1
|
Zeng R, Chen X, Chen Y, Dong J. FGFR4 inhibition augments paclitaxel-induced cell death in ovarian cancer. Int Immunopharmacol 2025; 155:114626. [PMID: 40245772 DOI: 10.1016/j.intimp.2025.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVES Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, which has a high mortality rate due to frequent tumor recurrence. The development of drug resistance against the first-line chemotherapeutic agent, such as paclitaxel/Taxol®, represents a critical reason. The mechanisms of paclitaxel resistance remain largely unknown, and druggable drivers which can be targeted to prevent or revert paclitaxel resistance also need to be identified. METHODS Phos-tag-based screens in cells treated with paclitaxel were used to identify key regulators involved in paclitaxel resistance, such as fibroblast growth factor receptor 4 (FGFR4). The functional role of FGFR4 in regulating paclitaxel resistance was further identified using apoptosis assays, which included the identification of apoptotic marker levels and activities. The involvement of FGFR4 downstream signaling pathways involved in paclitaxel resistance were identified through western blotting and quantitative PCR. Their roles in regulating paclitaxel resistance were also validated using apoptosis assays. Immunofluorescent staining was performed to identify the synergy of paclitaxel and FGFR4 inhibition. RESULTS Functional in vitro and in vivo studies demonstrate that FGFR4 depletion suppresses ovarian cancer cell proliferation, migration, and tumor growth. Importantly, FGFR4 silencing or specific inhibition can sensitize ovarian cancer cells to paclitaxel, whereas FGFR4 overexpression confers paclitaxel resistance. Mechanistically, FGFR4 regulates paclitaxel sensitivity in EOC cells through modulating the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL) via MEK-ERK-RSK signaling pathway. The inhibition of Bcl-xL or MEK-ERK-RSK signaling can also enhance paclitaxel-stimulated cytotoxicity. CONCLUSION These findings indicate that targeting FGFR4 can be a promising novel strategy to overcome paclitaxel resistance and improve the outcomes of EOC patients.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Female
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Carcinoma, Ovarian Epithelial/drug therapy
- Mice
- Mice, Nude
- Signal Transduction/drug effects
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
Collapse
Affiliation(s)
- Renya Zeng
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.; Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China..
| | - Xingcheng Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA..
| |
Collapse
|
2
|
Shen L, Wang C, Ren R, Liu X, Zhou D, Chen Y, Zhou Y, Lei J, Xiao Y, Zhang N, Zhao H, Li Y. Fibroblast growth factor receptor 4 deficiency in macrophages aggravates experimental colitis by promoting M1-polarization. Inflamm Res 2024; 73:1493-1510. [PMID: 38981913 DOI: 10.1007/s00011-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE AND DESIGN Compelling evidence indicates that dysregulated macrophages may play a key role in driving inflammation in inflammatory bowel disease (IBD). Fibroblast growth factor (FGF)-19, which is secreted by ileal enterocytes in response to bile acids, has been found to be significantly lower in IBD patients compared to healthy individuals, and is negatively correlated with the severity of diarrhea. This study aims to explore the potential impact of FGF19 signaling on macrophage polarization and its involvement in the pathogenesis of IBD. METHODS The dextran sulfate sodium (DSS)-induced mouse colitis model was utilized to replicate the pathology of human IBD. Mice were created with a conditional knockout of FGFR4 (a specific receptor of FGF19) in myeloid cells, as well as mice that overexpressing FGF19 specifically in the liver. The severity of colitis was measured using the disease activity index (DAI) and histopathological staining. Various techniques such as Western Blotting, quantitative PCR, flow cytometry, and ELISA were employed to assess polarization and the expression of inflammatory genes. RESULTS Myeloid-specific FGFR4 deficiency exacerbated colitis in the DSS mouse model. Deletion or inhibition of FGFR4 in bone marrow-derived macrophages (BMDMs) skewed macrophages towards M1 polarization. Analysis of transcriptome sequencing data revealed that FGFR4 deletion in macrophages significantly increased the activity of the complement pathway, leading to an enhanced inflammatory response triggered by LPS. Mechanistically, FGFR4-knockout in macrophages promoted complement activation and inflammatory response by upregulating the nuclear factor-κB (NF-κB)-pentraxin3 (PTX3) pathway. Additionally, FGF19 suppressed these pathways and reduced inflammatory response by activating FGFR4 in inflammatory macrophages. Liver-specific overexpression of FGF19 also mitigated inflammatory responses induced by DSS in vivo. CONCLUSION Our study highlights the significance of FGF19-FGFR4 signaling in macrophage polarization and the pathogenesis of IBD, offering a potential new therapeutic target for IBD.
Collapse
Affiliation(s)
- Luyao Shen
- The Second Affiliated Hospital & Yuying Children's Hospital, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China
| | - Cong Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China
| | - Ran Ren
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China
| | - Dongqin Zhou
- The Second Affiliated Hospital & Yuying Children's Hospital, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yang Xiao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China.
| | - Yongsheng Li
- The Second Affiliated Hospital & Yuying Children's Hospital, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325030, Zhejiang, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Akepati PR, Gochanour EM. Investigational farnesoid X receptor agonists for the treatment of primary biliary cholangitis. Expert Opin Investig Drugs 2024; 33:627-638. [PMID: 38676426 DOI: 10.1080/13543784.2024.2348743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Up to 40% of Primary biliary cholangitis (PBC) patients have a suboptimal response to Ursodeoxycholic acid (UDCA). Close to half of such patients show a remarkable improvement when additionally treated with Obeticholic acid (OCA) but have a dose-dependent increase of pruritus. This relative success of OCA, a first-in-class Farnesoid receptor (FXR) agonist, has positioned FXR as an attractive target for drug development. Novel candidates have since emerged, providing hope for this subgroup of patients who lack effective and safe treatments. AREAS COVERED We discussed the role of bile acids in PBC pathogenesis and how the FXR agonists provide therapeutic value by affecting bile acid synthesis and transport. Novel FXR agonists undergoing pre-clinical and clinical trials for PBC were enlisted via literature search by including the terms 'FXR agonists,' 'FXR PBC,' 'PBC clinical trials' on PubMed, MEDLINE via Ovid, and Clinicaltrials.gov. EXPERT OPINION Novel FXR agonists currently under investigation for PBC improve the disease surrogate markers in early trials. However, as with OCA, pruritus remains a concern with the newer drugs despite targeted chemical modifications to increase FXR specificity. Directing future resources toward studying the molecular mechanisms behind pruritus may lead to better drug design and efficacious yet safer drugs.
