1
|
Kim JH, Bae GH, Jung J, Noh TI. Secondary Cancer after Androgen Deprivation Therapy in Prostate Cancer: A Nationwide Study. World J Mens Health 2025; 43:123-133. [PMID: 38606859 PMCID: PMC11704168 DOI: 10.5534/wjmh.230237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/15/2023] [Accepted: 12/05/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Androgen signaling is associated with various secondary cancer, which could be promising for potential treatment using androgen deprivation therapy (ADT). This study investigated whether ADT use was associated with secondary cancers other than prostate cancer in a nationwide population-based cohort. MATERIALS AND METHODS A total, 278,434 men with newly diagnosed prostate cancer between January 1, 2002 and December 31, 2017 were identified. After applying the exclusion criteria, 170,416 men were enrolled. The study cohort was divided into ADT and non-ADT groups by individual matching followed by propensity score matching (PSM). Study outcomes were incidence of all male cancers. Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of events. RESULTS During a median follow-up of 4.5 years, a total of 11,059 deaths (6,329 in the ADT group and 4,730 in the non-ADT group) after PSM were found. After PSM, the overall all-cause of secondary cancer incidence risk of the ADT group was higher than that of the non-ADT group (HR: 1.312, 95% CI: 1.23-1.36; adjusted HR: 1.344, 95% CI: 1.29-1.40). The ADT group showed higher risk of overall brain and other central nervous system (CNS) cancer-specific incidence than the non-ADT group (adjusted HR: 1.648, 95% CI: 1.21-2.24). The ADT group showed lower risks of overall cancer-specific incidence for stomach, colon/rectum, liver/inflammatory bowel disease (IBD), gall bladder/extrahepatic bile duct, lung, bladder, and kidney cancers than the non-ADT group. When the duration of ADT was more than 2 years of ADT, the ADT group showed higher risk of cancer-specific incidence for brain and other CNS cancers but lower risk of cancer-specific incidence for liver/IBD and lung cancers than the non-ADT group. CONCLUSIONS This study demonstrates that ADT could affect cancer-specific incidence for various cancers.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Gi Hwan Bae
- Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jaehun Jung
- Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea.
| | - Tae Il Noh
- Department of Urology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Boye A, Osei SA, Brah AS. Therapeutic prospects of sex hormone receptor signaling in hormone-responsive cancers. Biomed Pharmacother 2024; 180:117473. [PMID: 39326105 DOI: 10.1016/j.biopha.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Globally, hormone-responsive cancers afflict millions of people contributing to cancer-related morbidity and mortality. While hormone-responsive cancers overburden patients, their close families, and even health budgets at the local levels, knowledge of these cancers particularly their biology and possible avenues for therapy remains poorly exploited. Herewith, this review highlights the role of sex hormones (estrogens and androgens) in the pathophysiology of hormone-responsive cancers and the exploration of therapeutic targets. Major scientific databases including but not limited to Scopus, PubMed, Science Direct, Web of Science core collections, and Google Scholar were perused using a string of search terms: Hormone-responsive cancers, androgens and cancers, estrogens and cancer, androgen receptor signalling, estrogen receptor signalling, etc.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Silas Acheampong Osei
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Augustine Suurinobah Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Li X, Gao L, Wang B, Hu J, Yu Y, Gu B, Xiang L, Li X, Li H, Zhang T, Wang Y, Ma C, Dong J, Lu J, Lucas A, Chen H. FXa-mediated PAR-2 promotes the efficacy of immunotherapy for hepatocellular carcinoma through immune escape and anoikis resistance by inducing PD-L1 transcription. J Immunother Cancer 2024; 12:e009565. [PMID: 39060025 PMCID: PMC11284825 DOI: 10.1136/jitc-2024-009565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The high metastasis rate is one of the main reasons for the poor prognosis of patients with hepatocellular carcinoma (HCC). Coagulation factor Xa (FXa) and its receptor proteinase-activated receptor-2 (PAR-2) proven to promote tumor metastasis in other forms of cancer. Here, we explore the role and mechanism of FXa in the regulation of resistance of anoikis and immune escape of HCC. METHODS In vitro and in vivo experiments were conducted to explore the role of FXa in HCC metastasis and its potential mechanism. The effects of FXa inhibitor rivaroxaban on HCC immunotherapy were evaluated using intrahepatic metastasis animal models and clinical trial (No. ChiCTR20000040540). We investigated the potential of FXa inhibition as a treatment for HCC. RESULTS FXa was highly expressed in HCC and promoted metastasis by activating PAR-2. Mechanistically, FXa-activated PAR-2 endows HCC cells with the ability of anoikis resistance to survive in the circulating blood by inhibiting the extrinsic apoptosis pathway. Furthermore, suspension stimulation-induced phosphorylation of STAT2, which promotes programmed death-ligand 1 (PD-L1) transcription and inhibits the antitumor effects of immune cells by inhibiting the infiltration of CD8+T cells in tumors and the levels of secreted cytokines. In vivo inhibition of FXa with rivaroxaban reduced HCC metastasis by decreasing PD-L1 expression and exhausting tumor-infiltrating lymphocytes. Notably, the combination of rivaroxaban and anti-programmed death-1 monoclonal antibody (anti-PD-1) programmed Death-1 monoclonal antibody (anti-PD-1) induced synergistic antitumor effects in animal models. Most importantly, rivaroxaban improved the objective response rate of patients with HCC to immune checkpoint inhibitors and prolonged overall survival time. CONCLUSIONS FXa-activated PAR-2 promotes anoikis resistance and immune escape in HCC, suggesting the potential for combining coagulation inhibitors and PD-1/PD-L1 immune checkpoint blockade to enhance the therapeutic efficacy of HCC.
Collapse
Affiliation(s)
- Xuemei Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jike Hu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yang Yu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Lin Xiang
- Department of Pathology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiaomei Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Haiyuan Li
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chenhui Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Environmental Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Tsinghua University, Beijing, China
| | - Jianrong Lu
- Departments of Biochemistry and Molecular Biology, Florida College of Medicine, Gainesville, Florida, USA
| | | | - Hao Chen
- Department of Surgical Oncology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The Key Laboratory of Humanized Animal Models, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Huang J, Ali T, Feldman DM, Theise ND. Androgen-Induced, β-Catenin-Activated Hepatocellular Adenomatosis with Spontaneous External Rupture. Diagnostics (Basel) 2024; 14:1473. [PMID: 39061609 PMCID: PMC11276095 DOI: 10.3390/diagnostics14141473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Androgens have long been recognized as oncogenic agents. They can induce both benign and malignant hepatocellular neoplasms, including hepatocellular adenoma (HCA) and hepatocellular carcinoma, though the underlying mechanisms remain unclear. Androgen-induced liver tumors are most often solitary and clinically silent. Herein, we reported an androgen-induced HCA complicated by spontaneous rupture. The patient was a 24-year-old male presenting with fatigue, diminished libido, radiology-diagnosed hepatocellular adenomatosis for 3 years, and sudden-onset, severe, sharp, constant abdominal pain for one day. He used Aveed (testosterone undecanoate injection) from age 17 and completely stopped one year before his presentation. A physical exam showed touch pain and voluntary guarding in the right upper quadrant of the abdomen. An abdominal CT angiogram demonstrated multiple probable HCAs, with active hemorrhage of the largest one (6.6 × 6.2 × 5.1 cm) accompanied by large-volume hemoperitoneum. After being stabilized by a massive transfusion protocol and interventional embolization, he underwent a percutaneous liver core biopsy. The biopsy specimen displayed atypical hepatocytes forming dense cords and pseudoglands. The lesional cells diffusely stained β-catenin in nuclei and glutamine synthetase in cytoplasm. Compared to normal hepatocytes from control tissue, the tumor cells were positive for nuclear AR (androgen receptor) expression but had no increased EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit) protein expression. The case indicated that androgen-induced hepatocellular neoplasms should be included in the differential diagnosis of acute abdomen.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Pathology, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, 100 N. Academy Ave, Danville, PA 17822, USA
| | - Towhid Ali
- Department of Radiology, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, 100 N. Academy Ave, Danville, PA 17822, USA
| | - David M. Feldman
- Department of Gastroenterology and Hepatology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Neil D. Theise
- Department of Pathology, NYU Langone Medical Center, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
5
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Nuermaimaiti A, Chang L, Yan Y, Sun H, Xiao Y, Song S, Feng K, Lu Z, Ji H, Wang L. The role of sex hormones and receptors in HBV infection and development of HBV-related HCC. J Med Virol 2023; 95:e29298. [PMID: 38087447 DOI: 10.1002/jmv.29298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
Gender disparity in hepatitis B virus (HBV)-related diseases has been extensively documented. Epidemiological studies consistently reported that males have a higher prevalence of HBV infection and incidence of hepatocellular carcinoma (HCC). Further investigations have revealed that sex hormone-related signal transductions play a significant role in gender disparity. Sex hormone axes showed significantly different responses to virus entry and replication. The sex hormones axes change the HBV-specific immune responses and antitumor immunity. Additionally, Sex hormone axes showed different effects on the development of HBV-related disease. But the role of sex hormones remains controversial, and researchers have not reached a consensus on the role of sex hormones and the use of hormone therapies in HCC treatment. In this review, we aim to summarize the experimental findings on sex hormones and provide a comprehensive understanding of their roles in the development of HCC and their implications for hormone-related HCC treatment.
