1
|
González JT, Scharfman OH, Zhu W, Kasamoto J, Gould V, Perry RJ, Higgins-Chen AT. Transcriptomic and epigenomic signatures of liver metabolism and insulin sensitivity in aging mice. Mech Ageing Dev 2025; 225:112068. [PMID: 40324540 DOI: 10.1016/j.mad.2025.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Age-related declines in insulin sensitivity and glucose metabolism contribute to metabolic disease. Despite the liver's central role in glucose homeostasis, a comprehensive phenotypic characterization and concurrent molecular analysis of insulin resistance and metabolic dysfunction in the aging liver is lacking. We characterized hepatic insulin resistance and mitochondrial metabolic defects through metabolic cage, hyperinsulinemic-euglycemic clamp, and tracer studies paired with transcriptomic and DNA methylation analyses in young and aged male mice. Aged mice exhibited benchmark measures of whole body and liver insulin resistance. Aged mice showed lower pyruvate dehydrogenase flux, decreased fatty acid oxidation and citrate synthase fluxes, and increased pyruvate carboxylase flux under insulin-stimulated conditions. Molecular analysis revealed age-related changes in metabolic genes Pck1, Socs3, Tbc1d4, and Enpp1. Unsupervised network analysis identified an intercorrelated phenotype module (ME-Glucose), RNA module, and DNA methylation module. The DNA methylation module was enriched for lipid metabolism pathways and TCF-1 binding, while the RNA module was enriched for MZF-1 binding and regulation by miR-155-5p. Protein-protein interaction network analysis revealed interactions between module genes and canonical metabolic pathways, highlighting genes including Ets1, Ppp1r3b, and Enpp3. This study reveals novel genes underlying age-related hepatic insulin resistance as potential targets for metabolic interventions to promote healthy aging.
Collapse
Affiliation(s)
- John T González
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Olivia H Scharfman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Victoria Gould
- Altos Labs, Institute of Computation, San Diego, CA 92114, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA.
| | - Albert T Higgins-Chen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Hemalatha A, Li Z, Gonzalez DG, Matte-Martone C, Tai K, Lathrop E, Gil D, Ganesan S, Gonzalez LE, Skala M, Perry RJ, Greco V. Metabolic rewiring in skin epidermis drives tolerance to oncogenic mutations. Nat Cell Biol 2025; 27:218-231. [PMID: 39762578 PMCID: PMC11821535 DOI: 10.1038/s41556-024-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/01/2024] [Indexed: 02/06/2025]
Abstract
Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, HrasG12V cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes. By tracking the endogenous redox ratio (NAD(P)H/FAD) with single-cell resolution in the same mouse over time, we discover that βcatGOF and HrasG12V mutations, when interfaced with wild-type epidermal stem cells, lead to a rapid drop in redox ratios, indicating more oxidized cellular redox. However, the resultant redox differential persists through time in βcatGOF, whereas it is flattened rapidly in the HrasG12Vmodel. Using 13C liquid chromatography-tandem mass spectrometry, we find that the βcatGOF and HrasG12V mutant epidermis increase the fractional contribution of glucose through the oxidative tricarboxylic acid cycle. Treatment with metformin, a modifier of cytosolic redox, inhibits downstream mutant phenotypes and reverses cell-competition outcomes of both mutant models.
Collapse
Affiliation(s)
| | - Zongyu Li
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Karen Tai
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Daniel Gil
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melissa Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale School of Medicine, New Haven, CT, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Toksoy Z, Ma Y, Goedeke L, Li W, Hu X, Wu X, Cacheux M, Liu Y, Akar FG, Shulman GI, Young LH. Role of AMPK in Atrial Metabolic Homeostasis and Substrate Preference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.608789. [PMID: 39257756 PMCID: PMC11383699 DOI: 10.1101/2024.08.29.608789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Atrial fibrillation is the most common clinical arrhythmia and may be due in part to metabolic stress. Atrial specific deletion of the master metabolic sensor, AMP-activated protein kinase (AMPK), induces atrial remodeling culminating in atrial fibrillation in mice, implicating AMPK signaling in the maintenance of atrial electrical and structural homeostasis. However, atrial substrate preference for mitochondrial oxidation and the role of AMPK in regulating atrial metabolism are unknown. Here, using LC-MS/MS methodology combined with infusions of [ 13 C 6 ]glucose and [ 13 C 4 ]β-hydroxybutyrate in conscious mice, we demonstrate that conditional deletion of atrial AMPK catalytic subunits shifts mitochondrial atrial metabolism away from fatty acid oxidation and towards pyruvate oxidation. LC-MS/MS-based quantification of acyl-CoAs demonstrated decreased atrial tissue content of long-chain fatty acyl-CoAs. Proteomic analysis revealed a broad downregulation of proteins responsible for fatty acid uptake (LPL, CD36, FABP3), acylation and oxidation. Atrial AMPK deletion reduced expression of atrial PGC1-α and downstream PGC1-α/PPARα/RXR regulated gene transcripts. In contrast, atrial [ 14 C]2-deoxyglucose uptake and GLUT1 expression increased with fasting in mice with AMPK deletion, while the expression of glycolytic enzymes exhibited heterogenous changes. Thus, these results highlight the crucial homeostatic role of AMPK in the atrium, with loss of atrial AMPK leading to downregulation of the PGC1-α/PPARα pathway and broad metabolic reprogramming with a loss of fatty acid oxidation, which may contribute to atrial remodeling and arrhythmia.
Collapse
|
4
|
Sullivan DI, Bello FM, Silva AG, Redding KM, Giordano L, Hinchie AM, Loughridge KE, Mora AL, Königshoff M, Kaufman BA, Jurczak MJ, Alder JK. Intact mitochondrial function in the setting of telomere-induced senescence. Aging Cell 2023; 22:e13941. [PMID: 37688329 PMCID: PMC10577573 DOI: 10.1111/acel.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 09/10/2023] Open
Abstract
Mitochondria play essential roles in metabolic support and signaling within all cells. Congenital and acquired defects in mitochondria are responsible for several pathologies, including premature entrance to cellar senescence. Conversely, we examined the consequences of dysfunctional telomere-driven cellular senescence on mitochondrial biogenesis and function. We drove senescence in vitro and in vivo by deleting the telomere-binding protein TRF2 in fibroblasts and hepatocytes, respectively. Deletion of TRF2 led to a robust DNA damage response, global changes in transcription, and induction of cellular senescence. In vitro, senescent cells had significant increases in mitochondrial respiratory capacity driven by increased cellular and mitochondrial volume. Hepatocytes with dysfunctional telomeres maintained their mitochondrial respiratory capacity in vivo, whether measured in intact cells or purified mitochondria. Induction of senescence led to the upregulation of overlapping and distinct genes in fibroblasts and hepatocytes, but transcripts related to mitochondria were preserved. Our results support that mitochondrial function and activity are preserved in telomere dysfunction-induced senescence, which may facilitate continued cellular functions.