Collapse
Affiliation(s)
- Prithvi Reddy Akepati
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eric M Gochanour
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
- The Gastroenterology Center, Valley View Hospital, Glenwood Springs, CO, USA
| |
Collapse
|
5
|
Gędaj A, Chorążewska A, Ciura K, Karelus R, Żukowska D, Biaduń M, Kalka M, Zakrzewska M, Porębska N, Opaliński Ł. The intracellular interplay between galectin-1 and FGF12 in the assembly of ribosome biogenesis complex. Cell Commun Signal 2024; 22:175. [PMID: 38468333 PMCID: PMC10926643 DOI: 10.1186/s12964-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Galectins constitute a class of lectins that specifically interact with β-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radosław Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Biaduń
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
6
|
Shi L, Zhao T, Huang L, Pan X, Wu T, Feng X, Chen T, Wu J, Niu J. Engineered FGF19 ΔKLB protects against intrahepatic cholestatic liver injury in ANIT-induced and Mdr2-/- mice model. BMC Biotechnol 2023; 23:43. [PMID: 37789318 PMCID: PMC10548598 DOI: 10.1186/s12896-023-00810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The major safety concern of the clinical application of wild type FGF19 (FGF19WT) emerges given that its extended treatment causes hepatocellular carcinoma. Therefore, we previously generated a safer FGF19 variant - FGF19ΔKLB, which have same effects on glycemic control and bile acid production but much less mitogenic activity. However, it remains unclear as to whether FGF19ΔKLB ameliorates intrahepatic cholestasis. RESULTS We found that, similar to that of FGF19WT, the chronic administration of FGF19ΔKLB protects mice from cholestatic liver injury in these two models. The therapeutic benefits of FGF19ΔKLB on cholestatic liver damage are attributable, according to the following mechanistic investigation, to the reduction of BA production, liver inflammation, and fibrosis. More importantly, FGF19ΔKLB did not induce any tumorigenesis effects during its prolonged treatment. CONCLUSIONS Together, our findings raise hope that FGF19ΔKLB may represent a useful therapeutic strategy for the treatment of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Lu Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tiantian Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaomin Pan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tianzhen Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Feng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Taoli Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiamin Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jianlou Niu
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325499, Zhejiang, China.
| |
Collapse
|
7
|
Xia J, Zhu Z, Wen G, Chen Y, An R, Xia S, Guan W, Ren H. Aberrant acetylated modification of FGF21‑KLB signaling contributes to hepatocellular carcinoma metastasis through the β‑catenin pathway. Int J Oncol 2023; 63:91. [PMID: 37350415 DOI: 10.3892/ijo.2023.5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
β‑Klotho (KLB) is a vital element of the fibroblast growth factor (FGF) receptor complex and acts as a co‑receptor to facilitate the binding of FGF19 and FGF21 to the FGFRs on the target cells. The present study aimed to determine the contribution of FGF21‑KLB signaling to hepatocellular carcinoma (HCC) metastasis. KLB expression was measured in HCC tissues and cell lines using western blot and reverse transcription‑quantitative PCR. Furthermore, the proliferation, apoptosis and metastasis capacity of KLB‑knockdown Huh7 cells (human HCC cell line) were assessed by Cell Counting Kit‑8 assay, 5‑ethynyl‑2'‑deoxyuridine assay, flow cytometry, wound‑healing assay and Transwell assay. Enrichment analysis was used to explore the underlying regulatory mechanisms of KLB. The metastasis potential of human HCC cells in the context of FGF21 with or without KLB inhibition was determined in vitro and in vivo. Acetylated modification of KLB was determined using a co‑immunoprecipitation assay. The results indicated a significant upregulation of KLB in HCC tissues compared with the corresponding normal tissues. In addition, KLB expression was closely associated with HCC metastasis. Migration and invasion assays revealed that KLB knockdown promoted the metastatic capability of HCC cells. Gene set variation analysis and subsequent mechanistic investigations revealed that KLB is the upstream regulatory factor of β‑catenin signaling. Furthermore, FGF21 was indicated to suppress HCC metastasis by inhibiting β‑catenin signaling‑driven epithelial‑mesenchymal transition (EMT), while KLB knockdown and simultaneous FGF21 overexpression promoted HCC cell motility. Histone deacetylase 3 (HDAC3) was further characterized as the potential deacetylase for KLB. Furthermore, the results revealed that HDAC3 inhibitor‑mediated acetylated modification led to KLB inactivation, resulting in the blockade of FGF21‑KLB signaling, which further triggered the expression of EMT induction‑related genes in Huh7 cells. In conclusion, the present study demonstrated that aberrant acetylated modification of KLB inhibited FGF21‑KLB signaling, thereby promoting β‑catenin signaling‑driven EMT and HCC metastasis.
Collapse
Affiliation(s)
- Jinkun Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Gaolin Wen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Yuyan Chen
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Ran An
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Senzhe Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Hepatobiliary Institute, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
8
|
Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne) 2023; 14:1150222. [PMID: 37260446 PMCID: PMC10229096 DOI: 10.3389/fendo.2023.1150222] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Beta klotho (KLB) is a fundamental component in fibroblast growth factor receptor (FGFR) signaling as it serves as an obligatory coreceptor for the endocrine hormones fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). Through the development of FGF19- and FGF21 mimetics, KLB has emerged as a promising drug target for treating various metabolic diseases, such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. While rodent studies have significantly increased our understanding of KLB function, current clinical trials that test the safety and efficacy of KLB-targeting drugs raise many new scientific questions about human KLB biology. Although most KLB-targeting drugs can modulate disease activity in humans, individual patient responses differ substantially. In addition, species-specific differences in KLB tissue distribution may explain why the glucose-lowering effects that were observed in preclinical studies are not fully replicated in clinical trials. Besides, the long-term efficacy of KLB-targeting drugs might be limited by various pathophysiological conditions known to reduce the expression of KLB. Moreover, FGF19/FGF21 administration in humans is also associated with gastrointestinal side effects, which are currently unexplained. A better understanding of human KLB biology could help to improve the efficacy and safety of existing or novel KLB/FGFR-targeting drugs. In this review, we provide a comprehensive overview of the current understanding of KLB biology, including genetic variants and their phenotypic associations, transcriptional regulation, protein structure, tissue distribution, subcellular localization, and function. In addition, we will highlight recent developments regarding the safety and efficacy of KLB-targeting drugs in clinical trials. These insights may direct the development and testing of existing and future KLB-targeting drugs.
