1
|
Borges-Canha M, Leite AR, Conceição G, Vale C, Von-Hafe M, Martins D, Miranda-Silva D, Sousa-Mendes C, Chaves J, Lourenço IM, Grijota-Martínez C, Bárez-López S, Miranda IM, Leite-Moreira A, Falcão-Pires I, Neves JS. Evaluation of the hepatic and subcutaneous adipose tissue effects of triiodothyronine treatment in an animal model of metabolic syndrome. Obes Res Clin Pract 2025; 19:115-121. [PMID: 40187955 DOI: 10.1016/j.orcp.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction associated steatotic liver disease (MASLD) is a metabolic liver disease and thyroid hormones (TH) may decrease liver fat and extra-hepatic fat content. We aimed to evaluate the effects of high and low dose triiodothyronine (T3) in liver and subcutaneous adipose tissue (sAT) in an animal model of Metabolic Syndrome (MS). METHODS AND RESULTS Four groups were evaluated: 1) ZSF1 Lean (Lean-Ctrl, n = 8); 2) ZSF1 obese (rat model of MS with MASLD, MetS, n = 13); 3) ZSF1 obese supplemented with high-dose of T3 (MetS-hT3, n = 5); and 4) ZSF1 obese supplemented with a low-dose of T3 (MetS-lT3, n = 8). Treatment with both doses of T3 decreased body weight, liver weight and perirenal fat. High-dose T3 treatment normalized the increased expression of COL3A1 in MetS group. Histologically, lipid hepatic burden in treated groups was significantly reduced. Adipocytes and adipocytes' fibrosis areas were significantly reduced by the treatment with T3. MetS-hT3 had an increased risk of arrhythmias and sudden death. CONCLUSION Treatment with T3 improves steatosis and fibrosis at the liver and sAT in animals with MS. High doses of T3 may not be safe due to the risk of cardiac events. Our results support new therapeutic strategies for MASLD focused on the modulation of TH.
Collapse
Affiliation(s)
- Marta Borges-Canha
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Departments of Endocrinology, Diabetes and Metabolism, Unidade de Saúde Local São João, Porto, Portugal.
| | - Ana Rita Leite
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Departments of Endocrinology, Diabetes and Metabolism, Unidade de Saúde Local São João, Porto, Portugal
| | - Glória Conceição
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Catarina Vale
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Departments of Internal Medicine, Unidade de Saúde Local São João, Porto, Portugal
| | - Madalena Von-Hafe
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Departments of Pediatrics, Unidade de Saúde Local São João, Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Daniela Miranda-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Joana Chaves
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Mariana Lourenço
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Carmen Grijota-Martínez
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)- Universidad Autónoma de Madrid (UAM), Madrid, Spain; Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Soledad Bárez-López
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Isabel M Miranda
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Department of Cardiothoracic Surgery, Unidade de Saúde Local São João, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - João Sérgio Neves
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Departments of Endocrinology, Diabetes and Metabolism, Unidade de Saúde Local São João, Porto, Portugal
| |
Collapse
|
2
|
Yang Y, Li S, An Z, Li S. The correlation between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) with non-alcoholic fatty liver disease: an analysis of the population-based NHANES (2017-2018). Front Med (Lausanne) 2024; 11:1477820. [PMID: 39582979 PMCID: PMC11581862 DOI: 10.3389/fmed.2024.1477820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background/objective Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders, from benign steatosis to more severe conditions like non-alcoholic steatohepatitis, with risks of progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. The non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) indicates lipid metabolic dysregulation and is associated with increased risks of various diseases. This study examines the relationship between NHHR and NAFLD to evaluate NHHR as a potential predictive biomarker for NAFLD. Methods Data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) were used for cross-sectional analysis. After excluding individuals with incomplete data, hepatitis infections, heavy alcohol use, and those under 18, the study included 2,757 adults. The relationship between NHHR and NAFLD was analyzed using multivariable logistic regression, including subgroup analysis and interaction testing. Results Among the 2,757 participants (mean age 49.91 years), 44.9% had NAFLD. NHHR showed a significant positive association with NAFLD, with an unadjusted odds ratio (OR) of 1.71 and a fully adjusted OR of 1.45. Quartile analysis revealed a 228% higher prevalence of NAFLD in the highest NHHR quartile, with an OR of 3.28. This positive association was consistent across various subgroups. Conclusion Our findings suggest that elevated NHHR is positively correlated with the prevalence of NAFLD and possesses predictive value. We recommend that future research validate the clinical utility of NHHR, particularly for early detection of high-risk individuals and guiding personalized interventions.
Collapse
Affiliation(s)
- Yuhao Yang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxi Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chang MC, Wang SR, Lin DPC, Chang HH. Hepatic inflammation, ballooning, and pyknosis caused by LED light exposure in a mouse model, with differential effects by age and gender. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116984. [PMID: 39265263 DOI: 10.1016/j.ecoenv.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Light-emitting diode (LED) is commonly used in lighting and digital devices in modern life, which delivers higher levels of blue light than other light sources. Previous work indicated that exposure to blue lights increases serum oxidative stress and affects hepatic functions in animals. However, the detailed hepatic pathogenesis caused by blue lights remains largely elusive. This study investigated the characteristics of hepatic injuries caused by LED light exposure in a mouse model. C57BL/6 mice were exposed the LED lights at 1000 lux, 12 h per day for 45 days or at 4500 lux, 1 h per day for 7 days. The mice were aged 8 weeks or 36 weeks in both genders and maintained under a 12 h light/dark cycle without alteration of diet pattern. Liver tissue sections were obtained for hematoxylin and eosin (H&E) and immunohistochemical staining. The mice with 1000 lux exposure displayed severe liver injuries, including inflammation, ballooning, and pyknosis, which were found to a lesser extent in the 4500 lux mice, and aging aggravated the hepatic injuries. The hepatocellular ballooning was found more severe in the males than the females. In contrast, the females expressed the F4/80 and TNF-α inflammatory markers more evidently. Taken together, LED light exposure may have detrimental effects on liver health, particularly in vulnerable groups such as the elderly and the females with excessive exposure to LED lights, even if they maintain a normal diet and regular light/dark cycles. The potential risk should be considered by both the clinicians and the public.
Collapse
Affiliation(s)
- Min-Chun Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Rong Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Ophthalmology, Chung Shan Medical University Hospital, Taiwan.
| |
Collapse
|
4
|
Banerjee A, Farci P. Fibrosis and Hepatocarcinogenesis: Role of Gene-Environment Interactions in Liver Disease Progression. Int J Mol Sci 2024; 25:8641. [PMID: 39201329 PMCID: PMC11354981 DOI: 10.3390/ijms25168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The liver is a complex organ that performs vital functions in the body. Despite its extraordinary regenerative capacity compared to other organs, exposure to chemical, infectious, metabolic and immunologic insults and toxins renders the liver vulnerable to inflammation, degeneration and fibrosis. Abnormal wound healing response mediated by aberrant signaling pathways causes chronic activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM), leading to hepatic fibrosis and cirrhosis. Fibrosis plays a key role in liver carcinogenesis. Once thought to be irreversible, recent clinical studies show that hepatic fibrosis can be reversed, even in the advanced stage. Experimental evidence shows that removal of the insult or injury can inactivate HSCs and reduce the inflammatory response, eventually leading to activation of fibrolysis and degradation of ECM. Thus, it is critical to understand the role of gene-environment interactions in the context of liver fibrosis progression and regression in order to identify specific therapeutic targets for optimized treatment to induce fibrosis regression, prevent HCC development and, ultimately, improve the clinical outcome.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Transfusion Transmitted Diseases, ICMR-National Institute of Immunohaematology, Mumbai 400012, Maharashtra, India;
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Nair B, Kamath AJ, Pradeep G, Devan AR, Sethi G, Nath LR. Unveiling the role of the Hedgehog signaling pathway in chronic liver disease: Therapeutic insights and strategies. Drug Discov Today 2024; 29:104064. [PMID: 38901671 DOI: 10.1016/j.drudis.2024.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The Hedgehog (Hh) signaling plays a crucial role in adult liver repair by promoting the expansion and differentiation of hepatic progenitor cells into mature hepatocytes and cholangiocytes. Elevated Hh signaling is associated with severe chronic liver diseases, making Hh inhibitors a promising therapeutic option. Sonidegib and vismodegib, both FDA-approved Smoothened (Smo) inhibitors for basal cell carcinoma (BCC), have shown potential for application in chronic liver disorders based on clinical evidence. We highlight the vital role of the Hh pathway in metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, and hepatocellular carcinoma (HCC). Moreover, therapeutic strategies targeting the Hh pathway in chronic liver diseases have been discussed, providing a basis for improving disease management and outcomes.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Govind Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara, P.O., Kochi, Kerala 682041, India.
