci 2024; 25:9588. [PMID: 39273535 PMCID: PMC11395575 DOI: 10.3390/ijms25179588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair.
Collapse
Affiliation(s)
- Styliani Theophanous
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| |
Collapse
|
21
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
22
|
Li M, Liu X, Zhou Y, Guan R, Zhu X, Zou Y, Zheng M, Luo W, Zhang J. Retarded astrogliogenesis in response to hypoxia is facilitated by downregulation of CIRBP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116710. [PMID: 39024953 DOI: 10.1016/j.ecoenv.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The adverse impacts of chronic hypoxia on maternal and infant health at high altitudes warrant significant attention. However, effective protective measures against the resultant growth restrictions and neurodevelopmental disorders in infants and young children are still lacking. This study investigated the neurodevelopment of mice offspring under hypoxic conditions by exposing pregnant mice to a hypobaric oxygen chamber that simulated the hypobaric hypoxia at an altitude of 4000 m until 28 days after delivery. Our findings suggested that prolonged exposure to hypoxia might result in emotional abnormalities and social disorders in offspring. The significant reduction in astrogliogenesis was a characteristic feature associated with neurodevelopmental disorders induced by hypoxia. Further studies demonstrated that cold-induced RNA-binding protein (CIRBP) was a key transcriptional regulator in astrogliogenesis, which downregulated astrocytic differentiation under hypoxia through its crosstalk with the NFIA. Our study emphasized the crucial role of CIRBP in regulating astrogliogenesis and highlighted its potential as a promising target for therapeutic interventions in neurodevelopmental disorders associated with hypoxia.
Collapse
Affiliation(s)
- Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Fourth Military Medical University, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| |
Collapse
|
23
|
Kharlamova A, Krivova Y, Proshchina A, Godovalova O, Otlyga D, Andreeva E, Shachina M, Grushetskaya E, Saveliev S. Spatial-temporal representation of the astroglial markers in the developing human cortex. Brain Struct Funct 2024:10.1007/s00429-024-02850-z. [PMID: 39153086 DOI: 10.1007/s00429-024-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Specific spatiotemporal patterns of the normal glial differentiation during human brain development have not been thoroughly studied. Immunomorphological studies on postmortem material have remained a basic method for human neurodevelopmental studies so far. The main problem for the immunohistochemical research of astrogliogenesis is that now there are no universal astrocyte markers, that characterize the whole mature astrocyte population or precursors at each stage of development. To define the general course of astrogliogenesis in the developing human cortex, 25 fetal autopsy samples at the stages from eight postconceptional weeks to birth were collected for the immunomorphological analysis. Spatiotemporal immunoreactivity patterns with the panel of markers (ALDH1L1, GFAP, S100, SOX9, and Olig-2), related to glial differentiation were described and compared. The early S100 + cell population of ventral origin was described as well. This S100 + cell distribution deviated from the SOX9-immunoreactivity pattern and was similar to the Olig-2 one. In the given material the dorsal gliogenic wave was characterized by ALDH1L1-, GFAP-, and S100-immunoreactivity manifestation in the dorsal proliferative niche at the end of the early fetal period. The time point of dorsal astrogliogenesis was agreed upon not later than the 17 GW stage. ALDH1L1 + , GFAP + , S100 + , and SOX9 + cell expansion patterns from the ventricular and subventricular zones to the intermediate zone, subplate, and cortical plate were described at the end of early fetal, middle, and late fetal periods. The ALDH1L1-, GFAP-, and S100-immunoreactivity patterns were shown to be not completely identical.
Collapse
Affiliation(s)
- A Kharlamova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418.