Collapse
Affiliation(s)
- Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Dai Z, Wang S, Guo X, Wang Y, Yin H, Tan J, Mu C, Sun S, Liu H, Yang F. Gender dimorphism in hepatocarcinogenesis-DNA methylation modification regulated X-chromosome inactivation escape molecule XIST. Clin Transl Med 2023; 13:e1518. [PMID: 38148658 PMCID: PMC10751514 DOI: 10.1002/ctm2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Sex disparities constitute a significant issue in hepatocellular carcinoma (HCC). However, the mechanism of gender dimorphism in HCC is still not completely understood. METHODS 5-Hydroxymethylcytosine (5hmC)-Seal technology was utilised to detect the global 5hmC levels from four female and four male HCC samples. Methylation of XIST was detected by Sequenom MassARRAY methylation profiling between HCC tissues (T) and adjacent normal liver tissues (L). The role of Tet methylcytosine dioxygenase 2 (TET2) was investigated using diethylnitrosamine (DEN)-administered Tet2-/- female mice, which regulated XIST in hepatocarcinogenesis. All statistical analyses were carried out by GraphPad Prism 9.0 and SPSS version 19.0 software. RESULTS The results demonstrated that the numbers of 5hmC reads in the first exon of XIST from female HCC tissues (T) were remarkably lower than that in female adjacent normal liver tissues (L). Correspondingly, DNA methylation level of XIST first exon region was significantly increased in female T than in L. By contrast, no significant change was observed in male HCC patients. Compared to L, the expression of XIST in T was also significantly downregulated. Female patients with higher XIST in HCC had a higher overall survival (OS) and more extended recurrence-free survival (RFS). Moreover, TET2 can interact with YY1 binding to the promoter region of XIST and maintain the hypomethylation state of XIST. In addition, DEN-administered Tet2-/- mice developed more tumours than controls in female mice. CONCLUSIONS Our study provided that YY1 and TET2 could interact to form protein complexes binding to the promoter region of XIST, regulating the methylation level of XIST and then affecting the expression of XIST. This research will provide a new clue for studying sex disparities in hepatocarcinogenesis. HIGHLIGHTS XIST was significantly downregulated in HCC tissues and had gender disparity. Methylation levels in the XIST first exon were higher in female HCC tissues, but no significant change in male HCC patients. The TET2-YY1 complex regulate XIST expression in female hepatocytes. Other ways regulate XIST expression in male hepatocytes.
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Sijie Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xinggang Guo
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Yuefan Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Haozan Yin
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Jian Tan
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Chenyang Mu
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Shu‐Han Sun
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Hui Liu
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Fu Yang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionShanghaiChina
- Key Laboratory of Biological Defense, Ministry of EducationShanghaiChina
| |
Collapse
|
8
|
Pang M, Sun X, He T, Liang H, Yang H, Chen J. Development of a prognostic model based on anoikis-related genes for predicting clinical prognosis and immunotherapy of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:10253-10271. [PMID: 37787988 PMCID: PMC10599733 DOI: 10.18632/aging.205073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/19/2023] [Indexed: 10/04/2023]
Abstract
Hepatocellular Carcinoma (HCC) is the predominant cause of cancer-related mortality worldwide. The majority of HCC patients are diagnosed at advanced stages of the disease, with a high likelihood of metastasis and unfavorable prognosis. Anoikis resistance is a crucial factor contributing to tumor invasion and metastasis, although its specific role in HCC remains unclear. Based on the results of univariate Cox regression and least absolute shrink-age and selection operator (LASSO) analysis, a subset of anoikis-related genes (ARGs) significantly associated with overall survival (OS) was identified. A multivariate Cox regression analysis subsequently identified PDK4, STK11, and TFDP1 as three prognostic ARGs, which were then used to establish a prognostic risk model. Differences in OS caused by risk stratification in HCC patients were demonstrated. The nomogram analysis indicated that the ARGs prognostic signature served as an independent prognostic predictor. In vitro experiments further confirmed the abnormal expression of selected ARGs in HCC. The association between risk scores and OS was further examined through Kaplan-Meier analysis, CIBERSORT analysis, and single-sample gene set enrichment analysis (ssGSEA). This study is a pioneering effort to integrate multiple ARGs and establish a risk-predictive model, providing a unique perspective for the development of personalized and precise therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Mu Pang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ting He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Huichao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Hao Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| | - Jun Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
9
|
Chen J, Huang CP, Quan C, Zu X, Ou Z, Tsai YC, Messing E, Yeh S, Chang C. The androgen receptor in bladder cancer. Nat Rev Urol 2023; 20:560-574. [PMID: 37072491 DOI: 10.1038/s41585-023-00761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
Bladder cancer is the ninth most common cancer worldwide with a striking sex-based difference in incidence. Emerging evidence indicates that the androgen receptor (AR) might promote the development, progression and recurrence of bladder cancer, contributing to the observed sex differences. Targeting androgen-AR signalling has promise as potential therapy for bladder cancer and helps to suppress progression of this disease. In addition, the identification of a new membrane AR and AR-regulated non-coding RNAs has important implications for bladder cancer treatment. The success of human clinical trials of targeted-AR therapies will help in the development of improved treatments for patients with bladder cancer.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yu-Chieh Tsai
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Messing
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
10
|
Liu Y, Hu G, Li Y, Kong X, Yang K, Li Z, Lao W, Li J, Zhong J, Zhang S, Leng Y, Bi C, Zhai A. Research on the biological mechanism and potential application of CEMIP. Front Immunol 2023; 14:1222425. [PMID: 37662915 PMCID: PMC10471826 DOI: 10.3389/fimmu.2023.1222425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cell migration-inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Hu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuxin Leng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
Nakamura T, Sasaki K, Kojima L, Teo R, Inaba Y, Yamamoto T, Kimura S, Dageforde LA, Yeh H, Elias N, Bozorgzadeh A, Kawai T, Markmann JF. Impact of donor sex on hepatocellular carcinoma recurrence in liver transplantation after brain death. Clin Transplant 2023; 37:e14989. [PMID: 37039506 DOI: 10.1111/ctr.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is predominantly seen in males but has a better prognosis in females. No prior studies have investigated HCC recurrence based on sex combination following liver transplant donated after brain death (DBDLT). This study sought to elucidate the effects of donor and recipient sex on HCC recurrence rates. METHODS 9232 adult recipients from the United Network for Organ Sharing (UNOS) database who underwent DBDLT for HCC from 2012 to 2018 were included. Donor-recipient pairs were divided into (1) female donor/female recipient (F-F) (n = 1089); (2) male donor/female recipient (M-F) (n = 975); (3) female donor/male recipient (F-M) (n = 2691); (4) male donor/male recipient (M-M) (n = 4477). The primary prognostic outcome was HCC recurrence. A multivariable competing risk regression analysis was used to assess prognostic influences. RESULTS The median recipient age and model for end-stage liver disease (MELD) scores were similar among the four groups. Livers of male recipients demonstrated greater in size and number of HCC (both p-values were <.0001). There was also a higher rate of vascular invasion in male recipients compared to female (p < .0001). Competing risk analyses showed that the cumulative HCC recurrence rate was significantly lower in the M-F group (p = .013). After adjusting for tumor characteristics, liver grafts from male donors were associated with a lower HCC recurrence rate in female recipients (HR: .62 95%CI: .42-.93) (p = .021). CONCLUSION In DBDLT, male donor to female recipient pairing exhibited lower HCC recurrence rates. SUMMARY Lowest rates of HCC recurrence were confirmed among the female recipients of male donor grafts group in the deceased donor LT cohort. A competing risk multivariable regression analysis demonstrated that male donor sex was significantly associated with low HCC recurrence in female but not male recipients.
Collapse
Affiliation(s)
- Tsukasa Nakamura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazunari Sasaki
- Division of Abdominal Transplantation, Stanford University, Stanford, California, USA
| | - Lisa Kojima
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard Teo
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yosuke Inaba
- Biostatistics Section, Chiba University Hospital Clinical Research Center, Chiba, Japan
| | - Takayuki Yamamoto
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shoko Kimura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh Anne Dageforde
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nahel Elias
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adel Bozorgzadeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tatsuo Kawai
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Hedrich V, Breitenecker K, Ortmayr G, Pupp F, Huber H, Chen D, Sahoo S, Jolly MK, Mikulits W. PRAME Is a Novel Target of Tumor-Intrinsic Gas6/Axl Activation and Promotes Cancer Cell Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2415. [PMID: 37173882 PMCID: PMC10177160 DOI: 10.3390/cancers15092415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.
