1
|
Xu M, van de Wiel MA, Martinovičová D, Huseinovic A, van Beusechem VW, Stalpers LJ, Oei AL, Steenbergen RD, Snoek BC. High-throughput 3D spheroid screens identify microRNA sensitizers for improved thermoradiotherapy in locally advanced cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102500. [PMID: 40206659 PMCID: PMC11979520 DOI: 10.1016/j.omtn.2025.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Chemoradiotherapy is the standard of care for many locally advanced cancers, including cervical and head and neck cancers, but many patients cannot tolerate chemotherapy. Clinical trials have shown that radiotherapy combined with hyperthermia (thermoradiotherapy) may be equally effective, yet it yields a suboptimal overall survival of patients, emphasizing the need for improvement. MicroRNAs (miRNAs), short non-coding RNA sequences, are often dysregulated in cancer and exhibit significant potential as radiosensitizers by targeting genes associated with the DNA damage response. In this study, high-throughput miRNA screening of four cervical cancer cell lines identified 55 miRNAs with significant sensitizing potential, with 18 validated across 10 additional cancer cell lines (6 cervical and 4 head and neck). Functional studies of 6 miRNAs, including miR-16, miR-27a, miR-181c, miR-221, miR-224, and miR-1293, showed that they reduced DNA damage repair by downregulating ATM, DNA-PKcs, Ku70/80, and RAD51. Additionally, differential expression of miR-27a, miR-221, and miR-224 in treatment-sensitive versus treatment-resistant patients indicated their predictive biomarker potential for treatment response of cervical cancer patients. Conclusively, this study has identified 18 promising miRNAs for the development of sensitizers for thermoradiotherapy and may provide potential biomarkers for predicting treatment response in locally advanced cancers.
Collapse
Affiliation(s)
- MengFei Xu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Mark A. van de Wiel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Dominika Martinovičová
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Angelina Huseinovic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Victor W. van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam Infection and Immunity Institute, Cancer Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Lukas J.A. Stalpers
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Arlene L. Oei
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Renske D.M. Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Barbara C. Snoek
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
2
|
Mondal SK, Hong CS, Han J, Diergaarde B, Zandberg DP, Whiteside TL. Amlodipine, an L-type Ca2+ channel inhibitor, regulates release of extracellular vesicles from tumor cells. Carcinogenesis 2025; 46:bgaf016. [PMID: 40121518 DOI: 10.1093/carcin/bgaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Tumor cells produce/release tumor-derived exosomes (TEX) which promote tumor growth, drive immune suppression, and interfere with immune therapies. Amlodipine, a calcium flux inhibitor, may block TEX release by tumor cells. Amlodipine's potential as a drug blocking TEX release was evaluated. We measured tumor growth, TEX numbers, phenotype, and molecular content in murine SCCVII and human cancer cell lines. Cell lysates and TEX were tested for expression of autophagy-related proteins by western blots (WBs). Tumor growth in mice, histopathology, T-cell infiltrations, and TEX production by SCCVII treated with amlodipine were measured. Numbers and protein content of TEX eluted from tumor explants were studied by flow cytometry and WBs. Amlodipine used in vitro at 0.5-5 µM was nontoxic, did not impair tumor cell viability, reduced cell proliferation, and decreased TEX production. It reduced PD-L1 and Rab11 content of TEX, altered tumor cell size/shape, induced vesicle accumulations in the cytosol, and upregulated expression levels of autophagy-related proteins, ATG7, Beclin-1, and LC3. In vivo, daily treatment of established SCCVII with amlodipine (10 mg/kg) inhibited tumor growth (P < 0.001), increased CD8+ T-cell infiltration into tumor, decreased TEX production, and altered PD-L1, Rab11, and FasL content of TEX. Amlodipine delivered in vitro to tumor cells or in vivo to tumor-bearing mice interferes with tumor growth and TEX production, induces tumor autophagy, reduces circulating TEX numbers, and alters the TEX immunosuppressive signature. Amlodipine emerges as a potentially promising drug for removing immunosuppressive TEX in cancer subjects who are candidates for immune therapies.
Collapse
Affiliation(s)
- Sujan K Mondal
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| | - Brenda Diergaarde
- Department of Human Genetics, School of Public Health, University of Pittsburgh, UPMC Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, United States
| | - Dan P Zandberg
- Department of Medicine, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Pittsburgh, PA 15213, United States
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Ave, Suite 1.32, Pittsburgh, PA 15213, United States
| |
Collapse
|
3
|
Azhakesan A, Kern J, Mishra A, Selhuber‐Unkel C, Affolter A, Gatenholm P, Rotter N, Bieback K. 3D Bioprinted Head and Neck Squamous Cell Carcinoma (HNSCC) Model Using Tunicate Derived Nanocellulose (NC) Bioink. Adv Healthc Mater 2025; 14:e2403114. [PMID: 39801216 PMCID: PMC11912098 DOI: 10.1002/adhm.202403114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 03/18/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are invasive solid tumors accounting for high mortality. To improve the clinical outcome, a better understanding of the tumor and its microenvironment (TME) is crucial. Three -dimensional (3D) bioprinting is emerging as a powerful tool for recreating the TME in vitro. To establish long-term HNSCC bioprinted constructs for personalized drug-testing, this proof-of-principle study aims to compare two different innovative tunicate-derived nanocellulose (NC) hydrogels against the widely used semi-synthetic gelatin methacryloyl (GelMA). Cell lines of different tumor origin sites are printed in TEMPO and Carboxy-NC, and GelMA in alginate (GelMAA). Both NC hydrogels show higher bioprintability than GelMAA. Carboxy-NC supported long-term HNSCC survival, proliferation, and maintenance of epithelial phenotype in 3D bioprinted constructs similar to GelMAA. The hydrogel microstructure revealed differences in pore size. Importantly, the established HNSCC bioprinted model allowed the testing of radiochemotherapy (RCT) both in cell lines and patient-derived cultures. Compared to a spheroid model, the cytotoxic effects are less, better reflecting the response in patients. The proof-of-principle findings indicate that Carboxy-NC is a viable alternative to gelatin-based bioink with improved bioprintability allowing personalized drug-testing. By adding other cell-types of the TME, this model can be advanced to a heterotypic one.
Collapse
Affiliation(s)
- Alexya Azhakesan
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Johann Kern
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Ankit Mishra
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg University69120HeidelbergGermany
| | - Annette Affolter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Paul Gatenholm
- 3D Bioprinting CentreDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Nicole Rotter
- Medical Faculty of MannheimUniversity of HeidelbergDepartment of OtorhinolarynlogyHead and Neck Surgery68167MannheimGermany
| | - Karen Bieback
- Institute of Transfusion Medicine and ImmunologyMedical Faculty MannheimHeidelberg UniversityGerman Red Cross Blood Donor Service Baden‐Württemberg – Hessen68167MannheimGermany
| |
Collapse
|
4
|
Özdaş S, Canatar İ, Özdaş T, Sarialtin SY, Ağca AC, Koç M. Antioxidant, cytotoxic, anti-migratory, and pro-apoptotic effects of Bolanthus turcicus extracts on head and neck cancer cells. Mol Biol Rep 2024; 51:1104. [PMID: 39476042 DOI: 10.1007/s11033-024-09994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
PURPOSE Investigation of various plant extracts using in-vitro/in-vivo assays has emerged as a promising avenue for identifying potential pharmacophores that can be developed into therapeutic drugs. This study aims to assess the bioactive compounds and antioxidant capacity of the Bolanthus turcicus (B. turcicus) and to investigate the effects on head and neck cancer (HNC) cell lines. METHODS Methanol (MeOH), ethyl acetate (EA) and aqueous (Aq) extracts were prepared from B. turcicus, and the amount of total phenolic content (TPC) and total flavonoid content (TFC) in the extracts were analyzed by the Folin-Ciocalteu and Aluminum chloride method, respectively. In addition, the total antioxidant capacity and iron reducing potential of B. turcicus extracts were determined by the Phosphomolybdenum and Ferric ion reducing antioxidant power (FRAP) method. The effect of B. turcicus on HEp-2, SCC-90, SCC-9, FaDu HNC cell viability, motility, and cell-nuclear morphology was evaluated by MTT, scratch-wound healing assay, and Pllalloidin-DAPI staining, respectively. The effect of B. turcicus on the expression of CASP-3, BAX, and BCL-2 genes at the mRNA, protein, and intracellular level was evaluated by quantitative PCR (qPCR), western blot, and immunofluorescence staining. Moreover, Annexin V-FITC/PI, was used in flow cytometry to investigate the effect of B. turcicus on apoptosis. RESULTS The MeOH extract exhibited the highest phenolic content, flavonoid content and antioxidant activity (p < 0.05 for all). HNC cells treated with extracts indicated delayed wound healing and decreased motility (p < 0.05 for all). Analysis of annexin V-PI staining indicated that the B. turcicus extracts induced apoptosis but not viability and necrosis in the HNC cell (p < 0.05 for all). Moreover, qPCR data regarding the apoptotic mechanism showed that the extracts could induce apoptosis by upregulation of pro-apoptotic CASP-3 and BAX genes and downregulation of anti-apoptotic BCL-2 gene (p < 0.05 for all). The expression of protein and intracellular levels of CASP-3 and BAX were increased, while the BCL-2 was decreased in cells treated with the extracts (p < 0.05 for all). In addition, diffuse pycnosis and DNA condensation in HNC cell nuclei, confirming apoptotic cell death (p < 0.05 for all). CONCLUSION This study data indicated that B. turcicus extracts have antioxidant, cytotoxic, anti-migratory and pro-apoptotic activity. In conclusion, it has been shown that B. turcicus can be used as a potential therapeutic agent against HNC.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
- Faculty of Engineering, Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| | - İpek Canatar
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Talih Özdaş
- Department of ENT, University of Health Sciences, Adana City Training and Research Hospital, Adana, Türkiye
| | | | - Aslı Can Ağca
- Department of Traditional, Complementary and Integrative Medicine, Yıldırım Beyazıt University, Ankara, Türkiye
| | - Murat Koç
- Department of Traditional, Complementary and Integrative Medicine, Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
5
|
Li Z, Sun M, Yang R, Wang Z, Zhu Q, Zhang Y, Yang H, Meng Z, Hu L, Sui L. Mediator complex subunit 1 promotes oral squamous cell carcinoma progression by activating MMP9 transcription and suppressing CD8 + T cell antitumor immunity. J Exp Clin Cancer Res 2024; 43:270. [PMID: 39343952 PMCID: PMC11440895 DOI: 10.1186/s13046-024-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The role of Mediator complex subunit 1 (MED1), a pivotal transcriptional coactivator implicated in diverse biological pathways, remains unexplored in the context of oral squamous cell carcinoma (OSCC). This study aims to elucidate the contributory mechanisms and potential impact of MED1 on the progression of OSCC. METHODS The expression and clinical significance of MED1 in OSCC tissues were evaluated through the bioinformatics analyses. The effects of MED1 on the biological behavior of OSCC cancer cells were assessed both in vitro and in vivo. Dual-luciferase reporter assay, chromatin immunoprecipitation (ChIP) assay, bioinformatic analysis, CD8+ T cell isolation experiment, coculture experiment, enzyme-linked immunosorbent assay (ELISA), and flow cytometric analysis were employed to elucidate the underlying mechanism through which MED1 operates in the progression of OSCC. RESULTS MED1 exhibited upregulation in both OSCC tissues and multiple OSCC cell lines, which correlated with decreased overall survival in patients. In vitro experiments demonstrated that knockdown of MED1 in metastatic OSCC cell lines SCC-9 and UPCI-SCC-154 hindered cell migration and invasion, while overexpression of MED1 promoted these processes. Whereas, MED1 knockdown had no impact on proliferation of cell lines mentioned above. In vivo studies further revealed that downregulation of MED1 effectively suppressed distant metastasis in OSCC. Mechanistically, MED1 enhanced the binding of transcription factors c-Jun and c-Fos to the matrix metalloprotein 9 (MMP9) promoters, resulting in a significant upregulation of MMP9 transcription. This process contributes to the migration and invasion of SCC-9 and UPCI-SCC-154 cells. Furthermore, MED1 modulated the expression of programmed death-ligand 1 (PD-L1) through the Notch signaling pathway, consequently impacting the tumor-killing capacity of CD8+ T cells in the tumor microenvironment. CONCLUSIONS Our findings indicate that MED1 plays a pivotal role in OSCC progression through the activation of MMP9 transcription and suppression of CD8+ T cell antitumor immunity, suggesting that MED1 may serve as a novel prognostic marker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Ruimeng Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zheng Wang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yue Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Haosun Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institue of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
6
|
Li J, Rouse SL, Matthews IR, Park Y, Eltawil Y, Sherr EH, Chan DK. Modulating the unfolded protein response with ISRIB mitigates cisplatin ototoxicity. Sci Rep 2024; 14:22382. [PMID: 39333235 PMCID: PMC11437005 DOI: 10.1038/s41598-024-70561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024] Open
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancy, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin, and UPR marker gene expression and cell death measured. Treatment with ISRIB (Integrated Stress Response InhIBitor), a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested for its ability to reduce apoptosis in HEK cells, hair-cell death in cochlear cultures, and hearing loss using an in vivo mouse model of cisplatin ototoxicity. Finally, to evaluate whether ISRIB might interfere with cisplatin chemoeffectiveness, we tested it in head and neck squamous cell carcinoma (HNSCC) cell-based assays of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
Affiliation(s)
- Jiang Li
- Department of Neurology, UCSF, San Francisco, USA
| | - Stephanie L Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Elliott H Sherr
- Department of Neurology, UCSF, San Francisco, USA
- Department of Pediatrics, Institute of Human Genetics, Weill Institute for Neurosciences, UCSF, San Francisco, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA.