Collapse
Affiliation(s)
- Daniel I. Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Fiona M. Bello
- Division of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Agustin Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kevin M. Redding
- Center for Metabolism and Mitochondrial MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Heart, Lung, and Blood Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Luca Giordano
- Center for Metabolism and Mitochondrial MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Heart, Lung, and Blood Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Angela M. Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kelly E. Loughridge
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart Lung Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Melanie Königshoff
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brett A. Kaufman
- Center for Metabolism and Mitochondrial MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Heart, Lung, and Blood Vascular Medicine InstituteUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michael J. Jurczak
- Division of Endocrinology and MetabolismUniversity of PittsburghPittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jonathan K. Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Walls KM, Hong KU, Hein DW. Heterocyclic amines reduce insulin-induced AKT phosphorylation and induce gluconeogenic gene expression in human hepatocytes. Arch Toxicol 2023; 97:1613-1626. [PMID: 37005939 PMCID: PMC10192068 DOI: 10.1007/s00204-023-03488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Heterocyclic amines (HCAs) are well-known for their mutagenic properties. One of the major routes of human exposure is through consumption of cooked meat, as certain cooking methods favor formation of HCAs. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. However, no previous studies have examined if HCAs, independent of meat consumption, contributes to pathogenesis of insulin resistance or metabolic disease. In the present study, we have assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on insulin signaling and glucose production. HepG2 or cryopreserved human hepatocytes were treated with 0-50 μM of MeIQ, MeIQx, or PhIP for 3 days. Treatment of HepG2 cells and hepatocytes with MeIQ and MeIQx resulted in a significant reduction in insulin-induced AKT phosphorylation, suggesting that HCA exposure decreases hepatic insulin signaling. HCA treatment also led to significant increases in expression of gluconeogenic genes, G6PC and PCK1, in both HepG2 and cryopreserved human hepatocytes. Additionally, the level of phosphorylated FOXO1, a transcriptional regulator of gluconeogenesis, was significantly reduced by HCA treatment in hepatocytes. Importantly, HCA treatment of human hepatocytes led to increases in extracellular glucose level in the presence of gluconeogenic substrates, suggesting that HCAs induce hepatic glucose production. The current findings suggest that HCAs induce insulin resistance and promote hepatic glucose production in human hepatocytes. This implicates that exposure to HCAs may lead to the development of type II diabetes or metabolic syndrome.
Collapse
Affiliation(s)
- Kennedy M. Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| | - Kyung U. Hong
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| | - David W. Hein
- Department of Pharmacology & Toxicology and Brown Cancer Center,
University of Louisville School of Medicine, Louisville, KY. U.S.A
| |
Collapse
|
6
|
Akingbesote ND, Leitner BP, Jovin DG, Desrouleaux R, Owusu D, Zhu W, Li Z, Pollak MN, Perry RJ. Gene and protein expression and metabolic flux analysis reveals metabolic scaling in liver ex vivo and in vivo. eLife 2023; 12:e78335. [PMID: 37219930 PMCID: PMC10205083 DOI: 10.7554/elife.78335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational modeling. The possibility that other metabolic processes scale with body size has not been comprehensively studied. To address this gap in knowledge, we employed a systems approach including transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expression in livers of five species spanning a 30,000-fold range in mass revealed differential expression according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and to detoxication of oxidative damage. To determine whether flux through key metabolic pathways is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level of gene and protein expression, enzyme activity, and substrate supply.
Collapse
Affiliation(s)
- Ngozi D Akingbesote
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Daniel G Jovin
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Reina Desrouleaux
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Comparative Medicine, Yale UniversityNew HavenUnited States
| | - Dennis Owusu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Zongyu Li
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General HospitalMontrealCanada
- Department of Oncology, McGill UniversityMontrealCanada
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Internal Medicine – Endocrinology, Yale UniversityNew HavenUnited States
| |
Collapse
|
7
|
Pillay Y, Nagiah S, Chuturgoon A. Patulin Alters Insulin Signaling and Metabolic Flexibility in HepG2 and HEK293 Cells. Toxins (Basel) 2023; 15:toxins15040244. [PMID: 37104182 PMCID: PMC10145496 DOI: 10.3390/toxins15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Non-communicable diseases (NCDs) have risen rapidly worldwide, sparking interest in causative agents and pathways. Patulin (PAT), a xenobiotic found in fruit products contaminated by molds, is postulated to be diabetogenic in animals, but little is known about these effects in humans. This study examined the effects of PAT on the insulin signaling pathway and the pyruvate dehydrogenase complex (PDH). HEK293 and HepG2 cells were exposed to normal (5 mM) or high (25 mM) glucose levels, insulin (1.7 nM) and PAT (0.2 μM; 2.0 μM) for 24 h. The qPCR determined gene expression of key enzymes involved in carbohydrate metabolism while Western blotting assessed the effects of PAT on the insulin signaling pathway and Pyruvate Dehydrogenase (PDH) axis. Under hyperglycemic conditions, PAT stimulated glucose production pathways, caused defects in the insulin signaling pathway and impaired PDH activity. These trends under hyperglycemic conditions remained consistent in the presence of insulin. These findings are of importance, given that PAT is ingested with fruit and fruit products. Results suggest PAT exposure may be an initiating event in insulin resistance, alluding to an etiological role in the pathogenesis of type 2 diabetes and disorders of metabolism. This highlights the importance of both diet and food quality in addressing the causes of NCDs.
Collapse
|
8
|
Son Y, Shockey J, Dowd MK, Shieh JG, Cooper JA, Paton CM. A cottonseed oil-enriched diet improves liver and plasma lipid levels in a male mouse model of fatty liver. Am J Physiol Regul Integr Comp Physiol 2023; 324:R171-R182. [PMID: 36503254 DOI: 10.1152/ajpregu.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Michael K Dowd
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Josephine G Shieh
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia.,Department of Food Science & Technology, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| |
Collapse
|
9
|
Hubbard BT, LaMoia TE, Goedeke L, Gaspar RC, Galsgaard KD, Kahn M, Mason GF, Shulman GI. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metab 2023; 35:212-226.e4. [PMID: 36516861 PMCID: PMC9887731 DOI: 10.1016/j.cmet.2022.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.
Collapse
Affiliation(s)
- Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Traci E LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katrine D Galsgaard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graeme F Mason
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry & Biomedical Engineering, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Codella R, Alves TC, Befroy DE, Choi CS, Luzi L, Rothman DL, Kibbey RG, Shulman GI. Overexpression of UCP3 decreases mitochondrial efficiency in mouse skeletal muscle in vivo. FEBS Lett 2023; 597:309-319. [PMID: 36114012 DOI: 10.1002/1873-3468.14494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Uncoupling protein-3 (UCP3) is a mitochondrial transmembrane protein highly expressed in the muscle that has been implicated in regulating the efficiency of mitochondrial oxidative phosphorylation. Increasing UCP3 expression in skeletal muscle enhances proton leak across the inner mitochondrial membrane and increases oxygen consumption in isolated mitochondria, but its precise function in vivo has yet to be fully elucidated. To examine whether muscle-specific overexpression of UCP3 modulates muscle mitochondrial oxidation in vivo, rates of ATP synthesis were assessed by 31 P magnetic resonance spectroscopy (MRS), and rates of mitochondrial oxidative metabolism were measured by assessing the rate of [2-13 C]acetate incorporation into muscle [4-13 C]-, [3-13 C]-glutamate, and [4-13 C]-glutamine by high-resolution 13 C/1 H MRS. Using this approach, we found that the overexpression of UCP3 in skeletal muscle was accompanied by increased muscle mitochondrial inefficiency in vivo as reflected by a 42% reduction in the ratio of ATP synthesis to mitochondrial oxidation.