Collapse
Affiliation(s)
- Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, 1030 Vienna, Austria
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| |
Collapse
|
15
|
Nepali PR, Kyprianou N. Anoikis in phenotypic reprogramming of the prostate tumor microenvironment. Front Endocrinol (Lausanne) 2023; 14:1160267. [PMID: 37091854 PMCID: PMC10113530 DOI: 10.3389/fendo.2023.1160267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is one of the most common malignancies in males wherein 1 in 8 men are diagnosed with this disease in their lifetime. The urgency to find novel therapeutic interventions is associated with high treatment resistance and mortality rates associated with castration-resistant prostate cancer. Anoikis is an apoptotic phenomenon for normal epithelial or endothelial cells that have lost their attachment to the extracellular matrix (ECM). Tumor cells that lose their connection to the ECM can die via apoptosis or survive via anoikis resistance and thus escaping to distant organs for metastatic progression. This review discusses the recent advances made in our understanding of the signaling effectors of anoikis in prostate cancer and the approaches to translate these mechanistic insights into therapeutic benefits for reducing lethal disease outcomes (by overcoming anoikis resistance). The prostate tumor microenvironment is a highly dynamic landscape wherein the balance between androgen signaling, cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular matrix interactions, actin cytoskeleton remodeling as well as metabolic changes, confer anoikis resistance and metastatic spread. Thus, these mechanisms also offer unique molecular treatment signatures, exploitation of which can prime prostate tumors to anoikis induction with a high translational significance.
Collapse
Affiliation(s)
- Prerna R. Nepali
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Yavuz M, Sabour Takanlou L, Biray Avcı Ç, Demircan T. A Selective Androgen Receptor Modulator, S4, Displays Robust Anti-cancer Activity on Hepatocellular Cancer Cells by Negatively Regulating PI3K/AKT/mTOR Signaling Pathway. Gene 2023; 869:147390. [PMID: 36990257 DOI: 10.1016/j.gene.2023.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem that often correlates with poor prognosis. Due to the insufficient therapy options with limited benefits, it is crucial to identify new therapeutic approaches to overcome HCC. One of the vital signaling pathways in organ homeostasis and male sexual development is Androgen Receptor (AR) signaling. Its activity affects several genes that contribute to cancer characteristics and have essential roles in cell cycle progression, proliferation, angiogenesis, and metastasis. AR signaling has been shown to be misregulated in many cancers, including HCC, suggesting that it might contribute to hepatocarcinogenesis. Targeting AR signaling using anti-androgens, AR inhibitors, or AR-degrading molecules is a powerful and promising strategy to defeat HCC. In this study, AR signaling was targeted by a novel Selective Androgen Receptor Modulator (SARM), S4, in HCC cells to evaluate its potential anti-cancer effect. To date, S4 activity in cancer has not been demonstrated, and our data unrevealed that S4 significantly impaired HCC growth, migration, proliferation, and induced apoptosis through inhibiting PI3K/AKT/mTOR signaling. Since PI3K/AKT/mTOR signaling is frequently activated in HCC and contributes to its aggressiveness and poor prognosis, its negative regulation by the downregulation of critical components via S4 was a prominent finding. Further studies are necessary to investigate the S4 action mechanism and anti-tumorigenic capacity in in-vivo.
Collapse
|
17
|
Zhang L, Wu J, Wu Q, Zhang X, Lin S, Ran W, Zhu L, Tang C, Wang X. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555:216037. [PMID: 36563929 DOI: 10.1016/j.canlet.2022.216037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. The mechanisms for male propensity in HCC incidence, prognosis and treatment responses are complicated and remain inconclusive. Sex-biased molecular signatures in carcinogenesis, viral infections and immune responses have been studied predominantly within the context of sex hormones effects. This review integrates current knowledge on the mechanisms through which the hormones regulate HCC development in sexually dimorphic fashion. Firstly, the androgen/androgen receptor (AR) accelerate cell proliferation and virus infection, especially during the initial stage of HCC, while estrogen/estrogen receptor (ER) function in an opposite way to induce cell apoptosis and immune responses. Interestingly, the controversial effects of AR in late stage of HCC metastasis are summarized and the reasons are attributed to inconsistent cancer grading or experimental models between the studies. In addition, the new insights into these intricate cellular and molecular mechanisms underlying sexual dimorphism are fully discussed. A detailed understanding of sex hormones-associated regulation to male predominance in HCC may help to develop personalized therapeutic strategies in high-risk populations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - JinFeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - QiuMei Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - XiangJuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ShuaiCai Lin
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - WanLi Ran
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ChengYan Tang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Xu C, Cheng S, Chen K, Song Q, Liu C, Fan C, Zhang R, Zhu Q, Wu Z, Wang Y, Fan J, Zheng H, Lu L, Chen T, Zhao H, Jiao Y, Qu C. Sex Differences in Genomic Features of Hepatitis B-Associated Hepatocellular Carcinoma With Distinct Antitumor Immunity. Cell Mol Gastroenterol Hepatol 2022; 15:327-354. [PMID: 36272708 PMCID: PMC9772570 DOI: 10.1016/j.jcmgh.2022.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Aflatoxin exposure increases the risk for hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected individuals, particularly males. We investigated sex-based differences in the HCC genome and antitumor immunity. METHODS Whole-genome, whole-exome, and RNA sequencing were performed on 101 HCC patient samples (47 males, 54 females) that resulted from HBV infection and aflatoxin exposure from Qidong. Androgen on the expression of aflatoxin metabolism-related genes and nonhomologous DNA end joining (NHEJ) factors were examined in HBV-positive HCC cell lines, and further tested in tumor-bearing syngeneic mice. RESULTS Qidong HCC differed between males and females in genomic landscape and transcriptional dysfunction pathways. Compared with females, males expressed higher levels of aflatoxin metabolism-related genes, such as AHR and CYP1A1, and lower levels of NHEJ factors, such as XRCC4, LIG4, and MRE11, showed a signature of up-regulated type I interferon signaling/response and repressed antitumor immunity. Treatment with AFB1 in HBV-positive cells, the addition of 2 nmol/L testosterone to cultures significantly increased the expression of aflatoxin metabolism-related genes, but reduced NHEJ factors, resulting in more nuclear DNA leakage into cytosol to activate cGAS-STING. In syngeneic tumor-bearing mice that were administrated tamoxifen daily via oral gavage, favorable androgen signaling repressed NHEJ factor expression and activated cGAS-STING in tumors, increasing T-cell infiltration and improving anti-programmed cell death protein 1 treatment effect. CONCLUSIONS Androgen signaling in the context of genotoxic stress repressed DNA damage repair. The alteration caused more nuclear DNA leakage into cytosol to activate the cGAS-STING pathway, which increased T-cell infiltration into tumor mass and improved anti-programmed cell death protein 1 immunotherapy in HCCs.
Collapse
Affiliation(s)
- Chungui Xu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shaoyan Cheng
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kun Chen
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chang Liu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunsun Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Ruochan Zhang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qing Zhu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuting Wang
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian Fan
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hongwei Zheng
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Lingling Lu
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, Jiangsu Province, China
| | - Hong Zhao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Immunology Department, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Chen E, Yi J, Ren Q, Mi Y, Gan Z, Liu J. Overexpression of SRD5A3 in Hepatocellular Carcinoma and Its Molecular Mechanism: A Study of Bioinformatics Exploration Analysis with Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7853168. [PMID: 36159555 PMCID: PMC9507747 DOI: 10.1155/2022/7853168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and more prevalent among males than females. However, the biological role of enzyme 5α-reductase (SRD5A3), which plays a critical role in the androgen receptor signaling pathway during HCC development, remains poorly understood. METHODS ONCOMINE, GEPIA, UALCAN, and Kaplan-Meier Plotter were used to analyze the expression and prognostic value of SRD5A3 in HCC. STRING and Metascape were applied to analyze potential target and molecular pathways underlying SRD5A3 in HCC. A real-time quantitative reverse transcription-polymerase chain reaction was used to validate the downstream target expression of SRD5A3. RESULTS The expression of SRD5A3 was significantly overexpressed in HCC tissues compared with normal tissues, while the expression of SRD5A1 and SRD5A2 were downregulated in multiple public datasets. It may be that the low methylation of the SRD5A3 promoter leads to its overexpression. The level of SRD5A3 tended to be higher expressed in clinical samples with advanced stage and positive node metastasis. Furthermore, the patients with higher SRD5A3 were remarkably associated with poorer overall survival and disease-free survival in the TCGA data. In addition, the increased mRNA expression of SRD5A3 could predict poorer overall survival in Kaplan-Meier Plotter database including different patient cohorts. Moreover, HCC patients with higher level of SRD5A3 had significantly shorter recurrence-free survival, progression-free survival, and disease-specific survival. Furthermore, enrichment analysis demonstrated that multiple processes, such as steroid hormone biosynthesis, lipid biosynthetic process, and androgen metabolic process, were affected by SRD5A1-3 alterations. In vitro experiments showed that the expression of SRD5A3 was increased in HCC tissues than that in adjacent tissues. SRD5A3 silencing promoted the expression of DOLK in two HCC cell lines. CONCLUSIONS This study identified SRD5A3/DOLK as a novel axis to regulate HCC development.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Qingqi Ren
