1
|
Chang W, Feng K, Zhou P, Gong D, Wang K, Huang A, Wang K, Tang N. SPOP Suppresses Hepatocellular Carcinoma Growth and Metastasis by Ubiquitination and Proteasomal Degradation of TRAF6. Cancer Sci 2025; 116:1295-1307. [PMID: 39962908 PMCID: PMC12044664 DOI: 10.1111/cas.70025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 05/02/2025] Open
Abstract
Tumor necrosis factor receptor-associated factor-6 (TRAF6) is a well-established upstream regulator of the IKK complex, essential for the modulation of the NF-κB (nuclear factor kappa B) signaling pathway. Aberrant activation of TRAF6 has been strongly implicated in the pathogenesis of various cancers, including hepatocellular carcinoma (HCC). The speckle type BTB/POZ protein (SPOP), an E3 ubiquitin ligase substrate-binding adapter, constitutes a significant component of the CUL3/SPOP/RBX1 complex, which is closely linked to tumorigenesis. In this study, we demonstrated that the E3 ubiquitin ligase SPOP shielded TRAF6 from proteasomal degradation, leading to the hyperactivation of the NF-κB pathway. Notably, a liver cancer-associated S119N mutation in SPOP resulted in a failure to mediate the ubiquitination and subsequent degradation of TRAF6. Moreover, both gain-of-function and loss-of-function experiments revealed that SPOP inhibits the proliferation and invasion of HCC cells through the TRAF6-NF-κB axis in vitro and in vivo. Taken together, our findings elucidate the underpinning mechanism by which SPOP negatively regulates the stability of the TRAF6 oncoprotein, thus offering a new therapeutic target for HCC intervention.
Collapse
Affiliation(s)
- Wenyi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Kaiying Feng
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Deao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Ke Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital Chongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Wang L, Huan XJ, Song SS, Bao XB, Tian CQ, Miao ZH, Wang YQ. UBE4B modulates BET inhibitor sensitivity via KLHL22-JAK2-PIM1 axis in hepatocellular carcinoma. Biochem Pharmacol 2025; 237:116943. [PMID: 40228637 DOI: 10.1016/j.bcp.2025.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Ubiquitination factor E4B (UBE4B) is crucial to the high mortality rate and poor prognosis associated with hepatocellular carcinoma (HCC). Evidence suggests that aberrant epigenetic modifications significantly contribute to HCC carcinogenesis, making epigenetic mechanisms a promising area for therapeutic intervention. However, the precise role of UBE4B in the epigenetic dysregulation observed in HCC remains elusive. In this study, we silenced UBE4B in HCC cells and exposed them to a panel of epigenetic compounds. Notably, only bromodomain and extraterminal inhibitors (BETis) exhibited resistance to UBE4B silencing, while restoring UBE4B expression partially reversed this resistance. Furthermore, UBE4B deletion led to decreased growth rates and impaired proliferation, resulting in cell cycle arrest and diminished tumorigenicity. However, this deletion did not affect the cell cycle arrest induced by BETi. Interestingly, KLHL22, a ubiquitin substrate of UBE4B, accumulated in UBE4B-deleted cells. Knockdown of KLHL22 restored sensitivity to BETi, accompanied by downregulation of JAK2 and upregulation of its negative regulator, LNK. Additionally, UBE4B deletion resulted in decreased LNK expression, and LNK knockdown increased JAK2 expression and mediated resistance to BETi. Increased JAK2 subsequently targeted PIM1, further reducing the inhibitory effect of BETi. Directly silencing PIM1 in UBE4B-deleted cells restored BETi sensitivity. Overall, our findings provide novel insights into the relationship between UBE4B expression and BETi sensitivity, which is mediated through the KLHL22-JAK2-PIM1 regulatory axis. These findings not only deepen our understanding of the mechanisms underlying HCC progression but also suggest that targeting this axis may present a promising therapeutic strategy for enhancing the treatment outcomes of HCC.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xia-Juan Huan
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chang-Qing Tian
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ze-Hong Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying-Qing Wang
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Lai YJ, Wang LJ, Yasaka TM, Shin Y, Ning M, Tan Y, Shih CH, Guo Y, Chen PY, Galloway H, Liu Z, Das A, Tseng GC, Monga SP, Huang Y, Chiu YC. Inferring Drug-Gene Relationships in Cancer Using Literature-Augmented Large Language Models. CANCER RESEARCH COMMUNICATIONS 2025; 5:706-718. [PMID: 40293950 PMCID: PMC12036822 DOI: 10.1158/2767-9764.crc-25-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
SIGNIFICANCE This study presents a novel approach that integrates LLMs with real-time biomedical literature to uncover drug-gene relationships, transforming how cancer researchers identify therapeutic targets, repurpose drugs, and interpret complex molecular interactions. GeneRxGPT, our user-friendly tool, enables researchers to leverage this approach without requiring computational expertise.