| | - Yu Krivova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - A Proshchina
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - O Godovalova
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - D Otlyga
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - E Andreeva
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
- FGBEU APE Russian Medical Academy Continuous Professional Education, Barrikadnaya St., 2/1, S.1, Moscow, Russia, 125993
| | - M Shachina
- Moscow Regional Research Institute of Obstetrics and Gynecology, Pokrovka St., 22A, Moscow, Russia, 101000
| | - E Grushetskaya
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| | - S Saveliev
- Avtsyn Research Institute of Human Morphology of FSBSI "Petrovsky National Research Centre of Surgery", Tsyurupy St., 3, Moscow, Russia, 117418
| |
Collapse
|
24
|
Shen J, Xu J, Wen Y, Tang Z, Li J, Sun J. Carnosine ameliorates postoperative cognitive dysfunction of aged rats by limiting astrocytes pyroptosis. Neurotherapeutics 2024; 21:e00359. [PMID: 38664193 PMCID: PMC11301240 DOI: 10.1016/j.neurot.2024.e00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 07/15/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients, and neuroinflammation is a key hallmark. Recent studies suggest that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated astrocytes pyroptosis is involved in the regulation of neuroinflammation in many neurocognitive diseases, while its role in POCD remains obscure. Carnosine is a natural endogenous dipeptide with anti-inflammatory and neuroprotective effects. To explore the effect of carnosine on POCD and its mechanism, we established a POCD model by exploratory laparotomy in 24-month-old male Sprague-Dawley rats. We found that the administrated of carnosine notably attenuated surgery-induced NLRP3 inflammasome activation and pyroptosis in astrocytes, central inflammation, and neuronal damage in the hippocampus of aged rats. In addition, carnosine dramatically ameliorated the learning and memory deficits of surgery-induced aged rats. Then in the in vitro experiments, we stimulated primary astrocytes with lipopolysaccharide (LPS) after carnosine pretreatment. The results also showed that the application of carnosine alleviated the activation of the NLRP3 inflammasome, pyroptosis, and inflammatory response in astrocytes stimulated by LPS. Taken together, these findings suggest that carnosine improves POCD in aged rats via inhibiting NLRP3-mediated astrocytes pyroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Jiahong Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jiawen Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yuxin Wen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zili Tang
- Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianliang Sun
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China; Zhejiang University School of Medicine, Hangzhou, China; Department of Anesthesiology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
25
|
Piscopo VEC, Chapleau A, Blaszczyk GJ, Sirois J, You Z, Soubannier V, Chen CXQ, Bernard G, Antel JP, Durcan TM. The use of a SOX10 reporter toward ameliorating oligodendrocyte lineage differentiation from human induced pluripotent stem cells. Glia 2024; 72:1165-1182. [PMID: 38497409 DOI: 10.1002/glia.24524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.
Collapse
Affiliation(s)
- Valerio E C Piscopo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexandra Chapleau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Gabriela J Blaszczyk
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Zhipeng You
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Vincent Soubannier
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
- Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Chen J, Tsai YH, Linden AK, Kessler JA, Peng CY. YAP and TAZ differentially regulate postnatal cortical progenitor proliferation and astrocyte differentiation. J Cell Sci 2024; 137:jcs261516. [PMID: 38639242 DOI: 10.1242/jcs.261516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
WW domain-containing transcription regulator 1 (WWTR1, referred to here as TAZ) and Yes-associated protein (YAP, also known as YAP1) are transcriptional co-activators traditionally studied together as a part of the Hippo pathway, and are best known for their roles in stem cell proliferation and differentiation. Despite their similarities, TAZ and YAP can exert divergent cellular effects by differentially interacting with other signaling pathways that regulate stem cell maintenance or differentiation. In this study, we show in mouse neural stem and progenitor cells (NPCs) that TAZ regulates astrocytic differentiation and maturation, and that TAZ mediates some, but not all, of the effects of bone morphogenetic protein (BMP) signaling on astrocytic development. By contrast, both TAZ and YAP mediate the effects on NPC fate of β1-integrin (ITGB1) and integrin-linked kinase signaling, and these effects are dependent on extracellular matrix cues. These findings demonstrate that TAZ and YAP perform divergent functions in the regulation of astrocyte differentiation, where YAP regulates cell cycle states of astrocytic progenitors and TAZ regulates differentiation and maturation from astrocytic progenitors into astrocytes.
Collapse
Affiliation(s)
- Jessie Chen
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne K Linden
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Kessler
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Li L, Lixia D, Gan G, Li J, Yang L, Wu Y, Fang Z, Zhang X. Astrocytic HILPDA promotes lipid droplets generation to drive cognitive dysfunction in mice with sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14758. [PMID: 38757390 PMCID: PMC11099789 DOI: 10.1111/cns.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of PediatricXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Du Lixia
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Guifen Gan
- Department of Critical Care MedicineQinghai University Affiliated HospitalXiningQinghaiChina
| | - Jin Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - You Wu
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Zongping Fang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Critical Care MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
29
|
Kakogiannis D, Kourla M, Dimitrakopoulos D, Kazanis I. Reversal of Postnatal Brain Astrocytes and Ependymal Cells towards a Progenitor Phenotype in Culture. Cells 2024; 13:668. [PMID: 38667283 PMCID: PMC11049274 DOI: 10.3390/cells13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFβ pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.