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Yuanna Mi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Zhe Gan
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| |
Collapse
|
20
|
Liu N, Chen Y, Yang L, Shi Q, Lu Y, Ma W, Han X, Guo H, Li D, Gan W. Both SUMOylation and ubiquitination of TFE3 fusion protein regulated by androgen receptor are the potential target in the therapy of Xp11.2 translocation renal cell carcinoma. Clin Transl Med 2022; 12:e797. [PMID: 35452181 PMCID: PMC9029019 DOI: 10.1002/ctm2.797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background The aggressiveness of renal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion (Xp11.2 translocation RCC [Xp11.2 tRCC]) is age‐dependent, which is similar to the overall trend of reproductive endocrine hormones. Therefore, this study focused on the effect and potential mechanism of androgen and androgen receptor (AR) on the progression of Xp11.2 tRCC. Methods The effects of androgen and AR on the proliferation and migration of Xp11.2 tRCC cells were first evaluated utilising Xp11.2 tRCC cell lines and tissues. Because Transcription factor enhancer 3 (TFE3) fusion proteins play a key role in Xp11.2 tRCC, we focused on the regulatory role of AR and TFE3 expression and transcriptional activity. Results When Xp11.2 tRCC cells were treated with dihydrotestosterone, increased cell proliferation, invasion and migration were observed. Compared with clear cell RCC, the positive rate of AR in Xp11.2 tRCC tissues was higher, and its expression was negatively associated with the progression‐free survival of Xp11.2 tRCC. Further studies revealed that AR could positively regulate the transcriptional activity of TFE3 fusion proteins by small ubiquitin‐related modifier (SUMO)‐specific protease 1, inducing the deSUMOylation of TFE3 fusion. On the other hand, UCHL1 negatively regulated by AR plays a role in the deubiquitination degradation of the PRCC‐TFE3 fusion protein. Therefore, the combination of the AR inhibitor MDV3100 and the UCHL1 inhibitor 6RK73 was effective in delaying the progression of Xp11.2 tRCC, especially PRCC‐TFE3 tRCC. Conclusions Androgen and AR function as facilitators in Xp11.2 tRCC progression and may be a novel therapeutic target for Xp11.2 tRCC. The combined use of AR antagonist MDV3100 and UCHL1 inhibitor 6RK73 increased both the SUMOylation and ubiquitination of the PRCC‐TFE3 fusion protein
Collapse
Affiliation(s)
- Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiancheng Shi
- Department of Urology, Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Berkel C, Cacan E. Sex-specific changes in the expression of ER-alpha and androgen receptor with increasing tumor grade in patients with hepatocellular carcinoma. Hum Cell 2022; 35:948-951. [DOI: 10.1007/s13577-022-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
|
22
|
Buurstede JC, Paul SN, De Bosscher K, Meijer OC, Kroon J. Hepatic glucocorticoid-induced transcriptional regulation is androgen-dependent after chronic but not acute glucocorticoid exposure. FASEB J 2022; 36:e22251. [PMID: 35262955 DOI: 10.1096/fj.202101313r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/11/2022]
Abstract
Glucocorticoids exert their pleiotropic effects by activating the glucocorticoid receptor (GR), which is expressed throughout the body. GR-mediated transcription is regulated by a multitude of tissue- and cell type-specific mechanisms, including interactions with other transcription factors such as the androgen receptor (AR). We previously showed that the transcription of canonical glucocorticoid-responsive genes is dependent on active androgen signaling, but the extent of this glucocorticoid-androgen crosstalk warrants further investigation. In this study, we investigated the overall glucocorticoid-androgen crosstalk in the hepatic transcriptome. Male mice were exposed to GR agonist corticosterone and AR antagonist enzalutamide in order to determine the extent of androgen-dependency after acute and chronic exposure. We found that a substantial proportion of the hepatic transcriptome is androgen-dependent after chronic exposure, while after acute exposure the transcriptomic effects of glucocorticoids are largely androgen-independent. We propose that prolonged glucocorticoid exposure triggers a gradual upregulation of AR expression, instating a situation of androgen dependence which is likely not driven by direct AR-GR interactions. This indirect mode of glucocorticoid-androgen interaction is in accordance with the absence of enriched AR DNA-binding near AR-dependent corticosterone-regulated genes after chronic exposure. In conclusion, we demonstrate that glucocorticoid effects and their interaction with androgen signaling are dependent on the duration of exposure and believe that our findings contribute to a better understanding of hepatic glucocorticoid biology in health and disease.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana N Paul
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Kroon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Jouffe C, Weger BD, Martin E, Atger F, Weger M, Gobet C, Ramnath D, Charpagne A, Morin-Rivron D, Powell EE, Sweet MJ, Masoodi M, Uhlenhaut NH, Gachon F. Disruption of the circadian clock component BMAL1 elicits an endocrine adaption impacting on insulin sensitivity and liver disease. Proc Natl Acad Sci U S A 2022; 119:e2200083119. [PMID: 35238641 PMCID: PMC8916004 DOI: 10.1073/pnas.2200083119] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
SignificanceWhile increasing evidence associates the disruption of circadian rhythms with pathologic conditions, including obesity, type 2 diabetes, and nonalcoholic fatty liver diseases (NAFLD), the involved mechanisms are still poorly described. Here, we show that, in both humans and mice, the pathogenesis of NAFLD is associated with the disruption of the circadian clock combined with perturbations of the growth hormone and sex hormone pathways. However, while this condition protects mice from the development of fibrosis and insulin resistance, it correlates with increased fibrosis in humans. This suggests that the perturbation of the circadian clock and its associated disruption of the growth hormone and sex hormone pathways are critical for the pathogenesis of metabolic and liver diseases.
Collapse
Affiliation(s)
- Céline Jouffe
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
- Helmholtz Diabetes Center, Helmholtz Zentrum München, DE-85764 Neuherberg, Germany
| | - Benjamin D. Weger
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Eva Martin
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Cédric Gobet
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Aline Charpagne
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
| | | | - Elizabeth E. Powell
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane QLD 4102, Australia
- Faculty of Medicine, Center for Liver Disease Research, Translational Research Institute, The University of Queensland, Brisbane QLD 4102, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Mojgan Masoodi
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- Institute of Clinical Chemistry, Bern University Hospital, Bern 3010, Switzerland
| | - N. Henriette Uhlenhaut
- Helmholtz Diabetes Center, Helmholtz Zentrum München, DE-85764 Neuherberg, Germany
- Metabolic Programming, Technical University of Munich School of Life Sciences, DE-85354 Freising, Germany
| | - Frédéric Gachon
- Nestlé Research, Société des Produits Nestlé, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Moon Y, Korcsmáros T, Nagappan A, Ray N. MicroRNA target-based network predicts androgen receptor-linked mycotoxin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113130. [PMID: 34968797 DOI: 10.1016/j.ecoenv.2021.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Stress-responsive microRNAs (miRNAs) contribute to the regulation of cellular homeostasis or pathological processes, including carcinogenesis, by reprogramming target gene expression following human exposure to environmental or dietary xenobiotics. Herein, we predicted the targets of carcinogenic mycotoxin-responsive miRNAs and analyzed their association with disease and functionality. miRNA target-derived prediction indicated potent associations of oncogenic mycotoxin exposure with metabolism- or hormone-related diseases, including sex hormone-linked cancers. Mechanistically, the signaling network evaluation suggested androgen receptor (AR)-linked signaling as a common pivotal cluster associated with metabolism- or hormone-related tumorigenesis in response to aflatoxin B1 and ochratoxin A co-exposure. Particularly, high levels of AR and AR-linked genes for the retinol and xenobiotic metabolic enzymes were positively associated with attenuated disease biomarkers and good prognosis in patients with liver or kidney cancers. Moreover, AR-linked signaling was protective against OTA-induced genetic insults in human hepatocytes whereas it was positively involved in AFB1-induced genotoxic actions. Collectively, miRNA target network-based predictions provide novel clinical insights into the progression or intervention against malignant adverse outcomes of human exposure to environmental oncogenic insults.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Tamás Korcsmáros
- Earlham Institute, Norwich NR4 7UZ, UK; Quadram Institute Bioscience, Norwich NR4 7UZ, UK
| | - Arulkumar Nagappan
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
25
|
Kim W. Hepatocellular Carcinoma. SEX/GENDER-SPECIFIC MEDICINE IN THE GASTROINTESTINAL DISEASES 2022:229-234. [DOI: 10.1007/978-981-19-0120-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Qin Z, Liu X, Li Z, Wang G, Feng Z, Liu Y, Yang H, Tan C, Zhang Z, Li K. LncRNA LINC00667 aggravates the progression of hepatocellular carcinoma by regulating androgen receptor expression as a miRNA-130a-3p sponge. Cell Death Discov 2021; 7:387. [PMID: 34907204 PMCID: PMC8671440 DOI: 10.1038/s41420-021-00787-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging studies have found long noncoding RNAs, widely expressed in eukaryotes, crucial regulators in the progression of human cancers, including hepatocellular carcinoma (HCC). Although the long intergenic noncoding RNA 667 (LINC00667) can promote the progression of a variety of cancer types, the expression pattern, the role in cancer progression, and the molecular mechanism involved in HCC remain unclear. This study aims to investigate the function and mechanism of LINC00667 in HCC progression. The effects of LINC00667 silencing in cell proliferation, cell migration, and cell invasion, and androgen receptor (AR) expression were determined with loss-of-function phenotypic analysis in Huh-7 and HCCLM3 cells, and subsequently testified in vivo in tumor growth. We found that the expression of LINC00667 was upregulated in HCC tissues and cell lines. Upregulation of LINC00667 was significantly associated with the unfavorable prognosis of HCC in our study patients. On the other hand, low expression of LINC00667 significantly inhibited the cell proliferation, cell migration and cell invasion of HCC in vitro and tumor growth in vivo. This inhibitory effect could be counteracted by miR-130a-3p inhibitor. LINC00667 reduced the inhibition of AR expression by miR-130a-3p, which correlated with the progression of HCC. Our finding suggests LINC00667 is a molecular sponge in the miR-130s-3p/AR signal pathway in the progression of HCC, in which it relieves the repressive function of miR-130a-3p on the AR expression. This indicates LINC00667 functions as a tumor promotor in promoting HCC progression through targeting miR-130a-3p/AR axis, making a novel biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhixiang Qin