Collapse
|
9
|
Zukowska D, Gedaj A, Porebska N, Pozniak M, Krzyscik M, Czyrek A, Krowarsch D, Zakrzewska M, Otlewski J, Opalinski L. Receptor clustering by a precise set of extracellular galectins initiates FGFR signaling. Cell Mol Life Sci 2023; 80:113. [PMID: 37012400 PMCID: PMC10070233 DOI: 10.1007/s00018-023-04768-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
FGF/FGFR signaling is critical for the development and homeostasis of the human body and imbalanced FGF/FGFR contributes to the progression of severe diseases, including cancers. FGFRs are N-glycosylated, but the role of these modifications is largely unknown. Galectins are extracellular carbohydrate-binding proteins implicated in a plethora of processes in heathy and malignant cells. Here, we identified a precise set of galectins (galectin-1, -3, -7, and -8) that directly interact with N-glycans of FGFRs. We demonstrated that galectins bind N-glycan chains of the membrane-proximal D3 domain of FGFR1 and trigger differential clustering of FGFR1, resulting in activation of the receptor and initiation of downstream signaling cascades. Using engineered galectins with controlled valency, we provide evidence that N-glycosylation-dependent clustering of FGFR1 constitutes a mechanism for FGFR1 stimulation by galectins. We revealed that the consequences of galectin/FGFR signaling for cell physiology are markedly different from the effects induced by canonical FGF/FGFR units, with galectin/FGFR signaling affecting cell viability and metabolic activity. Furthermore, we showed that galectins are capable of activating an FGFR pool inaccessible for FGF1, enhancing the amplitude of transduced signals. Summarizing, our data identify a novel mechanism of FGFR activation, in which the information stored in the N-glycans of FGFRs provides previously unanticipated information about FGFRs' spatial distribution, which is differentially deciphered by distinct multivalent galectins, affecting signal transmission and cell fate.
Collapse
Affiliation(s)
- Dominika Zukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Gedaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Natalia Porebska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marta Pozniak
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Mateusz Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
10
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:1288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| |
Collapse
|
11
|
Phillips AJ, Lobl MB, Hafeji YA, Safranek HR, Mohr AM, Mott JL. Glycosylation of FGFR4 in cholangiocarcinoma regulates receptor processing and cancer signaling. J Cell Biochem 2022; 123:568-580. [PMID: 34981854 PMCID: PMC8940645 DOI: 10.1002/jcb.30204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Recent advances in targeted treatment for cholangiocarcinoma have focused on fibroblast growth factor (FGF) signaling. There are four receptor tyrosine kinases that respond to FGFs, and posttranslational processing has been demonstrated for each FGF receptor. Here, we investigated the role of N-linked glycosylation on the processing and function of FGFR4. We altered glycosylation through enzymatic deglycosylation, small molecule inhibition of glycosyltransferases, or through site-directed mutagenesis of selected asparagine residues in FGFR4. Signaling was tested through caspase activation, migration, and subcellular localization of FGFR4. Our data demonstrate that FGFR4 has multiple glycoforms, with predominant bands relating to the full-length receptor that has a high mannose- or hybrid-type form and a complex-type glycan form. We further identified a set of faster migrating FGFR4 bands that correspond to the intracellular kinase domain, termed FGFR4 intracellular domain (R4-ICD). These glycoforms and R4-ICD were detected in human cholangiocarcinoma tumor samples, where R4-ICD was predominant. Removal of glycans in intact cells by enzymatic deglycosylation resulted in increased processing to R4-ICD. Inhibition of glycosylation using NGI-1, an oligosaccharyltransferase inhibitor, reduced both high mannose- or hybrid- and complex-type glycan forms of FGFR4, increased processing and sensitized to apoptosis. Mutation of Asn-112, Asn-258, Asn-290, or Asn-311 to glutamine modestly reduced apoptosis resistance, while mutation of Asn-322 or simultaneous mutation of the other four asparagine residues caused a loss of cytoprotection by FGFR4. None of the glycomutants altered the migration of cancer cells. Finally, mutation of Asn-112 caused a partial localization of FGFR4 to the Golgi. Overall, preventing glycosylation at individual residues reduced the cell survival function of FGFR4 and receptor glycosylation may regulate access to an extracellular protease or proteolytic susceptibility of FGFR4.
Collapse
Affiliation(s)
| | - Marissa B. Lobl
- Cancer Research Doctoral Program, Fred & Pamela Buffet Cancer Center
| | - Yamnah A. Hafeji
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center
| | - Hannah R. Safranek
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center
| | - Ashley M. Mohr
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center
| | - Justin L. Mott
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center
| |
Collapse
|
12
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
13
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
14
|
Tan W, Zhao K, Xiang J, Zhou X, Cao F, Song W, Liu Q, Zhang X, Li X, Tan Z. Pyrazinamide alleviates rifampin-induced steatohepatitis in mice by regulating the activities of cholesterol-activated 7α-hydroxylase and lipoprotein lipase. Eur J Pharm Sci 2020; 151:105402. [DOI: 10.1016/j.ejps.2020.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
|
15
|
Yamamoto T, Miyoshi H, Kakizaki F, Maekawa H, Yamaura T, Morimoto T, Katayama T, Kawada K, Sakai Y, Taketo MM. Chemosensitivity of Patient-Derived Cancer Stem Cells Identifies Colorectal Cancer Patients with Potential Benefit from FGFR Inhibitor Therapy. Cancers (Basel) 2020; 12:cancers12082010. [PMID: 32708005 PMCID: PMC7465102 DOI: 10.3390/cancers12082010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Some colorectal cancer patients harboring FGFR (fibroblast growth factor receptor) genetic alterations, such as copy number gain, mutation, and/or mRNA overexpression, were selected for enrollment in several recent clinical trials of FGFR inhibitor, because these genetic alterations were preclinically reported to be associated with FGFR inhibitor sensitivity as well as poor prognosis, invasiveness, and/or metastatic potential. However, few enrolled patients were responsive to FGFR inhibitors. Thus, practical strategies are eagerly awaited that can stratify patients for the subset that potentially responds to FGFR inhibitor chemotherapy. In the present study, we evaluated the sensitivity to FGFR inhibitor erdafitinib on 25 patient-derived tumor-initiating cell (TIC) spheroid lines carrying wild-type RAS and RAF genes, both in vitro and in vivo. Then, we assessed possible correlations between the sensitivity and the genetic/genomic data of the spheroid lines tested. Upon their exposure to erdafitinib, seven lines (7/25, 28%) responded significantly. Normal colonic epithelial stem cells were unaffected by the inhibitors. Moreover, the combination of erdafitinib with EGFR inhibitor erlotinib showed stronger growth inhibition than either drug alone, as efficacy was observed in 21 lines (84%) including 14 (56%) that were insensitive to erdafitinib alone. The in vitro erdafitinib response was accurately reflected on mouse xenografts of TIC spheroid lines. However, we found little correlation between their genetic/genomic alterations of TIC spheroids and the sensitivity to the FGFR inhibitor. Accordingly, we propose that direct testing of the patient-derived spheroids in vitro is one of the most reliable personalized methods in FGFR-inhibitor therapy of colorectal cancer patients.