Collapse
Affiliation(s)
- Dimitrios Kakogiannis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Michaela Kourla
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Dimitrakopoulos
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
30
|
Verma R, Jayakumar J, Folkerth R, Manger PR, Bota M, Majumder M, Pandurangan K, Savoia S, Karthik S, Kumarasami R, Joseph J, Rohini G, Vasudevan S, Srinivasan C, Lata S, Kumar EH, Rangasami R, Kumutha J, Suresh S, Šimić G, Mitra PP, Sivaprakasam M. Histological characterization and development of mesial surface sulci in the human brain at 13-15 gestational weeks through high-resolution histology. J Comp Neurol 2024; 532:e25612. [PMID: 38591638 DOI: 10.1002/cne.25612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
Cellular-level anatomical data from early fetal brain are sparse yet critical to the understanding of neurodevelopmental disorders. We characterize the organization of the human cerebral cortex between 13 and 15 gestational weeks using high-resolution whole-brain histological data sets complimented with multimodal imaging. We observed the heretofore underrecognized, reproducible presence of infolds on the mesial surface of the cerebral hemispheres. Of note at this stage, when most of the cerebrum is occupied by lateral ventricles and the corpus callosum is incompletely developed, we postulate that these mesial infolds represent the primordial stage of cingulate, callosal, and calcarine sulci, features of mesial cortical development. Our observations are based on the multimodal approach and further include histological three-dimensional reconstruction that highlights the importance of the plane of sectioning. We describe the laminar organization of the developing cortical mantle, including these infolds from the marginal to ventricular zone, with Nissl, hematoxylin and eosin, and glial fibrillary acidic protein (GFAP) immunohistochemistry. Despite the absence of major sulci on the dorsal surface, the boundaries among the orbital, frontal, parietal, and occipital cortex were very well demarcated, primarily by the cytoarchitecture differences in the organization of the subplate (SP) and intermediate zone (IZ) in these locations. The parietal region has the thickest cortical plate (CP), SP, and IZ, whereas the orbital region shows the thinnest CP and reveals an extra cell-sparse layer above the bilaminar SP. The subcortical structures show intensely GFAP-immunolabeled soma, absent in the cerebral mantle. Our findings establish a normative neurodevelopment baseline at the early stage.
Collapse
Affiliation(s)
- Richa Verma
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jaikishan Jayakumar
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Rebecca Folkerth
- Department of Forensic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mihail Bota
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Moitrayee Majumder
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Karthika Pandurangan
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Srinivasa Karthik
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ramdayalan Kumarasami
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jayaraj Joseph
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| | - G Rohini
- Department of Obstetrics & Gynaecology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Sudha Vasudevan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - Chitra Srinivasan
- Department of Pathology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Lata
- Mediscan Systems, Chennai, Tamil Nadu, India
| | | | - Rajeswaran Rangasami
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jayaraman Kumutha
- Department of Neonatology, Saveetha Medical College, Thandalam, Chennai, Tamil Nadu, India
| | - S Suresh
- Mediscan Systems, Chennai, Tamil Nadu, India
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Hrvatska, Croatia
| | - Partha P Mitra
- Center for Computational Brain Research, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Cold Spring Harbor Laboratory, New York, New York, USA
| | - Mohanasankar Sivaprakasam
- Sudha Gopalakrishnan Brain Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Electrical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
31
|
Clayton BLL, Kristell JD, Allan KC, Cohn EF, Karl M, Jerome AD, Garrison E, Maeno-Hikichi Y, Sturno AM, Kerr A, Shick HE, Sepeda JA, Freundt EC, Sas AR, Segal BM, Miller RH, Tesar PJ. A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Nat Neurosci 2024; 27:656-665. [PMID: 38378993 PMCID: PMC11034956 DOI: 10.1038/s41593-024-01580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - James D Kristell
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erin F Cohn
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Andrew D Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric Garrison
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Yuka Maeno-Hikichi
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Annalise M Sturno
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alexis Kerr
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jesse A Sepeda
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | - Andrew R Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin M Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
32
|