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaohong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zijing Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Feng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ye Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hai Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengpeng Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zidong Zhang
- Department of Health Management and Policy, College for Public Health and Social Justice, St. Louis, MO, USA
- Department of Health and Clinical Outcomes Research, Advanced Health Data Institute, School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
27
|
Bhat M, Pasini E, Pastrello C, Angeli M, Baciu C, Abovsky M, Coffee A, Adeyi O, Kotlyar M, Jurisica I. Estrogen Receptor 1 Inhibition of Wnt/β-Catenin Signaling Contributes to Sex Differences in Hepatocarcinogenesis. Front Oncol 2021; 11:777834. [PMID: 34881186 PMCID: PMC8645636 DOI: 10.3389/fonc.2021.777834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with female sex being independently protective against HCC incidence and progression. The aim of our study was to understand the mechanism of estrogen receptor signaling in driving sex differences in hepatocarcinogenesis. Methods We integrated 1,268 HCC patient sample profiles from publicly available gene expression data to identify the most differentially expressed genes (DEGs). We mapped DEGs into a physical protein interaction network and performed network topology analysis to identify the most important proteins. Experimental validation was performed in vitro on HCC cell lines, in and in vivo, using HCC mouse model. Results We showed that the most central protein, ESR1, is HCC prognostic, as increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI 0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell lines with ESR1 and exposure to estradiol affected expression of genes involved in the Wnt/β-catenin signaling pathway. ER-α (protein product of ESR1) agonist treatment in a mouse model of HCC resulted in significantly longer survival and decreased tumor burden (p<0.0001), with inhibition of Wnt/β-Catenin signaling. In vitro experiments confirmed colocalization of β-catenin with ER-α, leading to inhibition of β-catenin-mediated transcription of target genes c-Myc and Cyclin D1. Conclusion Combined, the centrality of ESR1 and its inhibition of the Wnt/β-catenin signaling axis provide a biological rationale for protection against HCC incidence and progression in women.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angella Coffee
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Oyedele Adeyi
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
28
|
Tang N, Dou X, You X, Li Y, Li X, Liu G. Androgen Receptors Act as a Tumor Suppressor Gene to Suppress Hepatocellular Carcinoma Cells Progression via miR-122-5p/RABL6 Signaling. Front Oncol 2021; 11:756779. [PMID: 34745992 PMCID: PMC8564478 DOI: 10.3389/fonc.2021.756779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a high degree of malignancy and a poor prognosis. Androgen receptor (AR) has been reported to play important roles in the regulation of the progression of HCC, but the underlying mechanisms of how AR regulates HCC initiation, progression, metastasis, and chemotherapy resistance still need further study. Our study found that AR could act as a tumor suppression gene to suppress HCC cells invasion and migration capacities via miR-122-5p/RABL6 signaling, and the mechanism study further confirmed that miR-122-5p could suppress the expression of RABL6 to influence HCC cells progression by directly targeting the 3'UTR of the mRNA of RABL6. The preclinical study using an in vivo mouse model with orthotopic xenografts of HCC cells confirmed the in vitro data, and the clinical data gotten from online databases based on TCGA samples also confirmed the linkage of AR/miR-122-5p/RABL6 signaling to the HCC progression. Together, these findings suggest that AR could suppress HCC invasion and migration capacities via miR-122-5p/RABL6 signaling, and targeting this newly explored signaling may help us find new therapeutic targets for better treatment of HCC.
Collapse
Affiliation(s)
- Neng Tang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Dou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xing You
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guodong Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Feng MW, Hanley KL, Feng GS. Androgen receptor, neovascularization and liver cancer metastasis. J Hepatol 2021; 75:768-769. [PMID: 34233845 PMCID: PMC9948677 DOI: 10.1016/j.jhep.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0864, USA.
| |
Collapse
|
30
|
Zhou HC, Liu CX, Pan WD, Shang LR, Zheng JL, Huang BY, Chen JY, Zheng L, Fang JH, Zhuang SM. Dual and opposing roles of the androgen receptor in VETC-dependent and invasion-dependent metastasis of hepatocellular carcinoma. J Hepatol 2021; 75:900-911. [PMID: 34004215 DOI: 10.1016/j.jhep.2021.04.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Contradictory roles of the androgen receptor (AR) in hepatocellular carcinoma (HCC) metastasis have been reported. We have shown that VETC (vessels encapsulating tumor clusters) mediates invasion-independent metastasis, whereas VETC- HCCs metastasize in an invasion-dependent manner. Herein, we aimed to reveal the roles of AR in HCC metastasis. METHODS Mouse xenograft models, clinical samples, and cell models were used. RESULTS AR expression was significantly lower in HCCs with a VETC pattern, portal vein tumor thrombus, endothelium-coated microemboli or high recurrence rates. Overexpressing AR in VETC+ hepatoma cells suppressed VETC formation and intrahepatic metastasis but promoted pulmonary metastasis of mouse xenografts. AR decreased the transcription of Angiopoietin-2 (Angpt2), a factor essential for VETC formation, by binding to the Angpt2 promoter. The roles of AR in inhibiting VETC formation and intrahepatic metastasis were attenuated by restoring Angpt2 expression, suggesting that AR may repress VETC-dependent intrahepatic metastasis by inhibiting Angpt2 expression and VETC formation. On the other hand, AR upregulated Rac1 expression, promoted lamellipodia formation and increased cell migration/invasion. A Rac1 inhibitor abrogated the AR-mediated promotion of migration/invasion and pulmonary metastasis of VETC+ hepatoma cells, but did not affect the AR-mediated inhibition of intrahepatic metastasis. Furthermore, an AR inhibitor decreased Rac1 expression and attenuated both intrahepatic and pulmonary metastasis of VETC- xenografts, an effect which was abrogated by restoring Rac1 expression. These data indicate that AR may facilitate the lung metastasis of VETC+ HCCs and both the liver/lung metastases of VETC- HCCs by upregulating Rac1 expression and then promoting migration/invasion. CONCLUSION AR plays dual and opposing roles in VETC-dependent and invasion-dependent metastasis, which highlights the complex functions of AR and the importance of individualized cancer therapy. LAY SUMMARY In this study, we uncovered the dual and opposing roles of the androgen receptor in VETC (vessels encapsulating tumor clusters)-dependent and invasion-dependent metastasis of hepatocellular carcinoma (HCC). We elucidated the underlying mechanisms of these processes, which provided novel insights into the complex regulatory network of the androgen receptor in HCC metastasis and may have important implications for precision medicine.
Collapse
Affiliation(s)
- Hui-Chao Zhou
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Chu-Xing Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wei-Dong Pan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li-Ru Shang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jia-Lin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Bi-Yu Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jie-Ying Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Shi-Mei Zhuang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China; MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
31
|
Deng G, Wang R, Sun Y, Huang CP, Yeh S, You B, Feng C, Li G, Ma S, Chang C. Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death Differ 2021; 28:2145-2159. [PMID: 34127806 PMCID: PMC8257744 DOI: 10.1038/s41418-021-00743-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
Androgen-deprivation therapy (ADT) via targeting androgens/androgen receptor (AR) signals may suppress cell proliferation in both prostate cancer (PCa) and bladder cancer (BCa), yet its impact on the cell invasion of these two urological cancers remains unclear. Here we found targeting androgens/AR with either the recently developed antiandrogen Enzalutamide (Enz) or AR-shRNAs led to increase PCa cell invasion, yet decrease BCa cell invasion. Mechanistic dissection revealed that suppressing androgens/AR signals could result in differential alterations of the selective circular RNAs (circRNAs) as a result of differential endogenous AR transcription. A negative autoregulation in PCa, yet a positive autoregulation in BCa, as a result of differential binding of AR to different androgen-response elements (AREs) and a discriminating histone H3K4 methylation, likely contributes to this outcome between these two urological tumors. Further mechanistic studies indicated that AR-encoded circRNA-ARC1 might sponge/alter the availability of the miRNAs miR-125b-2-3p and/or miR-4736, to impact the metastasis-related PPARγ/MMP-9 signals to alter the PCa vs. BCa cell invasion. The preclinical study using the in vivo mouse model confirms in vitro cell lines data, showing that Enz treatment could increase PCa metastasis, which can be suppressed after suppressing circRNA-ARC1 with sh-circRNA-ARC1. Together, these in vitro/in vivo results demonstrate that antiandrogen therapy with Enz via targeting AR may lead to either increase PCa cell invasion or decrease BCa cell invasion. Targeting these newly identified AR/circRNA-ARC1/miR-125b-2-3p and/or miR-4736/PPARγ/MMP-9 signals may help in the development of new therapies to better suppress the Enz-altered PCa vs. BCa metastasis.