Collapse
Affiliation(s)
- Takehito Yamamoto
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumihiko Kakizaki
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisatsugu Maekawa
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Tadayoshi Yamaura
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Tomonori Morimoto
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Toshiro Katayama
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka 530-8480, Japan;
| | - Kenji Kawada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - Yoshiharu Sakai
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan; (K.K.); (Y.S.)
| | - M. Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.Y.); (H.M.); (F.K.); (H.M.); (T.Y.); (T.M.)
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka 530-8480, Japan;
- Correspondence: ; Tel.: +81-75-753-4391
| |
Collapse
|
16
|
Weaver MJ, McHenry SA, Sayuk GS, Gyawali CP, Davidson NO. Bile Acid Diarrhea and NAFLD: Shared Pathways for Distinct Phenotypes. Hepatol Commun 2020; 4:493-503. [PMID: 32258945 PMCID: PMC7109338 DOI: 10.1002/hep4.1485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) and NAFLD are both common conditions that may be influenced by shared pathways of altered bile acid (BA) signaling and homeostatic regulation. Pathophysiological links between IBS-D and altered BA metabolism include altered signaling through the ileal enterokine and fibroblast growth factor 19 (FGF19) as well as increased circulating levels of 7α-hydroxy-4-cholesten-3-one, a metabolic intermediate that denotes increased hepatic BA production from cholesterol. Defective production or release of FGF19 is associated with increased BA production and BA diarrhea in some IBS-D patients. FGF19 functions as a negative regulator of hepatic cholesterol 7α-hydroxylase; therefore, reduced serum FGF19 effectively de-represses hepatic BA production in a subset of IBS-D patients, causing BA diarrhea. In addition, FGF19 modulates hepatic metabolic homeostatic response signaling by means of the fibroblast growth factor receptor 4/klotho beta receptor to activate cascades involved in hepatic lipogenesis, fatty acid oxidation, and insulin sensitivity. Emerging evidence of low circulating FGF19 levels in subsets of patients with pediatric and adult NAFLD demonstrates altered enterohepatic BA homeostasis in NAFLD. Conclusion: Here we outline how understanding of shared pathways of aberrant BA homeostatic signaling may guide targeted therapies in some patients with IBS-D and subsets of patients with NAFLD.
Collapse
Affiliation(s)
- Michael J. Weaver
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Scott A. McHenry
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | - Gregory S. Sayuk
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
- U.S. Department of Veterans AffairsVA St. Louis Health Care SystemJohn Cochran DivisionSt. LouisMO
| | - C. Prakash Gyawali
- Division of GastroenterologyWashington University School of MedicineSt. LouisMO
| | | |
Collapse
|
17
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
18
|
van Golen RF, Olthof PB, Lionarons DA, Reiniers MJ, Alles LK, Uz Z, de Haan L, Ergin B, de Waart DR, Maas A, Verheij J, Jansen PL, Damink SWO, Schaap FG, van Gulik TM, Heger M. FXR agonist obeticholic acid induces liver growth but exacerbates biliary injury in rats with obstructive cholestasis. Sci Rep 2018; 8:16529. [PMID: 30409980 PMCID: PMC6224438 DOI: 10.1038/s41598-018-33070-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cholestasis impairs liver regeneration following partial liver resection (PHx). Bile acid receptor farnesoid X-receptor (FXR) is a key mediator of liver regeneration. The effects of FXR agonist obeticholic acid (OCA) on liver (re)growth were therefore studied in cholestatic rats. Animals underwent sham surgery or reversible bile duct ligation (rBDL). PHx with concurrent internal biliary drainage was performed 7 days after rBDL. Animals were untreated or received OCA (10 mg/kg/day) per oral gavage from rBDL until sacrifice. After 7 days of OCA treatment, dry liver weight increased in the rBDL + OCA group, indicating OCA-mediated liver growth. Enhanced proliferation in the rBDL + OCA group prior to PHx concurred with a rise in Ki67-positive hepatocytes, elevated hepatic Ccnd1 and Cdc25b expression, and an induction of intestinal fibroblast growth factor 15 expression. Liver regrowth after PHx was initially stagnant in the rBDL + OCA group, possibly due to hepatomegaly prior to PHx. OCA increased hepatobiliary injury markers during BDL, which was accompanied by upregulation of the bile salt export pump. There were no differences in histological liver injury. In conclusion, OCA induces liver growth in cholestatic rats prior to PHx but exacerbates biliary injury during cholestasis, likely by forced pumping of bile acids into an obstructed biliary tree.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim B Olthof
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniël A Lionarons
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Oncogene Biology Laboratory, The Francis Crick Institute and University College London, London, United Kingdom
| | - Megan J Reiniers
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lindy K Alles
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zehra Uz
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lianne de Haan
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Adrie Maas
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Jansen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Holtmann G, Shah A, Morrison M. Pathophysiology of Functional Gastrointestinal Disorders: A Holistic Overview. Dig Dis 2018; 35 Suppl 1:5-13. [PMID: 29421808 DOI: 10.1159/000485409] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background and Summary: Traditionally, functional gastrointestinal disorders (FGID), including functional dyspepsia or irritable bowel syndrome (IBS), are defined by more or less specific symptoms and the absence of structural or biochemical abnormalities that cause these symptoms. This concept is now considered to be outdated; if appropriate tests are applied, structural or biochemical abnormalities that explain or cause the symptoms may be found in many patients. Another feature of FGID are the highly prevalent psychiatric comorbidities, such as depression and anxiety. It is implied that mood disorders "cause" gastrointestinal symptoms. In fact, epidemiological data now provide strong evidence that in subsets of cases, gastrointestinal (GI) symptoms arise first and mood disorders occur later, while in other patients the reverse appears to happen. Possible mechanisms for gut-brain dysfunction have been identified, with systemic minimal inflammation as a causal factor in at least some subjects. Other mechanisms that play a role in FGID include chronic infections, intestinal microbiota, low-grade mucosal inflammation including the increase of eosinophils, systemic immune activation, altered intestinal permeability, in diarrhea predominant IBS altered bile salt metabolism, abnormalities in the serotonin metabolism and genetic factors. All these factors might be modulated by environmental factors such as diet. Key Messages: While a number of factors can be linked to specific symptoms (e.g., pain or diarrhea), it is evident that the symptom-based categorization of patients will not allow targeted treatments that specifically address the underlying pathophysiology.