Perdaens O, Bottemanne P, van Pesch V. MicroRNAs dysregulated in multiple sclerosis affect the differentiation of CG-4 cells, an oligodendrocyte progenitor cell line. Front Cell Neurosci 2024; 18:1336439. [PMID: 38486710 PMCID: PMC10937391 DOI: 10.3389/fncel.2024.1336439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Demyelination is one of the hallmarks of multiple sclerosis (MS). While remyelination occurs during the disease, it is incomplete from the start and strongly decreases with its progression, mainly due to the harm to oligodendrocyte progenitor cells (OPCs), causing irreversible neurological deficits and contributing to neurodegeneration. Therapeutic strategies promoting remyelination are still very preliminary and lacking within the current treatment panel for MS. Methods In a previous study, we identified 21 microRNAs dysregulated mostly in the CSF of relapsing and/or remitting MS patients. In this study we transfected the mimics/inhibitors of several of these microRNAs separately in an OPC cell line, called CG-4. We aimed (1) to phenotypically characterize their effect on OPC differentiation and (2) to identify corroborating potential mRNA targets via immunocytochemistry, RT-qPCR analysis, RNA sequencing, and Gene Ontology enrichment analysis. Results We observed that the majority of 13 transfected microRNA mimics decreased the differentiation of CG-4 cells. We demonstrate, by RNA sequencing and independent RT-qPCR analyses, that miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage as evidenced by the downregulation of premyelinating oligodendrocyte (OL) [Tcf7l2, Cnp (except for miR-145-5p)] and mature OL (Plp1, Mbp, and Mobp) markers, whereas only miR-214-3p promotes OPC differentiation. We further propose a comprehensive exploration of their change in cell fate through Gene Ontology enrichment analysis. We finally confirm by RT-qPCR analyses the downregulation of several predicted mRNA targets for each microRNA that possibly support their effect on OPC differentiation by very distinctive mechanisms, of which some are still unexplored in OPC/OL physiology. Conclusion miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage, whereas miR-214-3p promotes the differentiation of CG-4 cells. We propose several potential mRNA targets and hypothetical mechanisms by which each microRNA exerts its effect. We hereby open new perspectives in the research on OPC differentiation and the pathophysiology of demyelination/remyelination, and possibly even in the search for new remyelinating therapeutic strategies in the scope of MS.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
33
|
Liu J, Guo Y, Zhang Y, Zhao X, Fu R, Hua S, Xu S. Astrocytes in ischemic stroke: Crosstalk in central nervous system and therapeutic potential. Neuropathology 2024; 44:3-20. [PMID: 37345225 DOI: 10.1111/neup.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
In the central nervous system (CNS), a large group of glial cells called astrocytes play important roles in both physiological and disease conditions. Astrocytes participate in the formation of neurovascular units and interact closely with other cells of the CNS, such as microglia and neurons. Stroke is a global disease with high mortality and disability rate, most of which are ischemic stroke. Significant strides in understanding astrocytes have been made over the past few decades. Astrocytes respond strongly to ischemic stroke through a process known as activation or reactivity. Given the important role played by reactive astrocytes (RAs) in different spatial and temporal aspects of ischemic stroke, there is a growing interest in the potential therapeutic role of astrocytes. Currently, interventions targeting astrocytes, such as mediating astrocyte polarization, reducing edema, regulating glial scar formation, and reprogramming astrocytes, have been proven in modulating the progression of ischemic stroke. The aforementioned potential interventions on astrocytes and the crosstalk between astrocytes and other cells of the CNS will be summarized in this review.
Collapse
Affiliation(s)
- Jueling Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
34
|
Shin HJ, Choi SG, Qu F, Yi MH, Lee CH, Kim SR, Kim HG, Beom J, Yi Y, Kim DK, Joe EH, Song HJ, Kim Y, Kim DW. Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury. NANOSCALE 2024; 16:833-847. [PMID: 38093712 DOI: 10.1039/d3nr01318a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Astrocytes are highly activated following brain injuries, and their activation influences neuronal survival. Additionally, SOX9 expression is known to increase in reactive astrocytes. However, the role of SOX9 in activated astrocytes following ischemic brain damage has not been clearly elucidated yet. Therefore, in the present study, we investigated the role of SOX9 in reactive astrocytes using a poly-lactic-co-glycolic acid (PLGA) nanoparticle plasmid delivery system in a photothrombotic stroke animal model. We designed PLGA nanoparticles to exclusively enhance SOX9 gene expression in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Our observations indicate that PLGA nanoparticles encapsulated with GFAP:SOX9:tdTOM reduce ischemia-induced neurological deficits and infarct volume through the prostaglandin D2 pathway. Thus, the astrocyte-targeting PLGA nanoparticle plasmid delivery system provides a potential opportunity for stroke treatment. Since the only effective treatment currently available is reinstating the blood supply, cell-specific gene therapy using PLGA nanoparticles will open a new therapeutic paradigm for brain injury patients in the future.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Seung Gyu Choi
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jaewon Beom
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yoonyoung Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, Korea
| | - Hee-Jung Song
- Department of Neurology, Chungnam National University and Sejong Hospital, Sejong 30099, Korea
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon 35015, Korea
- Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
35
|
Hong W, Gong P, Pan X, Ren Z, Liu Y, Qi G, Li JL, Sun W, Ge WP, Zhang CL, Duan S, Qin S. Temporal-spatial Generation of Astrocytes in the Developing Diencephalon. Neurosci Bull 2024; 40:1-16. [PMID: 37843774 PMCID: PMC10774245 DOI: 10.1007/s12264-023-01131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023] Open