| |
Collapse
|
7
|
Ortega-Carballo KJ, Gil-Becerril KM, Acosta-Virgen KB, Perez-Hernandez AM, Muriel P, Rosales-Encina JL, Tsutsumi V. Characterization of a model of liver regeneration: Role of hedgehog signaling in experimental hepatic amoebiasis. Pathol Res Pract 2024; 260:155452. [PMID: 38972165 DOI: 10.1016/j.prp.2024.155452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
The development of amoebic liver abscess (ALA) leads to liver necrosis, accompanied by an exacerbated inflammatory response and the formation of multiple granulomas. Adequate management of the infection through the administration of treatment and the timely response of the organ to the damage allows the injury to heal with optimal regeneration without leaving scar tissue, which does not occur in other types of damage such as viral hepatitis that may conducts to fibrosis or cirrhosis. The Hedgehog signaling pathway (Hh) is crucial in the embryonic stage, while in adults it is usually reactivated in response to acute or chronic injuries, regeneration, and wound healing. In this work, we characterized Hh in experimental hepatic amoebiasis model, with the administration of treatment with metronidazole, as well as a pathway inhibitor (cyclopamine), through histological and immunohistochemical analyses including an ultrastructure analysis through transmission electron microscopy. The results showed an increase in the percentage of lesions obtained, a decrease in the presence of newly formed hepatocytes, a generalized inflammatory response, irregular distribution of type I collagen accompanied by the presence of fibroblast-type cells and a decrease in effector cells of this pathway. These results constitute the first evidence of the association of the activation of Hh with the liver regeneration process in experimental amebiasis.
Collapse
Affiliation(s)
- Karla Jocelyn Ortega-Carballo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Karla Montserrat Gil-Becerril
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Karla Berenice Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Alan Michael Perez-Hernandez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Pablo Muriel
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| |
Collapse
|
8
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
9
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Kuchay MS, Isaacs S, Misra A. Intrahepatic hypothyroidism in MASLD: Role of liver-specific thyromimetics including resmetirom. Diabetes Metab Syndr 2024; 18:103034. [PMID: 38714040 DOI: 10.1016/j.dsx.2024.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND AIMS Thyroid hormones are important regulators of hepatic lipid homeostasis and whole-body energy expenditure. Recent evidence suggests that euthyroid individuals with metabolic dysfunction-associated steatohepatitis (MASH) develop intrahepatic hypothyroidism that promotes progression of MASH. METHODS A literature search was performed with Medline (PubMed), Scopus and Google Scholar electronic databases from inception till March 2024, using the following keywords: hypothyroidism and nonalcoholic fatty liver disease; MASLD and thyroid function; intrahepatic hypothyroidism; TRβ agonists; and resmetirom. Relevant studies were extracted that described pathogenesis of MASH in the context of thyroid functions. RESULTS In euthyroid individuals with MASH, there is decreased conversion of prohormone thyroxine (T4) to bioactive tri-iodothyronine (T3) and increased conversion of T4 to inactive metabolite reverse T3 (rT3). Consequently, reduced levels of T3 results in impaired intrahepatic TRβ signaling, a state of intrahepatic hypothyroidism, which promotes progression of MASH. Hepatic TRβ activation leads to metabolically beneficial effects in the liver including mitochondrial fatty acid uptake and β-oxidation, mitochondrial biogenesis, increasing surface low-density lipoprotein (LDL) receptor density and lowering of circulatory LDL-cholesterol. In recent years, selective thyroid hormone mimetics that exhibit TRβ-selective binding and liver-selective uptake have been designed. Resmetirom, a liver-specific thyromimetic, improves intrahepatic TRβ signaling and in clinical trials significantly improved liver inflammation, fibrosis and lipid profile in patients with MASH. CONCLUSIONS In euthyroid individuals with MASH, development of intrahepatic hypothyroidism results in further progression of the disease. In clinical trials, resmetirom treatment results in a significant improvement in steatosis, inflammation and fibrosis and is the first drug approved by the US Food and Drug Administration (FDA) for the treatment of noncirrhotic MASH with moderate to advanced fibrosis.
Collapse
Affiliation(s)
- Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram, 122001, Haryana, India.
| | - Scott Isaacs
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anoop Misra
- Fortis CDOC Hospital for Diabetes and Allied Sciences, New Delhi, India
| |
Collapse
|
11
|
Zhang W, Lu J, Feng L, Xue H, Shen S, Lai S, Li P, Li P, Kuang J, Yang Z, Xu X. Sonic hedgehog-heat shock protein 90β axis promotes the development of nonalcoholic steatohepatitis in mice. Nat Commun 2024; 15:1280. [PMID: 38342927 PMCID: PMC10859387 DOI: 10.1038/s41467-024-45520-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
Sonic hedgehog (SHH) and heat shock protein 90β (HSP90β) have been implicated in nonalcoholic steatohepatitis (NASH) but their molecular mechanisms of action remain elusive. We find that HSP90β is a key SHH downstream molecule for promoting NASH process. In hepatocytes, SHH reduces HSP90β ubiquitylation through deubiquitylase USP31, thus preventing HSP90β degradation and promoting hepatic lipid synthesis. HSP90β significantly increases in NASH mouse model, leading to secretion of exosomes enriched with miR-28-5p. miR-28-5p directly targetes and decreases Rap1b levels, which in turn promotes NF-κB transcriptional activity in macrophages and stimulates the expression of inflammatory factors. Genetic deletion, pharmacological inhibition of the SHH-HSP90β axis, or delivery of miR-28-5p to macrophages in the male mice liver, impairs NASH symptomatic development. Importantly, there is a markedly higher abundance of miR-28-5p in NASH patient sera. Taken together, the SHH-HSP90β-miR-28-5p axis offers promising therapeutic targets against NASH, and serum miR-28-5p may serve as a NASH diagnostic biomarker.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Junfeng Lu
- First Department of Liver Disease, Beijing You'An Hospital, Capital Medical University, Beijing, 100069, China
| | - Lianshun Feng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hanyue Xue
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Shuiqing Lai
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - PingPing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jian Kuang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing, 100021, PR China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Wei P, Li L, Ran C, Jin M, Zhao H, Yang K, Wang Y, He H, Jia M, Pan H, Li Q, Guo J. High fat diet-induced downregulation of TRPV2 mediates hepatic steatosis via p21 signalling. J Physiol Biochem 2024; 80:113-126. [PMID: 37882938 DOI: 10.1007/s13105-023-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.
Collapse
Affiliation(s)
- Pengfei Wei
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Lixuan Li
- Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Chenqiu Ran
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huijuan Zhao
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Kelaier Yang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Huaqiu He
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Mengyang Jia
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Hongyan Pan
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
13
|
Ribback S, Peters K, Yasser M, Prey J, Wilhelmi P, Su Q, Dombrowski F, Bannasch P. Hepatocellular Ballooning is Due to Highly Pronounced Glycogenosis Potentially Associated with Steatosis and Metabolic Reprogramming. J Clin Transl Hepatol 2024; 12:52-61. [PMID: 38250461 PMCID: PMC10794273 DOI: 10.14218/jcth.2023.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background and Aims Hepatocellular ballooning is a common finding in chronic liver disease, mainly characterized by rarefied cytoplasm that often contains Mallory-Denk bodies (MDB). Ballooning has mostly been attributed to degeneration but its striking resemblance to glycogenotic/steatotic changes characterizing preneoplastic hepatocellular lesions in animal models and chronic human liver diseases prompts the question whether ballooned hepatocytes (BH) are damaged cells on the path to death or rather viable cells, possibly involved in neoplastic development. Methods Using specimens from 96 cirrhotic human livers, BH characteristics were assessed for their glycogen/lipid stores, enzyme activities, and proto-oncogenic signaling cascades by enzyme- and immunohistochemical approaches with serial paraffin and cryostat sections. Results BH were present in 43.8% of cirrhotic livers. Particularly pronounced excess glycogen storage of (glycogenosis) and/or lipids (steatosis) were characteristic, ground glass features and MDB were often observed. Decreased glucose-6-phosphatase, increased glucose-6-phosphate dehydrogenase activity and altered immunoreactivity of enzymes involved in glycolysis, lipid metabolism, and cholesterol biosynthesis were discovered. Furthermore, components of the insulin signaling cascade were upregulated along with insulin dependent glucose transporter glucose transporter 4 and the v-akt murine thymoma viral oncogene homolog/mammalian target of rapamycin signaling pathway associated with de novo lipogenesis. Conclusions BH are hallmarked by particularly pronounced glycogenosis with facultative steatosis, many of their features being reminiscent of metabolic aberrations documented in preneoplastic hepatocellular lesions in experimental animals and chronic human liver diseases. Hence, BH are not damaged entities facing death but rather viable cells featuring metabolic reprogramming, indicative of a preneoplastic nature.