| |
Collapse
|
7
|
Rubenich DS, Domagalski JL, Gentil GFS, Eichberger J, Fiedler M, Weber F, Federlin M, Poeck H, Reichert TE, Ettl T, Bauer RJ, Braganhol E, Schulz D. The immunomodulatory ballet of tumour-derived extracellular vesicles and neutrophils orchestrating the dynamic CD73/PD-L1 pathway in cancer. J Extracell Vesicles 2024; 13:e12480. [PMID: 38978304 PMCID: PMC11231043 DOI: 10.1002/jev2.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.
Collapse
Affiliation(s)
- Dominique S. Rubenich
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Jordana L. Domagalski
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Gabriela F. S. Gentil
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Jonas Eichberger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Mathias Fiedler
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Florian Weber
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| | - Marianne Federlin
- Department of Conservative Dentistry and PeriodontologyUniversity Medical Center RegensburgRegensburgGermany
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibnitz Institute for Immunotherapy (LIT)RegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| | - Elizandra Braganhol
- Biosciences Graduate ProgramFederal University of Health Science of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgRegensburgGermany
| |
Collapse
|
8
|
Kim CY, Kim JH, Moon JH, Jeong HN, Lim YC. Establishment and characterization of a novel human papillomavirus-positive tonsillar squamous cell carcinoma cell line (KUSCC-152) derived from a Korean patient. Acta Otolaryngol 2024; 144:476-484. [PMID: 39302639 DOI: 10.1080/00016489.2024.2390668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The mechanism of human papillomavirus (HPV)-induced tonsillar squamous cell carcinoma (TSCC) has not been clearly elucidated, and the number of authenticated HPV (+) TSCC cell lines is extremely limited. OBJECTIVES To establish and characterize a de novo HPV (+) TSCC cell line derived from a Korean patient with TSCC. MATERIALS AND METHODS We performed in vitro and in vivo experiments for evaluation of tumorigenicity of our TSCC cell line. In addition, we evaluated the stemness traits of this cell. Finally, we examined the physical status of our cell whether this belonged to the episomal, integrated, or mixed type. RESULTS The novel tonsillar cancer cell line, designated as KUSCC-152, was identified as a de novo TSCC cell line positive for HPV-16. In addition, the KUSCC-152 cell line has cancer cell traits in vitro and can induce tumor formation and metastasis to the neck lymph nodes in heterotopic and orthotopic xenograft mice. Moreover, the KUSCC-152 cells exhibited a cancer stemness phenotype, including sphere-forming capacity and the expression of stemness markers. Finally, we suggested that KUSCC 152 may belong to an integrated HPV incorporation type. CONCLUSIONS AND SIGNIFICANCE We successfully established and characterized a novel integrated-type HPV (+) TSCC cell line from an East Asian patient.
Collapse
Affiliation(s)
- Cha Yeon Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Jae Hyeok Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Hee Na Jeong
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Li J, Rouse SL, Matthews IR, Sherr EH, Chan DK. Modulating the Unfolded Protein Response with ISRIB Mitigates Cisplatin Ototoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562797. [PMID: 37905009 PMCID: PMC10614842 DOI: 10.1101/2023.10.17.562797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancies, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin and UPR-modulating drugs, and UPR marker gene expression and cell death measured. Treatment with ISRIB, a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested in an in vivo mouse model of cisplatin ototoxicity and well as a head and neck squamous cell carcinoma (HNSCC) cell-based assay of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact the cytotoxic effects of cisplatin on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
|
10
|
Ow TJ, Mehta V, Li D, Thomas C, Shrivastava N, Kawachi N, Gersten AJ, Zhu J, Schiff BA, Smith RV, Rosenblatt G, Augustine S, Prystowsky MB, Yin S, Gavathiotis E, Guha C. Characterization of a Diverse Set of Conditionally Reprogrammed Head and Neck Cancer Cell Cultures. Laryngoscope 2024; 134:2748-2756. [PMID: 38288866 PMCID: PMC12007172 DOI: 10.1002/lary.31236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 05/09/2024]
Abstract
OBJECTIVE To establish and characterize a diverse library of head and neck squamous cell cancer (HNSCC) cultures using conditional reprogramming (CR). METHODS Patients enrolled on an IRB-approved protocol to generate tumor cell cultures using CR methods. Tumor and blood samples were collected and clinical information was recorded. Successful CR cultures were validated against banked reference tumors with short tandem repeat genotyping. Cell morphology was archived with photodocumentation. Clinical and demographic factors were evaluated for associations with successful establishment of CR culture. Human papilloma virus (HPV) genotyping, clonogenic survival, MTT assays, spheroid growth, and whole exome sequencing were carried out in selected cultures. RESULTS Forty four patients were enrolled, with 31 (70%) successful CR cultures, 32% derived from patients who identified as Black and 61% as Hispanic. All major head and neck disease sites were represented, including 15 (48%) oral cavity and 8 (26%) p16-positive oropharynx cancers. Hispanic ethnicity and first primary tumors (vs. second primary or recurrent tumors) were significantly associated with successful CR culture. HPV expression was conserved in CR cultures, including CR-024, which carried a novel HPV-69 serotype. CR cultures were used to test cisplatin responses using MTT assays. Previous work has also demonstrated these models can be used to assess response to radiation and can be engrafted in mouse models. Whole exome sequencing demonstrated that CR cultures preserved tumor mutation burden and driver mutations. CONCLUSION CR culture is highly successful in propagating HNSCC cells. This study included a high proportion of patients from underrepresented minority groups. LEVEL OF EVIDENCE Not Applicable Laryngoscope, 134:2748-2756, 2024.
Collapse
Affiliation(s)
- Thomas J. Ow
- Montefiore Medical Center/Albert Einstein College of Medicine
| | - Vikas Mehta
- Montefiore Medical Center/Albert Einstein College of Medicine
| | - Daniel Li
- Montefiore Medical Center/Albert Einstein College of Medicine
| | - Carlos Thomas
- Montefiore Medical Center/Albert Einstein College of Medicine
| | | | - Nicole Kawachi
- Montefiore Medical Center/Albert Einstein College of Medicine
| | - Adam J Gersten
- Montefiore Medical Center/Albert Einstein College of Medicine
| | - Jing Zhu
- Montefiore Medical Center/Albert Einstein College of Medicine
| | | | | | | | | | | | - Shanye Yin
- Montefiore Medical Center/Albert Einstein College of Medicine
| | | | - Chandan Guha
- Montefiore Medical Center/Albert Einstein College of Medicine
| |
Collapse
|
11
|
Wils LJ, Buijze M, Stigter-van Walsum M, Brink A, van Kempen BE, Peferoen L, Brouns ER, de Visscher JGAM, van der Meij EH, Bloemena E, Poell JB, Brakenhoff RH. Genomic Engineering of Oral Keratinocytes to Establish In Vitro Oral Potentially Malignant Disease Models as a Platform for Treatment Investigation. Cells 2024; 13:710. [PMID: 38667326 PMCID: PMC11049138 DOI: 10.3390/cells13080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Precancerous cells in the oral cavity may appear as oral potentially malignant disorders, but they may also present as dysplasia without visual manifestation in tumor-adjacent tissue. As it is currently not possible to prevent the malignant transformation of these oral precancers, new treatments are urgently awaited. Here, we generated precancer culture models using a previously established method for the generation of oral keratinocyte cultures and incorporated CRISPR/Cas9 editing. The generated cell lines were used to investigate the efficacy of a set of small molecule inhibitors. Tumor-adjacent mucosa and oral leukoplakia biopsies were cultured and genetically characterized. Mutations were introduced in CDKN2A and TP53 using CRISPR/Cas9 and combined with the ectopic activation of telomerase to generate cell lines with prolonged proliferation. The method was tested in normal oral keratinocytes and tumor-adjacent biopsies and subsequently applied to a large set of oral leukoplakia biopsies. Finally, a subset of the immortalized cell lines was used to assess the efficacy of a set of small molecule inhibitors. Culturing and genomic engineering was highly efficient for normal and tumor-adjacent oral keratinocytes, but success rates in oral leukoplakia were remarkably low. Knock-out of CDKN2A in combination with either the activation of telomerase or knock-out of TP53 seemed a prerequisite for immortalization. Prolonged culturing was accompanied by additional genetic aberrations in these cultures. The generated cell lines were more sensitive than normal keratinocytes to small molecule inhibitors of previously identified targets. In conclusion, while very effective for normal keratinocytes and tumor-adjacent biopsies, the success rate of oral leukoplakia cell culturing methods was very low. Genomic engineering enabled the prolonged culturing of OL-derived keratinocytes but was associated with acquired genetic changes. Further studies are required to assess to what extent the immortalized cultures faithfully represent characteristics of the cells in vivo.