Collapse
Affiliation(s)
- Roberto Codella
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Italy.,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Tiago C Alves
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas E Befroy
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Cheol Soo Choi
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Italy.,Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Douglas L Rothman
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Richard G Kibbey
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Xie B, Ramirez W, Mills AM, Huckestein BR, Anderson M, Pangburn MM, Lang EY, Mullet SJ, Chuan BW, Guo L, Sipula I, O'Donnell CP, Wendell SG, Scott I, Jurczak MJ. Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. Curr Res Physiol 2022; 5:232-239. [PMID: 35677213 PMCID: PMC9168377 DOI: 10.1016/j.crphys.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Sodium-glucose co-transporter type 2 (SGLT2) inhibitor therapy to treat type 2 diabetes unexpectedly reduced all-cause mortality and hospitalization due to heart failure in several large-scale clinical trials, and has since been shown to produce similar cardiovascular disease-protective effects in patients without diabetes. How SGLT2 inhibitor therapy improves cardiovascular disease outcomes remains incompletely understood. Metabolic flexibility refers to the ability of a cell or organ to adjust its use of metabolic substrates, such as glucose or fatty acids, in response to physiological or pathophysiological conditions, and is a feature of a healthy heart that may be lost during diabetic cardiomyopathy and in the failing heart. We therefore undertook studies to determine the effects of SGLT2 inhibitor therapy on cardiac metabolic flexibility in vivo in obese, insulin resistant mice using a [U13C]-glucose infusion during fasting and hyperinsulinemic euglycemic clamp. Relative rates of cardiac glucose versus fatty acid use during fasting were unaffected by EMPA, whereas insulin-stimulated rates of glucose use were significantly increased by EMPA, alongside significant improvements in cardiac insulin signaling. These metabolic effects of EMPA were associated with reduced cardiac hypertrophy and protection from ischemia. These observations suggest that the cardiovascular disease-protective effects of SGLT2 inhibitors may in part be explained by beneficial effects on cardiac metabolic substrate selection. [U13C]-glucose infusion to measure cardiac-specific metabolic flexibility in vivo. Obese mice do not increase cardiac glucose use in response to hyperinsulinemia. Empagliflozin (EMPA) improves cardiac insulin sensitivity and glucose utilization. EMPA increases cardiac-specific glucose utilization during hyperinsulinemia. EMPA restores cardiac metabolic flexibility (shift from fat to glucose) in obesity.
Collapse
|
12
|
Navarro CDC, Francisco A, Figueira TR, Ronchi JA, Oliveira HCF, Vercesi AE, Castilho RF. Dichloroacetate reactivates pyruvate-supported peroxide removal by liver mitochondria and prevents NAFLD aggravation in NAD(P) + transhydrogenase-null mice consuming a high-fat diet. Eur J Pharmacol 2022; 917:174750. [PMID: 35032488 DOI: 10.1016/j.ejphar.2022.174750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P)+ transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P)+ transhydrogenase-null (Nnt-/-) mice fed an HFD (60% of total calories from fat). For this purpose, Nnt-/- mice and their congenic controls (Nnt+/+) were fed chow or an HFD for 20 weeks and received sodium dichloroacetate or NaCl in the final 12 weeks via drinking water. The results showed that HFD reduced the ability of isolated liver mitochondria from Nnt-/- mice to remove peroxide, which was prevented by the dichloroacetate treatment. HFD-fed mice of both Nnt genotypes exhibited increased body and liver mass, as well as a higher content of hepatic triglycerides, but dichloroacetate treatment attenuated these abnormalities only in Nnt-/- mice. Notably, dichloroacetate treatment decreased liver pyruvate dehydrogenase phosphorylation levels and prevented the aggravation of NAFLD in HFD-fed Nnt-/- mice. Conversely, dichloroacetate treatment elicited moderate hepatocyte ballooning in chow-fed mice, suggesting potentially toxic effects. We conclude that the protection against HFD-induced NAFLD by dichloroacetate is associated with its role in reactivating pyruvate dehydrogenase and reestablishing the pyruvate-supported liver mitochondrial capacity to handle peroxide in Nnt-/- mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil.
| | - Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Tiago R Figueira
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, 14040-907, Brazil
| | - Juliana A Ronchi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Anibal E Vercesi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil
| | - Roger F Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-888, Brazil.
| |
Collapse
|
13
|
Miller CO, Cao J. Probing Hepatic Glucose Metabolism via 13C NMR Spectroscopy in Perfused Livers-Applications to Drug Development. Metabolites 2021; 11:metabo11110712. [PMID: 34822370 PMCID: PMC8622237 DOI: 10.3390/metabo11110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite being first published over 40 years ago, the combination of 13C nuclear magnetic resonance spectroscopy (NMR) and the isolated perfused liver preparation remains a unique and relevant approach in investigating the effects of pharmacological interventions on hepatic metabolism. The use of intact, perfused livers maintains many metabolic reactions at their respective rates in vivo, while the use of 13C-labelled substrates in combination with 13C NMR allows for a detailed study of specific pathways, as well as the design of robust assays which can be used to evaluate novel pharmacological agents. In this review article, we share some of the methods used to probe glucose metabolism, and highlight key findings and successes derived from the application of this specialized technique to the area of drug development for diabetes and related metabolic disorders.
Collapse
|
14
|
Song JD, Alves TC, Befroy DE, Perry RJ, Mason GF, Zhang XM, Munk A, Zhang Y, Zhang D, Cline GW, Rothman DL, Petersen KF, Shulman GI. Dissociation of Muscle Insulin Resistance from Alterations in Mitochondrial Substrate Preference. Cell Metab 2020; 32:726-735.e5. [PMID: 33035493 PMCID: PMC8218871 DOI: 10.1016/j.cmet.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 12/28/2022]
Abstract
Alterations in muscle mitochondrial substrate preference have been postulated to play a major role in the pathogenesis of muscle insulin resistance. In order to examine this hypothesis, we assessed the ratio of mitochondrial pyruvate oxidation (VPDH) to rates of mitochondrial citrate synthase flux (VCS) in muscle. Contrary to this hypothesis, we found that high-fat-diet (HFD)-fed insulin-resistant rats did not manifest altered muscle substrate preference (VPDH/VCS) in soleus or quadriceps muscles in the fasting state. Furthermore, hyperinsulinemic-euglycemic (HE) clamps increased VPDH/VCS in both muscles in normal and insulin-resistant rats. We then examined the muscle VPDH/VCS flux in insulin-sensitive and insulin-resistant humans and found similar relative rates of VPDH/VCS, following an overnight fast (∼20%), and similar increases in VPDH/VCS fluxes during a HE clamp. Altogether, these findings demonstrate that alterations in mitochondrial substrate preference are not an essential step in the pathogenesis of muscle insulin resistance.
Collapse
Affiliation(s)
- Joongyu D Song
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tiago C Alves
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas E Befroy
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA; PeakAnalysts, Benenden, Kent, UK
| | - Rachel J Perry
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Alexander Munk
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ye Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- Department of Radiology & Bioengineering, Yale School of Medicine, New Haven, CT, USA
| | - Kitt Falk Petersen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Gerald I Shulman
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Jeon JH, Thoudam T, Choi EJ, Kim MJ, Harris RA, Lee IK. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J Diabetes Investig 2020; 12:21-31. [PMID: 32628351 PMCID: PMC7779278 DOI: 10.1111/jdi.13345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Good health depends on the maintenance of metabolic flexibility, which in turn is dependent on the maintenance of regulatory flexibility of a large number of regulatory enzymes, but especially the pyruvate dehydrogenase complex (PDC), because of its central role in carbohydrate metabolism. Flexibility in regulation of PDC is dependent on rapid changes in the phosphorylation state of PDC determined by the relative activities of the pyruvate dehydrogenase kinases (PDKs) and the pyruvate dehydrogenase phosphatases. Inactivation of the PDC by overexpression of PDK4 contributes to hyperglycemia, and therefore the serious health problems associated with diabetes. Loss of regulatory flexibility of PDC occurs in other disease states and pathological conditions that have received less attention than diabetes. These include cancers, non‐alcoholic fatty liver disease, cancer‐induced cachexia, diabetes‐induced nephropathy, sepsis and amyotrophic lateral sclerosis. Overexpression of PDK4, and in some situations, the other PDKs, as well as under expression of the pyruvate dehydrogenase phosphatases, leads to inactivation of the PDC, mitochondrial dysfunction and deleterious effects with health consequences. The possible basis for this phenomenon, along with evidence that overexpression of PDK4 results in phosphorylation of “off‐target” proteins and promotes excessive transport of Ca2+ into mitochondria through mitochondria‐associated endoplasmic reticulum membranes are discussed. Recent efforts to find small molecule PDK inhibitors with therapeutic potential are also reviewed.