Collapse
Affiliation(s)
- Silvia Ribback
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Kristin Peters
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Mohd Yasser
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Jessica Prey
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Paula Wilhelmi
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Qin Su
- Cell Marque, Millipore-Sigma, Rocklin, CA, USA
| | - Frank Dombrowski
- Institut für Pathologie, Universitaetsmedizin Greifswald, Greifswald, Germany
| | - Peter Bannasch
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Sanyal AJ, Jha P, Kleiner DE. Digital pathology for nonalcoholic steatohepatitis assessment. Nat Rev Gastroenterol Hepatol 2024; 21:57-69. [PMID: 37789057 DOI: 10.1038/s41575-023-00843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Histological assessment of nonalcoholic fatty liver disease (NAFLD) has anchored knowledge development about the phenotypes of the condition, their natural history and their clinical course. This fact has led to the use of histological assessment as a reference standard for the evaluation of efficacy of drug interventions for nonalcoholic steatohepatitis (NASH) - the more histologically active form of NAFLD. However, certain limitations of conventional histological assessment systems pose challenges in drug development. These limitations have spurred intense scientific and commercial development of machine learning and digital approaches towards the assessment of liver histology in patients with NAFLD. This research field remains an area in rapid evolution. In this Perspective article, we summarize the current conventional assessment of NASH and its limitations, the use of specific digital approaches for histological assessment, and their application to the study of NASH and its response to therapy. Although this is not a comprehensive review, the leading tools currently used to assess therapeutic efficacy in drug development are specifically discussed. The potential translation of these approaches to support routine clinical assessment of NAFLD and an agenda for future research are also discussed.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Prakash Jha
- Food and Drug Administration, Silver Spring, MD, USA
| | - David E Kleiner
- Post-Mortem Section Laboratory of Pathology Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Dutta RK, Jun J, Du K, Diehl AM. Hedgehog Signaling: Implications in Liver Pathophysiology. Semin Liver Dis 2023; 43:418-428. [PMID: 37802119 DOI: 10.1055/a-2187-3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.
Collapse
Affiliation(s)
| | - JiHye Jun
- Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
17
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
18
|
Salem GA, Mohamed AAR, Khater SI, Noreldin AE, Alosaimi M, Alansari WS, Shamlan G, Eskandrani AA, Awad MM, El-Shaer RAA, Nassan MA, Mostafa M, Khamis T. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023; 883:147670. [PMID: 37516284 DOI: 10.1016/j.gene.2023.147670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Non-alcoholic fatty liver (NAFL) is a prevalent hepatic disorder of global significance that can give rise to severe complications. This research endeavor delves into the potential of nano-liposomal formulated Lycopene (Lip-Lyco) in averting the development of obesity and insulin resistance, both of which are major underlying factors contributing to NAFL. The investigation further scrutinizes the impact of Lip-Lyco on intricate cellular pathways within the liver tissue of rats induced with NAFL, specifically focusing on the progression of steatosis and fibrosis. To establish an obesity-NAFL model, twenty rats were subjected to a high-fat diet (HFD) for a duration of twelve weeks, after which they received an oral treatment of Lip-Lyco (10mg/kg) for an additional eight weeks. Another group of sixteen non-obese rats were subjected to treatment with or without Lip-Lyco, serving as a control for comparison. Results: The rats on a hypercaloric diet had high body mass index (BMI) and insulin resistance, reflected in disturbed serum adipokines and lipid profiles. Oxidative stress, inflammation, and apoptosis were evident in hepatic tissue, and the autophagic process in hepatocytes was inhibited. Additionally, the hedgehog pathway was activated in the liver tissue of NAFL group. Lip-Lyco was found to counteract all these aspects of NAFL pathogenesis. Lip-Lyco exhibited antioxidant, anti-inflammatory, hypoglycemic, antiapoptotic, autophagy-inducing, and Hedgehog signaling inhibitory effects. This study concludes that Lip-Lyco, a natural compound, has promising therapeutic potential in combating NAFLdisease. However, more experimental and clinical studies are required to confirm the effectiveness of lycopene in treating NAFLdisease.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
19
|
Luo K, Chen Y, Fang S, Wang S, Wu Z, Li H. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1231520. [PMID: 37720529 PMCID: PMC10500306 DOI: 10.3389/fendo.2023.1231520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation and fibrosis are significant factors in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). In this study, we conducted a bibliometric analysis of publications on inflammation and fibrogenesis in MAFLD, with a focus on reporting publication trends. Our findings indicate that the USA and China are the most productive countries in the field, with the University of California San Diego being the most productive institution. Over the past 23 years, Prof. Diehl AM has published 25 articles that significantly contributed to the research community. Notably, the research focus of the field has shifted from morbid obesity and adiponectin to metabolic syndrome, genetics, and microbiome. Our study provides a comprehensive and objective summary of the historical characteristics of research on inflammation and fibrogenesis in MAFLD, which will be of interest to scientific researchers in this field.
Collapse
Affiliation(s)
- Kuanhong Luo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zhou Y, Zhang L, Ma Y, Xie L, Yang YY, Jin C, Chen H, Zhou Y, Song GQ, Ding J, Wu J. Secretome of senescent hepatic stellate cells favors malignant transformation from nonalcoholic steatohepatitis-fibrotic progression to hepatocellular carcinoma. Theranostics 2023; 13:4430-4448. [PMID: 37649614 PMCID: PMC10465212 DOI: 10.7150/thno.85369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Hepatic fibrosis is a premalignant lesion, and how injured hepatocytes transform into malignancy in a fibrotic microenvironment is poorly understood. Senescence is one of major fates of activated hepatic stellate cells (HSCs). Paucity of literature is available regarding the influence of senescent HSCs on behavior of steatotic hepatocytes. Methods: Senescent HSCs were identified in a murine model of nonalcoholic steatohepatitis (NASH)-fibrosis-hepatocellular carcinoma (HCC) and human NASH-HCC specimens. Secretome of senescent HSCs was analyzed by label-free mass-spectrum (NanoRPLC-MS/MS) and verified quantitatively. Results: Senescent HSCs were increased along with the progression from nonalcoholic fatty liver (NAFL), NASH to NASH-fibrosis, and reached a peak at the stage of advanced fibrosis and then decreased when hepatocellular dysplasia or HCC was developed. Critical components affecting proliferation, epithelial-mesenchymal transition (EMT) or migration were identified from secretome of senescent HSCs, and may activate morphogenic hedgehog or oncogenic Wnt signaling pathways to accelerate malignant transformation of steatotic or dysplastic hepatocytes. Primary hepatocytes stimulated with conditioned medium from senescent HSCs, in co-culture or co-cultured in 3D spheroids with senescent HSCs exhibited an enhanced proliferating or EMT profile. Conclusion: Senescent HSCs secreted a characterized protein profile favoring malignant transformation of steatotic or dysplastic hepatocytes through activating morphogenic hedgehog or oncogenic Wnt signaling pathways in the progression from NASH to malignancy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yong-yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Zhou
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou 215163, China
| | - Guang-qi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology Co., Ltd, Suzhou 215163, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
21
|
He YH, Pan JX, Xu LM, Gu T, Chen YW. Ductular reaction in non-alcoholic fatty liver disease: When Macbeth is perverted. World J Hepatol 2023; 15:725-740. [PMID: 37397935 PMCID: PMC10308290 DOI: 10.4254/wjh.v15.i6.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 06/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated fatty liver disease is the leading cause of chronic liver diseases defined as a disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD prognosis. Ductular reaction (DR) is a common compensatory reaction associated with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their secreted substances. Recently, several studies have shown that the extent of DR parallels the stage of NASH and fibrosis. This review summarizes previous research on the correlation between DR and NASH, the potential interplay mechanism driving HPC differentiation, and NASH progression.