Abstract
Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhonggan Ren
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun-Liszt Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9148, USA
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
37
|
Hao H, Hou Y, Li A, Niu L, Li S, He B, Zhang X, Song H, Cai R, Zhou Y, Yao C, Wang Y, Wang Y. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury. CNS Neurosci Ther 2023; 29:3802-3814. [PMID: 37334735 PMCID: PMC10651974 DOI: 10.1111/cns.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important mediator of neuropathology in various central nervous system (CNS) diseases. However, little is known about its inducers for production from the nerve cells, as well as the underlying regulatory mechanism. Injury-induced HIF-1α has been shown to exacerbate neuroinflammation by activating multiple downstream target molecules. It is postulated that HIF-1α is involved in the regulation of MIF following spinal cord injury (SCI). METHODS SCI model of Sprague-Dawley rats was established by cord contusion at T8-T10. The dynamic changes of HIF-1α and MIF protein levels at lesion site of rat spinal cord were determined by Western blot. The specific cell types of HIF-1α and MIF expression were examined by immunostaining. Primary astrocytes were isolated from the spinal cord, cultured and stimulated with various agonist or inhibitor of HIF-1α for analysis of HIF-1α-mediated expression of MIF. Luciferase report assay was used to determine the relationship between HIF-1α and MIF. The Basso, Beattie, and Bresnahan (BBB) locomotor scale was used to assess the locomotor function following SCI. RESULTS The protein levels of HIF-1α and MIF at lesion site were significantly elevated by SCI. Immunofluorescence demonstrated that both HIF-1α and MIF were abundantly expressed in the astrocytes of the spinal cord. By using various agonists or inhibitors of HIF-1α, it was shown that HIF-1α sufficiently induced astrocytic production of MIF. Mechanistically, HIF-1α promoted MIF expression through interaction with MIF promoter. Inhibition of HIF-1α activity using specific inhibitor markedly reduced the protein levels of MIF at lesion site following SCI, which in turn favored for the functional recovery. CONCLUSION SCI-induced activation of HIF-1α is able to promote MIF production from astrocytes. Our results have provided new clues for SCI-induced production of DAMPs, which may be helpful for clinical treatment of neuroinflammation.
Collapse
Affiliation(s)
- Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Li Niu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Shaolan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
38
|
Jaraíz-Rodríguez M, Del Prado L, Balsa E. Metabolic remodeling in astrocytes: Paving the path to brain tumor development. Neurobiol Dis 2023; 188:106327. [PMID: 37839712 DOI: 10.1016/j.nbd.2023.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
The brain is a highly metabolic organ, composed of multiple cell classes, that controls crucial functions of the body. Although neurons have traditionally been the main protagonist, astrocytes have gained significant attention over the last decade. In this regard, astrocytes are a type of glial cells that have recently emerged as critical regulators of central nervous system (CNS) function and play a significant role in maintaining brain energy metabolism. However, in certain scenarios, astrocyte behavior can go awry, which poses a significant threat to brain integrity and function. This is definitively the case for mutations that turn normal astrocytes and astrocytic precursors into gliomas, an aggressive type of brain tumor. In addition, healthy astrocytes can interact with tumor cells, becoming part of the tumor microenvironment and influencing disease progression. In this review, we discuss the recent evidence suggesting that disturbed metabolism in astrocytes can contribute to the development and progression of fatal human diseases such as cancer. Emphasis is placed on detailing the molecular bases and metabolic pathways of this disease and highlighting unique metabolic vulnerabilities that can potentially be exploited to develop successful therapeutic opportunities.
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lucia Del Prado
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Eduardo Balsa
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain; Instituto Universitario de Biología Molecular - IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
39
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 PMCID: PMC11407732 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
40
|
Gao MY, Wang JQ, He J, Gao R, Zhang Y, Li X. Single-Cell RNA-Sequencing in Astrocyte Development, Heterogeneity, and Disease. Cell Mol Neurobiol 2023; 43:3449-3464. [PMID: 37552355 PMCID: PMC11409980 DOI: 10.1007/s10571-023-01397-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Astrocytes are the most plentiful cell type in the central nervous system (CNS) and perform complicated functions in health and disease. It is obvious that different astrocyte subpopulations, or activation states, are relevant with specific genomic programs and functions. In recent years, the emergence of new technologies such as single-cell RNA sequencing (scRNA-seq) has made substantial advance in the characterization of astrocyte heterogeneity, astrocyte developmental trajectory, and its role in CNS diseases which has had a significant impact on neuroscience. In this review, we present an overview of astrocyte development, heterogeneity, and its essential role in the physiological and pathological environments of the CNS. We focused on the critical role of single-cell sequencing in revealing astrocyte development, heterogeneity, and its role in different CNS diseases.