Collapse
Affiliation(s)
- Leon J. Wils
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, 1081 HV Amsterdam, The Netherlands;
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marijke Stigter-van Walsum
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Britt E. van Kempen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Laura Peferoen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, 1081 HV Amsterdam, The Netherlands;
| | - Elisabeth R. Brouns
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Jan G. A. M. de Visscher
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Erik H. van der Meij
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, 1081 HV Amsterdam, The Netherlands; (L.J.W.); (J.G.A.M.d.V.); (E.B.)
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Jos B. Poell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Ruud H. Brakenhoff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, 1081 HV Amsterdam, The Netherlands (A.B.)
- Cancer Center Amsterdam (CCA), Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Choi S, Hossain M, Lee H, Baek J, Park HS, Lim CL, Han D, Park T, Kim JH, Gong G, Kweon MN, Lee HJ. Expansion of tumor-infiltrating lymphocytes from head and neck squamous cell carcinoma to assess the potential of adoptive cell therapy. Cancer Immunol Immunother 2024; 73:101. [PMID: 38630265 PMCID: PMC11024072 DOI: 10.1007/s00262-024-03691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Adoptive transfer of in vitro expanded tumor-infiltrating lymphocytes (TILs) has been effective in regressing several types of malignant tumors. This study assessed the yield and factors influencing the successful expansion of tumor-infiltrating lymphocytes (TILs) from head and neck squamous cell carcinoma (HNSCC), along with their immune phenotypes. METHODS TILs were expanded from 47 surgically resected HNSCC specimens and their metastasized lymph nodes. The cancer tissues were cut into small pieces (1-2 mm) and underwent initial expansion for 2 weeks. Tumor location, smoking history, stromal TIL percentage, human papillomavirus infection, and programmed death-ligand 1 score were examined for their impact on successful expansion of TILs. Expanded TILs were evaluated by flow cytometry using fluorescence-activated cell sorting. A second round of TIL expansion following the rapid expansion protocol was performed on a subset of samples with successful TIL expansion. RESULTS TILs were successfully expanded from 36.2% samples. Failure was due to contamination (27.6%) or insufficient expansion (36.2%). Only the stromal TIL percentage was significantly associated with successful TIL expansion (p = 0.032). The stromal TIL percentage also displayed a correlation with the expanded TILs per fragment (r = 0.341, p = 0.048). On flow cytometry analysis using 13 samples with successful TIL expansion, CD4 + T cell dominancy was seen in 69.2% of cases. Effector memory T cells were the major phenotype of expanded CD4 + and CD8 + T cells in all cases. CONCLUSION We could expand TILs from approximately one-third of HNSCC samples. TIL expansion could be applicable in HNSCC samples with diverse clinicopathological characteristics.
Collapse
Affiliation(s)
- Sangjoon Choi
- Department of Pathology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mofazzal Hossain
- Department of Medical Science, Brain Korea 21 project, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Lee
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jina Baek
- Department of Pathology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | | | | | - DoYeon Han
- Department of Medical Science, Brain Korea 21 project, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Taehyun Park
- Department of Medical Science, Brain Korea 21 project, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong Hyeok Kim
- Department of Medical Science, Brain Korea 21 project, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Hee Jin Lee
- Department of Pathology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- NeogenTC Corp, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Bakema JE, Stigter-van Walsum M, Harris JR, Ganzevles SH, Muthuswamy A, Houtkamp M, Plantinga TS, Bloemena E, Brakenhoff RH, Breij ECW, van de Ven R. An Antibody-Drug Conjugate Directed to Tissue Factor Shows Preclinical Antitumor Activity in Head and Neck Cancer as a Single Agent and in Combination with Chemoradiotherapy. Mol Cancer Ther 2024; 23:187-198. [PMID: 37828725 DOI: 10.1158/1535-7163.mct-23-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type that arises in the squamous epithelial cells lining the mucosal surfaces of the upper aerodigestive tract. Long-term survival of patients with advanced disease stage remains disappointing with current treatment options. We show that tissue factor is abundantly expressed on patient-derived HNSCC cell lines, xenograft tumor material, and tumor biopsies from patients with HNSCC. Tisotumab vedotin (TV) is an antibody-drug conjugate (ADC) directed to tissue factor, a protein expressed in many solid tumors. HNSCC cells and xenograft tumors were efficiently eliminated in vitro and in vivo with TV-monotherapy compared with treatment with a control antibody conjugated to monomethyl auristatin E (MMAE). Antitumor activity of TV was also tested in vivo in combination with chemoradiotherapy, standard of care for patients with advanced stage HNSCC tumors outside the oral cavity. Preclinical studies showed that by adding TV to chemoradiotherapy, survival was markedly improved, and TV, not radiotherapy or chemotherapy, was the main driver of antitumor activity. Interestingly, TV-induced cell death in xenograft tumors showed an influx of macrophages indicative of a potential immune-mediated mode-of-action. In conclusion, on the basis of these preclinical data, TV may be a novel treatment modality for patients suffering from head and neck cancer and is hypothesized to improve efficacy of chemoradiotherapy. SIGNIFICANCE This work shows preclinical in vitro and in vivo antitumor activity of the antibody-drug conjugate Tisotumab vedotin in head and neck cancer models, and enhanced activity in combination with chemoradiotherapy, supporting further clinical development for this cancer type.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Genmab, Utrecht, The Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Sonja H Ganzevles
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | | | | | | | - Elisabeth Bloemena
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Rieneke van de Ven
- Department of Otolaryngology | Head & Neck Surgery, Amsterdam UMC, location VU University Medical Center, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Schulz D, Feulner L, Santos Rubenich D, Heimer S, Rohrmüller S, Reinders Y, Falchetti M, Wetzel M, Braganhol E, Lummertz da Rocha E, Schäfer N, Stöckl S, Brockhoff G, Wege AK, Fritsch J, Pohl F, Reichert TE, Ettl T, Bauer RJ. Subcellular localization of PD-L1 and cell-cycle-dependent expression of nuclear PD-L1 variants: implications for head and neck cancer cell functions and therapeutic efficacy. Mol Oncol 2024; 18:431-452. [PMID: 38103190 PMCID: PMC10850815 DOI: 10.1002/1878-0261.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/18/2023] Open
Abstract
The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.
Collapse
Affiliation(s)
- Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Laura Feulner
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Dominique Santos Rubenich
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
- Postgraduation program in BiosciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Sina Heimer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Sophia Rohrmüller
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Yvonne Reinders
- Leibniz‐Institute for Analytical Sciences, ISAS e.V.DortmundGermany
| | - Marcelo Falchetti
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Martin Wetzel
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Elizandra Braganhol
- Department of Basic Health SciencesFederal University of Health Sciences from Porto AlegreBrazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and ParasitologyFederal University of Santa CatarinaFlorianópolisBrazil
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Sabine Stöckl
- Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgGermany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| | - Gero Brockhoff
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Anja K. Wege
- Department of Gynecology and ObstetricsUniversity Medical Center RegensburgGermany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious DiseasesUniversity Medical Center RegensburgGermany
| | - Fabian Pohl
- Department of RadiotherapyUniversity Medical Center RegensburgGermany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgGermany
- Department of Oral and Maxillofacial Surgery, Experimental Oral and Maxillofacial Surgery, Center for Medical BiotechnologyUniversity Hospital RegensburgGermany
| |
Collapse
|
15
|
Karuppiah N, B S, Chockalingam RM, Bhupathy PK, Kalaimani G, Ramamurthi R. Chemopreventive Efficacy of Sulindac Sulfone as a Selective Apoptotic Antineoplastic Drug in Human Head and Neck Squamous Cell Carcinoma Cell Lines: A Systematic Review. Cureus 2024; 16:e51692. [PMID: 38313951 PMCID: PMC10838484 DOI: 10.7759/cureus.51692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Sulindac sulfone, an active metabolite of sulindac, a non-steroidal anti-inflammatory drug, has good anti-inflammatory potential. The antineoplastic effect of sulindac sulfone is mediated through a cyclooxygenase inhibitory mechanism, followed by apoptosis and inhibition of cell proliferation. Mounting studies have explored the anti-neoplastic effect of sulindac sulfone in various types of cancers in a dose-dependent manner. In this backdrop, we have conducted a systematic review to evaluate the efficacy and dose of sulindac sulfone as an anti-neoplastic agent in human head and neck squamous cell carcinoma cell lines (HNSCCs). In this study, we used a systematic literature review approach, and articles were searched in PubMed, and Medline with the keywords "sulindac sulfone," "anti-neoplastic activity," "chemopreventive," and "head and neck squamous cell carcinoma". A hand-search of journals was also performed. Articles were reviewed and analyzed. The analysis reveals that, based on the in vitro studies on various tumor models, the optimum concentration of sulindac sulfone which elicits anti-neoplastic effects is 200-800 µM. The anti-neoplastic effect is mediated through inhibition of cell proliferation and apoptosis. The results of our systematic review show that the anti-neoplastic activity of pharmacologic Sulindac sulfone is part of its dose-dependent activity, which can be safely employed in the therapy for human HNSCCs and would be responsible for a beneficial outcome of the treatment.
Collapse
Affiliation(s)
- Nivethitha Karuppiah
- Oral Pathology and Microbiology, Priyadarshini Dental College and Hospital, Tiruvallur, IND
| | - Sivapathasundharam B
- Oral Pathology and Microbiology, Priyadarshini Dental College and Hospital, Tiruvallur, IND
| | | | | | | | | |
Collapse
|
16
|
Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. J Pers Med 2023; 13:1575. [PMID: 38003890 PMCID: PMC10672510 DOI: 10.3390/jpm13111575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
| | - Andrey Makarov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
17
|
Arnold L, Gomez JP, Barry M, Yap M, Jackson L, Ly T, Standing D, Padhye SB, Biersack B, Anant S, Thomas SM. Acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone targeting cellular JUN proto-oncogene, AP-1 transcription factor subunit inhibits head and neck squamous cell carcinoma progression. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1104-1121. [PMID: 38023989 PMCID: PMC10651473 DOI: 10.37349/etat.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Juan Pineda Gomez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael Barry
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Marrion Yap
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Laura Jackson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Subhash B. Padhye
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune 411007, Maharashtra, India
| | - Bernhard Biersack
- Department of Biology, Chemistry, Earth Sciences, University of Bayreuth, 95440 Bayreuth, Germany
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
18
|
Granda-Díaz R, Manterola L, Hermida-Prado F, Rodríguez R, Santos L, García-de-la-Fuente V, Fernández MT, Corte-Torres MD, Rodrigo JP, Álvarez-Teijeiro S, Lawrie CH, Garcia-Pedrero JM. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed Pharmacother 2023; 161:114512. [PMID: 36931033 DOI: 10.1016/j.biopha.2023.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Treatment of head and neck squamous cell carcinomas (HNSCC), the sixth most frequent cancer worldwide, remains challenging. miRNA dysregulation is closely linked to tumorigenesis and tumor progression, thus emerging as suitable targets for cancer treatment. Transcriptomic analysis of TCGA HNSCC dataset revealed that miR-301a expression levels significantly increased in primary tumors, as compared to patient-matched normal tissue. This prompted us to investigate its pathobiological role and potential as new therapeutic target using different preclinical HNSCC models. miR-301a overexpression in HNSCC-derived cell lines led to enhanced proliferation and invasion, whereas miR-301 inhibition reduced these effects. In vivo validation was performed using an orthotopic mouse model. Results concordantly showed that the mitotic counts, the percentage of infiltration depth and Ki67 proliferative index were significantly augmented in the subgroup of mice harboring miR-301a-overexpressing tumors. Further mechanistic characterization revealed PI3K/PTEN/AKT and MEK/ERK pathways as central signaling nodes responsible for mediating the oncogenic activity of miR-301a observed in HNSCC cells. Notably, pharmacological disruption of PI3K and ERK signals with BYL-719 and PD98059, respectively, was effective to completely revert/abolish miR-301a-promoted tumor cell growth and invasion. Altogether, these findings demonstrate that miR-301a dysregulation plays an oncogenic role in HNSCC, thus emerging as a candidate therapeutic target for this disease. Importantly, available PI3K and ERK inhibitors emerge as promising anti-tumor agents to effectively target miR-301a-mediated signal circuit hampering growth-promoting and pro-invasive functions.