Collapse
Affiliation(s)
- Ying-Ju Lai
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tyler M. Yasaka
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuna Shin
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Michael Ning
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Computer Science, The University of Texas at Austin, Austin, Texas
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yibing Guo
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Po-Yuan Chen
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hugh Galloway
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhentao Liu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Arun Das
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George C. Tseng
- Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yufei Huang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Terra ML, Sant’Anna TBF, de Barros JJF, de Araujo NM. Geographic and Viral Etiology Patterns of TERT Promoter and CTNNB1 Exon 3 Mutations in Hepatocellular Carcinoma: A Comprehensive Review. Int J Mol Sci 2025; 26:2889. [PMID: 40243493 PMCID: PMC11988703 DOI: 10.3390/ijms26072889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and a leading cause of cancer-related mortality worldwide. Genetic alterations play a critical role in hepatocarcinogenesis, with mutations in the telomerase reverse transcriptase promoter (TERTp) and CTNNB1 exon 3 representing two of the most frequently reported somatic events in HCC. However, the frequency and distribution of these mutations vary across geographic regions and viral etiologies, particularly hepatitis B virus (HBV) and hepatitis C virus (HCV). This study aimed to assess the global distribution and etiological associations of TERTp and CTNNB1 exon 3 mutations in HCC through a comprehensive literature review. Our analysis, encompassing over 4000 HCC cases, revealed that TERTp mutations were present in 49.2% of tumors, with C228T being the predominant variant (93.3% among mutated cases). A striking contrast was observed between viral etiologies: TERTp mutations were detected in 31.6% of HBV-related HCCs, compared to 66.2% in HCV-related cases. CTNNB1 exon 3 mutations were identified in 23.1% of HCCs, showing a similar association with viral etiology, being more common in HCV-related cases (30.7%) than in HBV-related tumors (12.8%). Geographically, both mutations exhibited comparable patterns, with higher frequencies in Europe, Japan, and the USA, while lower rates were observed in China, Taiwan, and South Korea. Our findings underscore the distinct molecular profiles of HCC according to viral etiology and geographic origin, highlighting the need for region- and etiology-specific approaches to HCC prevention, diagnosis, and targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Natalia Motta de Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil; (M.L.T.); (T.B.F.S.); (J.J.F.d.B.)
| |
Collapse
|
5
|
Shah PS, Hughes EG, Sukhadia SS, Green DC, Houde BE, Tsongalis GJ, Tafe LJ. Validation and Implementation of a Somatic-Only Tumor Exome for Routine Clinical Application. J Mol Diagn 2024; 26:815-824. [PMID: 38972591 PMCID: PMC11393823 DOI: 10.1016/j.jmoldx.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Next-generation sequencing-based genomic testing is standard of care for tumor workflows. However, its application across different institutions continues to be challenging given the diversity of needs and resource availability among different institutions globally. Moreover, the use of a variety of different panels, including those from a few individual genes to those involving hundreds of genes, results in a relatively skewed distribution of care for patients. It is imperative to obtain a higher level of standardization without having to be restricted to specific kits or requiring repeated validations, which are generally expensive. We show the validation and clinical implementation of the DH-CancerSeq assay, a tumor-only whole-exome-based sequencing assay with integrated informatics, while providing similar input requirements, sensitivity, and specificity to a previously validated targeted gene panel and maintaining similar turnaround times for patient care.