Collapse
Affiliation(s)
- Meng-Yuan Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jia-Qi Wang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Jin He
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Rui Gao
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuan Zhang
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Li
- A National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
41
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
42
|
Martinez-Lozada Z, Todd FW, Schober AL, Krizman E, Robinson MB, Murai KK. Cooperative and competitive regulation of the astrocytic transcriptome by neurons and endothelial cells: Impact on astrocyte maturation. J Neurochem 2023; 167:52-75. [PMID: 37525469 PMCID: PMC10543513 DOI: 10.1111/jnc.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023]
Abstract
Astrocytes have essential roles in central nervous system (CNS) health and disease. During development, immature astrocytes show complex interactions with neurons, endothelial cells, and other glial cell types. Our work and that of others have shown that these interactions are important for astrocytic maturation. However, whether and how these cells work together to control this process remains poorly understood. Here, we test the hypothesis that cooperative interactions of astrocytes with neurons and endothelial cells promote astrocytic maturation. Astrocytes were cultured alone, with neurons, endothelial cells, or a combination of both. This was followed by astrocyte sorting, RNA sequencing, and bioinformatic analysis to detect transcriptional changes. Across culture configurations, 7302 genes were differentially expressed by 4 or more fold and organized into 8 groups that demonstrate cooperative and antagonist effects of neurons and endothelia on astrocytes. We also discovered that neurons and endothelial cells caused splicing of 200 and 781 mRNAs, respectively. Changes in gene expression were validated using quantitative PCR, western blot (WB), and immunofluorescence analysis. We found that the transcriptomic data from the three-culture configurations correlated with protein expression of three representative targets (FAM107A, GAT3, and GLT1) in vivo. Alternative splicing results also correlated with cortical tissue isoform representation of a target (Fibronectin 1) at different developmental stages. By comparing our results to published transcriptomes of immature and mature astrocytes, we found that neurons or endothelia shift the astrocytic transcriptome toward a mature state and that the presence of both cell types has a greater effect on maturation than either cell alone. These results increase our understanding of cellular interactions/pathways that contribute to astrocytic maturation. They also provide insight into how alterations to neurons and/or endothelial cells may alter astrocytes with implications for astrocytic changes in CNS disorders and diseases.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Farmer W. Todd
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Alexandra L. Schober
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| | - Elizabeth Krizman
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B. Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada H3G 1A4
| |
Collapse
|
43
|
Yao ZM, Sun XR, Huang J, Chen L, Dong SY. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem Res 2023; 48:2996-3006. [PMID: 37329448 DOI: 10.1007/s11064-023-03966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system. These cells are an important hub for intercellular communication. They participate in various pathophysiological processes, including synaptogenesis, metabolic transformation, scar production, and blood-brain barrier repair. The mechanisms and functional consequences of astrocyte-neuron signaling are more complex than previously thought. Stroke is a disease associated with neurons in which astrocytes also play an important role. Astrocytes respond to the alterations in the brain microenvironment after stroke, providing required substances to neurons. However, they can also have harmful effects. In this review, we have summarized the function of astrocytes, their association with neurons, and two paradigms of the inflammatory response, which suggest that targeting astrocytes may be an effective strategy for treating stroke.
Collapse
Affiliation(s)
- Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China.
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, China.
| |
Collapse
|
44
|
Mulica P, Venegas C, Landoulsi Z, Badanjak K, Delcambre S, Tziortziou M, Hezzaz S, Ghelfi J, Smajic S, Schwamborn J, Krüger R, Antony P, May P, Glaab E, Grünewald A, Pereira SL. Comparison of two protocols for the generation of iPSC-derived human astrocytes. Biol Proced Online 2023; 25:26. [PMID: 37730545 PMCID: PMC10512486 DOI: 10.1186/s12575-023-00218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Astrocytes have recently gained attention as key contributors to the pathogenesis of neurodegenerative disorders including Parkinson's disease. To investigate human astrocytes in vitro, numerous differentiation protocols have been developed. However, the properties of the resulting glia are inconsistent, which complicates the selection of an appropriate method for a given research question. Thus, we compared two approaches for the generation of iPSC-derived astrocytes. We phenotyped glia that were obtained employing a widely used long, serum-free ("LSF") method against an in-house established short, serum-containing ("SSC") protocol which allows for the generation of astrocytes and midbrain neurons from the same precursor cells. RESULTS We employed high-content confocal imaging and RNA sequencing to characterize the cultures. The astrocytes generated with the LSF or SSC protocols differed considerably in their properties: while the former cells were more labor-intense in their generation (5 vs 2 months), they were also more mature. This notion was strengthened by data resulting from cell type deconvolution analysis that was applied to bulk transcriptomes from the cultures to assess their similarity with human postmortem astrocytes. CONCLUSIONS Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol, when designing functional or drug discovery studies involving iPSC-derived astrocytes.