Collapse
Affiliation(s)
- Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorea Manterola
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain
| | - Francisco Hermida-Prado
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - René Rodríguez
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Sarcomas and Experimental Therapies, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Laura Santos
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Teresa Fernández
- Histopathology Unit, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - M Daniela Corte-Torres
- Biobank of Principado de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, China.
| | - Juana M Garcia-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Parikh AS, Yu VX, Flashner S, Okolo OB, Lu C, Henick BS, Momen-Heravi F, Puram SV, Teknos T, Pan Q, Nakagawa H. Patient-derived three-dimensional culture techniques model tumor heterogeneity in head and neck cancer. Oral Oncol 2023; 138:106330. [PMID: 36773387 PMCID: PMC10126876 DOI: 10.1016/j.oraloncology.2023.106330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) outcomes remain stagnant, in part due to a poor understanding of HNSCC biology. The importance of tumor heterogeneity as an independent predictor of outcomes and treatment failure in HNSCC has recently come to light. With this understanding, 3D culture systems, including patient derived organoids (PDO) and organotypic culture (OTC), that capture this heterogeneity may allow for modeling and manipulation of critical subpopulations, such as p-EMT, as well as interactions between cancer cells and immune and stromal cells in the microenvironment. Here, we review work that has been done using PDO and OTC models of HNSCC, which demonstrates that these 3D culture models capture in vivo tumor heterogeneity and can be used to model tumor biology and treatment response in a way that faithfully recapitulates in vivo characteristics. As such, in vitro 3D culture models represent an important bridge between 2D monolayer culture and in vivo models such as patient derived xenografts.
Collapse
Affiliation(s)
- Anuraag S Parikh
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States; Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Victoria X Yu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, United States
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Ogoegbunam B Okolo
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Chao Lu
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Columbia Unversity, New York, NY, United States
| | - Fatemeh Momen-Heravi
- Columbia University College of Dental Medicine, Columbia University, New York, NY, United States
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Theodoros Teknos
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Quintin Pan
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, United States.
| |
Collapse
|
20
|
Goruppi S, Clocchiatti A, Bottoni G, Di Cicco E, Ma M, Tassone B, Neel V, Demehri S, Simon C, Paolo Dotto G. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. Nat Commun 2023; 14:887. [PMID: 36797248 PMCID: PMC9935893 DOI: 10.1038/s41467-023-36410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Epigenetic mechanisms oversee epidermal homeostasis and oncogenesis. The identification of kinases controlling these processes has direct therapeutic implications. We show that ULK3 is a nuclear kinase with elevated expression levels in squamous cell carcinomas (SCCs) arising in multiple body sites, including skin and Head/Neck. ULK3 loss by gene silencing or deletion reduces proliferation and clonogenicity of human keratinocytes and SCC-derived cells and affects transcription impinging on stem cell-related and metabolism programs. Mechanistically, ULK3 directly binds and regulates the activity of two histone arginine methyltransferases, PRMT1 and PRMT5 (PRMT1/5), with ULK3 loss compromising PRMT1/5 chromatin association to specific genes and overall methylation of histone H4, a shared target of these enzymes. These findings are of translational significance, as downmodulating ULK3 by RNA interference or locked antisense nucleic acids (LNAs) blunts the proliferation and tumorigenic potential of SCC cells and promotes differentiation in two orthotopic models of skin cancer.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
| | - Andrea Clocchiatti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Giulia Bottoni
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Emery Di Cicco
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Min Ma
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Beatrice Tassone
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Shadhmer Demehri
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA
| | - Christian Simon
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland
| | - G Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, 02129, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, MA, USA.
- Personalized Cancer Prevention Research Unit and Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Department of Immunobiology, University of Lausanne, Epalinges, 1066, Switzerland.
- International Cancer Prevention Institute, Epalinges, 1066, Switzerland.
| |
Collapse
|
21
|
Preclinical models in head and neck squamous cell carcinoma. Br J Cancer 2023; 128:1819-1827. [PMID: 36765175 PMCID: PMC10147614 DOI: 10.1038/s41416-023-02186-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancer is the sixth most frequent cancer type. Drug resistance and toxicity are common challenges of the existing therapies, making the development of reliable preclinical models essential for the study of the involved molecular mechanisms as well as for eventual intervention approaches that improve the clinical outcome. Preclinical models of head and neck squamous cell carcinoma have been traditionally based on cell lines and murine models. In this review, we will go over the most frequently used preclinical models, from immortalised-cell and primary tumour cultures in monolayer or 3D, to the currently available animal models. We will scrutinise their efficiency in mimicking the molecular and cellular complexity of head and neck squamous cell carcinoma. Finally, the challenges and the opportunities of other envisaged putative approaches, as well as the potential of the preclinical models to further develop personalised therapies will be discussed.
Collapse
|
22
|
Standing D, Arnold L, Dandawate P, Ottemann B, Snyder V, Ponnurangam S, Sayed A, Subramaniam D, Srinivasan P, Choudhury S, New J, Kwatra D, Ramamoorthy P, Roy BC, Shadoin M, Al-Rajabi R, O’Neil M, Gunewardena S, Ashcraft J, Umar S, Weir SJ, Tawfik O, Padhye SB, Biersack B, Anant S, Thomas SM. Doublecortin-like kinase 1 is a therapeutic target in squamous cell carcinoma. Mol Carcinog 2023; 62:145-159. [PMID: 36218231 PMCID: PMC9852063 DOI: 10.1002/mc.23472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
Doublecortin like kinase 1 (DCLK1) plays a crucial role in several cancers including colon and pancreatic adenocarcinomas. However, its role in squamous cell carcinoma (SCC) remains unknown. To this end, we examined DCLK1 expression in head and neck SCC (HNSCC) and anal SCC (ASCC). We found that DCLK1 is elevated in patient SCC tissue, which correlated with cancer progression and poorer overall survival. Furthermore, DCLK1 expression is significantly elevated in human papilloma virus negative HNSCC, which are typically aggressive with poor responses to therapy. To understand the role of DCLK1 in tumorigenesis, we used specific shRNA to suppress DCLK1 expression. This significantly reduced tumor growth, spheroid formation, and migration of HNSCC cancer cells. To further the translational relevance of our studies, we sought to identify a selective DCLK1 inhibitor. Current attempts to target DCLK1 using pharmacologic approaches have relied on nonspecific suppression of DCLK1 kinase activity. Here, we demonstrate that DiFiD (3,5-bis [2,4-difluorobenzylidene]-4-piperidone) binds to DCLK1 with high selectivity. Moreover, DiFiD mediated suppression of DCLK1 led to G2/M arrest and apoptosis and significantly suppressed tumor growth of HNSCC xenografts and ASCC patient derived xenografts, supporting that DCLK1 is critical for SCC growth.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Brendan Ottemann
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Vusala Snyder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sivapriya Ponnurangam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Afreen Sayed
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jacob New
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Deep Kwatra
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Badal C. Roy
- Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Melissa Shadoin
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Raed Al-Rajabi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Maura O’Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - John Ashcraft
- Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, Kansas
| | - Ossama Tawfik
- Department of Pathology, Saint Luke’s Health System, Kansas City, Missouri and MAWD Pathology Group, Kansas City, Kansas
| | | | | | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture. Int J Mol Sci 2023; 24:ijms24021293. [PMID: 36674806 PMCID: PMC9861345 DOI: 10.3390/ijms24021293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.
Collapse
|
24
|
Greier MDC, Runge A, Dudas J, Carpentari L, Schartinger VH, Randhawa A, Mayr M, Petersson M, Riechelmann H. Optimizing culturing conditions in patient derived 3D primary slice cultures of head and neck cancer. Front Oncol 2023; 13:1145817. [PMID: 37064104 PMCID: PMC10101142 DOI: 10.3389/fonc.2023.1145817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 04/18/2023] Open
Abstract
Background Three-dimensional primary slice cultures (SC) of head and neck squamous cell carcinomas (HNC) are realistic preclinical models. Until now, preserving structure and viability ex vivo for several days has been difficult. The aim of this study was to optimize cultivation conditions for HNC SC and analyze the added effects of platelet rich fibrin (PRF) on these conditions. Methods SC were prepared from the tumor biopsies of 9 HNC patients. Cultures were incubated for 1 and 7 days in three different media- Keratinocyte serum-free medium (SFM), RPMI-1640i, and 1:1 mix of both, with and without addition of PRF. After culturing, SC were fixated, embedded, and stained with Hematoxylin-Eosin (HE) and cleaved caspase-3. In addition, triple immune fluorescence staining for cytokeratin, vimentin and CD45 was performed. Outcome parameters were cell count and cell density, viability and apoptosis, SC total area and proportions of keratinocytes, mesenchymal and immune cells. The effects of culture time, medium, and addition of PRF were calculated in an SPSS generalized linear model and using the Wald Chi-Squared test. Results Ninety-four slice cultures were analyzed. Viability remained stable for 7 days in culture. After addition of PRF, cell viability increased (p=0.05). SC total area decreased (0.44 ± 0.04 mm2 on day 1 (95% CI: 0.35 to 0.56) to 0.29 ± 0.03 mm2 on day 7 (95% CI: 0.22 to 0.36), but cell density and cell proportions remained stable. Differences in cultivation media had no significant impact on outcome parameters. Conclusion HNC SC can be preserved for up to 7 days using the tested cultivation media. Cell viability was best preserved with addition of PRF. HNC SC are a versatile experimental tool to study physiology and drug actions. Autologous PRF can help simulate realistic conditions in vitro.
Collapse
Affiliation(s)
- Maria do Carmo Greier
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annette Runge
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Annette Runge,
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Carpentari
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Volker Hans Schartinger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Avneet Randhawa
- Department of Otolaryngology, Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | | | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Kuthala N, Shanmugam M, Yao CL, Chiang CS, Hwang KC. One step synthesis of 10B-enriched 10BPO4 nanoparticles for effective boron neutron capture therapeutic treatment of recurrent head-and-neck tumor. Biomaterials 2022; 290:121861. [DOI: 10.1016/j.biomaterials.2022.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022]
|
26
|
Moya-Garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-Jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022; 12:960340. [PMID: 35992863 PMCID: PMC9381731 DOI: 10.3389/fonc.2022.960340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The 5-year overall survival rate remains approximately 50% for head and neck (H&N) cancer patients, even though new cancer drugs have been approved for clinical use since 2016. Cancer drug studies are now moving toward the use of three-dimensional culture models for better emulating the unique tumor microenvironment (TME) and better predicting in vivo response to cancer treatments. Distinctive TME features, such as tumor geometry, heterogenous cellularity, and hypoxic cues, notably affect tissue aggressiveness and drug resistance. However, these features have not been fully incorporated into in vitro H&N cancer models. This review paper aims to provide a scholarly assessment of the designs, contributions, and limitations of in vitro models in H&N cancer drug research. We first review the TME features of H&N cancer that are most relevant to in vitro drug evaluation. We then evaluate a selection of advanced culture models, namely, spheroids, organotypic models, and microfluidic chips, in their applications for H&N cancer drug research. Lastly, we propose future opportunities of in vitro H&N cancer research in the prospects of high-throughput drug screening and patient-specific drug evaluation.