Collapse
Affiliation(s)
- Parth S Shah
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; Genome Informatics, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Edward G Hughes
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Shrey S Sukhadia
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; Genome Informatics, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Donald C Green
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Brianna E Houde
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gregory J Tsongalis
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Laura J Tafe
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire; Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire.
| |
Collapse
|
6
|
Deng Y, Ding W, Ma K, Zhan M, Sun L, Zhou Z, Lu L. SPOP point mutations regulate substrate preference and affect its function. Cell Death Dis 2024; 15:172. [PMID: 38409107 PMCID: PMC10897488 DOI: 10.1038/s41419-024-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The adaptor SPOP recruits substrates to CUL3 E3 ligase for ubiquitination and degradation. Structurally, SPOP harbors a MATH domain for substrate recognition, and a BTB domain responsible for binding CUL3. Reported point mutations always occur in SPOP's MATH domain and are through to disrupt affinities of SPOP to substrates, thereby leading to tumorigenesis. In this study, we identify the tumor suppressor IRF2BP2 as a novel substrate of SPOP. SPOP enables to attenuate IRF2BP2-inhibited cell proliferation and metastasis in HCC cells. However, overexpression of wild-type SPOP alone suppresses HCC cell proliferation and metastasis. In addition, a HCC-derived mutant, SPOP-M35L, shows an increased affinity to IRF2BP2 in comparison with wild-type SPOP. SPOP-M35L promotes HCC cell proliferation and metastasis, suggesting that M35L mutation possibly reprograms SPOP from a tumor suppressor to an oncoprotein. Taken together, this study uncovers mutations in SPOP's MATH lead to distinct functional consequences in context-dependent manners, rather than simply disrupting its interactions with substrates, raising a noteworthy concern that we should be prudent to select SPOP as therapeutic target for cancers.
Collapse
Affiliation(s)
- Yanran Deng
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China.
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China.
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China.
| |
Collapse
|
7
|
Gong DA, Zhou P, Chang WY, Yang JY, Zhang YL, Huang AL, Tang N, Wang K. SPOP promotes CREB5 ubiquitination to inhibit MET signaling in liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119642. [PMID: 37996058 DOI: 10.1016/j.bbamcr.2023.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.
Collapse
Affiliation(s)
- De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Yao Yang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Lai Zhang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Lu G, Lin J, Song G, Chen M. Prognostic significance of CTNNB1 mutation in hepatocellular carcinoma: a systematic review and meta-analysis. Aging (Albany NY) 2023; 15:9759-9778. [PMID: 37733676 PMCID: PMC10564414 DOI: 10.18632/aging.205047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUNDS Hepatocellular Carcinoma (HCC) is one of the most common malignant cancers in humans and has a high fatality rate. In recent years, researchers have verified that the Wnt/β-catenin signaling pathway affects the clinicopathological features and prognosis of patients with HCC. Although many studies have investigated the relationship between Wnt/β-catenin signaling pathway and HCC, the prognostic value of β-catenin in HCC remains inconclusive. CTNNB1 (Catenin Beta-1) is an important factor in the Wnt/β-catenin signaling pathway. However, no consensus has been reached on the clinical and prognostic significance of CTNNB1 mutations in HCCs. METHODS Eligible studies and relevant data were obtained from PubMed, Web of Science, Elsevier, Cochrane Library, Ovid, and Embase databases. The correlation between CTNNB1 mutations and clinical/prognosis of patients were evaluated. A fixed- or random-effects model was used to calculate pooled odds ratios (OR) and 95% confidence intervals (CI). RESULTS Seventeen studies matched the selection criteria, and 1828 patients were included. This meta-analysis demonstrated that patients with HCC with CTNNB1 mutations had favorable clinicopathological features and survival. The combined ORs of 1-, 3- and 5-year overall survival were0.52 (n = 6 studies, 95% CI: 0.34-0.81, Z = 2.89, P =0.004, 0.28 (n =6 studies, 95% CI: 0.18-0.42, Z = 6.03, P<0.00001), -0.22 (n = 6 studies, 95% CI: 0.37-0.06, Z = 2.78, P = 0.005), respectively. Additionally, CTNNB1 mutation might be significantly associated with differentiation (OR = 0.54, 95% CI:0.36-0.81, Z = 2.98, P = 0.003), TMN stages (Tumor, Node, Metastasis staging classification) (OR = -0.25, 95% CI:-0.33--0.18, Z = 6.60, P<0.00001), liver cirrhosis (OR = 0.21, 95% CI:0.11-0.39, Z = 4.94, P< = 0.00001), and HBV (Hepatitis B Virus) infection (OR = 0.44, 95% CI:0.31-0.64, Z = 4.37, P<0.0001), but not with tumor size, metastasis, vascular invasion, and HCV infection. CONCLUSIONS CTNNB1 mutation can serve as an indicator of favorable prognosis as well as a novel target for treatment in HCC.