Collapse
Affiliation(s)
- Patrycja Mulica
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Maria Tziortziou
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Soraya Hezzaz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Jens Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
45
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
46
|
Freitas-Andrade M, Comin CH, Van Dyken P, Ouellette J, Raman-Nair J, Blakeley N, Liu QY, Leclerc S, Pan Y, Liu Z, Carrier M, Thakur K, Savard A, Rurak GM, Tremblay MÈ, Salmaso N, da F Costa L, Coppola G, Lacoste B. Astroglial Hmgb1 regulates postnatal astrocyte morphogenesis and cerebrovascular maturation. Nat Commun 2023; 14:4965. [PMID: 37587100 PMCID: PMC10432480 DOI: 10.1038/s41467-023-40682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Astrocytes are intimately linked with brain blood vessels, an essential relationship for neuronal function. However, astroglial factors driving these physical and functional associations during postnatal brain development have yet to be identified. By characterizing structural and transcriptional changes in mouse cortical astrocytes during the first two postnatal weeks, we find that high-mobility group box 1 (Hmgb1), normally upregulated with injury and involved in adult cerebrovascular repair, is highly expressed in astrocytes at birth and then decreases rapidly. Astrocyte-selective ablation of Hmgb1 at birth affects astrocyte morphology and endfoot placement, alters distribution of endfoot proteins connexin43 and aquaporin-4, induces transcriptional changes in astrocytes related to cytoskeleton remodeling, and profoundly disrupts endothelial ultrastructure. While lack of astroglial Hmgb1 does not affect the blood-brain barrier or angiogenesis postnatally, it impairs neurovascular coupling and behavior in adult mice. These findings identify astroglial Hmgb1 as an important player in postnatal gliovascular maturation.
Collapse
Affiliation(s)
| | - Cesar H Comin
- Federal University of São Carlos, Department of Computer Science, São Carlos, Brazil
| | - Peter Van Dyken
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Joanna Raman-Nair
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nicole Blakeley
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qing Yan Liu
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sonia Leclerc
- National Research Council of Canada, Human Health and Therapeutics, Ottawa, ON, Canada
| | - Youlian Pan
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Ziying Liu
- Digital Technologies, National Research Council of Canada, Ottawa, ON, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Karan Thakur
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alexandre Savard
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Luciano da F Costa
- University of São Paulo, São Carlos Institute of Physics, FCM-USP, São Paulo, Brazil
| | | | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
47
|
Zuo T, Gong B, Gao Y, Yuan L. An in vitro study on the stimulatory effects of extracellular glutamate on astrocytes. Mol Biol Rep 2023; 50:6611-6617. [PMID: 37344642 DOI: 10.1007/s11033-023-08601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND In our previous research, it was found that the cerebrospinal fluid had higher levels of glutamate, astrocytes were stimulated and released pro-inflammatory factors in a subarachnoid hemorrhage model. Glutamate is a neurotransmitter produced in abundance by excitatory neurons in the central nervous system, residual glutamate can cause neurotoxicity. Recent studies indicate that most glutamate is absorbed by astrocytes, to optimize neurological functions and prevent excitotoxicity. However, it is still unclear if astrocytes could be stimulated by glutamate, and the concentration range of glutamate transportable by astrocytes. Thus, further research is necessary. METHODS AND RESULTS This study aimed to clarify these scientific questions by stimulating primary astrocytes at different glutamate concentrations (0, 25, 50, and 100 µM) for 24 h. The results showed that glutamate induced an increased response in astrocytes, the protein levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were upregulated in treatment groups with 50 and 100 µM. Additionally, the protein expression of complement component 3 (C3) significantly increased following glutamate stimulation (50 and 100 µM) for 24 h. Furthermore, the supernatant of the 100 µM treatment group significantly decreased the viability of HT-22 (an immortalized mouse hippocampal neuronal cell line). CONCLUSIONS In summary, our results indicate that increased extracellular glutamate levels can activate astrocytes and promote pro-inflammatory factor production. Moreover, the concentration range of glutamate transported by astrocytes is approximately less than 50-100 µM. Therefore, our study suggests that experimental antagonization of glutamate excitotoxicity is feasible.