Collapse
Affiliation(s)
- Yang-Huan He
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Yuan-Wen Chen
- Department of Gastroenterology and Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
22
|
Dorochow E, Kraus N, Chenaux-Repond N, Pierre S, Kolbinger A, Geisslinger G, Ortiz C, Welsch C, Trebicka J, Gurke R, Hahnefeld L, Klein S, Scholich K. Differential Lipidomics, Metabolomics and Immunological Analysis of Alcoholic and Non-Alcoholic Steatohepatitis in Mice. Int J Mol Sci 2023; 24:10351. [PMID: 37373497 DOI: 10.3390/ijms241210351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the leading causes of liver disease worldwide. To identify disease-specific pathomechanisms, we analyzed the lipidome, metabolome and immune cell recruitment in livers in both diseases. Mice harboring ASH or NASH had comparable disease severities regarding mortality rate, neurological behavior, expression of fibrosis marker and albumin levels. Lipid droplet size was higher in NASH than ASH and qualitative differences in the lipidome were mainly based on incorporation of diet-specific fatty acids into triglycerides, phosphatidylcholines and lysophosphatidylcholines. Metabolomic analysis showed downregulated nucleoside levels in both models. Here, the corresponding uremic metabolites were only upregulated in NASH suggesting stronger cellular senescence, which was supported by lower antioxidant levels in NASH as compared to ASH. While altered urea cycle metabolites suggest increased nitric oxide synthesis in both models, in ASH, this depended on increased L-homoarginine levels indicating a cardiovascular response mechanism. Interestingly, only in NASH were the levels of tryptophan and its anti-inflammatory metabolite kynurenine upregulated. Fittingly, high-content immunohistochemistry showed a decreased macrophage recruitment and an increased polarization towards M2-like macrophages in NASH. In conclusion, with comparable disease severity in both models, higher lipid storage, oxidative stress and tryptophan/kynurenine levels were seen in NASH, leading to distinct immune responses.
Collapse
Affiliation(s)
- Erika Dorochow
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Nico Kraus
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Nicolas Chenaux-Repond
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Cristina Ortiz
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Christoph Welsch
- Center for Internal Medicine, Hospital of the Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Jonel Trebicka
- Clinic for Internal Medicine B, Hospital of the University of Münster, 48149 Münster, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| | - Sabine Klein
- Clinic for Internal Medicine B, Hospital of the University of Münster, 48149 Münster, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 60596 Frankfurt, Germany
| |
Collapse
|
23
|
Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Cells 2023; 12:1205. [PMID: 37190114 PMCID: PMC10136748 DOI: 10.3390/cells12081205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) belongs to the superfamily of nuclear receptors that control the transcription of multiple genes. Although it is found in many cells and tissues, PPARγ is mostly expressed in the liver and adipose tissue. Preclinical and clinical studies show that PPARγ targets several genes implicated in various forms of chronic liver disease, including nonalcoholic fatty liver disease (NAFLD). Clinical trials are currently underway to investigate the beneficial effects of PPARγ agonists on NAFLD/nonalcoholic steatohepatitis. Understanding PPARγ regulators may therefore aid in unraveling the mechanisms governing the development and progression of NAFLD. Recent advances in high-throughput biology and genome sequencing have greatly facilitated the identification of epigenetic modifiers, including DNA methylation, histone modifiers, and non-coding RNAs as key factors that regulate PPARγ in NAFLD. In contrast, little is still known about the particular molecular mechanisms underlying the intricate relationships between these events. The paper that follows outlines our current understanding of the crosstalk between PPARγ and epigenetic regulators in NAFLD. Advances in this field are likely to aid in the development of early noninvasive diagnostics and future NAFLD treatment strategies based on PPARγ epigenetic circuit modification.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean-Lamour, Université de Lorraine, UMR 7198 CNRS, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
24
|
Activation of the hedgehog signaling pathway is associated with the promotion of cell proliferation and epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol 2023; 280:1241-1251. [PMID: 36190554 DOI: 10.1007/s00405-022-07664-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the pathogenesis of the hedgehog (Hh) signaling pathway activated by inflammation in the development of chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS The 82 people including CRSwNP patients (case group) and nasal septal deviation patients (control group) were recruited. The samples in the case group were collected and classified into two groups: mucosal tissue of nasal polyps (NP group) and mucosal tissue adjacent to nasal polyps (NM group), the samples were collected from the control group as CM group. Clinical characteristics were assessed. Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were performed to detect eosinophils (EOS), the expression of the key genes of the pathway and epithelial-mesenchymal transition (EMT) markers in the samples. RESULTS There were significant differences in the nasal obstruction visual analog scale (VAS) score, rhinorrhea VAS score, percentage of blood EOS, blood EOS absolute counts and tissue EOS counts in the case group compared with the control group (P < 0.05). The EOS level and expression levels of PTCH1, SMO, Gli1, Gli2, Ki67 and vimentin were higher in NP group than in the other two groups (P < 0.05). E-cadherin expression was decreased in NP group (P < 0.05). A positive correlation between PTCH1 expression and CRSwNP Lund-Mackay score in NP group. CONCLUSIONS Our results indicated that the activation of Hh signaling pathway might promote cell proliferation and EMT occurrence, ultimately leading to the development of CRSwNP, which might provide a new target for treatment.
Collapse
|
25
|
Wiering L, Subramanian P, Hammerich L. Hepatic Stellate Cells: Dictating Outcome in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2023; 15:1277-1292. [PMID: 36828280 PMCID: PMC10148161 DOI: 10.1016/j.jcmgh.2023.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a fast growing, chronic liver disease affecting ∼25% of the global population. Nonalcoholic fatty liver disease severity ranges from the less severe simple hepatic steatosis to the more advanced nonalcoholic steatohepatitis (NASH). The presence of NASH predisposes individuals to liver fibrosis, which can further progress to cirrhosis and hepatocellular carcinoma. This makes hepatic fibrosis an important indicator of clinical outcomes in patients with NASH. Hepatic stellate cell activation dictates fibrosis development during NASH. Here, we discuss recent advances in the analysis of the profibrogenic pathways and mediators of hepatic stellate cell activation and inactivation, which ultimately determine the course of disease in nonalcoholic fatty liver disease/NASH.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Linda Hammerich
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
26
|
A novel mechanistic approach for the anti-fibrotic potential of rupatadine in rat liver via amendment of PAF/NF-ĸB p65/TGF-β1 and hedgehog/HIF-1α/VEGF trajectories. Inflammopharmacology 2023; 31:845-858. [PMID: 36811777 PMCID: PMC10140091 DOI: 10.1007/s10787-023-01147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023]
Abstract
Hepatic fibrosis is one of the major worldwide health concerns which requires tremendous research due to the limited outcomes of the current therapies. The present study was designed to assess, for the first time, the potential therapeutic effect of rupatadine (RUP) in diethylnitrosamine (DEN)-induced liver fibrosis and to explore its possible mechanistic actions. For the induction of hepatic fibrosis, rats were treated with DEN (100 mg/kg, i.p.) once weekly for 6 consecutive weeks, and on the 6th week, RUP (4 mg/kg/day, p.o.) was administered for 4 weeks. Treatment with RUP ameliorated changes in body weights, liver indices, liver function enzymes, and histopathological alterations induced by DEN. Besides, RUP amended oxidative stress, which led to the inhibition of PAF/NF-κB p65-induced inflammation, and, subsequently, prevention of TGF-β1 elevation and HSCs activation as indicated by reduced α-SMA expression and collagen deposition. Moreover, RUP exerted significant anti-fibrotic and anti-angiogenic effects by suppressing Hh and HIF-1α/VEGF signaling pathways. Our results highlight, for the first time, a promising anti-fibrotic potential of RUP in rat liver. The molecular mechanisms underlying this effect involve the attenuation of PAF/NF-κB p65/TGF-β1 and Hh pathways and, subsequently, the pathological angiogenesis (HIF-1α/VEGF).
Collapse
|
27
|
Screening of Biomarkers in Liver Tissue after Bariatric Surgery Based on WGCNA and SVM-RFE Algorithms. DISEASE MARKERS 2023; 2023:2970429. [PMID: 36755803 PMCID: PMC9902125 DOI: 10.1155/2023/2970429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
As the most common chronic liver disease around the world, nonalcoholic fatty liver disease (NAFLD) has a close connection with obesity, diabetes, and metabolic syndrome. Bariatric surgery (BS) is considered to be the most effective treatment for NAFLD. However, the regulatory mechanism of hepatic lipid metabolism after BS remains poorly elucidated. By analyzing two transcriptome datasets regarding liver tissues after BS, namely, GSE83452 and GSE106737, we acquired 110 differentially expressed genes (DEGs). By further analysis of DEGs in terms of the weighted gene coexpression network analysis (WGCNA) and support vector machine-recursive feature elimination (SVM-RFE) algorithms, we identified four crucial genes participating in the regulation of hepatic lipid metabolism: SRGN, THEMIS2, SGK1, and FPR3. In addition, the results of gene set enrichment analysis (GSEA) showed that BS can activate immune-related regulatory pathways and change immune cell infiltration levels. Finally, through cellular level studies, we found that the silencing of SRGN affects the expression of SREBP-1, SIRT1, and FAS during adipogenesis in the liver and the formation of lipid droplets in the liver. In summary, the immune system in the liver is activated after BS, and SRGN participates in the regulation of hepatic lipid metabolism.