Collapse
Affiliation(s)
- Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Ronghao Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University/Hospital, Taichung, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Changyong Feng
- Department of Biostatistics, University of Rochester Medical Center, Rochester, NY, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Shenglin Ma
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
32
|
Loss of androgen receptor promotes HCC invasion and metastasis via activating circ-LNPEP/miR-532-3p/RAB9A signal under hypoxia. Biochem Biophys Res Commun 2021; 557:26-32. [PMID: 33862456 DOI: 10.1016/j.bbrc.2021.02.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Development of novel targeted therapies remains the priority in hepatocellular carcinoma (HCC) treatments. Early reports have demonstrated that androgen receptor (AR) plays a suppressive role in HCC progression. However, the underlying mechanisms by which AR attenuates HCC development are still elusive, especially under hypoxic conditions. Herein, we demonstrated that AR/circ-LNPEP/miR-532-3p/RAB9A signaling axis was tightly involved in hypoxia-induced cell invasion of HCC cells. AR worked as a transcription factor to reduce circ-LNPEP expression level, which released its sponge potential of miR-532-3p, leading to the downregulation of RAB9A and inhibiting cell invasion of HCC cells. In vitro and in vivo animal model also confirmed that overexpression of circ-LNPEP could reverse the suppressive effect of AR on HCC cell invasion or tumor metastasis. Overall, our study supplements a critical mechanism by which AR suppresses HCC invasion/metastasis under hypoxic conditions, providing compelling rationale to develop novel therapy for better treatments of HCC.
Collapse
|
33
|
Zheng N, Zhang S, Wu W, Zhang N, Wang J. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res 2021; 166:105507. [PMID: 33610718 DOI: 10.1016/j.phrs.2021.105507] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hyper-vascular solid tumor; aberrantly rich in tumor vascular network contributes to its malignancy. Conventional anti-angiogenic therapies seem promising but transitory and incomplete efficacy on HCC. Vasculogenic mimicry (VM) is one of functional microcirculation patterns independent of endothelial vessels which describes the plasticity of highly aggressive tumor cells to form vasculogenic-like networks providing sufficient blood supply for tumor growth and metastasis. As a pivotal alternative mechanism for tumor vascularization when tumor cells undergo lack of oxygen and nutrients, VM has an association with the malignant phenotype and poor clinical outcome for HCC, and may challenge the classic anti-angiogenic treatment of HCC. Current studies have contributed numerous findings illustrating the underlying molecular mechanisms and signaling pathways supporting VM in HCC. In this review, we summarize the correlation between epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and VM, the role of hypoxia and extracellular matrix remodeling in VM, the involvement of adjacent non-cancerous cells, cytokines and growth factors in VM, as well as the regulatory influence of non-coding RNAs on VM in HCC. Moreover, we discuss the clinical significance of VM in practice and the potential therapeutic strategies targeting VM for HCC. A better understanding of the mechanism underlying VM formation in HCC may optimize anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Ning Zheng
- Department of Pharmacology, The School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Shaoqin Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Wenda Wu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
34
|
Zhang H, Spencer K, Burley SK, Zheng XFS. Toward improving androgen receptor-targeted therapies in male-dominant hepatocellular carcinoma. Drug Discov Today 2021; 26:1539-1546. [PMID: 33561464 DOI: 10.1016/j.drudis.2021.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and a leading cause of cancer deaths worldwide. HCC is a male-dominant cancer with a male:female ratio of up to 7:1. The androgen receptor (AR) is the male hormone receptor known as a major oncogenic driver of prostate cancer. Although AR has been linked to the sexual dimorphism of HCC, clinical trials with AR-targeted agents failed to generate survival benefits. Recent studies provide new insights into the role of AR in liver tumorigenesis and therapeutic responses. Herein, we review current understanding of AR signaling in HCC and feedback mechanisms that limit response to AR blockade. New AR-targeting strategies that might improve outcomes in HCC therapies are also discussed.
Collapse
Affiliation(s)
- Hong Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Kristen Spencer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Stephen K Burley
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA; RCSB Protein Data Bank, School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputing Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Ouyang X, Feng L, Liu G, Yao L, Wang Z, Liu S, Xiao Y, Zhang G. Androgen receptor (AR) decreases HCC cells migration and invasion via miR-325/ACP5 signaling. J Cancer 2021; 12:1915-1925. [PMID: 33753989 PMCID: PMC7974538 DOI: 10.7150/jca.49200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most 5th commonly diagnosed and 2nd most lethal tumor in the world. The obvious gender advantage of HCC indicates that androgen receptor (AR) may play an important role in the tumor occurrence, develop and metastasis of HCC. Here we found that decreased AR could alter miR-325 to increase ACP5 expression in HCC cells, to increase HCC cells migration and invasion capacities. Mechanism dissection revealed that AR could regulate miR-325 expression through transcriptional regulation and miR-325 might directly target the 3'UTR of ACP5-mRNA to suppress its translation. The in vivo orthotopic xenografts mouse model with oemiR-325 also validated in vitro data. Together, these findings suggest that AR may decrease HCC progression through miR-325/ACP5 signaling and targeting the AR/miR-325/ACP5 signaling may help in the development of the novel therapies to better suppress the HCC progression.
Collapse
Affiliation(s)
- Xiwu Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lemeng Feng
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Guodong Liu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shiqing Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gewen Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
36
|
Liu G, Ouyang X, Sun Y, Xiao Y, You B, Gao Y, Yeh S, Li Y, Chang C. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death Differ 2020; 27:3258-3272. [PMID: 32587378 PMCID: PMC7853149 DOI: 10.1038/s41418-020-0575-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Early studies indicated that the androgen receptor (AR) might play important roles in the regulating of the initiation and progression of hepatocellular carcinoma (HCC), but its linkage to the surrounding macrophages and their impacts on the HCC progression remain unclear. Here we found that macrophages in liver cancer might function via altering the microRNA, miR-92a-2-5p, in exosomes to decrease liver cancer cells AR expression, which might then lead to increase the liver cancer cells invasion. Mechanism dissection revealed that miR-92a-2-5p from the exosomes could target the 3'UTR of AR mRNA to suppress AR translation, altering the PHLPP/p-AKT/β-catenin signaling to increase liver cancer cells invasion. Preclinical studies demonstrated that targeting this newly identified signaling with miR-92a-2-5p inhibitors led to suppress liver cancer progression. Together, these findings suggest that macrophages in the liver cancer tumor microenvironment may function via exosomes to regulate liver cancer progression, and targeting this newly identified macrophages/exosomes-miR-92a-2-5p/AR/PHLPP/p-AKT/β-catenin signaling may help in the development of novel treatment strategies to better suppress liver cancer progression.
Collapse
Affiliation(s)
- Guodong Liu
- Department of General Surgery and Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiwu Ouyang
- Department of General Surgery and Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yao Xiao
- Department of General Surgery and Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Bosen You
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuan Gao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yixiong Li
- Department of General Surgery and Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Sex Hormone Research Center, Department of Urology, China Medical University/Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
37
|
Yeh CC, Liao PY, Pandey S, Yung SY, Lai HC, Jeng LB, Chang WC, Ma WL. Metronomic Celecoxib Therapy in Clinically Available Dosage Ablates Hepatocellular Carcinoma via Suppressing Cell Invasion, Growth, and Stemness in Pre-Clinical Models. Front Oncol 2020; 10:572861. [PMID: 33194674 PMCID: PMC7609882 DOI: 10.3389/fonc.2020.572861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the anti-carcinogenic effect of metronomic Celecoxib (i.e., frequent administration in clinically available doses) against hepatocellular carcinoma (HCC) in the perspective of metastasis, spontaneous hepatocarcinogenesis, cancer invasion, proliferation, and stemness in vivo and in vitro. Background Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, is known to cause anti-carcinogenic effects for HCC in suprapharmacological doses. However, the effects of metronomic Celecoxib treatment on HCC cells remain unclear. Methods The in vivo chemopreventive effect of metronomic Celecoxib (10mg/kg/d) was investigated by the syngeneic HCC implantation model and spontaneous hepatocarcinogenesis in HBV-transgenic(HBVtg) mice individually. HCC cell lines were treated by either suprapharmacological (100 μM) or metronomic (4 μM) Celecoxib therapy. Anti-carcinogenic effects were evaluated using cell invasion, cancer proliferation, angiogenesis, and phenotype of cancer stem/progenitor cells (CSPC). The molecular mechanism of metronomic Celecoxib on HCC was dissected using Luciferase assay. Results In vivo metronomic Celecoxib exerted its chemopreventive effect by significantly reducing tumor growth of implanted syngeneic HCC and spontaneous hepatocarcinogenesis in HBVtg mice. Unlike suprapharmacological dose, metronomic Celecoxib can only inhibit HCC cell invasion after a 7-day course of treatment via NF-κB/MMP9 dependent, COX2/PGE2 independent pathway. Metronomic Celecoxib also significantly suppressed HCC cell proliferation after a 7-day or 30-day culture. Besides, metronomic Celecoxib reduced CSPC phenotype by diminishing sphere formation, percentage of CD90+ population in sphere cells, and expression of CSPC markers. Conclusions Metronomic Celecoxib should be investigated clinically as a chemopreventive agent for selected high-risk HCC patients (e.g., HCC patients after curative treatments).