Collapse
Affiliation(s)
- Ting Zuo
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Bingzheng Gong
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yang Gao
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Liangjie Yuan
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
48
|
Lindblad C, Neumann S, Kolbeinsdóttir S, Zachariadis V, Thelin EP, Enge M, Thams S, Brundin L, Svensson M. Stem cell-derived brainstem mouse astrocytes obtain a neurotoxic phenotype in vitro upon neuroinflammation. J Inflamm (Lond) 2023; 20:22. [PMID: 37370141 PMCID: PMC10303821 DOI: 10.1186/s12950-023-00349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Astrocytes respond to injury and disease through a process known as reactive astrogliosis, of which inflammatory signaling is one subset. This inflammatory response is heterogeneous with respect to the inductive stimuli and the afflicted central nervous system region. This is of plausible importance in e.g. traumatic axonal injury (TAI), where lesions in the brainstem carries a particularly poor prognosis. In fact, astrogliotic forebrain astrocytes were recently suggested to cause neuronal death following axotomy. We therefore sought to assess if ventral brainstem- or rostroventral spinal astrocytes exert similar effects on motor neurons in vitro. METHODS We derived brainstem/rostroventral spinal astrocyte-like cells (ES-astrocytes) and motor neurons using directed differentiation of mouse embryonic stem cells (ES). We activated the ES-astrocytes using the neurotoxicity-eliciting cytokines interleukin- (IL-) 1α and tumor necrosis factor-(TNF-)α and clinically relevant inflammatory mediators. In co-cultures with reactive ES-astrocytes and motor neurons, we assessed neurotoxic ES-astrocyte activity, similarly to what has previously been shown for other central nervous system (CNS) regions. RESULTS We confirmed the brainstem/rostroventral ES-astrocyte identity using RNA-sequencing, immunocytochemistry, and by comparison with primary subventricular zone-astrocytes. Following cytokine stimulation, the c-Jun N-terminal kinase pathway down-stream product phosphorylated c-Jun was increased, thus demonstrating ES-astrocyte reactivity. These reactive ES-astrocytes conferred a contact-dependent neurotoxic effect upon co-culture with motor neurons. When exposed to IL-1β and IL-6, two neuroinflammatory cytokines found in the cerebrospinal fluid and serum proteome following human severe traumatic brain injury (TBI), ES-astrocytes exerted similar effects on motor neurons. Activation of ES-astrocytes by these cytokines was associated with pathways relating to endoplasmic reticulum stress and altered regulation of MYC. CONCLUSIONS Ventral brainstem and rostroventral spinal cord astrocytes differentiated from mouse ES can exert neurotoxic effects in vitro. This highlights how neuroinflammation following CNS lesions can exert region- and cell-specific effects. Our in vitro model system, which uniquely portrays astrocytes and neurons from one niche, allows for a detailed and translationally relevant model system for future studies on how to improve neuronal survival in particularly vulnerable CNS regions following e.g. TAI.
Collapse
Affiliation(s)
- Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden.
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
| | | | | | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, J5:20 Svensson Group, Karolinska Universitetssjukhuset Solna, SE-171 77, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
O'Neill KM, Saracino E, Barile B, Mennona NJ, Mola MG, Pathak S, Posati T, Zamboni R, Nicchia GP, Benfenati V, Losert W. Decoding Natural Astrocyte Rhythms: Dynamic Actin Waves Result from Environmental Sensing by Primary Rodent Astrocytes. Adv Biol (Weinh) 2023; 7:e2200269. [PMID: 36709481 DOI: 10.1002/adbi.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes are key regulators of brain homeostasis, equilibrating ion, water, and neurotransmitter concentrations and maintaining essential conditions for proper cognitive function. Recently, it has been shown that the excitability of the actin cytoskeleton manifests in second-scale dynamic fluctuations and acts as a sensor of chemophysical environmental cues. However, it is not known whether the cytoskeleton is excitable in astrocytes and how the homeostatic function of astrocytes is linked to the dynamics of the cytoskeleton. Here it is shown that homeostatic regulation involves the excitable dynamics of actin in certain subcellular regions of astrocytes, especially near the cell boundary. The results further indicate that actin dynamics concentrate into "hotspot" regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes the actin dynamics of astrocytes weaker. Super-resolution images demonstrate that surface topography is also associated with the predominant perpendicular alignment of actin filaments near the cell boundary, whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Additionally, coculture with neurons increases both the probability of actin dynamics and the strength of hotspots. The excitable systems character of actin thus makes astrocytes direct participants in neural cell network dynamics.
Collapse
Affiliation(s)
- Kate M O'Neill
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Emanuela Saracino
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Barbara Barile
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Nicholas J Mennona
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| | - Maria Grazia Mola
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Spandan Pathak
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Tamara Posati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Roberto Zamboni
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Grazia P Nicchia
- Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Valentina Benfenati
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
- Physics Department, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
50
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|