Collapse
Affiliation(s)
- Genlin Lu
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| | - Jian Lin
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| | - Guoqiang Song
- Department of Pulmonary, Department of Cancer Center, Changxing Hospital of Traditional Chinese Medicine, Huzhou 313100, China
| | - Min Chen
- Department of General Surgery, Longyou People’s Hospital Affiliated with Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Quzhou 324400, China
| |
Collapse
|
9
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Fu AB, Xiang SF, He QJ, Ying MD. Kelch-like proteins in the gastrointestinal tumors. Acta Pharmacol Sin 2023; 44:931-939. [PMID: 36266566 PMCID: PMC10104798 DOI: 10.1038/s41401-022-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
Collapse
Affiliation(s)
- An-Bo Fu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310002, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Sen-Feng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene 2023; 42:725-736. [PMID: 36604567 DOI: 10.1038/s41388-022-02589-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Aberrantly elevated O-GlcNAcylation level is commonly observed in human cancer patients, and has been proposed as a potential therapeutic target. Speckle-type POZ protein (SPOP), an important substrate adaptor of cullin3-RING ubiquitin ligase, plays a key role in the initiation and development of various cancers. However, the regulatory mechanisms governing SPOP and its function during hepatocellular carcinoma (HCC) progression remain unclear. Here, we show that, in HCC, SPOP is highly O-GlcNAcylated by O-GlcNAc transferase (OGT) at Ser96. In normal liver cells, the SPOP protein mainly localizes in the cytoplasm and mediates the ubiquitination of the oncoprotein neurite outgrowth inhibitor-B (Nogo-B) (also known as reticulon 4 B) by recognizing its N-terminal SPOP-binding consensus (SBC) motifs. However, O-GlcNAcylation of SPOP at Ser96 increases the nuclear positioning of SPOP in hepatoma cells, alleviating the ubiquitination of the Nogo-B protein, thereby promoting HCC progression in vitro and in vivo. In addition, ablation of O-GlcNAcylation by an S96A mutation increased the cytoplasmic localization of SPOP, thereby inhibiting the Nogo-B/c-FLIP cascade and HCC progression. Our findings reveal a novel post-translational modification of SPOP and identify a novel SPOP substrate, Nogo-B, in HCC. Intervention with the hyper O-GlcNAcylation of SPOP may provide a novel strategy for HCC treatment.