Collapse
Affiliation(s)
- Gerald Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Faculty of Medicine and Falty of Health and Behavioural Sciences, University of Queensland, Queensland, Queensland, Australia
| | - Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mark Morrison
- Diamantina Institute, University of Queensland, Queensland, Queensland, Australia
| |
Collapse
|
20
|
|
21
|
Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol 2016; 1:133-146. [DOI: 10.1016/s2468-1253(16)30023-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022]
|
22
|
The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 2016; 12:446-55. [PMID: 27256713 DOI: 10.1038/nrrheum.2016.68] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the gut microbiome in animal models of inflammatory and autoimmune disease is now well established. The human gut microbiome is currently being studied as a potential modulator of the immune response in rheumatic disorders. However, the vastness and complexity of this host-microorganism interaction is likely to go well beyond taxonomic, correlative observations. In fact, most advances in the field relate to the functional and metabolic capabilities of these microorganisms and their influence on mucosal immunity and systemic inflammation. An intricate relationship between the microbiome and the diet of the host is now fully recognized, with the microbiota having an important role in the degradation of polysaccharides into active metabolites. This Review summarizes the current knowledge on the metabolic role of the microbiota in health and rheumatic disease, including the advances in pharmacomicrobiomics and its potential use in diagnostics, therapeutics and personalized medicine.
Collapse
|
23
|
Phelps M, Stuelsatz P, Yablonka-Reuveni Z. Expression profile and overexpression outcome indicate a role for βKlotho in skeletal muscle fibro/adipogenesis. FEBS J 2016; 283:1653-68. [PMID: 26881702 DOI: 10.1111/febs.13682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/01/2022]
Abstract
Regeneration of skeletal muscles is required throughout life to ensure optimal performance. Therefore, a better understanding of the resident cells involved in muscle repair is essential. Muscle repair relies on satellite cells (SCs), the resident myogenic progenitors, but also involves the contribution of interstitial cells including fibro/adipocyte progenitors (FAPs). To elucidate the role of the fibroblast growth factor (FGF) signaling in these two cell populations, we previously analyzed freshly isolated cells for their FGF receptor (FGFR) signature. Transcript analysis of the four Fgfr genes revealed distinct expression profiles for SCs and FAPs, raising the possibility that these two cell types have different FGF-mediated processes. Here, we pursued this hypothesis exploring the role of the Klotho genes, whose products are known to function as FGFR co-receptors for the endocrine FGF subfamily. Isolated SC and FAP populations were analyzed in culture, exhibiting spontaneous myogenic or adipogenic differentiation, respectively. αKlotho expression was not detected in either population. βKlotho expression, while not detected in SCs, was strongly upregulated in FAPs entering adipogenic differentiation, coinciding with expression of a panel of adipogenic genes and preceding the appearance of intracellular lipid droplets. Overexpression of βKlotho in mouse cell line models enhanced adipogenesis in NIH3T3 fibroblasts but had no effect on C2C12 myogenic cells. Our study supports a pro-adipogenic role for βKlotho in skeletal muscle fibro/adipogenesis and calls for further research on involvement of the FGF-FGFR-βKlotho axis in the fibro/adipogenic infiltration associated with functional deterioration of skeletal muscle in aging and muscular dystrophy.
Collapse
Affiliation(s)
- Michael Phelps
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
24
|
Mottacki N, Simrén M, Bajor A. Review article: bile acid diarrhoea - pathogenesis, diagnosis and management. Aliment Pharmacol Ther 2016; 43:884-898. [PMID: 26913381 DOI: 10.1111/apt.13570] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 08/29/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Bile acid diarrhoea results from imbalances in the homoeostasis of bile acids in the enterohepatic circulation. It can be a consequence of ileal disease/dysfunction, associated with other GI pathology or can be idiopathic. AIMS To summarise the different types of bile acid diarrhoea and discuss the currently available diagnostic methods and treatments. RESULTS Bile acid diarrhoea is found in up to 40% of patients diagnosed as having functional diarrhoea/IBS-D, and in up to 80% of patients who have undergone ileal resection. It is likely under-diagnosed and under-treated. In idiopathic disease, errors in regulation feedback of fibroblast growth factor 19 contribute to the development of the condition. Clinical therapeutic trials for bile acid diarrhoea have been used to diagnose it, but the 75 SeHCAT test is the primary current method. It is sensitive, specific and widely available, though not in the USA. Other diagnostic methods (such as serum measurement of the bile acid intermediate 7α-hydroxy-4-cholesten-3-one, or C4) have less widespread availability and documentation, and some (such as faecal measurement of bile acids) are significantly more complex and costly. First-line treatment of bile acid diarrhoea is with the bile acid sequestrant cholestyramine, which can be difficult to administer and dose due to gastrointestinal side effects. These side effects are less prominent in newer agents such as colesevelam, which may provide higher efficacy, tolerability and compliance. CONCLUSION Bile acid diarrhoea is common, and likely under-diagnosed. Bile acid diarrhoea should be considered relatively early in the differential diagnosis of chronic diarrhoea.