Collapse
|
28
|
Carrera I, Corzo L, Naidoo V, Martínez-Iglesias O, Cacabelos R. Cardiovascular and lipid-lowering effects of a marine lipoprotein extract in a high-fat diet-induced obesity mouse model. Int J Med Sci 2023; 20:292-306. [PMID: 36860672 PMCID: PMC9969509 DOI: 10.7150/ijms.80727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Obesity is a major health challenge worldwide, with implications for diabetes, hypertension and cardiovascular disease (CVD). Regular consumption of dark-meat fish is linked to a lower incidence of CVD and associated metabolic disorders due to the presence of long-chain omega-3 fatty acid ethyl esters in fish oils. The aim of the present study was to determine whether a marine compound like a sardine lipoprotein extract (RCI-1502), regulates fat accumulation in the heart of a high-fat diet-induced (HFD) mouse model of obesity. To investigate its effects in the heart and liver, we conducted a randomized, 12-week placebo-controlled study in which we analyzed the expression of vascular inflammation markers, obesity biochemical patterns and related CVD pathologies. Male HFD-fed mice treated with a RCI-1502-supplemented diet showed reduced body weight, abdominal fat tissue and pericardial fat pad mass density without systemic toxicity. RCI-1502 significantly reduced triacylglyceride, low-density lipoprotein and total-cholesterol concentrations in serum, but increased HDL-cholesterol levels. Our data show that RCI-1502 is beneficial for reducing obesity associated with a long-term HFD, possibly by exerting a protective effect on lipidic homeostasis, indicated also by histopathological analysis. These results collectively indicate that RCI-1502 acts as a cardiovascular therapeutic nutraceutical agent, which modulates fat-induced inflammation and improves metabolic health.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| | | | | | | | | |
Collapse
|
29
|
Govaere O, Anstee QM. Non-Alcoholic Fatty Liver Disease and Steatohepatitis. ENCYCLOPEDIA OF CELL BIOLOGY 2023:610-621. [DOI: 10.1016/b978-0-12-821618-7.00265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Malnick SDH, Alin P, Somin M, Neuman MG. Fatty Liver Disease-Alcoholic and Non-Alcoholic: Similar but Different. Int J Mol Sci 2022; 23:16226. [PMID: 36555867 PMCID: PMC9783455 DOI: 10.3390/ijms232416226] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In alcohol-induced liver disease (ALD) and in non-alcoholic fatty liver disease (NAFLD), there are abnormal accumulations of fat in the liver. This phenomenon may be related to excessive alcohol consumption, as well as the combination of alcohol consumption and medications. There is an evolution from simple steatosis to steatohepatitis, fibrosis and cirrhosis leading to hepatocellular carcinoma (HCC). Hepatic pathology is very similar regarding non-alcoholic fatty liver disease (NAFLD) and ALD. Initially, there is lipid accumulation in parenchyma and progression to lobular inflammation. The morphological changes in the liver mitochondria, perivenular and perisinusoidal fibrosis, and hepatocellular ballooning, apoptosis and necrosis and accumulation of fibrosis may lead to the development of cirrhosis and HCC. Medical history of ethanol consumption, laboratory markers of chronic ethanol intake, AST/ALT ratio on the one hand and features of the metabolic syndrome on the other hand, may help in estimating the contribution of alcohol intake and the metabolic syndrome, respectively, to liver steatosis.
Collapse
Affiliation(s)
- Stephen D. H. Malnick
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Pavel Alin
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Marina Somin
- Department of Internal Medicine, Kaplan Medical Center, Affiliated to Hebrew University, Rehovot 76100, Israel
| | - Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G OA3, Canada
| |
Collapse
|
31
|
Chen T, Dalton G, Oh SH, Maeso-Diaz R, Du K, Meyers RA, Guy C, Abdelmalek MF, Henao R, Guarnieri P, Pullen SS, Gregory S, Locker J, Brown JM, Diehl AM. Hepatocyte Smoothened Activity Controls Susceptibility to Insulin Resistance and Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 15:949-970. [PMID: 36535507 PMCID: PMC9957752 DOI: 10.1016/j.jcmgh.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Medicine, Duke University, Durham, North Carolina
| | - George Dalton
- Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel A Meyers
- Department of Medicine, Duke University, Durham, North Carolina
| | - Cynthia Guy
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Ricardo Henao
- Department of Medicine, Duke University, Durham, North Carolina
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Simon Gregory
- Department of Medicine, Duke University, Durham, North Carolina
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
32
|
Morega S, Gresita A, Mitran SI, Musat MI, Boboc IKS, Gheorman V, Udristoiu I, Albu CV, Streba CT, Catalin B, Rogoveanu I. Cerebrolysin Use in Patients with Liver Damage-A Translational Study. Life (Basel) 2022; 12:1791. [PMID: 36362945 PMCID: PMC9695462 DOI: 10.3390/life12111791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/15/2024] Open
Abstract
The treatment of acute life-threatening events in patients suffering from chronic pathologies is problematic, as physicians need to consider multisystemic drug effects. Regarding Cerebrolysin, a Sonic Hedgehog signaling pathway amplifier and one of the few approved neurotrophic treatments for stroke patients, concerns of excessive Hedgehog pathway activation that could accelerate NAFLD progression to cirrhosis seem valid. We investigated stroke patients treated with Cerebrolysin that presented elevated levels of aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT). We also investigated the efficiency of Cerebrolysin in reversing the neurogenesis inhibition within the hippocampus in a mouse model of NAFLD by evaluating behavior and histological outcomes. NeuN, BrdU and Iba1 positive signals in the cortex and hippocampus of the animals were also observed. Clinically, Cerebrolysin improved AST levels in a majority of stroke patients with hepatic damage. The same treatment in an experimental setup was able to reverse anxiety-like behavior in MCD mice, reducing their freezing time from 333.61 ± 21.81 s in MCD animals to 229.17 ± 26.28 in treated ones. The use of Cerebrolysin did not improve short-term memory nor rescued cell multiplication in the hippocampus after MCD food intake. Understanding the neuroprotective and neurotrophic effects that drugs have on NAFLD patients can significantly contribute to a suitable therapeutic approach.