Collapse
Affiliation(s)
- Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
| | - Eun Jung Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea.,Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| |
Collapse
|
16
|
Eshraghian A, Nikeghbalian S, Shamsaeefar A, Kazemi K, Fattahi MR, Malek-Hosseini SA. Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance. Sci Rep 2020; 10:12701. [PMID: 32728230 PMCID: PMC7391625 DOI: 10.1038/s41598-020-69571-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Our data about pathogenesis of hepatic steatosis after liver transplantation is scarce. This study aimed to investigate the association between serum adipokines and insulin resistance with hepatic steatosis in liver transplant recipients. We investigated the association between insulin resistance, serum adiponectin, insulin, and leptin with hepatic steatosis in a cohort of liver transplant recipients. Homeostatic model assessment of insulin resistance 2 (HOMA 2-IR) was used for estimation of insulin resistance. Hepatic steatosis was determined using ultrasound and controlled attenuation parameter (CAP). A total of 178 patients were included. 79 patients (44.4%) had hepatic steatosis. Serum adiponectin (OR: 0.912; 95% CI 0.869-0.957; P < 0.001), serum leptin (OR: 1.060; 95% CI 1.017-1.102; P = 0.005), HOMA2-IR (OR: 1.671; 95% CI 1.049-2.662; P = 0.031), and post-transplant diabetes mellitus (PTDM) (OR: 5.988; 95% CI 1.680-21.276; P = 0.006) were independently associated with hepatic steatosis after liver transplantation. CAP values were negatively correlated with serum adiponectin (P = 0.011) and positively correlated with serum insulin (P = 0.001), leptin (P < 0.001) and HOMA2-IR (P < 0.001). Insulin resistance and alterations in adipokines might have central role in pathogenesis of hepatic steatosis after liver transplantation and can be targeted for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran.
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Kazemi
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Department of Gastroenterology and Hepatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers. Sci Rep 2019; 9:16480. [PMID: 31712597 PMCID: PMC6848094 DOI: 10.1038/s41598-019-52952-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDH) critically regulates carbohydrate metabolism. Phosphorylation of PDH by one of the pyruvate dehydrogenase kinases 1-4 (PDK1-4) decreases the flux of carbohydrates into the TCA cycle. Inhibition of PDKs increases oxidative metabolism of carbohydrates, so targeting PDKs has emerged as an important therapeutic approach to manage various metabolic diseases. Therefore, it is highly desirable to begin to establish imaging tools for noninvasive measurements of PDH flux in rodent models. In this study, we used hyperpolarized (HP) 13C-magnetic resonance spectroscopy to study the impact of a PDK2/PDK4 double knockout (DKO) on pyruvate metabolism in perfused livers from lean and diet-induced obese (DIO) mice and validated the HP observations with high-resolution 13C-nuclear magnetic resonance (NMR) spectroscopy of tissue extracts and steady-state isotopomer analyses. We observed that PDK-deficient livers produce more HP-bicarbonate from HP-[1-13C]pyruvate than age-matched control livers. A steady-state 13C-NMR isotopomer analysis of tissue extracts confirmed that flux rates through PDH, as well as pyruvate carboxylase and pyruvate cycling activities, are significantly higher in PDK-deficient livers. Immunoblotting experiments confirmed that HP-bicarbonate production from HP-[1-13C]pyruvate parallels decreased phosphorylation of the PDH E1α subunit (pE1α) in liver tissue. Our findings indicate that combining real-time hyperpolarized 13C NMR spectroscopy and 13C isotopomer analysis provides quantitative insights into intermediary metabolism in PDK-knockout mice. We propose that this method will be useful in assessing metabolic disease states and developing therapies to improve PDH flux.
Collapse
|
18
|
Carvalho RA, Romero AC, Ibuki FK, Nogueira FN. Salivary gland metabolism in an animal model of chronic kidney disease. Arch Oral Biol 2019; 104:40-45. [PMID: 31174093 DOI: 10.1016/j.archoralbio.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study was to determine the effects of experimental CKD into the metabolism of parotid and submandibular glands of rats. CKD was induced by 5/6 nephrectomy. DESIGN Serum analyses of BUN (Blood Urea Nitrogen) and creatinine concentrations were performed. Major salivary glands metabolism was investigated in vivo, both at rest and during salivary stimulation conditions by NMR isotopomer analysis, using [U-13C]glucose as metabolic tracer. RESULTS CKD increases BUN and serum creatinine concentrations (p < 0.001). Multiple metabolic alterations were detected in the parotid glands of this animal model, including decreased concentrations of alanine (p < 0.05) and creatine (p < 0.05) and increased lactate/alanine ratios (p < 0.05). The salivary stimulus fostered accumulations of acetate at both analyzed glands of the CKD model (p < 0.05), indicative of disruption of the oxidative metabolic process. CONCLUSIONS Experimental CKD induced by 5/6 nephrectomy altered the parotid salivary gland function, since glucose metabolism is clearly affected after stimulation for salivation in this gland.
Collapse
Affiliation(s)
- R A Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal; Centre for Functional Ecology, University of Coimbra, Portugal.
| | - A C Romero
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - F K Ibuki
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - F N Nogueira
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Khan MW, Priyadarshini M, Cordoba-Chacon J, Becker TC, Layden BT. Hepatic hexokinase domain containing 1 (HKDC1) improves whole body glucose tolerance and insulin sensitivity in pregnant mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:678-687. [PMID: 30543855 PMCID: PMC6387585 DOI: 10.1016/j.bbadis.2018.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 02/04/2023]
Abstract
Hexokinase domain containing 1, a recently discovered putative fifth hexokinase, is hypothesized to play key roles in glucose metabolism. Specifically, during pregnancy in a recent genome wide association study (GWAS), a strong correlation between HKDC1 and 2-h plasma glucose in pregnant women from different ethnic backgrounds was shown. Our earlier work also reported diminished glucose tolerance during pregnancy in our whole body HKDC1 heterozygous mice. Therefore, we hypothesized that HKDC1 plays important roles in gestational metabolism, and designed this study to assess the role of hepatic HKDC1 in whole body glucose utilization and insulin action during pregnancy. We overexpressed human HKDC1 in mouse liver by injecting a human HKDC1 adenoviral construct; whereas, for the liver-specific HKDC1 knockout model, we used AAV-Cre constructs in our HKDC1fl/fl mice. Both groups of mice were subjected to metabolic testing before and during pregnancy on gestation day 17-18. Our results indicate that hepatic HKDC1 overexpression during pregnancy leads to improved whole-body glucose tolerance and enhanced hepatic and peripheral insulin sensitivity while hepatic HKDC1 knockout results in diminished glucose tolerance. Further, we observed reduced gluconeogenesis with hepatic HKDC1 overexpression while HKDC1 knockout led to increased gluconeogenesis. These changes were associated with significantly enhanced ketone body production in HKDC1 overexpressing mice, indicating that these mice shift their metabolic needs from glucose reliance to greater fat oxidation and ketone utilization during fasting. Taken together, our results indicate that hepatic HKDC1 contributes to whole body glucose disposal, insulin sensitivity, and aspects of nutrient balance during pregnancy.