Collapse
Affiliation(s)
- N Mottacki
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Simrén
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,University of Gothenburg Centre for Person-Centered Care (GPCC), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Bajor
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine, Södra Älvsborgs Sjukhus, Borås, Sweden
| |
Collapse
|
25
|
Chai J, Feng X, Zhang L, Chen S, Cheng Y, He X, Yang Y, He Y, Wang H, Wang R, Chen W. Hepatic expression of detoxification enzymes is decreased in human obstructive cholestasis due to gallstone biliary obstruction. PLoS One 2015; 10:e0120055. [PMID: 25798860 PMCID: PMC4370735 DOI: 10.1371/journal.pone.0120055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/02/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND & AIMS Levels of bile acid metabolic enzymes and membrane transporters have been reported to change in cholestasis. These alterations (e.g. CYP7A1 repression and MRP4 induction) are thought to be adaptive responses that attenuate cholestatic liver injury. However, the molecular mechanisms of these adaptive responses in human obstructive cholestasis due to gallstone biliary obstruction remain unclear. METHODS We collected liver samples from cholestatic patients with biliary obstruction due to gallstones and from control patients without liver disease (n = 22 per group). The expression levels of bile acid synthetic and detoxification enzymes, membrane transporters, and the related nuclear receptors and transcriptional factors were measured. RESULTS The levels of bile acid synthetic enzymes, CYP7B1 and CYP8B1, and the detoxification enzyme CYP2B6 were increased in cholestatic livers by 2.4-fold, 2.8-fold, and 1.9-fold, respectively (p<0.05). Conversely, the expression levels of liver detoxification enzymes, UGT2B4/7, SULT2A1, GSTA1-4, and GSTM1-4, were reduced by approximately 50% (p<0.05) in human obstructive cholestasis. The levels of membrane transporters, OSTβ and OCT1, were increased 10.4-fold and 1.8-fold, respectively, (p<0.05), whereas those of OSTα, ABCG2 and ABCG8 were all decreased by approximately 40%, (p<0.05) in human cholestatic livers. Hepatic nuclear receptors, VDR, HNF4α, RXRα and RARα, were induced (approximately 2.0-fold, (p<0.05) whereas FXR levels were markedly reduced to 44% of control, (p<0.05) in human obstructive cholestasis. There was a significantly positive correlation between the reduction in FXR mRNA and UGT2B4/7, SULT2A1, GSTA1, ABCG2/8 mRNA levels in livers of obstructive cholestatic patients (p<0.05). CONCLUSIONS The levels of hepatic detoxification enzymes were significantly decreased in human obstructive cholestasis, and these decreases were positively associated with a marked reduction of FXR levels. These findings are consistent with impaired detoxification ability in human obstructive cholestasis.
Collapse
Affiliation(s)
- Jin Chai
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xinchan Feng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Liangjun Zhang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ying Cheng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xiaochong He
- School of Nursing, Third Military Medical University, Chongqing, P.R. China
| | - Yingxue Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
26
|
Appleby RN, Walters JRF. The role of bile acids in functional GI disorders. Neurogastroenterol Motil 2014; 26:1057-69. [PMID: 24898156 DOI: 10.1111/nmo.12370] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile acids are increasingly implicated in the pathogenesis of functional GI disorders. New mechanisms have recently been described in the irritable bowel syndrome, chronic diarrhea and chronic idiopathic constipation. Identification of bile acid signaling through farnesoid X receptor (FXR), transmembrane G-coupled receptor 5 (TGR5) and fibroblast growth factor 19 (FGF19) has led to the development of new, directly acting therapeutic agents. Despite these advances primary bile acid diarrhea remains under-recognized partly because of the lack of a widely available diagnostic test. PURPOSE In this review we will summarize the effects of bile acids on bowel function throughout the gastrointestinal tract and their roles in the pathogenesis of functional diseases. We will review established diagnostic tests and therapies for functional heartburn, dyspepsia and bile acid diarrhea. There will be a particular emphasis on recent trial data for emerging therapies such as Elobixibat and Obeticholic acid and novel diagnostic tests for bile acid diarrhea such as 7α-Hydroxy-4-cholesten-3-one (C4) and FGF19. Finally we will discuss future directions for research in this rapidly evolving field, such as bacterial bile acid modification and identification of genetic anomalies associated with functional disorders.
Collapse
Affiliation(s)
- Richard N Appleby
- Section of Hepatology and Gastroenterology, Imperial College London, Imperial College Healthcare, Hammersmith Hospital, London, UK
| | | |
Collapse
|
27
|
Abstract
The interaction between inflammatory bowel disease (IBD) and hepatobiliary manifestations represents a classic example of liver-gut crosstalk. The importance of liver-gut crosstalk in IBD is demonstrated in the pathogenesis and outcome of primary sclerosing cholangitis (PSC) in IBD patients. Immunoglobulin G4-associated cholangitis (IAC), which has recently been described in UC patients, may also illustrate the significance of gut-liver interaction in these patients. Presence of these hepatobiliary manifestations influences the outcome of associated IBD, in particular ulcerative colitis (UC), and vice versa. The pathogenesis of PSC is postulated to be related to gut inflammation in IBD that results in inflammation in the portal tracts (the 'leaky gut'). Enterohepatic circulation of lymphocytes from the gut to the liver is also of potential relevance to PSC pathogenesis and outcomes. The presence of PSC and gut inflammation in IBD influences the course and outcomes of both diseases. Further research is required, to understand the mutual effect of liver-gut crosstalk in the outcomes of UC patients, and highlights the importance of an interdisciplinary approach-involving gastroenterologists, hepatologists, advanced endoscopists and liver transplant surgeons-in the management of these patients.