Collapse
Affiliation(s)
- Shandiz Morega
- U.M.F. Doctoral School Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 115680-8000, USA
| | - Smaranda Ioana Mitran
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Madalina Iuliana Musat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Costin Teodor Streba
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Catalin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ion Rogoveanu
- Gastroenterology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
33
|
Zhang X, Li J, Liu T, Zhao M, Liang B, Chen H, Zhang Z. Identification of Key Biomarkers and Immune Infiltration in Liver Tissue after Bariatric Surgery. DISEASE MARKERS 2022; 2022:4369329. [PMID: 35789605 PMCID: PMC9250435 DOI: 10.1155/2022/4369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Few drugs are clearly available for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH); nevertheless, mounting studies have provided sufficient evidence that bariatric surgery is efficient for multiple metabolic diseases, including NAFLD and NASH, while the molecular mechanisms are still poorly understood. Methods The mRNA expression profiling of GSE48452 and GSE83452 were retrieved and obtained from the Gene Expression Omnibus (GEO) database. The limma package was employed for identifying differentially expressed genes (DEGs), followed by clusterProfiler for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and GSEA software for performing GSEA analyses. The PPI network analyses were constructed using Metascape online analyses. WGCNA was also utilized to identify and verify the hub genes. CIBERSORT tools contributed to the analysis of immune cell infiltration of liver diseases. Results We identify coexpressed differential genes including 10 upregulated and 55 downregulated genes in liver tissue after bariatric surgery. GO and KEGG enrichment analyses indicated that DEGs were remarkably involved in the immune response. GSEA demonstrated that DEGs were markedly enriched in the immune response before surgery, while most were enriched in metabolism after surgery. Seven genes were screened through the MCC algorithm and KME values, including SRGN, CD53, EVI2B, MPEG1, NCKAP1L, LCP1, and TYROBP. The mRNA levels of these genes were verified in the Attie Lab Diabetes Database, and only LCP1 was found to have significant differences and correlation with certain immune cells. Conclusion Our knowledge of the mechanisms by which bariatric surgery benefits the liver and the discovery of LCP1 is expected to serve as potential biomarkers or therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingxin Li
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
35
|
Brunt EM, Clouston AD, Goodman Z, Guy C, Kleiner DE, Lackner C, Tiniakos DG, Wee A, Yeh M, Leow WQ, Chng E, Ren Y, Boon Bee GG, Powell EE, Rinella M, Sanyal AJ, Neuschwander-Tetri B, Younossi Z, Charlton M, Ratziu V, Harrison SA, Tai D, Anstee QM. Complexity of ballooned hepatocyte feature recognition: Defining a training atlas for artificial intelligence-based imaging in NAFLD. J Hepatol 2022; 76:1030-1041. [PMID: 35090960 PMCID: PMC10544770 DOI: 10.1016/j.jhep.2022.01.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Histologically assessed hepatocyte ballooning is a key feature discriminating non-alcoholic steatohepatitis (NASH) from steatosis (NAFL). Reliable identification underpins patient inclusion in clinical trials and serves as a key regulatory-approved surrogate endpoint for drug efficacy. High inter/intra-observer variation in ballooning measured using the NASH CRN semi-quantitative score has been reported yet no actionable solutions have been proposed. METHODS A focused evaluation of hepatocyte ballooning recognition was conducted. Digitized slides were evaluated by 9 internationally recognized expert liver pathologists on 2 separate occasions: each pathologist independently marked every ballooned hepatocyte and later provided an overall non-NASH NAFL/NASH assessment. Interobserver variation was assessed and a 'concordance atlas' of ballooned hepatocytes generated to train second harmonic generation/two-photon excitation fluorescence imaging-based artificial intelligence (AI). RESULTS The Fleiss kappa statistic for overall interobserver agreement for presence/absence of ballooning was 0.197 (95% CI 0.094-0.300), rising to 0.362 (0.258-0.465) with a ≥5-cell threshold. However, the intraclass correlation coefficient for consistency was higher (0.718 [0.511-0.900]), indicating 'moderate' agreement on ballooning burden. 133 ballooned cells were identified using a ≥5/9 majority to train AI ballooning detection (AI-pathologist pairwise concordance 19-42%, comparable to inter-pathologist pairwise concordance of between 8-75%). AI quantified change in ballooned cell burden in response to therapy in a separate slide set. CONCLUSIONS The substantial divergence in hepatocyte ballooning identified amongst expert hepatopathologists suggests that ballooning is a spectrum, too subjective for its presence or complete absence to be unequivocally determined as a trial endpoint. A concordance atlas may be used to train AI assistive technologies to reproducibly quantify ballooned hepatocytes that standardize assessment of therapeutic efficacy. This atlas serves as a reference standard for ongoing work to refine how ballooning is classified by both pathologists and AI. LAY SUMMARY For the first time, we show that, even amongst expert hepatopathologists, there is poor agreement regarding the number of ballooned hepatocytes seen on the same digitized histology images. This has important implications as the presence of ballooning is needed to establish the diagnosis of non-alcoholic steatohepatitis (NASH), and its unequivocal absence is one of the key requirements to show 'NASH resolution' to support drug efficacy in clinical trials. Artificial intelligence-based approaches may provide a more reliable way to assess the range of injury recorded as "hepatocyte ballooning".
Collapse
Affiliation(s)
- Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Andrew D Clouston
- Molecular and Cellular Pathology, University of Queensland and Envoi Specialist Pathologists, Brisbane, Australia
| | - Zachary Goodman
- Pathology Department, and Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Cynthia Guy
- Division of Pathology, Duke University Medical Center, Durham, NC, USA
| | - David E Kleiner
- Laboratory of Pathology; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Dina G Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Dept of Pathology, Aretaieion Hospital, National and Kapodistrian University of Athens, Greece
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore
| | - Matthew Yeh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore & Duke-NUS Medical School, Singapore
| | | | | | - George Goh Boon Bee
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Elizabeth E Powell
- Centre for Liver Disease Research, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Mary Rinella
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Arun J Sanyal
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
| | - Michael Charlton
- Center for Liver Diseases, and Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Vlad Ratziu
- Department of Hepatology, Sorbonne University and Pitié-Salpêtrière Hospital, Paris, France
| | - Stephen A Harrison
- Pinnacle Clinical Research, San Antonio, USA; Hepatology, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Dean Tai
- Department of Anatomical Pathology, Singapore General Hospital, Singapore & Duke-NUS Medical School, Singapore.
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
37
|
Solhi R, Lotfi AS, Lotfinia M, Farzaneh Z, Piryaei A, Najimi M, Vosough M. Hepatic stellate cell activation by TGFβ induces hedgehog signaling and endoplasmic reticulum stress simultaneously. Toxicol In Vitro 2022; 80:105315. [PMID: 35051607 DOI: 10.1016/j.tiv.2022.105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellates (HSCs) is known as the major cause of initiation and progression of liver fibrosis. A wide array of events occurs during HSC activation including induction of hedgehog (Hh) signaling and endoplasmic reticulum (ER) stress. Targeting HSC activation may provide promising insights into liver fibrosis treatment. In this regard, establishing in vitro models which can mimic the molecular pathways of interest is very important. We aimed to activate HSC in which Hh signaling and ER stress are stimulated simultaneously. We used 5 ng/ml TGFβ to activate LX-2 cells, HSC cell line. Gene expression analysis using qRT-PCR, immunostaining and immunoblotting were performed to show HSC activation associated markers. Furthermore, the migration capacity of the TGFβ treated cells is evaluated. The results demonstrated that major fibrogenic markers including collagen1a, lysyl oxidase, and tissue inhibitor of matrix metalloproteinase 1 genes are up-regulated significantly. In addition, our immunofluorescence and immunoblotting results showed that protein levels of GLI-2 and XBP1, were enhanced. Moreover, we found that TGFβ treatment reduced the migration of LX-2 cells. Our results are compatible with high throughput data analysis with respect to differentially expressed genes of activated HSC compared to the quiescent ones. Moreover, our findings suggest that quercetin can reduce fibrogenic markers of activated HSCs as well as osteopontin expression, a target gene of hedgehog signaling.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Abbas Piryaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
38
|
The Potential Role of Cellular Senescence in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020652. [PMID: 35054837 PMCID: PMC8775400 DOI: 10.3390/ijms23020652] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing global health burden. Cellular senescence develops in response to cellular injury, leading not only to cell cycle arrest but also to alterations of the cellular phenotype and metabolic functions. In this review, we critically discuss the currently existing evidence for the involvement of cellular senescence in NAFLD in order to identify areas requiring further exploration. Hepatocyte senescence can be a central pathomechanism as it may foster intracellular fat accumulation, fibrosis and inflammation, also due to secretion of senescence-associated inflammatory mediators. However, in some non-parenchymal liver cell types, such as hepatic stellate cells, senescence may be beneficial by reducing the extracellular matrix deposition and thereby reducing fibrosis. Deciphering the detailed interaction between NAFLD and cellular senescence will be essential to discover novel therapeutic targets halting disease progression.