Collapse
Affiliation(s)
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nader Sadeghi
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| | - Nicole Y. K. Li-Jessen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| |
Collapse
|
27
|
Zhou WH, Wang Y, Yan C, Du WD, Al-Aroomi MA, Zheng L, Lin SF, Gao JX, Jiang S, Wang ZX, Sun CF, Liu FY. CC chemokine receptor 7 promotes macrophage recruitment and induces M2-polarization through CC chemokine ligand 19&21 in oral squamous cell carcinoma. Discov Oncol 2022; 13:67. [PMID: 35904690 PMCID: PMC9338204 DOI: 10.1007/s12672-022-00533-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to investigate the impact of CC chemokine receptor 7 (CCR7) on the recruitment and polarization of tumor-associated macrophages (TAMs) in oral squamous cell carcinoma (OSCC). METHODS We analyzed CCR7 expression pattern, clinicopathological significance, and its association with M2 macrophage infiltration in OSCC by bioinformatic methods. Small interfering RNA (siRNA) was utilized to silence CCR7 in OSCC cells. Conditioned media (CM) was harvested from transfected OSCC cells to establish a co-culture model of THP-1 derived macrophages and OSCC cells. Transwell assay and cell adhesion assay were performed to examine the effect of CCR7 on macrophages recruitment and adhesion. Cytoskeleton was labelled by phalloidin to observe macrophage morphological changes. Moreover, phenotypic alteration of macrophages was measured using quantitative real-time PCR (qRT-PCR), flow cytometry, and immunofluorescence (IF) staining. Ultimately, recombinant human CCL19 and CCL21 were added into the medium of THP-1 derived macrophages to explore their effects on polarization in vitro. RESULTS In OSCC patients, the overexpression of CCR7 positively correlated with lymph node metastasis and M2 macrophage infiltration. Macrophage not only exhibited enhanced migration, invasion and adhesion abilities, but also appeared more spindle and branched in vitro when treated with CM from OSCC cells. However, these phenomena were abrogated with knockdown of CCR7. We also discovered that inhibition of CCR7 in OSCC cells suppressed TAMs polarization to an M2 phenotype. In addition, recombinant human CCL19 and CCL21 promoted macrophage M2-polarization in vitro. CONCLUSION CCR7 in OSCC cells promoted recruitment and M2-polarization of THP-1 derived macrophages in vitro by regulating production of CCL19 and CCL21.
Collapse
Affiliation(s)
- Wan-Hang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Wei-Dong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Maged Ali Al-Aroomi
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Li Zheng
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Shan-Feng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Jia-Xing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Sheng Jiang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Zeng-Xu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Chang-Fu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China
| | - Fa-Yu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, 117 Nanjing North Road, Heping District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
28
|
Kawata-Shimamura Y, Eguchi H, Kawabata-Iwakawa R, Nakahira M, Okazaki Y, Yoda T, Grénman R, Sugasawa M, Nishiyama M. Biomarker discovery for practice of precision medicine in hypopharyngeal cancer: a theranostic study on response prediction of the key therapeutic agents. BMC Cancer 2022; 22:779. [PMID: 35841085 PMCID: PMC9288037 DOI: 10.1186/s12885-022-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypopharyngeal cancer is a relatively rare malignancy with poor prognosis. Current chemotherapeutic algorithm is still far from personalized medicine, and the identification of the truly active therapeutic biomarkers and/or targets is eagerly awaited. METHODS Venturing to focus on the conventional key chemotherapeutic drugs, we identified the most correlative genes (and/or proteins) with cellular sensitivity to docetaxel (TXT), cisplatin (CDDP) and 5-fluorouracil (5-FU) in the expression levels, through 3 steps approach: genome-wide screening, confirmation study on the quantified expression levels, and knock-down and transfection analyses of the candidates. The probable action pathways of selected genes were examined by Ingenuity Pathway Analysis using a large-scale database, The Cancer Genome Atlas. RESULTS The first genome-wide screening study derived 16 highly correlative genes with cellular drug sensitivity in 15 cell lines (|R| > 0.8, P < 0.01 for CDDP and 5-FU; |R| > 0.5, P < 0.05 for TXT). Among 10 genes the observed correlations were confirmed in the quantified gene expression levels, and finally knock-down and transfection analyses provided 4 molecules as the most potent predictive markers-AGR2 (anterior gradient 2 homolog gene), and PDE4D (phosphodiesterase 4D, cAMP-specific gene) for TXT; NINJ2 (nerve Injury-induced protein 2); CDC25B (cell division cycle 25 homolog B gene) for 5-FU- in both gene and protein expression levels. Overexpression of AGR2, PDE4D signified worse response to TXT, and the repressed expression sensitized TXT activity. Contrary to the findings, in the other 2 molecules, NINJ2 and CDC25, there observed opposite relationship to cellular drug response to the relevant drugs. IPA raised the potential that each selected molecule functionally interacts with main action pathway (and/or targets) of the relevant drug such as tubulin β chain genes for TXT, DNA replication pathway for CDDP, and DNA synthesis pathway and thymidylate synthetase gene for 5-FU. CONCLUSION We newly propose 4 molecules -AGR2, PDE4D,NINJ2 and CDC25B) as the powerful exploratory markers for prediction of cellular response to 3 key chemotherapeutic drugs in hypopharyngeal cancers and also suggest their potentials to be the therapeutic targets, which could contribute to the development of precision medicine of the essential chemotherapy in hypopharyngeal patients. (339 words).
Collapse
Affiliation(s)
- Yumiko Kawata-Shimamura
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Hidetaka Eguchi
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Yoda
- Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masahiko Nishiyama
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan. .,Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Higashi Sapporo Hospital, 7-35, 3-3 Higashi-Sapporo, Shiroishi-ku, Sapporo, 003-8585, Japan.
| |
Collapse
|
29
|
Dwivedi N, Gangadharan C, Pillai V, Kuriakose M, Suresh A, Das M. Establishment and characterization of novel autologous pair cell lines from two Indian non‑habitual tongue carcinoma patients. Oncol Rep 2022; 48:150. [DOI: 10.3892/or.2022.8362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Nehanjali Dwivedi
- Molecular Immunology Program, MSMF, Narayana Health City, Bangalore 560099, India
| | - Charitha Gangadharan
- Department of Clinical Research, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore 560099, India
| | - Vijay Pillai
- Consultant, Department of Head and Neck Surgery, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore 560099, India
| | - Moni Kuriakose
- Consultant, Department of Head and Neck Surgery, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore 560099, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Research Program, MSMF, Narayana Health City, Bangalore 560099, India
| | - Manjula Das
- Molecular Immunology Program, MSMF, Narayana Health City, Bangalore 560099, India
| |
Collapse
|
30
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
31
|
Sun D, Li D, Liu R, Zhang R. The “Hand as Foot” teaching method in anatomy of the neck dissection. Asian J Surg 2022; 45:1317-1318. [DOI: 10.1016/j.asjsur.2022.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
|
32
|
Galanin mediates tumor-induced immunosuppression in head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2022; 45:241-256. [PMID: 35267186 PMCID: PMC9050779 DOI: 10.1007/s13402-021-00631-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Galanin receptor 2 (GALR2) plays a significant role in the progression of head and neck squamous cell carcinomas (HNSCC). Since there is virtually no information on immunomodulation mediated by its ligand in the tumor microenvironment, we assessed the effects of galanin on peripheral blood mononuclear cells (PBMCs). Methods After verification of GALR2 expression and it activity in PBMCs we evaluated the effect of galanin and conditioned media from HNSCC cell lines silenced for galanin or antibody-depleted, on proliferation, apoptosis, cytokine expression and activation/differentiation of immune cells. Results We found that galanin alone and as a component of the HNSCC secretome decreased HNSCC cell proliferation and expression of pro-inflammatory cytokines (IFNγ, IL-12, IL-17A, IL-1α, IL-6 and TNF-α), whilst increasing apoptosis and expression of pro-tumoral cytokines/growth factors (IL-10, IL-4, PDGF and GM-CSF). T cell activation (using CD69 as activation marker) and anti-tumoral phenotypes in CD4+ T cells (Th1 and Th17) were found to be suppressed. In vivo, tumor growth was found to be increased in the presence of galanin-stimulated PBMCs. Data from The Cancer Genome Atlas (TCGA) revealed that high expression of galanin was associated with a reduced overall survival of patients with HNSCC. Conclusion Our data indicate that galanin secreted by HNSCC cells exhibits immune-suppressive and pro-tumoral effects. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-021-00631-y.
Collapse
|
33
|
Mumtaz M, Bijnsdorp IV, Böttger F, Piersma SR, Pham TV, Mumtaz S, Brakenhoff RH, Akhtar MW, Jimenez CR. Secreted protein markers in oral squamous cell carcinoma (OSCC). Clin Proteomics 2022; 19:4. [PMID: 35130834 PMCID: PMC8903575 DOI: 10.1186/s12014-022-09341-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a main cause of oral cancer mortality and morbidity in central south Asia. To improve the clinical outcome of OSCC patients, detection markers are needed, which are preferably non-invasive and thus independent of a tissue biopsy. Methods In the present study, we aimed to identify robust candidate protein biomarkers for non-invasive OSCC diagnosis. To this end, we measured the global protein profiles of OSCC tissue lysates to matched normal adjacent mucosa samples (n = 14) and the secretomes of nine HNSCC cell lines using LC–MS/MS-based proteomics. Results A total of 5123 tissue proteins were identified, of which 205 were robustly up- regulated (p-value < 0.01, fold change > + 2) in OSCC-tissues compared to normal adjacent tissues. The biological process “Secretion” was highly enriched in this set of proteins. Other upregulated biological pathways included “Unfolded Protein Response”, “Spliceosomal complex assembly”, “Protein localization to endosome” and “Interferon Gamma Response”. Transcription factor analysis implicated Creb3L1, ESRRA, YY, ELF2, STAT1 and XBP as potential regulators. Of the 205 upregulated tissue proteins, 132 were identified in the cancer cell line secretomes, underscoring their potential use as non-invasive biofluid markers. To further prioritize our candidate markers for non-invasive OSCC detection, we integrated our data with public biofluid datasets including OSCC saliva, yielding 25 candidate markers for further study. Conclusions We identified several key proteins and processes that are associated with OSCC tissues, underscoring the importance of altered secretion. Cancer-associated OSCC secretome proteins present in saliva have potential to be used as novel non-invasive biomarkers for the diagnosis of OSCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09341-5.
Collapse
Affiliation(s)
- Madiha Mumtaz
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Irene V Bijnsdorp
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Urology, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
35
|
Schoetz U, Klein D, Hess J, Shnayien S, Spoerl S, Orth M, Mutlu S, Hennel R, Sieber A, Ganswindt U, Luka B, Thomsen AR, Unger K, Jendrossek V, Zitzelsberger H, Blüthgen N, Belka C, Unkel S, Klinger B, Lauber K. Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death Dis 2021; 12:1162. [PMID: 34911941 PMCID: PMC8674332 DOI: 10.1038/s41419-021-04454-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.