Collapse
Affiliation(s)
- Udayakumar Navaneethan
- Department of Gastroenterology/Hepatology, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Camilleri M, Klee EW, Shin A, Carlson P, Li Y, Grover M, Zinsmeister AR. Irritable bowel syndrome-diarrhea: characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit. Am J Physiol Gastrointest Liver Physiol 2014; 306:G13-26. [PMID: 24200957 PMCID: PMC3920085 DOI: 10.1152/ajpgi.00294.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023]
Abstract
The study objectives were: to mine the complete exome to identify putative rare single nucleotide variants (SNVs) associated with irritable bowel syndrome (IBS)-diarrhea (IBS-D) phenotype, to assess genes that regulate bile acids in IBS-D, and to explore univariate associations of SNVs with symptom phenotype and quantitative traits in an independent IBS cohort. Using principal components analysis, we identified two groups of IBS-D (n = 16) with increased fecal bile acids: rapid colonic transit or high bile acids synthesis. DNA was sequenced in depth, analyzing SNVs in bile acid genes (ASBT, FXR, OSTα/β, FGF19, FGFR4, KLB, SHP, CYP7A1, LRH-1, and FABP6). Exome findings were compared with those of 50 similar ethnicity controls. We assessed univariate associations of each SNV with quantitative traits and a principal components analysis and associations between SNVs in KLB and FGFR4 and symptom phenotype in 405 IBS, 228 controls and colonic transit in 70 IBS-D, 71 IBS-constipation. Mining the complete exome did not reveal significant associations with IBS-D over controls. There were 54 SNVs in 10 of 11 bile acid-regulating genes, with no SNVs in FGF19; 15 nonsynonymous SNVs were identified in similar proportions of IBS-D and controls. Variations in KLB (rs1015450, downstream) and FGFR4 [rs434434 (intronic), rs1966265, and rs351855 (nonsynonymous)] were associated with colonic transit (rs1966265; P = 0.043), fecal bile acids (rs1015450; P = 0.064), and principal components analysis groups (all 3 FGFR4 SNVs; P < 0.05). In the 633-person cohort, FGFR4 rs434434 was associated with symptom phenotype (P = 0.027) and rs1966265 with 24-h colonic transit (P = 0.066). Thus exome sequencing identified additional variants in KLB and FGFR4 associated with bile acids or colonic transit in IBS-D.
Collapse
Affiliation(s)
- Michael Camilleri
- Mayo Clinic, Charlton 8-110, 200 First St. S.W., Rochester, MN 55905.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.
Collapse
Affiliation(s)
- Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
30
|
Romain G, Tremblay S, Arena ET, Antunes LCM, Covey S, Chow MT, Finlay BB, Menendez A. Enterohepatic bacterial infections dysregulate the FGF15-FGFR4 endocrine axis. BMC Microbiol 2013; 13:238. [PMID: 24165751 PMCID: PMC3818973 DOI: 10.1186/1471-2180-13-238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/26/2013] [Indexed: 11/17/2022] Open
Abstract
Background Enterohepatic bacterial infections have the potential to affect multiple physiological processes of the body. Fibroblast growth factor 15/19 (FGF15 in mice, FGF19 in humans) is a hormone that functions as a central regulator of glucose, lipid and bile acid metabolism. FGF15/19 is produced in the intestine and exert its actions on the liver by signaling through the FGFR4-βKlotho receptor complex. Here, we examined the in vivo effects of enterohepatic bacterial infection over the FGF15 endocrine axis. Results Infection triggered significant reductions in the intestinal expression of Fgf15 and its hepatic receptor components (Fgfr4 and Klb (βKlotho)). Infection also resulted in alterations of the expression pattern of genes involved in hepatobiliary function, marked reduction in gallbladder bile volumes and accumulation of hepatic cholesterol and triglycerides. The decrease in ileal Fgf15 expression was associated with liver bacterial colonization and hepatobiliary pathophysiology rather than with direct intestinal bacterial pathogenesis. Conclusions Bacterial pathogens of the enterohepatic system can disturb the homeostasis of the FGF15/19-FGFR4 endocrine axis. These results open up a possible link between FGF15/19-FGFR4 disruptions and the metabolic and nutritional disorders observed in infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Cancer Research Pavilion, Rm Z8-1072, 3201, rue Jean-Mignault, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|
31
|
Karlsen TH, Boberg KM. Update on primary sclerosing cholangitis. J Hepatol 2013; 59:571-82. [PMID: 23603668 DOI: 10.1016/j.jhep.2013.03.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Primary sclerosing cholangitis (PSC) remains one of the most challenging conditions of clinical hepatology. There has been a steady growth in research to overcome this fact and the present review aims at summarizing the most recently published literature. The main emphasis will be put on the link of recent pathogenetic insights to clinical characteristics and patient management. With regard to pathogenesis, there is no consensus yet as to whether immune mediated injury or factors related to bile acid physiology are the most important. It also remains to be clarified whether PSC is a mixed bag of various secondary etiologies yet to be defined, or a disease entity predominantly represented by sclerosing cholangitis in the context of inflammatory bowel disease. Most important, there is no available medical therapy with proven influence on clinical end points, and timing of liver transplantation and patient follow-up are challenging due to the unpredictable and high risk of cholangiocarcinoma.
Collapse
Affiliation(s)
- Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | |
Collapse
|
32
|
Dutra RL, de Carvalho MB, dos Santos M, Mercante AMDC, Gazito D, de Cicco R, Group GENCAPO, Tajara EH, Louro ID, da Silva AMÁ. FGFR4 profile as a prognostic marker in squamous cell carcinoma of the mouth and oropharynx. PLoS One 2012; 7:e50747. [PMID: 23226373 PMCID: PMC3511351 DOI: 10.1371/journal.pone.0050747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/24/2012] [Indexed: 02/07/2023] Open
Abstract
Background Fibroblast growth factor receptor 4 (FGFR4) is a member of a receptor tyrosine kinase family of enzymes involved in cell cycle control and proliferation. A common single nucleotide polymorphism (SNP) Gly388Arg variant has been associated with increased tumor cell motility and progression of breast cancer, head and neck cancer and soft tissue sarcomas. The present study evaluated the prognostic significance of FGFR4 in oral and oropharynx carcinomas, finding an association of FGFR4 expression and Gly388Arg genotype with tumor onset and prognosis. Patients and Methods DNA from peripheral blood of 122 patients with oral and oropharyngeal squamous cell carcinomas was used to determine FGFR4 genotype by PCR-RFLP. Protein expression was assessed by immunohistochemistry (IHC) on paraffin-embedded tissue microarrays. Results Presence of allele Arg388 was associated with lymphatic embolization and with disease related premature death. In addition, FGFR4 low expression was related with lymph node positivity and premature relapse of disease, as well as disease related death. Conclusion Our results propose FGFR4 profile, measured by the Gly388Arg genotype and expression, as a novel marker of prognosis in squamous cell carcinoma of the mouth and oropharynx.