Collapse
Affiliation(s)
- Chun-Chieh Yeh
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ying Liao
- Department of Chinese Medicine, Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Sudhir Pandey
- Department of Chinese Medicine, Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Su-Yung Yung
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Department of Chinese Medicine, Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.,Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of Chinese Medicine, Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Department of Chinese Medicine, Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.,Sex Hormone Research Center, Department of OBS & GYN, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
38
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Bao S, Jin S, Wang C, Tu P, Hu K, Lu J. Androgen receptor suppresses vasculogenic mimicry in hepatocellular carcinoma via circRNA7/miRNA7-5p/VE-cadherin/Notch4 signalling. J Cell Mol Med 2020; 24:14110-14120. [PMID: 33118329 PMCID: PMC7754040 DOI: 10.1111/jcmm.16022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/16/2023] Open
Abstract
Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down-regulate circular RNA (circRNA) 7, up-regulate micro RNA (miRNA) 7-5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE-cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR-7-5p blocked the formation of VM and expression of VE-cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR-7-5p might directly target the VE-cadherin and Notch4 3'UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE-cadherin revealed that shVE-cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE-cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down-regulating circRNA7/miRNA7-5p/VE-Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC.
Collapse
Affiliation(s)
- Shixiang Bao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Shuai Jin
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chunhua Wang
- Departments of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peipei Tu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Kongwang Hu
- Departments of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingtao Lu
- School of Life Sciences, Anhui Medical University, Hefei, China.,Departments of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
40
|
Feng G, Cai J, Huang Y, Zhu X, Gong B, Yang Z, Yan C, Hu Z, Yang L, Wang Z. G-Protein-Coupled Estrogen Receptor 1 Promotes Gender Disparities in Hepatocellular Carcinoma via Modulation of SIN1 and mTOR Complex 2 Activity. Mol Cancer Res 2020; 18:1863-1875. [PMID: 32873626 DOI: 10.1158/1541-7786.mcr-20-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Due to its intricate heterogeneity and limited treatment, hepatocellular carcinoma (HCC) has been considered a major cause of cancer-related mortality worldwide. Increasing evidence indicates that G-protein-coupled estrogen receptor 1 (GPER1) can promote estrogen-dependent hepatocellular proliferation by activating AKT signaling. The mTOR complex 2 (mTORC2), whose integrity and activity are modulated by its subunit Sin1, controls the activation of AKT by phosphorylation at position S473. In this study, we investigate the modulation of Sin1 and how estrogen signaling may influence the mTORC2-AKT cascade in HCC cells and a DEN-induced mouse model. We have found that estradiol-dependent Sin1 expression is transcriptionally modulated by GPER1 as well as ERα. GPER1 is able to regulate Sin1 stability via nuclear translocation, therefore increasing Sin1-mTORC2-AKT activation. Moreover, Sin1 interacts with ERα and further enhances its transcriptional activity. Sin1 is highly expressed in acute liver injury and in cases of HCC harboring high expression of GPER1 and constitutive activation of mTORC2-AKT signaling. GPER1 inhibition using the antagonist G-15 reverses DEN-induced acute liver injury by suppressing Sin1 expression and mTORC2-AKT activation. Notably, SIN1 expression varies between male and female mice in the context of both liver injury and liver cancer. In addition, high SIN1 expression is predictive of good prognosis in both male and female patients with HCC who are free from hepatitis virus infection and who report low alcohol consumption. Hence, here we demonstrate that Sin1 can be regulated by GPER1 both through nongenomic and indirect genomic signaling. IMPLICATIONS: This study suggests that Sin1 may be a novel HCC biomarker which is gender-dependent and sensitive to particular risk factor.
Collapse
Affiliation(s)
- Guanying Feng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunchuanxiang Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ziyan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
41
|
Zhang W, Fu Q, Yao K. A three-mRNA status risk score has greater predictive ability compared with a lncRNA-based risk score for predicting prognosis in patients with hepatocellular carcinoma. Oncol Lett 2020; 20:48. [PMID: 32788937 PMCID: PMC7416381 DOI: 10.3892/ol.2020.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/25/2019] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fifth most common cause of cancer-associated mortality in men, and the seventh in women, worldwide. The aim of the present study was to identify a reliable and robust RNA-based risk score for the survival prediction of patients with hepatocellular carcinoma (HCC). Gene expression data from HCC and healthy control samples were obtained from The Cancer Genome Atlas to screen differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Univariate and multivariate Cox proportional-hazards regression models and the LASSO algorithm for the Cox proportional-hazards model (LASSO Cox-PH model) were used to identify the prognostic mRNAs and lncRNAs among differentially expressed mRNAs (DEMs) and differentially expressed lncRNAs (DELs), respectively. Prognostic risk scores were generated based on the expression level or status of the prognostic lncRNAs and mRNAs, and the predictive abilities of these RNAs in TCGA and validation datasets were compared. Functional enrichment analyses were also performed. The results revealed a total of 154 downregulated and 625 upregulated mRNAs and 18 upregulated lncRNAs between tumor and control samples in TCGA dataset. A three-mRNA and a five-lncRNA expression signatures were identified using the LASSO Cox-PH model. Three-mRNA and five-lncRNA expression and status risk scores were generated. Using likelihood ratio P-values and area under the curve values from TCGA and the validation datasets, the three-mRNA status risk score was more accurate compared with the other risk scores in predicting the mortality of patients with HCC. The three identified mRNAs, including hepatitis A virus cellular receptor 1, MYCN proto-oncogene BHLH transcription factor and stratifin, were associated with the cell cycle and oocyte maturation pathways. Therefore, a three-mRNA status risk score may be valuable and robust for risk stratification of patients with HCC. The three-mRNA status risk score exhibited greater prognostic value compared with the lncRNA-based risk score.
Collapse
Affiliation(s)
- Wenxia Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Qiang Fu
- Department of General Surgery, Erenhot Hospital, Erenhot, Inner Mongolia 011100, P.R. China
| | - Kanyu Yao
- Department of Emergency Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R China
| |
Collapse
|
42
|
Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 2020; 11:46. [PMID: 32792008 PMCID: PMC7427087 DOI: 10.1186/s13293-020-00316-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.
Collapse
Affiliation(s)
- Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Hong Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Affiliated Sixth People's Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yi Zhao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xu Zheng
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuanyi Lei
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
43
|
Jiang G, Shi L, Zheng X, Zhang X, Wu K, Liu B, Yan P, Liang X, Yu T, Wang Y, Cai X. Androgen receptor affects the response to immune checkpoint therapy by suppressing PD-L1 in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:11466-11484. [PMID: 32579541 PMCID: PMC7343489 DOI: 10.18632/aging.103231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/29/2020] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with gender-related differences in onset and course. Androgen receptor (AR), a male hormone receptor, is critical in the initiation and progression of HCC. The role of AR in HCC has been mechanistically characterized and anti-AR therapies have been developed, showing limited efficacy. Immunotherapy targeting immune checkpoint proteins may substantially improve the clinical management of HCC. The mechanism by which AR influences HCC immune state remains unclear. In this study, we demonstrated that AR negatively regulated PD-L1, by acting as a transcriptional repressor of PD-L1. Notably, AR over-expression in HCC cells enhanced CD8+T function in vitro. We then verified the AR/PD-L1 correlation in patients. In animal experiment we found that lower AR expressed tumor achieved better response to PD-L1 inhibitor. Thus, AR suppressed PD-L1 expression, possibly contributing to gender disparity in HCC. Better understanding of the roles of AR during HCC initiation and progression will provide a novel angle to develop potential HCC immunotherapies.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Shi
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinjie Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Boqiang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peijian Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tunan Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Laparoscopic Technology of Zhejiang Province, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Chen L, Ma WL, Cheng WC, Yang JC, Wang HC, Su YT, Ahmad A, Hung YC, Chang WC. Targeting lipid droplet lysophosphatidylcholine for cisplatin chemotherapy. J Cell Mol Med 2020; 24:7187-7200. [PMID: 32543783 PMCID: PMC7339169 DOI: 10.1111/jcmm.15218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to explore lipidic mechanism towards low‐density lipoprotein receptor (LDLR)‐mediated platinum chemotherapy resistance. By using the lipid profiling technology, LDLR knockdown was found to increase lysosomal lipids and decrease membranous lipid levels in EOC cells. LDLR knockdown also down‐regulated ether‐linked phosphatidylethanolamine (PE‐O, lysosomes or peroxisomes) and up‐regulated lysophosphatidylcholine [LPC, lipid droplet (LD)]. This implies that the manner of using Lands cycle (conversion of lysophospholipids) for LDs might affect cisplatin sensitivity. The bioinformatics analyses illustrated that LDLR‐related lipid entry into LD, rather than an endogenous lipid resource (eg Kennedy pathway), controls the EOC prognosis of platinum chemotherapy patients. Moreover, LDLR knockdown increased the number of platinum‐DNA adducts and reduced the LD platinum amount. By using a manufactured LPC‐liposome‐cisplatin (LLC) drug, the number of platinum‐DNA adducts increased significantly in LLC‐treated insensitive cells. Moreover, the cisplatin content in LDs increased upon LLC treatment. Furthermore, lipid profiles of 22 carcinoma cells with differential cisplatin sensitivity (9 sensitive vs 13 insensitive) were acquired. These profiles revealed low storage lipid levels in insensitive cells. This result recommends that LD lipidome might be a common pathway in multiple cancers for platinum sensitivity in EOC. Finally, LLC suppressed both cisplatin‐insensitive human carcinoma cell training and testing sets. Thus, LDLR‐platinum insensitivity can be due to a defective Lands cycle that hinders LPC production in LDs. Using lipidome assessment with the newly formulated LLC can be a promising cancer chemotherapy method.