Collapse
|
39
|
Jiang Y, Peng J, Song J, He J, Jiang M, Wang J, Ma L, Wang Y, Lin M, Wu H, Zhang Z, Gao D, Zhao Y. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat Metab 2021; 3:1569-1584. [PMID: 34750570 PMCID: PMC9235319 DOI: 10.1038/s42255-021-00488-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
The Hedgehog (Hh) signalling pathway plays a critical role in regulating liver lipid metabolism and related diseases. However, the underlying mechanisms are poorly understood. Here, we show that the Hh signalling pathway induces a previously undefined long non-coding RNA (Hilnc, Hedgehog signalling-induced long non-coding RNA), which controls hepatic lipid metabolism. Mutation of the Gli-binding sites in the Hilnc promoter region (HilncBM/BM) decreases the expression of Hilnc in vitro and in vivo. HilncBM/BM and Hilnc-knockout mice are resistant to diet-induced obesity and hepatic steatosis through attenuation of the peroxisome proliferator-activated receptor signalling pathway, as Hilnc directly interacts with IGF2BP2 to enhance Pparγ mRNA stability. Furthermore, we identify a potential functional human homologue of Hilnc, h-Hilnc, which has a similar function in regulating cellular lipid metabolism. These findings uncover a critical role of the Hh-Hilnc-IGF2BP2 signalling axis in lipid metabolism and suggest a potential therapeutic target for the treatment of diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yiao Jiang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Peng
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiawen Song
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan He
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia Wang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liya Ma
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuang Wang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Science, Shanghai, P. R. China
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dong Gao
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shangha, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
40
|
Steinman JB, Salomao MA, Pajvani UB. Zonation in NASH - A key paradigm for understanding pathophysiology and clinical outcomes. Liver Int 2021; 41:2534-2546. [PMID: 34328687 DOI: 10.1111/liv.15025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) exists as a spectrum ranging from simple steatosis to histologically defined hepatocyte injury and inflammatory changes that define steatohepatitis (NASH), and increase risk for fibrosis. Although zonal differences in NASH have not been systematically studied, periportal involvement has been associated with worse metabolic outcomes and more hepatic fibrosis as compared to pericentral disease. These data suggest that hepatic zonation of disease may influence the diversity of clinical presentations. Similarly, several randomized clinical trials suggest a differential response based on zonation of disease, with preferential effects on periportal (cysteamine) or pericentral disease (obeticholic acid, pioglitazone). Intriguingly, morphogenic pathways known to affect zonal development and maintenance - WNT/β-Catenin, Hedgehog, HIPPO/Yap/TAZ and Notch - have been implicated in NASH pathogenesis, and nuclear hormone receptors downstream of potential NASH therapeutics show zonal preferences. In this review, we summarize these data and propose that patient-specific activation of these pathways may explain the variability in clinical presentation, and the zone-specific response observed in clinical trials.
Collapse
Affiliation(s)
| | - Marcela A Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
41
|
Hyun J, Al Abo M, Dutta RK, Oh SH, Xiang K, Zhou X, Maeso-Díaz R, Caffrey R, Sanyal AJ, Freedman JA, Patierno SR, Moylan CA, Abdelmalek MF, Diehl AM. Dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes hepatobiliary carcinogenesis in non-alcoholic fatty liver disease. J Hepatol 2021; 75:623-633. [PMID: 33964370 PMCID: PMC8380690 DOI: 10.1016/j.jhep.2021.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD), the hepatic correlate of the metabolic syndrome, is a major risk factor for hepatobiliary cancer (HBC). Although chronic inflammation is thought to be the root cause of all these diseases, the mechanism whereby it promotes HBC in NAFLD remains poorly understood. Herein, we aim to evaluate the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis. METHODS We use murine NAFLD models, liver biopsies from patients with NAFLD, human liver cancer registry data, and studies in liver cancer cell lines. RESULTS Our results confirm the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis, supporting a model whereby chronic inflammation suppresses hepatocyte expression of ESRP2, an RNA splicing factor that directly targets and activates NF2, a tumor suppressor that is necessary to constrain YAP/TAZ activation. The resultant loss of NF2 function permits sustained YAP/TAZ activity that drives hepatocyte proliferation and de-differentiation. CONCLUSION Herein, we report on a novel mechanism by which chronic inflammation leads to sustained activation of YAP/TAZ activity; this imposes a selection pressure that favors liver cells with mutations enabling survival during chronic oncogenic stress. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) increases the risk of hepatobiliary carcinogenesis. However, the underlying mechanism remains unknown. Our study demonstrates that chronic inflammation suppresses hepatocyte expression of ESRP2, an adult RNA splicing factor that activates NF2. Thus, inactive (fetal) NF2 loses the ability to activate Hippo kinases, leading to the increased activity of downstream YAP/TAZ and promoting hepatobiliary carcinogenesis in chronically injured livers.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA; Regeneration Next, Duke University School of Medicine, Durham, NC, USA; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, South Korea
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Rajesh Kumar Dutta
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | - Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Xiyou Zhou
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer A Freedman
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Steven R Patierno
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia A Moylan
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | - Manal F Abdelmalek
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Duke University Health System, Durham, NC, USA.
| |
Collapse
|
42
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
43
|
Yan Y, Zeng J, Xing L, Li C. Extra- and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines 2021; 9:biomedicines9081014. [PMID: 34440218 PMCID: PMC8391653 DOI: 10.3390/biomedicines9081014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hepatic fibrosis is characterized by the pathological accumulation of extracellular matrix (ECM) in the liver resulting from the persistent liver injury and wound-healing reaction induced by various insults. Although hepatic fibrosis is considered reversible after eliminating the cause of injury, chronic injury left unchecked can progress to cirrhosis and liver cancer. A better understanding of the cellular and molecular mechanisms controlling the fibrotic response is needed to develop novel clinical strategies. It is well documented that activated hepatic stellate cells (HSCs) is the most principal cellular players promoting synthesis and deposition of ECM components. In the current review, we discuss pathways of HSC activation, emphasizing emerging extra- and intra-cellular signals that drive this important cellular response to hepatic fibrosis. A number of cell types and external stimuli converge upon HSCs to promote their activation, including hepatocytes, liver sinusoidal endothelial cells, macrophages, cytokines, altered ECM, hepatitis viral infection, enteric dysbiosis, lipid metabolism disorder, exosomes, microRNAs, alcohol, drugs and parasites. We also discuss the emerging signaling pathways and intracellular events that individually or synergistically drive HSC activation, including TGFβ/Smad, Notch, Wnt/β-catenin, Hedgehog and Hippo signaling pathways. These findings will provide novel potential therapeutic targets to arrest or reverse fibrosis and cirrhosis.
Collapse
|
44
|
Ma L, Li C, Lian S, Xu B, Lv H, Liu Y, Lu J, Ji H, Li S, Guo J, Yang H. Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med 2021; 25:8015-8027. [PMID: 34155807 PMCID: PMC8358862 DOI: 10.1111/jcmm.16733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Procyanidin B2 (PB2), a naturally occurring flavonoid abundant in a wide range of fruits, has been shown to exert antioxidant, anti‐inflammatory and anticancer properties. However, the role of PB2 in the prevention of cold stimulation (CS)‐induced liver injury. The present study was undertaken to determine the effects of PB2 on liver injury induced by cold stimulation and its potential molecular mechanisms. The present study results showed that treatment with PB2 significantly reduced CS‐induced liver injury by alleviating histopathological changes and serum levels of alanine transaminase and aspartate transaminase. Moreover, treatment with PB2 inhibited secretion of inflammatory cytokines and oxidative stress in cold‐stimulated mice. PB2 reduced cold stimulation‐induced inflammation by inhibiting TLR4/NF‐κB and Txnip/NLRP3 signalling. Treatment with PB2 reduced oxidative stress by activating Nrf‐2/Keap1, AMPK/GSK3β signalling pathways and autophagy. Furthermore, simultaneous application of Shh pathway inhibitor cyclopamine proved that PB2 targets the Hh pathway. More importantly, co‐treatment with PB2 and cyclopamine showed better efficacy than monotherapy. In conclusion, our findings provide new evidence that PB2 has protective potential against CS‐induced liver injury, which might be closely linked to the inhibition of Shh signalling pathway.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chengxu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanzhi Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
45
|
Brunt EM, Kleiner DE, Carpenter DH, Rinella M, Harrison SA, Loomba R, Younossi Z, Neuschwander-Tetri BA, Sanyal AJ. NAFLD: Reporting Histologic Findings in Clinical Practice. Hepatology 2021; 73:2028-2038. [PMID: 33111374 DOI: 10.1002/hep.31599] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
The role of liver biopsy in NASH has evolved along with the increased recognition of the significance of this disease, and the unmet medical need it presents. Drug development and clinical trials are rapidly growing, as are noninvasive tests for markers of steatosis, inflammation, injury, and fibrosis. Liver biopsy evaluation remains necessary for both drug development and clinical trials as the most specific means of diagnosis and patient identification for appropriate intervention. This White Paper, sponsored by the American Association for the Study of Liver Disease NASH Task Force, is a focused review of liver biopsy evaluation in fatty liver disease in subjects with presumed NAFLD for practicing clinical hepatologists and pathologists. The goal is to provide succinct and specific means for reporting the histopathologic elements of NASH, distinguishing NASH from nonalcoholic fatty liver without steatohepatitis, and from alcohol-associated steatohepatitis when possible. The discussion includes the special situations of NASH in advanced fibrosis or cirrhosis, and in the pediatric population. Finally, there is discussion of semiquantitative methods of evaluation of lesions of "disease activity" and fibrosis. Tables are presented for scoring and a suggested model for final reporting. Figures are presented to highlight the histopathologic elements of NASH.