Collapse
Affiliation(s)
- Md Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
| | - Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA
| | - Thomas C Becker
- Duke Molecular Physiology Institute, Department of Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
20
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1701] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
21
|
Liu P, Tang Y, Guo X, Zhu X, He M, Yuan J, Wang Y, Wei S, Chen W, Zhang X, Miao X, Yao P. Bidirectional association between nonalcoholic fatty liver disease and hypertension from the Dongfeng-Tongji cohort study. ACTA ACUST UNITED AC 2018; 12:660-670. [DOI: 10.1016/j.jash.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022]
|
22
|
Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, Camporez JPG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med 2018; 24:1384-1394. [PMID: 30038219 PMCID: PMC6129196 DOI: 10.1038/s41591-018-0125-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
Metformin, the universal first-line treatment for type 2 diabetes, exerts its therapeutic glucose-lowering effects by inhibiting hepatic gluconeogenesis. However, the primary molecular mechanism of this biguanide remains unclear, though it has been suggested to act, at least partially, by mitochondrial complex I inhibition. Here we show that clinically relevant concentrations of plasma metformin achieved by acute intravenous, acute intraportal or chronic oral administration in awake normal and diabetic rats inhibit gluconeogenesis from lactate and glycerol but not from pyruvate and alanine, implicating an increased cytosolic redox state in mediating metformin's antihyperglycemic effect. All of these effects occurred independently of complex I inhibition, evidenced by unaltered hepatic energy charge and citrate synthase flux. Normalizing the cytosolic redox state by infusion of methylene blue or substrates that contribute to gluconeogenesis independently of the cytosolic redox state abrogated metformin-mediated inhibition of gluconeogenesis in vivo. Additionally, in mice expressing constitutively active acetyl-CoA carboxylase, metformin acutely decreased hepatic glucose production and increased the hepatic cytosolic redox state without altering hepatic triglyceride content or gluconeogenic enzyme expression. These studies demonstrate that metformin, at clinically relevant plasma concentrations, inhibits hepatic gluconeogenesis in a redox-dependent manner independently of reductions in citrate synthase flux, hepatic nucleotide concentrations, acetyl-CoA carboxylase activity, or gluconeogenic enzyme protein expression.
Collapse
Affiliation(s)
- Anila K Madiraju
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Qiu
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rachel J Perry
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yasmeen Rahimi
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Gary W Cline
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gina M Butrico
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne & Mary MacKillop Institute for Health Research, Australian Catholic University Fitzroy, Fitzroy, Victoria, Australia
| | - Gregori Casals
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory R Steinberg
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel F Vatner
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Navarro CDC, Figueira TR, Francisco A, Dal'Bó GA, Ronchi JA, Rovani JC, Escanhoela CAF, Oliveira HCF, Castilho RF, Vercesi AE. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice. Free Radic Biol Med 2017; 113:190-202. [PMID: 28964917 DOI: 10.1016/j.freeradbiomed.2017.09.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.B6 congenic mice with (Nnt+/+) or without (Nnt-/-) NNT activity; the spontaneously mutated allele (Nnt-/-) was inherited from the C57BL/6J mouse substrain. After 20 weeks on a HFD, Nnt-/- mice exhibited a higher prevalence of steatohepatitis and content of liver triglycerides compared to Nnt+/+ mice on an identical diet. Under a HFD, the aggravated NAFLD phenotype in the Nnt-/- mice was accompanied by an increased H2O2 release rate from mitochondria, decreased aconitase activity (a redox-sensitive mitochondrial enzyme) and higher susceptibility to Ca2+-induced mitochondrial permeability transition. In addition, HFD led to the phosphorylation (inhibition) of pyruvate dehydrogenase (PDH) and markedly reduced the ability of liver mitochondria to remove peroxide in Nnt-/- mice. Bypass or pharmacological reactivation of PDH by dichloroacetate restored the peroxide removal capability of mitochondria from Nnt-/- mice on a HFD. Noteworthy, compared to mice that were chow-fed, the HFD did not impair peroxide removal nor elicit redox imbalance in mitochondria from Nnt+/+ mice. Therefore, HFD interacted with Nnt mutation to generate PDH inhibition and further suppression of peroxide removal. We conclude that NNT plays a critical role in counteracting mitochondrial redox imbalance, PDH inhibition and advancement of NAFLD in mice fed a HFD. The present study provide seminal experimental evidence that redox imbalance in liver mitochondria potentiates the progression from simple steatosis to steatohepatitis following a HFD.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Tiago R Figueira
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Annelise Francisco
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Genoefa A Dal'Bó
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana A Ronchi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Juliana C Rovani
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Cecilia A F Escanhoela
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil
| | - Helena C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-865 Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| | - Anibal E Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
24
|
Zhang Y, Zhang Y, Ding GL, Liu XM, Ye J, Sheng JZ, Fan J, Huang HF. Regulation of hepatic pyruvate dehydrogenase phosphorylation in offspring glucose intolerance induced by intrauterine hyperglycemia. Oncotarget 2017; 8:15205-15212. [PMID: 28148899 PMCID: PMC5362479 DOI: 10.18632/oncotarget.14837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Aim Gestational diabetes mellitus (GDM) has been shown to be associated with a high risk of diabetes in offspring. In mitochondria, the inhibition of pyruvate dehydrogenase (PDH) activity by PDH phosphorylation is involved in the development of diabetes. We aimed to determine the role of PDH phosphorylation in the liver in GDM-induced offspring glucose intolerance. Results PDH phosphorylation was increased in lymphocytes from the umbilical cord blood of the GDM patients and in high glucose-treated hepatic cells. Both the male and female offspring from GDM mice had elevated liver weights and glucose intolerance. Further, PDH phosphorylation was increased in the livers of both the male and female offspring from GDM mice, and elevated acetylation may have contributed to this increased phosphorylation. Materials and methods We obtained lymphocytes from umbilical cord blood collected from both normal and GDM pregnant women. In addition, we obtained the offspring of streptozotocin-induced GDM female pregnant mice. The glucose tolerance test was performed to assess glucose tolerance in the offspring. Further, Western blotting was conducted to detect changes in protein levels. Conclusions Intrauterine hyperglycemia induced offspring glucose intolerance by inhibiting PDH activity, along with increased PDH phosphorylation in the liver, and this effect might be mediated by enhanced mitochondrial protein acetylation.