Collapse
Affiliation(s)
- Ulrike Schoetz
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Seyd Shnayien
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Steffen Spoerl
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Samet Mutlu
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany
| | - Anja Sieber
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Luka
- Division for Cariology, Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner site Freiburg, Freiburg im Breisgau, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
| | - Steffen Unkel
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Bertram Klinger
- Institute of Pathology, Charite-Universitätsmedizin Berlin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.
| |
Collapse
|
36
|
Differential Expression of PD-L1 during Cell Cycle Progression of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222313087. [PMID: 34884892 PMCID: PMC8658507 DOI: 10.3390/ijms222313087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The expression of PD-L1 by tumor cells is mainly associated with its immunosuppressive effect. In fact, PD-1/PD-L1 immune checkpoint inhibitors demonstrated remarkable effects in advanced cancer patients including HNSCC. In this context, irradiation is currently being investigated as a synergistic treatment modality to immunotherapy. However, the majority of HNSCC patients still show little improvement or even hyperprogression. Interestingly, there is increasing evidence for additional cell-intrinsic functions of PD-L1 in tumor cells. In previous studies, we showed that PD-L1 has a strong influence on proliferation, migration, invasion, and survival after irradiation. We demonstrated that cellular expression and localization of PD-L1 differed depending on sensitivity to irradiation. Here, we show that PD-L1 is also differentially expressed during cell cycle progression of HNSCC. Furthermore, cellular localization of PD-L1 also changes depending on a particular cell cycle phase. Moreover, distinct observations occurred depending on the general differentiation status. Overall, the function of PD-L1 cannot be generalized. Rather, it depends on the differentiation status and microenvironment. PD-L1 expression and localization are variable, depending on different factors. These findings may provide insight into why differential response to PD-1/PD-L1 antibody therapy can occur. Detailed understanding of cell-intrinsic PD-L1 functions will further allow antibody-based immunotherapy to be optimized.
Collapse
|
37
|
Gruijs M, Ganzevles SH, Stigter-van Walsum M, van der Mast R, van Ostaijen-ten Dam MM, Tuk CW, Schilham MW, Leemans CR, Brakenhoff RH, van Egmond M, van de Ven R, Bakema JE. NK Cell-Dependent Antibody-Mediated Immunotherapy Is Improved In Vitro and In Vivo When Combined with Agonists for Toll-like Receptor 2 in Head and Neck Cancer Models. Int J Mol Sci 2021; 22:11057. [PMID: 34681717 PMCID: PMC8541276 DOI: 10.3390/ijms222011057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The immunosuppressive character of head and neck cancers may explain the relatively low response rates to antibody therapy targeting a tumor antigen, such as cetuximab, and anti-PD-1 checkpoint inhibition. Immunostimulatory agents that overcome tumor-derived inhibitory signals could augment therapeutic efficacy, thereby enhancing tumor elimination and improving patient survival. Here, we demonstrate that cetuximab treatment combined with immunostimulatory agonists for Toll-like receptor (TLR) 2 induces profound immune responses. Natural killer (NK) cells, isolated from healthy individuals or patients with head and neck cancer, harbored enhanced cytotoxic capacity and increased tumor-killing potential in vitro. Additionally, combination treatment increased the release of several pro-inflammatory cytokines and chemokines by NK cells. Tumor-bearing mice that received cetuximab and the TLR2 ligand Pam3CSK4 showed increased infiltration of immune cells into the tumors compared to mice that received cetuximab monotherapy, resulting in a significant delay in tumor growth or even complete tumor regression. Moreover, combination treatment resulted in improved overall survival in vivo. In conclusion, combining tumor-targeting antibody-based immunotherapy with TLR stimulation represents a promising treatment strategy to improve the clinical outcomes of cancer patients. This treatment could well be applied together with other therapeutic strategies such as anti-PD-(L)1 checkpoint inhibition to further overcome immunosuppression.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/immunology
- Cell Line, Tumor
- Cetuximab/pharmacology
- Cetuximab/therapeutic use
- Cytokines/metabolism
- Drug Therapy, Combination
- Female
- Head and Neck Neoplasms/therapy
- Humans
- Immunotherapy
- Killer Cells, Natural/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lipopeptides/pharmacology
- Lipopeptides/therapeutic use
- Mice
- Mice, Nude
- Receptors, IgG/agonists
- Receptors, IgG/metabolism
- Toll-Like Receptor 2/agonists
- Toll-Like Receptor 2/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mandy Gruijs
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Sonja H. Ganzevles
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marijke Stigter-van Walsum
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Richard van der Mast
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Monique M. van Ostaijen-ten Dam
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - Cornelis W. Tuk
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
| | - Marco W. Schilham
- Leiden University Medical Center, Department of Pediatrics, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (M.M.v.O.-t.D.); (M.W.S.)
| | - C. René Leemans
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.G.); (R.v.d.M.); (C.W.T.); (M.v.E.)
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| | - Jantine E. Bakema
- Amsterdam UMC, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam—Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (S.H.G.); (M.S.-v.W.); (C.R.L.); (R.H.B.); (J.E.B.)
| |
Collapse
|
38
|
Wilkie MD, Anaam EA, Lau AS, Rubbi CP, Vlatkovic N, Jones TM, Boyd MT. Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines. Cancers (Basel) 2021; 13:cancers13194836. [PMID: 34638320 PMCID: PMC8507998 DOI: 10.3390/cancers13194836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary A subset of head and neck cancers (SCCHN) are caused by human papillomavirus (HPV). As these tumours tend to affect younger patients and are associated with favourable survival, there is a pressing need to find ways to reduce long-term treatment toxicity while maintaining oncological efficacy. We studied utilisation of metabolic pathways in HPV-positive SCCHN cells with the aim of exploiting such for potential therapeutic benefit. We found that these tumours maintained metabolic diversity, in contrast to what we have observed in traditional SCCHN cells associated with mutations in the TP53 gene. This, in turn, correlated with susceptibility to metabolic inhibitors, insofar as a combination of these agents acting on different metabolic pathways was required to augment the effects of ionising radiation (a mainstay of treatment for SCCHN). Notionally, this may provide a means of treatment de-intensification by facilitating radiation dose reduction to minimise the impact of treatment on long-term function. Abstract Background: A major objective in the management of human papillomavirus (HPV)-positive squamous cell carcinoma of the head and neck (SCCHN) is to reduce long-term functional ramifications while maintaining oncological outcomes. This study examined the metabolic profile of HPV-positive SCCHN and the potential role of anti-metabolic therapeutics to achieve radiosensitisation as a potential means to de-escalate radiation therapy. Methods: Three established HPV-positive SCCHN cell lines were studied (UM-SCC-104, UPCI:SCC154, and VU-SCC-147), together with a typical TP53 mutant HPV-negative SCCHN cell line (UM-SCC-81B) for comparison. Metabolic profiling was performed using extracellular flux analysis during specifically designed mitochondrial and glycolytic stress tests. Sensitivity to ionising radiation (IR) was evaluated using clonogenic assays following no treatment, or treatment with: 25 mM 2-deoxy-D-glucose (glycolytic inhibitor) alone; 20 mM metformin (electron transport chain inhibitor) alone; or 25 mM 2-deoxy-D-glucose and 20 mM metformin combined. Expression levels of p53 and reporters of p53 function (MDM2, p53, Phospho-p53 [Ser15], TIGAR and p21 [CDKN1A]) were examined by western blotting. Results: HPV-positive SCCHN cell lines exhibited a diverse metabolic phenotype, displaying robust mitochondrial and glycolytic reserve capacities. This metabolic profile, in turn, correlated with IR response following administration of anti-metabolic agents, in that both 2-deoxy-D-glucose and metformin were required to significantly potentiate the effects of IR in these cell lines. Conclusions: In contrast to our recently published data on HPV-negative SCCHN cells, which display relative glycolytic dependence, HPV-positive SCCHN cells can only be sensitised to IR using a complex anti-metabolic approach targeting both mitochondrial respiration and glycolysis, reflecting their metabolically diverse phenotype. Notionally, this may provide an attractive platform for treatment de-intensification in the clinical setting by facilitating IR dose reduction to minimise the impact of treatment on long-term function.
Collapse
Affiliation(s)
- Mark D. Wilkie
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
- Department of Otorhinolaryngology–Head & Neck Surgery, University Hospital Aintree, Lower Lane, Liverpool L9 7AL, UK
- Correspondence:
| | - Emad A. Anaam
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
| | - Andrew S. Lau
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
- Department of Otorhinolaryngology–Head & Neck Surgery, University Hospital Aintree, Lower Lane, Liverpool L9 7AL, UK
| | - Carlos P. Rubbi
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
| | - Nikolina Vlatkovic
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
| | - Terence M. Jones
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
- Department of Otorhinolaryngology–Head & Neck Surgery, University Hospital Aintree, Lower Lane, Liverpool L9 7AL, UK
| | - Mark T. Boyd
- Cancer Research Centre, Department of Molecular & Clinical Cancer Medicine, The University of Liverpool, 200 London Road, Liverpool L3 9TA, UK; (E.A.A.); (A.S.L.); (C.P.R.); (N.V.); (T.M.J.); (M.T.B.)
| |
Collapse
|
39
|
Özdaş S, Canatar İ, Özdaş T. Effects of Knockdown of XPO5 by siRNA on the Biological Behavior of Head and Neck Cancer Cells. Laryngoscope 2021; 132:569-577. [PMID: 34328643 DOI: 10.1002/lary.29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES/HYPOTHESIS Dysregulated expression of microRNAs (miRNAs) and dysregulation of the mechanisms that regulate them are associated with carcinogenesis. Exportin-5 (XPO5), a member of the Karyopherin family, is responsible for the transfer of pre-miRNAs from the nucleus to the cytoplasm. Despite the high oncogenic potential of XPO5 as a critical regulator of the biogenesis of miRNAs, its role in head and neck squamous cell carcinoma (HNSCC) biology has not been explained yet. STUDY DESIGN In-vitro translational. METHODS The expression of XPO5 at the mRNA, protein, and intracellular level in SCC-9, FaDu SCC-90, and Detroit-562 cell lines were evaluated with quantitative reverse transcription polymerase chain reaction, Western-blot analysis, and immunofluorescence staining, respectively. The functional role of XPO5 in HNSCC was analyzed by silencing the gene expression with XPO5-small interfering RNA (siRNA) in the in vitro model. Cell proliferation, migration capacity, and apoptosis in XPO5 knockdown HNSCC cell lines were evaluated by MTT, wound-healing, and caspase-3 assay, respectively. RESULTS Expression of XPO5 was determined to be upregulated at mRNA, protein, and intracellular level in metastatic cells compared to primary cells in HNSCC. XPO5 gene expression was knockdown by XPO5-siRNA transfection, verifying that it was suppressed at the mRNA, protein, and intracellular level. Silencing XPO5 caused a decrease in cell proliferation, delay in wound healing, and increase in Caspase-3 enzyme activity in HNSCC cell lines compared to control. CONCLUSIONS This report is the first to describe the oncogenic role of XPO5 in HNSCC biology by in vitro experiments. Consequently, XPO5 can be used as a potential biomarker and therapeutic target molecule against the disease in the diagnosis-treatment-follow-up of HNSCC. LEVEL OF EVIDENCE N/A Laryngoscope, 2021.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - İpek Canatar
- Department of Bioengineering, Faculty of Engineering Sciences, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Talih Özdaş
- Department of ENT, Adana City Training and Research Hospital, Health Science University, Adana, Turkey
| |
Collapse
|
40
|
CD44v6-targeted CAR T-cells specifically eliminate CD44 isoform 6 expressing head/neck squamous cell carcinoma cells. Oral Oncol 2021; 116:105259. [PMID: 33895463 DOI: 10.1016/j.oraloncology.2021.105259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 01/09/2023]
Abstract
Immune checkpoint blockade can cause regression of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC). As a second type of immunotherapy, adoptive cellular therapy with genetically modified patient's T-cells redirected against the autologous malignant cells by expressing chimeric antigen receptors (CARs) recognizing tumor-associated antigens has been established as highly efficient personalized treatment for hematological malignancies. In solid cancers however, the application of these genetically modified immune effector cells still lacks equal response rates. CD44v6 is an isoform of the hyaluronic receptor CD44 that is almost exclusively expressed at high levels on solid cancers and has been associated with tumorigenesis, tumor cell invasion and metastasis. Here, we established a highly specific CAR against CD44v6 on HNSCC cells that can be expressed on normal T-cells with lentiviral vectors. Using primary human HNSCC cells in combination with CRISPR/Cas9 and overexpression approaches allowed us to confirm the high specificity of our CAR construct for the tumor-associated CD44v6 as target antigen and to demonstrate a direct correlation between CD44v6 expression levels and cytotoxicity of the CAR T-cells. Importantly, the design of our clinically applicable lentiviral vector facilitates to co-express a second transgene for in vivo control of CAR T-cells, if undesired side-effects or toxicities occur.