Collapse
|
12
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
13
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Qiu L, Zhou R, Zhou L, Yang S, Wu J. CAPRIN2 upregulation by LINC00941 promotes nasopharyngeal carcinoma ferroptosis resistance and metastatic colonization through HMGCR. Front Oncol 2022; 12:931749. [PMID: 36276162 PMCID: PMC9582274 DOI: 10.3389/fonc.2022.931749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Distant metastasis is the main cause of death in nasopharyngeal carcinoma (NPC) patients. There is an urgent need to reveal the underlying mechanism of NPC metastasis and identify novel therapeutic targets. The ferroptosis resistance and survival ability of extracellular matrix (ECM)-detached tumor cells are important factors in determining the success of distant metastasis. In this study, we found that CAPRIN2 contributes to the ferroptosis resistance and survival of ECM-detached NPC cells. Moreover, CAPRIN2 serves as a positive regulator of NPC cell migration and invasion. HMGCR, the key metabolic enzyme of the mevalonate pathway, was identified as the key downstream molecule of CAPRIN2, which mediates its regulation of ferroptosis, survival, migration and invasion of NPC cells. Lung colonization experiments showed that downregulation of the CAPRIN2/HMGCR axis resulted in reduced lung metastasis of NPC cells. Erastin treatment inhibited the ability of NPC cells to colonize the lungs, which was further enhanced by CAPRIN2/HMGCR axis downregulation. Regulated by upstream LINC00941, CAPRIN2 is abnormally activated in NPC, and its high expression is associated with a poor prognosis. In conclusion, CAPRIN2 is a molecular marker of a poor prognosis in NPC, and the LINC00941/CAPRIN2/HMGCR axis provides a new target for the treatment of NPC metastasis and ferroptosis resistance.
Collapse
Affiliation(s)
- Lin Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Women and Children’s Medical Center, Department of Hematology and Oncology, Guangzhou Medical University, Guangzhou, China
| | - Rui Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shiping Yang
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiangxue Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jiangxue Wu,
| |
Collapse
|
15
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
16
|
Sobel Naveh NS, Traxler EM, Duffy KA, Kalish JM. Molecular networks of hepatoblastoma predisposition and oncogenesis in Beckwith-Wiedemann syndrome. Hepatol Commun 2022; 6:2132-2146. [PMID: 35507738 PMCID: PMC9315120 DOI: 10.1002/hep4.1972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common human overgrowth disorder caused by structural and epigenetic changes to chromosome 11p15. Patients with BWS are predisposed to developing hepatoblastoma (HB). To better understand the mechanism of HB oncogenesis in this cancer predisposition background, we performed the first multi-dimensional study of HB samples collected from patients diagnosed with BWS. This multi-omic investigation of seven BWS HB and five matched nontumor BWS liver samples from 7 unique patients included examination of whole exome sequences, messenger RNA/microRNA expression, and methylation levels to elucidate the genomic, transcriptomic, and epigenomic landscape of BWS-associated HB. We compared the transcriptional profiles of the BWS samples, both HB and nontumor, to that of control livers. Genes differentially expressed across BWS tissues were identified as BWS HB predisposition factors; this gene group included cell cycle regulators, chromatin organizers, and WNT, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT members. We also compared transcriptional changes associated with non-syndromic HB carrying BWS-like 11p15 alterations compared to those without, as well as to BWS HB. Through this analysis, we identified factors specific to 11p15-altered HB oncogenesis, termed the BWS oncogenesis network. We propose that 11p15 alterations drive HB oncogenesis by initially dysregulating cell-cycle regulators and chromatin organizers, including histone deacetylase 1 (HDAC1), ATP-dependent helicase X, and F-Box and WD repeat domain containing 7. Furthermore, we found oncogenic factors such as dickkopf WNT signaling pathway inhibitor 1 and 4, WNT16, forkhead box O3 (FOXO3), and MAPK10 are differentially expressed in 11p15-altered HB in both the BWS and non-syndromic backgrounds. These genes warrant further investigation as diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kelly A Duffy
- Division of Human Genetics and Center for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA.,Departments of Pediatrics and GeneticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
18
|
Tsvetkova V, Magro G, Broggi G, Luchini C, Cappello F, Caporalini C, Buccoliero AM, Santoro L. New insights in gastrointestinal "pediatric" neoplasms in adult patients: pancreatoblastoma, hepatoblastoma and embryonal sarcoma of the liver. A practical approach by GIPPI-GIPAD Groups. Pathologica 2022; 114:64-78. [PMID: 35212317 PMCID: PMC9040550 DOI: 10.32074/1591-951x-559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
Pediatric solid neoplasms are rare and very different from those observed in adults. The majority of them are referred to as embryonal because they arise as a result of alterations in the processes of organogenesis or normal growth and are characterized by proliferation of primitive cells, reproducing the corresponding tissue at various stages of embryonic development. This review will focus on embryonal gastrointestinal pediatric neoplasms in adult patients, including pancreatoblastoma, hepatoblastoma, and embryonal sarcoma of the liver. Although they are classically considered pediatric neoplasms, they may (rarely) occur in adult patients. Hepatoblastoma represents the most frequent liver neoplasm in the pediatric population, followed by hepatocellular carcinoma and embryonal sarcoma of the liver; while pancreatoblastoma is the most common malignant pancreatic tumor in childhood. Both in children and adults, the mainstay of treatment is complete surgical resection, either up front or following neoadjuvant chemotherapy. Unresectable and/or metastatic neoplasms may be amenable to complete delayed surgery after neoadjuvant chemotherapy. However, these neoplasms display a more aggressive behavior and overall poorer prognosis in adults than in children, probably because they are diagnosed in later stages of diseases.