Collapse
Affiliation(s)
- Yong Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Lian Ding
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Jian-Zhong Sheng
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianxia Fan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
25
|
Diepenbroek C, Eggels L, Ackermans MT, Fliers E, Kalsbeek A, Serlie MJ, la Fleur SE. Differential effects of hypercaloric choice diets on insulin sensitivity in rats. J Endocrinol 2017; 232:49-57. [PMID: 27754934 DOI: 10.1530/joe-16-0265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023]
Abstract
We showed previously that rats on a free-choice high-fat, high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar (fcHS) diet consuming more sugar water, develop glucose intolerance. Here, we investigate whether changes in insulin sensitivity contribute to the observed glucose intolerance and whether this is related to consumption of saturated fat and/or sugar water. Rats received either a fcHFHS, fcHF, fcHS or chow diet for one week. We performed a hyperinsulinemic-euglycemic clamp with stable isotope dilution to measure endogenous glucose production (EGP; hepatic insulin sensitivity) and glucose disappearance (Rd; peripheral insulin sensitivity). Rats on all free-choice diets were hyperphagic, but only fcHFHS-fed rats showed significantly increased adiposity. EGP suppression by hyperinsulinemia in fcHF-fed and fcHFHS-fed rats was significantly decreased compared with chow-fed rats. One week fcHFHS diet also significantly decreased Rd. Neither EGP suppression nor Rd was affected in fcHS-fed rats. Our results imply that, short-term fat feeding impaired hepatic insulin sensitivity, whereas short-term consumption of both saturated fat and sugar water impaired hepatic and peripheral insulin sensitivity. The latter likely contributed to glucose intolerance observed previously. In contrast, overconsumption of only sugar water affected insulin sensitivity slightly, but not significantly, in spite of similar adiposity as fcHF-fed rats and higher sugar intake compared with fcHFHS-fed rats. These data imply that the palatable component consumed plays a role in the development of site-specific insulin sensitivity.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
| | - Leslie Eggels
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
| | - Mariëtte T Ackermans
- Department of Clinical ChemistryLaboratory of Endocrinology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
26
|
Go Y, Jeong JY, Jeoung NH, Jeon JH, Park BY, Kang HJ, Ha CM, Choi YK, Lee SJ, Ham HJ, Kim BG, Park KG, Park SY, Lee CH, Choi CS, Park TS, Lee WNP, Harris RA, Lee IK. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis. Diabetes 2016; 65:2876-87. [PMID: 27385159 DOI: 10.2337/db16-0223] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2016] [Indexed: 11/13/2022]
Abstract
Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Younghoon Go
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea
| | - Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Nam Ho Jeoung
- Department of Pharmaceutical Science and Technology, Catholic University of Daegu, Gyeongsan, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea
| | - Bo-Yoon Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea BK21 Plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, South Korea
| | - Hyeon-Ji Kang
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea BK21 Plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, South Korea
| | - Chae-Myeong Ha
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea BK21 Plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, South Korea
| | - Young-Keun Choi
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Sun Joo Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Hye Jin Ham
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea
| | - Byung-Gyu Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Chul-Ho Lee
- Disease Model Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Cheol Soo Choi
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon, South Korea
| | - Tae-Sik Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Inchon, South Korea
| | - W N Paul Lee
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA
| | - Robert A Harris
- Richard L. Roudebush VA Medical Center, Indianapolis, IN Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea BK21 Plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, South Korea
| |
Collapse
|
27
|
Ashworth WB, Davies NA, Bogle IDL. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD. PLoS Comput Biol 2016; 12:e1005105. [PMID: 27632189 PMCID: PMC5025084 DOI: 10.1371/journal.pcbi.1005105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the build-up of glucose intermediates was less severe in the periportal hepatocyte compartments. Secondly, the periportal zonation of the enzymes mediating β-oxidation and oxidative phosphorylation resulted in excess fats being metabolised more rapidly in the periportal hepatocyte compartments. Finally, the pericentral expression of de novo lipogenesis contributed to pericentral steatosis when additionally simulating the increase in sterol-regulatory element binding protein 1c (SREBP-1c) seen in NAFLD patients in vivo. The hepatic triglyceride concentration was predicted to be most sensitive to inter-individual variation in the activity of enzymes which, either directly or indirectly, determine the rate of free fatty acid (FFA) oxidation. The concentration was most strongly dependent on the rate constants for β-oxidation and oxidative phosphorylation. It also showed moderate sensitivity to the rate constants for processes which alter the allosteric inhibition of β-oxidation by acetyl-CoA. The predominant sinusoidal location of steatosis meanwhile was most sensitive variations in the zonation of proteins mediating FFA uptake or triglyceride release as very low density lipoproteins (VLDL). Neither the total hepatic concentration nor the location of steatosis showed strong sensitivity to variations in the lipogenic rate constants.
Collapse
Affiliation(s)
- William B. Ashworth
- Institute of Liver and Digestive Health, University College London, London, United Kingdom
- Department of Chemical Engineering, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Nathan A. Davies
- Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - I. David L. Bogle
- Department of Chemical Engineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Ashworth W, Perez-Galvan C, Davies N, Bogle IDL. Liver function as an engineering system. AIChE J 2016. [DOI: 10.1002/aic.15292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- William Ashworth
- Centre for Process Systems Engineering, Dept. of Chemical Engineering; University College London, London WC1E 7JE, U.K
- Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, U.K
- COMPLEX (Centre for Mathematics and Physics in the Life Sciences and Experimental Biology); University College London, London WC1E 6BT, U.K
| | - Carlos Perez-Galvan
- Centre for Process Systems Engineering, Dept. of Chemical Engineering; University College London, London WC1E 6BT, U.K
| | - Nathan Davies
- Institute for Liver and Digestive Health, Division of Medicine, University College London, Royal Free Campus, London NW3 2PF, U.K
| | - Ian David Lockhart Bogle
- Centre for Process Systems Engineering, Dept. of Chemical Engineering; University College London, London WC1E 7JE, U.K
- COMPLEX (Centre for Mathematics and Physics in the Life Sciences and Experimental Biology); University College London, London WC1E 6BT, U.K
| |
Collapse
|
29
|
Abstract
The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael Roden (DOI: 10.1007/s00125-016-3911-x ).
Collapse
Affiliation(s)
- John G Jones
- Metabolic Control Group, Center for Neurosciences and Cell Biology of Coimbra, UC Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
- APDP-Diabetes Portugal-Education and Research Center (APDP-ERC), Lisbon, Portugal.
| |
Collapse
|
30
|
Perry RJ, Borders CB, Cline GW, Zhang XM, Alves TC, Petersen KF, Rothman DL, Kibbey RG, Shulman GI. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism. J Biol Chem 2016; 291:12161-70. [PMID: 27002151 PMCID: PMC4933266 DOI: 10.1074/jbc.m116.720631] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 02/03/2023] Open
Abstract
In mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only glucagon suppressed VPyr-Cyc/VMito These data show that under fasting conditions, when hepatic gluconeogenesis is stimulated, pyruvate recycling is relatively low in liver compared with VMito flux and that liver metabolism, in particular pyruvate cycling, is sensitive to propionate making it an unsuitable tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Kitt Falk Petersen
- From the Departments of Internal Medicine, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK 1017, Denmark
| | - Douglas L Rothman
- Radiology and Biomedical Imaging, and the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06519, and
| | - Richard G Kibbey
- From the Departments of Internal Medicine, Cellular and Molecular Physiology, and
| | - Gerald I Shulman
- From the Departments of Internal Medicine, The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen DK 1017, Denmark Cellular and Molecular Physiology, and the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06519,
| |
Collapse
|
31
|
Abstract
Previous studies have implicated age-associated reductions in mitochondrial oxidative phosphorylation activity in skeletal muscle as a predisposing factor for intramyocellular lipid (IMCL) accumulation and muscle insulin resistance (IR) in the elderly. To further investigate potential alterations in muscle mitochondrial function associated with aging, we assessed basal and insulin-stimulated rates of muscle pyruvate dehydrogenase (VPDH) flux relative to citrate synthase flux (VCS) in healthy lean, elderly subjects and healthy young body mass index- and activity-matched subjects. VPDH/VCS flux was assessed from the (13)C incorporation from of infused [1-13C] glucose into glutamate [4-13C] relative to alanine [3-13C] assessed by LC-tandem MS in muscle biopsies. Insulin-stimulated rates of muscle glucose uptake were reduced by 25% (P<0.01) in the elderly subjects and were associated with ∼70% (P<0.04) increase in IMCL, assessed by 1H magnetic resonance spectroscopy. Basal VPDH/VCS fluxes were similar between the groups (young: 0.20±0.03; elderly: 0.14±0.03) and increased approximately threefold in the young subjects following insulin stimulation. However, this increase was severely blunted in the elderly subjects (young: 0.55±0.04; elderly: 0.18±0.02, P=0.0002) and was associated with an ∼40% (P=0.004) reduction in insulin activation of Akt. These results provide new insights into acquired mitochondrial abnormalities associated with aging and demonstrate that age-associated reductions in muscle mitochondrial function and increased IMCL are associated with a marked inability of mitochondria to switch from lipid to glucose oxidation during insulin stimulation.