Collapse
Affiliation(s)
- Lumin Chen
- Department of OBS & GYN, BenQ Medical Center, Suzhou, China.,Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Ching Wang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Su
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Azaj Ahmad
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
45
|
Lv L, Zhao Y, Wei Q, Zhao Y, Yi Q. Downexpression of HSD17B6 correlates with clinical prognosis and tumor immune infiltrates in hepatocellular carcinoma. Cancer Cell Int 2020; 20:210. [PMID: 32514254 PMCID: PMC7268300 DOI: 10.1186/s12935-020-01298-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hydroxysteroid 17-Beta Dehydrogenase 6 (HSD17B6), a key protein involved in synthetizing dihydrotestosterone, is abundant in the liver. Previous studies have suggested a role for dihydrotestosterone in modulating progress of various malignancies, and HSD17B6 dysfunction was associated with lung cancer and prostate cancer. However, little is known about the detailed role of HSD17B6 in hepatocellular carcinoma (HCC). Methods Clinical implication and survival data related to HSD17B6 expression in patients with HCC were obtained through TCGA, ICGC, ONCOMINE, GEO and HPA databases. Survival analysis plots were drawn with Kaplan–Meier Plotter. The ChIP-seq data were obtained from Cistrome DB. Protein–Protein Interaction and gene functional enrichment analyses were performed in STRING database. The correlations between HSD17B6 and tumor immune infiltrates was investigated via TIMER and xCell. The proliferation, migration and invasion of liver cancer cells transfected with HSD17B6 were evaluated by the CCK8 assay, wound healing test and transwell assay respectively. Expression of HSD17B6, TGFB1 and PD-L1 were assessed by quantitative RT-PCR. Results HSD17B6 expression was lower in HCC compared to normal liver and correlated with tumor stage and grade. Lower expression of HSD17B6 was associated with worse OS, PFS, RFS and DSS in HCC patients. HNF4A bound to enhancer and promoter regions of HSD17B6 gene, activating its transcription, and DNA methylation of HSD17B6 promoter negatively controlled the expression. HSD17B6 and its interaction partners were involved in androgen metabolism and biosynthesis in liver. HSD17B6 inhibited tumor cell proliferation, migration and invasion in liver cancer cells and low expression of HSD17B6 correlated with high immune cells infiltration, relative reduction of immune responses and multiple immune checkpoint genes expression in HCC, probably by regulating the expression of TGFB1. Conclusions This study indicate that HSD17B6 could be a new biomarker for the prognosis of HCC and an important negative regulator of immune responses in HCC.
Collapse
Affiliation(s)
- Lei Lv
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031 Anhui People's Republic of China
| | - Yujia Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Qinqin Wei
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032 Anhui People's Republic of China
| |
Collapse
|
46
|
Lee SR, Lee YH, Yang H, Lee HW, Lee GS, An BS, Jeung EB, Park BK, Hong EJ. Sex hormone-binding globulin suppresses NAFLD-triggered hepatocarcinogenesis after menopause. Carcinogenesis 2020; 40:1031-1041. [PMID: 31168625 DOI: 10.1093/carcin/bgz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
It is generally accepted that androgen receptors increase the risk of hepatocellular carcinoma (HCC), and that estrogen reduces risk of HCC. Many studies regarding this have involved males. We, therefore, have focused our attention on females, especially postmenopausal females, who typically have limited supplies of estrogen. By using sex hormone-binding globulin (SHBG) transgenic mice, we produced a humanoid environment, and facilitated deposition and modulation of sex hormones. After exposure to diethylnitrosamine to induce HCC and upon reaching the age of 40 weeks, mice were fed the fat-rich diet for 5 months. Fat-rich diet fed or ovariectomized (OVX) wild-type mice aged 62 weeks showed HCC progression, whereas fat-rich diet fed SHBG mice or OVX SHBG mice displayed fewer tumors. In the liver of fat-rich diet fed SHBG mice, estrogenic conditions including high levels of 17β-estradiol and estrogen receptor alpha led to the induction of the lipogenesis inhibitor, phosphorylated acetyl-CoA carboxylase, and consequently suppressed fatty liver. The presence of plasma SHBG in HCC bearing mice suppressed the levels of steatosis and inflammation in a process mediated by estrogens and estrogen receptor alpha. Conversely, in the liver of OVX SHBG mice, lipogenic inhibition was also observed under conditions where the supply of estrogens is limited. Through in vitro experiment, it was confirmed SHBG suppresses lipogenesis via inhibition of acetyl-CoA carboxylase level. In conclusion, our results show that plasma SHBG might have a clinical impact on lipid-mediated hepatic diseases.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Republic of Korea
| | - Geun-Shik Lee
- Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bae-Keun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
47
|
Sex Hormone-Dependent Physiology and Diseases of Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082620. [PMID: 32290381 PMCID: PMC7216036 DOI: 10.3390/ijerph17082620] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism is associated not only with somatic and behavioral differences between men and women, but also with physiological differences reflected in organ metabolism. Genes regulated by sex hormones differ in expression in various tissues, which is especially important in the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER, also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC) is more common in men, while women have an increased risk of autoimmune liver disease and show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease (NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.
Collapse
|
48
|
Yang Z, Chen J, Xie H, Liu T, Chen Y, Ma Z, Pei X, Yang W, Li L. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett 2019; 473:118-129. [PMID: 31843555 DOI: 10.1016/j.canlet.2019.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Early studies suggest that the androgen receptor (AR) may play differential roles in influencing prostate cancer (PCa) and bladder cancer (BCa) metastasis, but the underlying mechanisms remain unclear. Here, we found that the AR might function via differentially altering vasculogenic mimicry (VM) formation to either decrease PCa metastasis or increase BCa metastasis. Mechanism dissection showed that the AR could differentially alter the expression of the VM marker SLPI through miR-525-5p to regulate SLPI; moreover, it could either increase miR-525-5p transcription in PCa or decrease it in BCa via binding to different androgen-response-elements (AREs) located at different positions in the miR-525 precursor promoter. Further, results from liquid chromatography-mass spectrometry (LC-MS) showed that the co-factors of AR in PCa and BCa are NFIX and HDAC2, respectively. Together, these results provide the first detailed mechanism of how the AR can differentially alter PCa and BCa metastasis; thus, targeting the newly identified AR-miR-525-5p-SLPI axis may help suppress metastasis.
Collapse
Affiliation(s)
- Zhao Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongjun Xie
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenkun Ma
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinqi Pei
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenjie Yang
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Sex Hormone Research Center, Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
49
|
Hu C, Fang D, Xu H, Wang Q, Xia H. The androgen receptor expression and association with patient's survival in different cancers. Genomics 2019; 112:1926-1940. [PMID: 31759122 DOI: 10.1016/j.ygeno.2019.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023]
Abstract
To understand the androgen receptor (AR) in different human malignancies, we conducted a pan-cancer analysis of AR in different tumor tissues and association with patient survival and obtained AR expression data from The Cancer Genome Atlas. Pan-Cancer Analysis of AR indicated that 12 tumor types had decreased AR expression in the tumor, while glioblastoma multiforme has overexpressed AR. The survival analysis showed that high AR mRNA is associated with poor survival of stomach adenocarcinoma and low-grade glioma, but better survival of adrenocortical carcinoma, kidney renal clear cell carcinoma, acute myeloid leukemia, liver hepatocellular carcinoma, ovarian serous cystadenocarcinoma, and skin cutaneous melanoma based on AR mRNA, protein or AR-score. AR was associated with different clinical characteristics and AR correlated genes enriched in cancer-related pathways. These data indicate that AR signaling may be strongly associated with some cancer development and patients' survival, which is promising for potential treatment using antiandrogen therapies.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Dan Fang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Haojun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China
| | - Qianghu Wang
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 211116 Nanjing, China
| | - Hongping Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing 21116, China.
| |
Collapse
|
50
|
Liver-specific androgen receptor knockout attenuates early liver tumor development in zebrafish. Sci Rep 2019; 9:10645. [PMID: 31337771 PMCID: PMC6650507 DOI: 10.1038/s41598-019-46378-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most severe cancer types and many genetic and environmental factors contribute to the development of HCC. Androgen receptor (AR) signaling is increasingly recognized as one of the important factors associated with HCC. Previously, we have developed an inducible HCC model in kras transgenic zebrafish. In the present study, to investigate the role of AR in liver tumor development, we specifically knocked out ar gene in the liver of zebrafish via the CRISPR/Cas9 system and the knockout zebrafish was named L-ARKO for liver-specific ar knockout. We observed that liver-specific knockout of ar attenuated liver tumor development in kras transgenic zebrafish at the early stage (one week of tumor induction). However, at the late stage (two weeks of tumor induction), essentially all kras transgenic fish continue to develop HCC irrespective of the absence or presence of ar gene, indicating an overwhelming role of the driver oncogene kras over ar knockout. Consistently, cell proliferation was reduced at the early stage, but not the late stage, of liver tumor induction in the kras/L-ARKO fish, indicating that the attenuant effect of ar knockout was at least in part via cell proliferation. Furthermore, androgen treatment showed acceleration of HCC progression in kras fish but not in kras/L-ARKO fish, further indicating the abolishment of ar signalling. Therefore, we have established a tissue-specific ar knockout zebrafish and it should be a valuable tool to investigate AR signalling in the liver in future.
Collapse
|