Collapse
|
41
|
Genotyping and Characterization of HPV Status, Hypoxia, and Radiosensitivity in 22 Head and Neck Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13051069. [PMID: 33802339 PMCID: PMC7959143 DOI: 10.3390/cancers13051069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
To study head and neck squamous cell carcinomas (HNSCC) in vitro, a large variety of HNSCC cell lines have been developed. Here, we characterize a panel of 22 HNSCC cell lines, thereby providing a tool for research into tumor-specific treatment options in HNSCC. Both human papillomavirus (HPV) positive and HPV negative tumor cell lines were collected from commercial and collaborative sources. Short tandem repeat profiling was used to confirm or characterize the identity of the cell lines. Targeted sequencing was performed using a standard pathology single molecule Molecular Inversion Probe panel to detect mutations for 23 tumor suppressors and oncogenes. HPV status, p16 status, radiosensitivity data, and hypoxia data are summarized from all cell lines. We detected HPV transcripts in five cell lines, all of which overexpressed p16. One HPV negative cell line was also p16 positive. We detected mutations in KIT (SCCNij185), PIK3CA (SCCNij185), and CDKN2A (UT-SCC-5 and UT-SCC-38). TP53 mutations were the most frequent, occurring in 16/22 cell lines. HPV infection and TP53 mutations were almost mutually exclusive, with the exception of 93-VU-147T. The cell lines exhibited a wide range of sensitivities towards hypoxia and irradiation. Here, we provide a description of a set of frequently used HNSCC cell lines with diverse characteristics as found in HNSCC patients.
Collapse
|
42
|
Vipparthi K, Patel AK, Ghosh S, Das S, Das C, Das K, Sarkar A, Thatikonda V, Pal B, Remani ASKN, Arora N, Parihar M, Vijayakumar MV, Bhat MK, Boppana R, Bhattacharjee S, Biswas NK, Arun P, Sharan R, Singh S. Two novel cell culture models of buccal mucosal oral cancer from patients with no risk-habits of tobacco smoking or chewing. Oral Oncol 2020; 113:105131. [PMID: 33387705 DOI: 10.1016/j.oraloncology.2020.105131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Tobacco consumption is one of the major etiological factors for oral cancer, but it also develops in non-tobacco users, with unknown etiologies. Cellular models for tobacco associated oral cancer are available, however; reports of cellular models for studying non-tobacco associated oral cancer are limiting. We report here the establishment and characterization of two novel buccal mucosal cancer cell lines 'GBC02' and 'GBC035' derived from non-tobacco users. MATERIALS AND METHODS Short tandem repeats (STR) profiling, Next-generation sequencing for whole-genome, exome and copy number alterations, immunofluorescence, flow-cytometry, proliferation, live-cell chemotaxis, 3D-spheroid formation, chemotherapy response, gene-expression microarray, gene-set enrichment analysis and xenograft development were performed. RESULTS Sources of the established cultures were matched to their donors through STR profiling. Genome sequence analysis revealed somatic mutations in TP53, CASP8, CDKN2A for GBC02 with deletions and amplifications encompassing CDKN2A, FAT1 and CCND1, PIK3CA, SOX2, EGFR, MYC genes, respectively. GBC035 harbored mutations in FAT1, NOTCH1, HRAS, CDKN2A, HLA-B, HLA-A genes. While GBC035 cells showed higher E-Cadherin positive cell-cell junctions and collective cell migration in chemotaxis; GBC02 cells were vimentin-positive and demonstrated individual cell migration. Further, exhibiting their relevance to preclinical research, GBC02 3D-spheroids demonstrated enrichment of development-related gene-signatures in microarray transcriptome analysis and were resistant to Cisplatin, but showed sensitivity to cancer stem cells-targeting drug, Salinomycin. Additionally, tumorigenic ability of GBC02 was demonstrated. CONCLUSIONS Altogether, we present here comprehensively characterized unique cell lines established from non-tobacco associated tumors, which may serve as models for preclinical investigations of oral cancers caused independent of tobacco usage.
Collapse
Affiliation(s)
| | | | | | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, India
| | | | - Koyeli Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Anwesha Sarkar
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sandeep Singh
- National Institute of Biomedical Genomics, Kalyani, India.
| |
Collapse
|
43
|
Comprehensive Mutational and Phenotypic Characterization of New Metastatic Cutaneous Squamous Cell Carcinoma Cell Lines Reveal Novel Drug Susceptibilities. Int J Mol Sci 2020; 21:ijms21249536. [PMID: 33333825 PMCID: PMC7765308 DOI: 10.3390/ijms21249536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer. Most patients who develop metastases (2–5%) present with advanced disease that requires a combination of radical surgery and adjuvant radiation therapy. There are few effective therapies for refractory disease. In this study, we describe novel patient-derived cell lines from cSCC metastases of the head and neck (designated UW-CSCC1 and UW-CSCC2). The cell lines genotypically and phenotypically resembled the original patient tumor and were tumorogenic in mice. Differences in cancer-related gene expression between the tumor and cell lines after various culturing conditions could be largely reversed by xenografting and reculturing. The novel drug susceptibilities of UW-CSCC1 and an irradiated subclone UW-CSCC1-R to drugs targeting cell cycle, PI3K/AKT/mTOR, and DNA damage pathways were observed using high-throughput anti-cancer and kinase-inhibitor compound libraries, which correlate with either copy number variations, targetable mutations and/or the upregulation of gene expression. A secondary screen of top hits in all three cell lines including PIK3CA-targeting drugs supports the utility of targeting the PI3K/AKT/mTOR pathway in this disease. UW-CSCC cell lines are thus useful preclinical models for determining targetable pathways and candidate therapeutics.
Collapse
|
44
|
Lee TW, Lai A, Harms JK, Singleton DC, Dickson BD, Macann AMJ, Hay MP, Jamieson SMF. Patient-Derived Xenograft and Organoid Models for Precision Medicine Targeting of the Tumour Microenvironment in Head and Neck Cancer. Cancers (Basel) 2020; 12:E3743. [PMID: 33322840 PMCID: PMC7763264 DOI: 10.3390/cancers12123743] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Patient survival from head and neck squamous cell carcinoma (HNSCC), the seventh most common cause of cancer, has not markedly improved in recent years despite the approval of targeted therapies and immunotherapy agents. Precision medicine approaches that seek to individualise therapy through the use of predictive biomarkers and stratification strategies offer opportunities to improve therapeutic success in HNSCC. To enable precision medicine of HNSCC, an understanding of the microenvironment that influences tumour growth and response to therapy is required alongside research tools that recapitulate the features of human tumours. In this review, we highlight the importance of the tumour microenvironment in HNSCC, with a focus on tumour hypoxia, and discuss the fidelity of patient-derived xenograft and organoids for modelling human HNSCC and response to therapy. We describe the benefits of patient-derived models over alternative preclinical models and their limitations in clinical relevance and how these impact their utility in precision medicine in HNSCC for the discovery of new therapeutic agents, as well as predictive biomarkers to identify patients' most likely to respond to therapy.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Benjamin D. Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Andrew M. J. Macann
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand; (T.W.L.); (A.L.); (J.K.H.); (D.C.S.); (B.D.D.); (M.P.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
45
|
Ludwig S, Sharma P, Wise P, Sposto R, Hollingshead D, Lamb J, Lang S, Fabbri M, Whiteside TL. mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer. Int J Mol Sci 2020; 21:E8570. [PMID: 33202950 PMCID: PMC7698015 DOI: 10.3390/ijms21228570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
Human papillomavirus (HPV)(+) and HPV(-) head and neck cancer (HNC) cells' interactions with the host immune system are poorly understood. Recently, we identified molecular and functional differences in exosomes produced by HPV(+) vs. HPV(-) cells, suggesting that genetic cargos of exosomes might identify novel biomarkers in HPV-related HNCs. Exosomes were isolated by size exclusion chromatography from supernatants of three HPV(+) and two HPV(-) HNC cell lines. Paired cell lysates and exosomes were analyzed for messenger RNA (mRNA) by qRT-PCR and microRNA (miR) contents by nanostring analysis. The mRNA profiles of HPV(+) vs. HPV(-) cells were distinct, with EGFR, TP53 and HSPA1A/B overexpressed in HPV(+) cells and IL6, FAS and DPP4 in HPV(-) cells. The mRNA profiles of HPV(+) or HPV(-) exosomes resembled the cargo of their parent cells. miR expression profiles in cell lysates identified 8 miRs expressed in HPV(-) cells vs. 14 miRs in HPV(+) cells. miR-205-5p was exclusively expressed in HPV(+) exosomes, and miR-1972 was only detected in HPV(-) exosomes. We showed that HPV(+) and HPV(-) exosomes recapitulated the mRNA expression profiles of their parent cells. Expression of miRs was dependent on the HPV status, and miR-205-5p in HPV(+) and miR-1972 in HPV(-) exosomes emerge as potential discriminating HPV-associated biomarkers.