Collapse
|
32
|
Genetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance. Proc Natl Acad Sci U S A 2014; 111:16508-13. [PMID: 25368185 DOI: 10.1073/pnas.1419104111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To genetically examine this hypothesis we assessed relative rates of pyruvate dehydrogenase flux/mitochondrial oxidative flux and insulin-stimulated rates of muscle glucose metabolism in awake mice lacking pyruvate dehydrogenase kinase 2 and 4 [double knockout (DKO)], which results in constitutively activated PDH. Surprisingly, increased glucose oxidation in DKO muscle was accompanied by reduced insulin-stimulated muscle glucose uptake. Preferential myocellular glucose utilization in DKO mice decreased fatty acid oxidation, resulting in increased reesterification of acyl-CoAs into diacylglycerol and triacylglycerol, with subsequent activation of PKC-θ and inhibition of insulin signaling in muscle. In contrast, other putative mediators of muscle insulin resistance, including muscle acylcarnitines, ceramides, reactive oxygen species production, and oxidative stress markers, were not increased. These findings demonstrate that modulation of oxidative substrate selection to increase muscle glucose utilization surprisingly results in muscle insulin resistance, offering genetic evidence against the glucose-fatty acid cycle hypothesis of muscle insulin resistance.
Collapse
|
33
|
Coate KC, Kraft G, Moore MC, Smith MS, Ramnanan C, Irimia JM, Roach PJ, Farmer B, Neal DW, Williams P, Cherrington AD. Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding. Am J Physiol Endocrinol Metab 2014; 307:E151-60. [PMID: 24865981 PMCID: PMC4101635 DOI: 10.1152/ajpendo.00083.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.
Collapse
Affiliation(s)
- Katie C Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Marta S Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christopher Ramnanan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jose M Irimia
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Doss W Neal
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Phil Williams
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
34
|
Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JPG, Cline GW, Rothman DL, Shulman GI. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 2014; 20:759-63. [PMID: 24929951 PMCID: PMC4344321 DOI: 10.1038/nm.3579] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/21/2014] [Indexed: 12/14/2022]
Abstract
Leptin treatment reverses hyperglycemia in animal models of poorly controlled type 1 diabetes (T1D), spurring great interest in the possibility of treating patients with this hormone. The antidiabetic effect of leptin has been postulated to occur through suppression of glucagon production, suppression of glucagon responsiveness or both; however, there does not appear to be a direct effect of leptin on the pancreatic alpha cell. Thus, the mechanisms responsible for the antidiabetic effect of leptin remain poorly understood. We quantified liver-specific rates of hepatic gluconeogenesis and substrate oxidation in conjunction with rates of whole-body acetate, glycerol and fatty acid turnover in three rat models of poorly controlled diabetes, including a model of diabetic ketoacidosis. We show that the higher rates of hepatic gluconeogenesis in all these models could be attributed to hypoleptinemia-induced activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in higher rates of adipocyte lipolysis, hepatic conversion of glycerol to glucose through a substrate push mechanism and conversion of pyruvate to glucose through greater hepatic acetyl-CoA allosteric activation of pyruvate carboxylase flux. Notably, these effects could be dissociated from changes in plasma insulin and glucagon concentrations and hepatic gluconeogenic protein expression. All the altered systemic and hepatic metabolic fluxes could be mimicked by infusing rats with Intralipid or corticosterone and were corrected by leptin replacement. These data demonstrate a critical role for lipolysis and substrate delivery to the liver, secondary to hypoleptinemia and HPA axis activity, in promoting higher hepatic gluconeogenesis and hyperglycemia in poorly controlled diabetes.
Collapse
Affiliation(s)
- Rachel J. Perry
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Xian-Man Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Dongyan Zhang
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Naoki Kumashiro
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Douglas L. Rothman
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT
| | - Gerald I. Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Novo Nordisk Center for Basic Metabolic Research, Copenhagen, DK
| |
Collapse
|
35
|
Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59:713-23. [PMID: 23929732 PMCID: PMC3946772 DOI: 10.1002/hep.26672] [Citation(s) in RCA: 557] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), hepatic insulin resistance, and type 2 diabetes are all strongly associated and are all reaching epidemic proportions. Whether there is a causal link between NAFLD and hepatic insulin resistance is controversial. This review will discuss recent studies in both humans and animal models of NAFLD that have implicated increases in hepatic diacylglycerol (DAG) content leading to activation of novel protein kinase Cϵ (PKCϵ) resulting in decreased insulin signaling in the pathogenesis of NAFLD-associated hepatic insulin resistance and type 2 diabetes. The DAG-PKCϵ hypothesis can explain the occurrence of hepatic insulin resistance observed in most cases of NAFLD associated with obesity, lipodystrophy, and type 2 diabetes.
Collapse
Affiliation(s)
- Andreas L. Birkenfeld
- Charité - University School of Medicine, Department of Endocrinology Diabetes and Nutrition, Center for Cardiovascular Research, Berlin, Germany
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
36
|
Befroy DE, Perry RJ, Jain N, Dufour S, Cline GW, Trimmer JK, Brosnan J, Rothman DL, Petersen KF, Shulman GI. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat Med 2014; 20:98-102. [PMID: 24317120 PMCID: PMC3947269 DOI: 10.1038/nm.3415] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Despite the central role of the liver in the regulation of glucose and lipid metabolism, there are currently no methods to directly assess hepatic oxidative metabolism in humans in vivo. By using a new (13)C-labeling strategy in combination with (13)C magnetic resonance spectroscopy, we show that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 μmol g(-1) min(-1) and 0.60 ± 0.11 μmol g(-1) min(-1), respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes, as well as for assessing the effectiveness of new therapies targeting these pathways in humans.
Collapse
Affiliation(s)
- Douglas E Befroy
- 1] Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| | - Rachel J Perry
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. [3]
| | - Nimit Jain
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sylvie Dufour
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | - Douglas L Rothman
- 1] Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kitt Falk Petersen
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Gerald I Shulman
- 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA. [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA. [4] Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| |
Collapse
|
37
|
Nonalcoholic fatty liver disease: molecular pathways and therapeutic strategies. Lipids Health Dis 2013; 12:171. [PMID: 24209497 PMCID: PMC3827997 DOI: 10.1186/1476-511x-12-171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
Along with rising numbers of patients with metabolic syndrome, the prevalence of nonalcoholic fatty liver disease (NAFLD) has increased in proportion with the obesity epidemic. While there are no established treatments for NAFLD, current research is targeting new molecular mechanisms that underlie NAFLD and associated metabolic disorders. This review discusses some of these emerging molecular mechanisms and their therapeutic implications for the treatment of NAFLD. The basic research that has identified potential molecular targets for pharmacotherapy will be outlined.