Collapse
Affiliation(s)
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Mary Rinella
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA
| | - Zobair Younossi
- Inova Medicine Services, Inova Health System, Falls Church, VA
| | | | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | | |
Collapse
|
46
|
Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis-Roles as Putative Treatment Targets? Biomedicines 2021; 9:biomedicines9040365. [PMID: 33807461 PMCID: PMC8066583 DOI: 10.3390/biomedicines9040365] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis is the primary predictor of mortality in patients with non-alcoholic steatohepatitis (NASH). In this process, the activated hepatic stellate cells (HSCs) constitute the principal cells responsible for the deposition of a fibrous extracellular matrix, thereby driving the hepatic scarring. HSC activation, migration, and proliferation are controlled by a complex signaling network involving growth factors, lipotoxicity, inflammation, and cellular stress. Conversely, the clearance of activated HSCs is a prerequisite for the resolution of the extracellular fibrosis. Hence, pathways regulating the fate of the HSCs may represent attractive therapeutic targets for the treatment and prevention of NASH-associated hepatic fibrosis. However, the development of anti-fibrotic drugs for NASH patients has not yet resulted in clinically approved therapeutics, underscoring the complex biology and challenges involved when targeting the intricate cellular signaling mechanisms. This narrative review investigated the mechanisms of activation and inactivation of HSCs with a focus on NASH-associated hepatic fibrosis. Presenting an updated overview, this review highlights key cellular pathways with potential value for the development of future treatment modalities.
Collapse
|
47
|
Silencing of CD147 inhibits hepatic stellate cells activation related to suppressing aerobic glycolysis via hedgehog signaling. Cytotechnology 2021; 73:233-242. [PMID: 33927478 DOI: 10.1007/s10616-021-00460-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic stellate cells (HSCs) activation is a key step that promotes hepatic fibrosis. Emerging evidence suggests that aerobic glycolysis is one of its important metabolic characteristics. Our previous study has reported that CD147, a glycosylated transmembrane protein, contributes significantly to the activation of HSCs. However, whether and how it is involved in the aerobic glycolysis of HSCs activation is unknown. The objective of the present study was to validate the effect of CD147 in HSCs activation and the underlying molecular mechanism. Our results showed that the silencing of CD147 decreased the expression of α-smooth muscle-actin (α-SMA) and collagen I at both mRNA and protein levels. Furthermore, CD147 silencing decreased the glucose uptake, lactate production in HSCs, and repressed the lactate dehydrogenase (LDH) activity, the expression of hexokinase 2 (HK2), glucose transporter 1 (Glut1). The effect of galloflavin, a well-defined glycolysis inhibitor, was similar to CD147 siRNA. Mechanistically, CD147 silencing suppressed glycolysis-associated HSCs activation through inhibiting the hedgehog signaling. Moreover, the hedgehog signaling agonist SAG could rescue the above effect of CD147 silencing. In conclusion, CD147 silencing blockade of aerobic glycolysis via suppression of hedgehog signaling inhibited HSCs activation, suggesting CD147 as a novel therapeutic target for hepatic fibrosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00460-9.
Collapse
|
48
|
Srinivas AN, Suresh D, Santhekadur PK, Suvarna D, Kumar DP. Extracellular Vesicles as Inflammatory Drivers in NAFLD. Front Immunol 2021; 11:627424. [PMID: 33603757 PMCID: PMC7884478 DOI: 10.3389/fimmu.2020.627424] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver disease in most parts of the world affecting one-third of the western population and a growing cause for end-stage liver diseases such as hepatocellular carcinoma (HCC). Majorly driven by obesity and diabetes mellitus, NAFLD is more of a multifactorial disease affected by extra-hepatic organ crosstalk. Non-alcoholic fatty liver (NAFL) progressed to non-alcoholic steatohepatitis (NASH) predisposes multiple complications such as fibrosis, cirrhosis, and HCC. Although the complete pathogenic mechanisms of this disease are not understood, inflammation is considered as a key driver to the onset of NASH. Lipotoxicity, inflammatory cytokines, chemokines, and intestinal dysbiosis trigger both hepatic and systemic inflammatory cascades simultaneously activating immune responses. Over a few years, extracellular vesicles studied extensively concerning the pathobiology of NAFLD indicated it as a key modulator in the setting of immune-mediated inflammation. Exosomes and microvesicles, the two main types of extracellular vesicles are secreted by an array of most mammalian cells, which are involved mainly in cell-cell communication that are unique to cell type. Various bioactive cargoes containing extracellular vesicles derived from both hepatic and extrahepatic milieu showed critical implications in driving steatosis to NASH reaffirming inflammation as the primary contributor to the whole process. In this mini-review, we provide brief insights into the inflammatory mediators of NASH with special emphasis on extracellular vesicles that acts as drivers of inflammation in NAFLD.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Prasanna K Santhekadur
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Deepak Suvarna
- Department of Gastroenterology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysuru, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
49
|
Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021; 18:131-142. [PMID: 33051603 PMCID: PMC7854502 DOI: 10.1038/s41575-020-00365-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
With the rapid expansion of the obesity epidemic, nonalcoholic fatty liver disease is now the most common chronic liver disease, with almost 25% global prevalence. Nonalcoholic fatty liver disease ranges in severity from simple steatosis, a benign 'pre-disease' state, to the liver injury and inflammation that characterize nonalcoholic steatohepatitis (NASH), which in turn predisposes individuals to liver fibrosis. Fibrosis is the major determinant of clinical outcomes in patients with NASH and is associated with increased risks of cirrhosis and hepatocellular carcinoma. NASH has no approved therapies, and liver fibrosis shows poor response to existing pharmacotherapy, in part due to an incomplete understanding of the underlying pathophysiology. Patient and mouse data have shown that NASH is associated with the activation of developmental pathways: Notch, Hedgehog and Hippo-YAP-TAZ. Although these evolutionarily conserved fundamental signals are known to determine liver morphogenesis during development, new data have shown a coordinated and causal role for these pathways in the liver injury response, which becomes maladaptive during obesity-associated chronic liver disease. In this Review, we discuss the aetiology of this reactivation of developmental pathways and review the cell-autonomous and cell-non-autonomous mechanisms by which developmental pathways influence disease progression. Finally, we discuss the potential prognostic and therapeutic implications of these data for NASH and liver fibrosis.
Collapse
|
50
|
Gao B, Sakaguchi K, Ogawa T, Kagawa Y, Kubo H, Shimizu T. Functional Analysis of Induced Human Ballooned Hepatocytes in a Cell Sheet-Based Three Dimensional Model. Tissue Eng Regen Med 2021; 18:217-224. [PMID: 33517537 DOI: 10.1007/s13770-020-00297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ballooned hepatocytes (BH) are a key histological hallmark of nonalcoholic steatohepatitis (NASH), yet their consequences for liver-specific functions are unknown. METHODS In our previous study, an experimental model of human induced-BHs (iBH) has been successfully developed based on cell sheet technology. This study aimed to determine the functions of iBHs in the primary human hepatocyte/normal human dermal fibroblast (PHH/NHDF) co-culture cell sheets. Normal hepatocytes in the PHH/3T3-J2 co-culture cell sheets were set as a control, since 3T3-J2 murine embryonic fibroblasts have exhibited previously long term maintenance of PHH functions. RESULTS It was found that, albumin secretion was not affected in iBHs, but urea synthesis as well as cytochrome P450 enzyme (CYP) activities including CYP1A2 and CYP3A4, were significantly reduced in iBHs. Besides, loss of bile canaliculi was observed in iBHs. These findings are consistent with clinical studies of human NASH. In addition, PHH/NHDF cell sheets demonstrated two fold higher TGF-β1 secretion compared with PHH/3T3-J2 cell sheets. Furthermore, treatment with a TGF-β inhibitor and a semi-synthetic bile acid analogue (obeticholic acid, phase 3 trial of NASH therapy) ameliorated the histological appearance of established iBHs. CONCLUSION In summary, this study demonstrates the priority of iBHs in recapitulating not only histology but also clinically relevant hepatic dysfunctions in human NASH and suggests TGF-β and bile acid related signal pathway may play important roles in the formation of iBHs.
Collapse
Affiliation(s)
- Botao Gao
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangdong Academy of Sciences, Guangzhou, 510550, China.,Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tetsuya Ogawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuki Kagawa
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hirotsugu Kubo
- Ogino Memorial Laboratory, Nihon Kohden Corporation, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|