Collapse
Affiliation(s)
- Roberta Lelis Dutra
- Faculdade de Medicina, Universidade de São Paulo,São Paulo, São Paulo, Brazil
| | - Marcos Brasilino de Carvalho
- Laboratório de Biologia Molecular, Hospital Heliópolis, São Paulo, São Paulo, Brazil
- Serviço de Cirurgia Cabeça e Pescoço, Hospital Heliópolis, São Paulo, São Paulo, Brazil
| | - Marcelo dos Santos
- Programa de Pós Graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Diana Gazito
- Laboratório de Sequenciamento, Associação Beneficente de Coleta de Sangue, São Paulo, São Paulo, Brazil
| | | | - GENCAPO Group
- Head and Neck Genome Project, GENCAPO, Ribeirão Preto, São Paulo, Brazil
| | - Eloiza Helena Tajara
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Iúri Drumond Louro
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor 19 (FGF19) is a postprandial hormone released from the small intestine. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. This review summarizes the recent advances in our understanding of the biology of FGF19 and its role in glucose homeostasis, with emphasis on publications from 2010 to 2012. RECENT FINDINGS Protein engineering was used to generate FGF19 protein variants that allowed the separation of its mitogenic and metabolic functions. Its cognate receptor in the liver (FGFR4) mediated the effects of FGF19 on proliferation and bile salt synthesis, while this receptor was dispensable for its effects on glucose homeostasis. New metabolic activities of FGF19 were uncovered. FGF19 signaling was shown to stimulate glycogen and protein synthesis, and inhibit gluconeogenesis. FGF19 employed signaling routes distinct from those used by insulin to regulate these pathways. Mice with genetic disruption of Fgf15 (the mouse FGF19 ortholog) were glucose intolerant but had normal insulin levels and normal insulin sensitivity. Reduced hepatic glycogen stores and elevated hepatic gluconeogenesis were observed in the knock-out mice under the conditions in which insulin signaling was active. SUMMARY FGF19 signaling regulates glucose homeostasis in mice. The (patho)physiological role of FGF19 in glucose homeostasis in humans remains to be determined. Its novel insulin-mimetic actions, combined with the elimination of its mitogenic activity by protein engineering, make FGF19 an attractive candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Frank G Schaap
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Abstract
The glycome, that is, the glycan components of a biological source, has been widely reported to change with disease states. However, mining the glycome for biomarkers is complicated by glycan structural heterogeneity. Nanoflow LC, or nano-LC, significantly addresses the problem by providing a highly sensitive and quantitative method of separating and profiling glycans. This review summarizes recent advances in analytical technology and methodology that enhance and augment the advantages offered by nano-LC. (e.g., reversed phase, hydrophilic interaction and porous graphitized carbon chromatography, as well as associated derivatization strategies), detectors (e.g., fluorescence and MS), and technology platforms (particularly chip-based nano-LC) are examined in detail, along with their application to biomarker discovery. Particular emphasis is placed on methods and technologies that allow structure-specific glycan profiling.
Collapse
|
35
|
|
36
|
Abstract
Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.
Collapse
|
37
|
Letona AZ, Niot I, Laugerette F, Athias A, Monnot MC, Portillo MP, Besnard P, Poirier H. CLA-enriched diet containing t10,c12-CLA alters bile acid homeostasis and increases the risk of cholelithiasis in mice. J Nutr 2011; 141:1437-44. [PMID: 21628634 DOI: 10.3945/jn.110.136168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.
Collapse
Affiliation(s)
- Amaia Zabala Letona
- Physiologie de la Nutrition, UMR INSERM U 866/ Université de Bourgogne, AgroSup Dijon, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wong BS, Camilleri M, Carlson PJ, Guicciardi ME, Burton D, McKinzie S, Rao AS, Zinsmeister AR, Gores GJ. A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 2011; 140:1934-42. [PMID: 21396369 PMCID: PMC3109206 DOI: 10.1053/j.gastro.2011.02.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/27/2011] [Accepted: 02/25/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Bile acid (BA) malabsorption of moderate severity is reported in 32% of patients with chronic unexplained diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D). We hypothesized that variants of genes regulating hepatic BA synthesis play a role in IBS-D. METHODS In 435 IBS and 279 healthy subjects, we tested individual associations of 15 common single nucleotide polymorphisms (SNPs) from 7 genes critical to BA homeostasis with symptom-based subgroups using dominant genetic models. In a subset of 238 participants, we tested association with colonic transit. SNP-SNP interactions were investigated based on known protein interactions in BA homeostasis. The function of SNP rs17618244 in Klothoβ (KLB) was evaluated using a protein stability assay in HEK293 cells. RESULTS SNP rs17618244 (Arg728Gln in KLB) is associated with colonic transit at 24 hours. G allele (Arg728) compared with A allele (Gln728) is associated with accelerated colonic transit (P=.0007) in the overall cohort; this association was restricted to IBS-D (P=.0018). Interaction tests of KLB rs17618244 with 3 nonsynonymous SNPs of fibroblast growth factor receptor 4 (FGFR4) revealed that rs1966265 (Val10Ile) and rs351855 (Gly388Arg) modulate rs1768244's association with colonic transit in IBS-D (P=.0025 and P=.0023, respectively). KLB Arg728 significantly reduced protein stability compared with KLB Gln728, demonstrating KLB rs17618244's functional significance. No significant associations with symptom-based subgroups of IBS were detected. CONCLUSIONS A functional KLB gene variant mediating protein stability associates with colonic transit in IBS-D. This association is modulated by 2 genetic variants in FGFR4. The FGF19-FGFR4-KLB pathway links regulation of BA synthesis to colonic transit in IBS-D.
Collapse
Affiliation(s)
- Banny S. Wong
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Paula J. Carlson
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Duane Burton
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sanna McKinzie
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Archana S. Rao
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alan R. Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|