Collapse
|
38
|
Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, Spiegel DA, Shulman GI. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 2013; 18:740-8. [PMID: 24206666 PMCID: PMC4104686 DOI: 10.1016/j.cmet.2013.10.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/12/2013] [Accepted: 10/04/2013] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects one in three Americans and is a major predisposing condition for the metabolic syndrome and type 2 diabetes (T2D). We examined whether a functionally liver-targeted derivative of 2,4-dinitrophenol (DNP), DNP-methyl ether (DNPME), could safely decrease hypertriglyceridemia, NAFLD, and insulin resistance without systemic toxicities. Treatment with DNPME reversed hypertriglyceridemia, fatty liver, and whole-body insulin resistance in high-fat-fed rats and decreased hyperglycemia in a rat model of T2D with a wide therapeutic index. The reversal of liver and muscle insulin resistance was associated with reductions in tissue diacylglycerol content and reductions in protein kinase C epsilon (PKCε) and PKCθ activity in liver and muscle, respectively. These results demonstrate that the beneficial effects of DNP on hypertriglyceridemia, fatty liver, and insulin resistance can be dissociated from systemic toxicities and suggest the potential utility of liver-targeted mitochondrial uncoupling agents for the treatment of hypertriglyceridemia, NAFLD, metabolic syndrome, and T2D.
Collapse
Affiliation(s)
- Rachel J. Perry
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA 06519
| | - Taehan Kim
- Department of Pharmacology, Yale University School of Medicine New Haven, CT, USA 06519
| | - Xian-Man Zhang
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - Hui-Young Lee
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA 06519
| | - Dominik Pesta
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - Violeta B. Popov
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA 06519
| | - Dongyan Zhang
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - Yasmeen Rahimi
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - Michael J. Jurczak
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - Gary W. Cline
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
| | - David A. Spiegel
- Department of Pharmacology, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Chemistry, Yale University, New Haven, CT, USA 06520
| | - Gerald I. Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA 06519
- Department of Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA 06519
- Novo Nordisk Foundation Center for Basic Biomedical Research Copenhagen, DK
- Correspondence to:
| |
Collapse
|
39
|
Soares AF, Carvalho RA, Veiga FJ, Alves MG, Martins FO, Viegas I, González JD, Metón I, Baanante IV, Jones JG. Restoration of direct pathway glycogen synthesis flux in the STZ-diabetes rat model by insulin administration. Am J Physiol Endocrinol Metab 2012; 303:E875-85. [PMID: 22850684 DOI: 10.1152/ajpendo.00161.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes subjects are characterized by impaired direct pathway synthesis of hepatic glycogen that is unresponsive to insulin therapy. Since it is not known whether this is an irreversible defect of insulin-dependent diabetes, direct and indirect pathway glycogen fluxes were quantified in streptozotocin (STZ)-induced diabetic rats and compared with STZ rats that received subcutaneous or intraperitoneal insulin (I-SC or I-IP). Three groups of STZ rats were studied at 18 days post-STZ treatment. One group was administered I-SC and another I-IP as two daily injections of short-acting insulin at the start of each light and dark period for days 9-18. A third group did not receive any insulin, and a fourth group of nondiabetic rats was used as control. Glycogen synthesis via direct and indirect pathways, de novo lipogenesis, and gluconeogenesis were determined over the nocturnal feeding period using deuterated water. Direct pathway was residual in STZ rats, and glucokinase activity was also reduced significantly from control levels. Insulin administration restored both net glycogen synthesis via the direct pathway and glucokinase activity to nondiabetic control levels and improved the lipogenic pathway despite an inefficient normalization of the gluconeogenic pathway. We conclude that the reduced direct pathway flux is not an irreversible defect of insulin-dependent diabetes.
Collapse
Affiliation(s)
- Ana F Soares
- Center for Neuroscience and Cell Biology, Dept. of Life Sciences, Univ. of Coimbra, Largo Marquês de Pombal, 3004 - 517, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Insulin resistance is a major risk factor for type 2 diabetes. AMP-activated protein kinase (AMPK) is a drug target in the improvement of insulin sensitivity. Several insulin-sensitizing medicines are able to activate AMPK through inhibition of mitochondrial functions. These drugs, such as metformin and STZ, inhibit ATP synthesis in mitochondria to raise AMP/ATP ratio in the process of AMPK activation. However, chemicals that activate AMPK directly or by activating its upstream kinases have not been approved for treatment of type 2 diabetes in humans. In an early study, we reported that berberine inhibited oxygen consumption in mitochondria, and increased AMP/ATP ratio in cells. The observation suggests an indirect mechanism for AMPK activation by berberine. Berberine stimulates glycolysis for ATP production that offsets the cell toxicity after mitochondria inhibition. The study suggests that mitochondrial inhibition is an approach for AMPK activation. In this review article, literature is critically reviewed to interpret the role of mitochondria function in the mechanism of insulin resistance, which supports that mitochondria inhibitors represent a new class of AMPK activator. The inhibitors are promising candidates for insulin sensitizers. This review provides a guideline in search for small molecule AMPK activators in the drug discovery for type 2 diabetes.
Collapse
|
41
|
Jornayvaz FR, Lee HY, Jurczak MJ, Alves TC, Guebre-Egziabher F, Guigni BA, Zhang D, Samuel VT, Silva JE, Shulman GI. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 2012; 153:583-91. [PMID: 22147010 PMCID: PMC3384074 DOI: 10.1210/en.2011-1793] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease in the United States and is strongly associated with hepatic insulin resistance. We examined whether the thyroid hormone receptor-α (Thra) would be a potential therapeutic target to prevent diet-induced NAFLD and insulin resistance. For that purpose, we assessed insulin action in high-fat diet-fed Thra gene knockout (Thra-0/0) and wild-type mice using hyperinsulinemic-euglycemic clamps combined with (3)H/(14)C-labeled glucose to assess basal and insulin-stimulated rates of glucose and fat metabolism. Body composition was assessed by (1)H magnetic resonance spectroscopy and energy expenditure by indirect calorimetry. Relative rates of hepatic glucose and fat oxidation were assessed in vivo using a novel proton-observed carbon-edited nuclear magnetic resonance technique. Thra-0/0 were lighter, leaner, and manifested greater whole-body insulin sensitivity than wild-type mice during the clamp, which could be attributed to increased insulin sensitivity both in liver and peripheral tissues. Increased hepatic insulin sensitivity could be attributed to decreased hepatic diacylglycerol content, resulting in decreased activation of protein kinase Cε and increased insulin signaling. In conclusion, loss of Thra protects mice from high-fat diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. Therefore, thyroid receptor-α inhibition represents a novel pharmacologic target for the treatment of NAFLD, obesity, and type 2 diabetes.
Collapse
Affiliation(s)
- François R Jornayvaz
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A, Spranger J, Pfeiffer AF, Jordan J, Fromm MF, König J, Lieske S, Carmean CM, Frederick DW, Weismann D, Knauf F, Irusta PM, De Cabo R, Helfand SL, Samuel VT, Shulman GI. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 2011; 14:184-95. [PMID: 21803289 PMCID: PMC3163140 DOI: 10.1016/j.cmet.2011.06.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/24/2010] [Accepted: 06/07/2011] [Indexed: 01/07/2023]
Abstract
Reduced expression of the Indy (I'm Not Dead, Yet) gene in D. melanogaster and its homolog in C. elegans prolongs life span and in D. melanogaster augments mitochondrial biogenesis in a manner akin to caloric restriction. However, the cellular mechanism by which Indy does this is unknown. Here, we report on the knockout mouse model of the mammalian Indy (mIndy) homolog, SLC13A5. Deletion of mIndy in mice (mINDY(-/-) mice) reduces hepatocellular ATP/ADP ratio, activates hepatic AMPK, induces PGC-1α, inhibits ACC-2, and reduces SREBP-1c levels. This signaling network promotes hepatic mitochondrial biogenesis, lipid oxidation, and energy expenditure and attenuates hepatic de novo lipogenesis. Together, these traits protect mINDY(-/-) mice from the adiposity and insulin resistance that evolve with high-fat feeding and aging. Our studies demonstrate a profound effect of mIndy on mammalian energy metabolism and suggest that mINDY might be a therapeutic target for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Andreas L Birkenfeld
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|