Collapse
Affiliation(s)
- Sonja Ludwig
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| | - Priyanka Sharma
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| | - Petra Wise
- Department of Pediatrics, Children′s Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; (P.W.); (R.S.)
| | - Richard Sposto
- Department of Pediatrics, Children′s Center for Cancer and Blood Diseases and Divisions of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; (P.W.); (R.S.)
| | - Deborah Hollingshead
- Genomics Research Core, University of Pittsburgh School of the Health Sciences, Pittsburgh, PA 15213, USA; (D.H.); (J.L.)
| | - Janette Lamb
- Genomics Research Core, University of Pittsburgh School of the Health Sciences, Pittsburgh, PA 15213, USA; (D.H.); (J.L.)
| | - Stephan Lang
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Essen, 45147 Essen, Germany;
| | - Muller Fabbri
- Cancer Biology Program, University of Hawai’i Cancer Center, University of Hawai’i at Manoa, Honolulu, HI 96813, USA;
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA;
| |
Collapse
|
46
|
Eichberger J, Schulz D, Pscheidl K, Fiedler M, Reichert TE, Bauer RJ, Ettl T. PD-L1 Influences Cell Spreading, Migration and Invasion in Head and Neck Cancer Cells. Int J Mol Sci 2020; 21:ijms21218089. [PMID: 33138288 PMCID: PMC7663567 DOI: 10.3390/ijms21218089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade has been implemented in advanced-stage tumor therapy for various entities, including head and neck squamous cell carcinoma (HNSCC). Despite a promising tumor response in a subgroup of HNSCC patients, the majority suffer from disease progression. PD-L1 is known to influence several intrinsic mechanisms in cancer cells, such as proliferation, apoptosis, migration and invasion. Here, we modulated PD-L1 expression in three HNSCC cell lines with differential intrinsic PD-L1 expression. In addition to an alteration in the epithelial-to-mesenchymal transition (EMT) marker expression, we observed PD-L1-dependent cell spreading, migration and invasion in a spheroid spreading assay on four different coatings (poly-L-lysine, collagen type I, fibronectin and Matrigel®) and a chemotactic transwell migration/invasion assay. Furthermore, the overexpression of PD-L1 led to increased gene expression and small interfering ribonucleic acid (siRNA) knockdown and decreased gene expression of Rho-GTPases and related proteins in a RT2 Profiler™ PCR Array. Rac1 and Rho-GTPase pulldown assays revealed a change in the activation state concordantly with PD-L1 expression. In summary, our results suggest a major role for PD-L1 in favoring cell motility, including cell spreading, migration and invasion. This is presumably caused by altered N-cadherin expression and changes in the activation states of small Rho-GTPases Rho and Rac1.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Kristian Pscheidl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| | - Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Torsten Eugen Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
- Correspondence:
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| |
Collapse
|
47
|
Fleming JC, Woo J, Moutasim K, Hanley CJ, Frampton SJ, Wood O, Ward M, Woelk CH, Ottensmeier CH, Hafizi S, Kim D, Thomas GJ. CTEN Induces Tumour Cell Invasion and Survival and Is Prognostic in Radiotherapy-Treated Head and Neck Cancer. Cancers (Basel) 2020; 12:E2963. [PMID: 33066224 PMCID: PMC7602105 DOI: 10.3390/cancers12102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogenous disease treated with surgery and/or (chemo) radiotherapy, but up to 50% of patients with late-stage disease develop locoregional recurrence. Determining the mechanisms underpinning treatment resistance could identify new therapeutic targets and aid treatment selection. C-terminal tensin-like (CTEN) is a member of the tensin family, upregulated in several cancers, although its expression and function in HNSCC are unknown. We found that CTEN is commonly upregulated in HNSCC, particularly HPV-ve tumours. In vitro CTEN was upregulated in HPV-ve (n = 5) and HPV+ve (n = 2) HNSCC cell lines. Stable shRNA knockdown of CTEN in vivo significantly reduced tumour growth (SCC-25), and functional analyses in vitro showed that CTEN promoted tumour cell invasion, colony formation and growth in 3D-culture (SCC-25, Detroit 562). RNA sequencing of SCC-25 cells following CTEN siRNA knockdown identified 349 differentially expressed genes (logFC > 1, p < 0.05). Gene ontology analysis highlighted terms relating to cell locomotion and apoptosis, consistent with in vitro findings. A membrane-based antibody array confirmed that CTEN regulated multiple apoptosis-associated proteins, including HSP60 and cleaved caspase-3. Notably, in a mixed cohort of HPV+ve and HPV-ve HNSCC patients (n = 259), we found a significant, independent negative association of CTEN with prognosis, limited to those patients treated with (chemo)radiotherapy, not surgery, irrespective of human papillomavirus (HPV) status. These data show that CTEN is commonly upregulated in HNSCC and exerts several functional effects. Its potential role in modulating apoptotic response to therapy suggests utility as a predictive biomarker or radio-sensitising target.
Collapse
Affiliation(s)
- Jason C. Fleming
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
- Liverpool Head & Neck Centre, University of Liverpool, Liverpool L3 9GA, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Jeongmin Woo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (J.W.); (C.H.W.)
| | - Karwan Moutasim
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Christopher J. Hanley
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Steven J. Frampton
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Oliver Wood
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Matthew Ward
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| | - Christopher H. Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (J.W.); (C.H.W.)
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA 02141, USA
| | - Christian H. Ottensmeier
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
- Liverpool Head & Neck Centre, University of Liverpool, Liverpool L3 9GA, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool CH63 4JY, UK
| | - Sassan Hafizi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Dae Kim
- St. George’s University Hospitals NHS Foundation Trust, Tooting, London SW17 0QT, UK;
| | - Gareth J. Thomas
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (K.M.); (C.J.H.); (S.J.F.); (O.W.); (M.W.); (C.H.O.)
| |
Collapse
|
48
|
Buparlisib modulates PD-L1 expression in head and neck squamous cell carcinoma cell lines. Exp Cell Res 2020; 396:112259. [PMID: 32898555 DOI: 10.1016/j.yexcr.2020.112259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022]
Abstract
High expression of the immune checkpoint receptor PD-L1 is associated with worse patient outcome in a variety of human cancers, including head and neck squamous cell carcinoma (HNSCC). Binding of PD-L1 with its partner PD-1 generates an inhibitory signal that dampens the immune system. Immunotherapy, that is blocking the PD-1/PD-L1 checkpoint, has proven to be an effective tool in cancer therapy. However, not all patients are able to benefit from this immune checkpoint inhibition. Therefore, evidence is growing of intrinsic PD-L1 signaling in cancer cells. For example, intrinsic PD-L1 expression was associated with PI3K/Akt/mTOR signaling, which is part of diverse oncogenic processes including cell proliferation, growth and survival. In this study we demonstrate the effects of PI3K/Akt/mTOR pathway inhibition by buparlisib on PD-L1 expression in HNSCC cell lines. After buparlisib treatment for 72 h, PD-L1 was downregulated in total cell lysates of HNSCC cells. Moreover, flow cytometry revealed a downregulation of PD-L1 membrane expression. Interestingly, the buparlisib mediated effects on PD-L1 expression were reduced by additional irradiation. In PD-L1 overexpressing cells, the buparlisib induced inhibition of proliferation was neutralized. In summary, our findings imply that blocking the PI3K/Akt/mTOR pathway could be a good additional therapy for patients who show poor response to immune checkpoint therapy.
Collapse
|
49
|
Bernard M, Cardin GB, Cahuzac M, Ayad T, Bissada E, Guertin L, Bahig H, Nguyen-Tan PF, Filion E, Ballivy O, Soulieres D, Rodier F, Christopoulos A. Dual Inhibition of Autophagy and PI3K/AKT/MTOR Pathway as a Therapeutic Strategy in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092371. [PMID: 32825725 PMCID: PMC7563873 DOI: 10.3390/cancers12092371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Genomic analyses of head and neck squamous cell carcinoma (HNSCC) have highlighted alterations in the phosphatidylinositol 3-kinase (PI3K) signaling pathway, presenting a therapeutic target for multiple ongoing clinical trials with PI3K or PI3K/MTOR inhibitors. However, these inhibitors can potentially increase autophagy in HNSCC and indirectly support cancer cell survival. Here, we sought to understand the relationship between the PI3K signaling pathway and autophagy during their dual inhibition in a panel of HNSCC cell lines. We used acridine orange staining, immunoblotting, and tandem sensor Red Fluorescent Protein- Green Fluorescent Protein-, microtubule-associated protein 1 light chain 3 beta (RFP-GFP-LC3B) expression analysis to show that PI3K inhibitors increase autophagosomes in HNSCC cells, but that chloroquine treatment effectively inhibits the autophagy that is induced by PI3K inhibitors. Using the Bliss independence model, we determined that the combination of chloroquine with PI3K inhibitors works in synergy to decrease cancer cell proliferation, independent of the PIK3CA status of the cell line. Our results indicate that a strategy focusing on autophagy inhibition enhances the efficacy of therapeutics already in clinical trials. Our results suggest a broader application for this combination therapy that can be promptly translated to in vivo studies.
Collapse
Affiliation(s)
- Monique Bernard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Maxime Cahuzac
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tareck Ayad
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (E.B.); (L.G.)
| | - Eric Bissada
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (E.B.); (L.G.)
| | - Louis Guertin
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (E.B.); (L.G.)
| | - Houda Bahig
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (P.F.N.-T.); (E.F.); (O.B.)
| | - Phuc Felix Nguyen-Tan
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (P.F.N.-T.); (E.F.); (O.B.)
| | - Edith Filion
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (P.F.N.-T.); (E.F.); (O.B.)
| | - Olivier Ballivy
- Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (P.F.N.-T.); (E.F.); (O.B.)
| | - Denis Soulieres
- Department of Medicine, Service of Hemato-Oncology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada;
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Apostolos Christopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada; (M.B.); (G.B.C.); (M.C.); (T.A.); (H.B.); (F.R.)
- Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
- Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada; (E.B.); (L.G.)
- Correspondence: ; Tel.: +514-890-8000 (ext. 31292)
| |
Collapse
|
50
|
Bortnik V, Wu M, Julcher B, Salinas A, Nikolic I, Simpson KJ, McMillan NA, Idris A. Loss of HPV type 16 E7 restores cGAS-STING responses in human papilloma virus-positive oropharyngeal squamous cell carcinomas cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:733-739. [PMID: 32768338 DOI: 10.1016/j.jmii.2020.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 01/24/2023]
Abstract
Human papilloma viruses (HPV) are the main culprit in cervical and oropharyngeal cancers. HPV positive (+) cancers are regarded as 'oncogene addicted', displaying an absolute requirement for the continued expression of the oncogenes for their viability owing their survival, and thus making these genes salient targets for developing specific therapeutic agents. There is a strong association between HPV and oropharyngeal squamous cell carcinomas (OPSCC), a subset of head and neck cancers (HNCs). Alarmingly, HPV-associated OPSCC are on the rise globally, and the number of cases of HPV + OPSCCs surpasses that of cervical cancer in the USA. Here, we show that major HPV oncogenes, E6 and E7, are essential for the survival of HPV positive (+) OPSCCs, making these oncogenes salient targets for HPV-driven OPSCCs. HPV E7 is known to interact with STING, a component of the viral DNA-sensing cGAS-STING machinery which activates a pro-typical anti-viral type I interferon (IFN) response. Our recent work showed that E7 from HPV type 16 is responsible for the blockade of cGAS-STING responses in HPV + OPSCC cells. In this study, we show that CRISPR/Cas9-mediated loss of E7 from HPV + OPSCC cells, SCC2 and SCC104, restored cGAS-STING responses. Future work could involve HPV oncogene targeting leading to HPV + OPSCC tumour regression and that the combined use of STING agonists would induce favourable tumour clearance by activating appropriate anti-tumour responses.
Collapse
Affiliation(s)
- Vuk Bortnik
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Michelle Wu
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Bryan Julcher
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ana Salinas
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Australia; oNKo-innate, Monash Biomedicine Discovery Institute, Clayton, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia.
| |
Collapse
|