Collapse
Affiliation(s)
- Vassilena Tsvetkova
- Department of Diagnostics and Public Health, Section of Pathology, Verona University and Hospital Trust; Verona, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, Verona University and Hospital Trust; Verona, Italy
| | - Filippo Cappello
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| | | | | | - Luisa Santoro
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padova, Italy
| |
Collapse
|
19
|
Wang X, Yao S, Luo G, Zhou Y, Fang Q. Downregulation of RPS14 inhibits the proliferation and metastasis of estrogen receptor-positive breast cancer cells. Anticancer Drugs 2021; 32:1019-1028. [PMID: 34261921 DOI: 10.1097/cad.0000000000001112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ribosomal protein S14 (RPS14) is a component of the 40S ribosomal subunit and is considered to be indispensable for ribosomal biogenesis. Previously, we found that RPS14 was significantly downregulated in estrogen receptor-positive (ER+) breast cancer cells following treatment with 4-hydroxytamoxifen (4-OH-TAM). However, its role in breast cancer remains poorly understood. In the present study, we sought to demonstrate, for the first time, that RPS14 is highly expressed in ER+ breast cancer tissues and its downregulation can significantly inhibit the proliferation, cycle, and metastasis of ER+ breast cancer cells, as well as induce cell apoptosis. Quantitative RT-PCR and western blotting were used to determine the expression of target genes. Herein, lentivirus-mediated small hairpin RNA (shRNA) targeting RPS14 was designed to determine the impact of RPS14 knockdown on ER+ breast cancer cells. Further, bioinformatics analysis was used to reveal the significance of differentially expressed genes in RPS14 knockdown breast cancer cells. RPS14 was highly expressed in ER+ breast cancer tissues compared to ER- tissues. The downregulation of RPS14 in two ER+ breast cancer cell lines suppressed cell proliferation, cell cycle and metastasis, and induced apoptosis. Based on bioinformatics analysis, the expression level of several significant genes, such as ASNS, Ret, and S100A4, was altered in breast cancer cells after RPS14 downregulation. Furthermore, the BAG2 and interferon signaling pathways were identified to be significantly activated. The downregulation of RPS14 in ER+ breast cancer cells can inhibit their proliferation and metastasis.
Collapse
Affiliation(s)
| | - Shuang Yao
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Guanghua Luo
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Zhou
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qi Fang
- Department of Breast Surgery
| |
Collapse
|
20
|
Zhu D, Chen J, Hou T. Development and Validation of a Prognostic Model of RNA-Binding Proteins in Colon Adenocarcinoma: A Study Based on TCGA and GEO Databases. Cancer Manag Res 2021; 13:7709-7722. [PMID: 34675667 PMCID: PMC8517423 DOI: 10.2147/cmar.s330434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that dysregulation of RNA-binding proteins (RBPs) is significantly associated with the development of cancer. However, there are few studies to date on the role of RBPs in colon adenocarcinoma (COAD). Methods RNA sequencing and clinical data for COAD patients were downloaded from The Cancer Genome Atlas (TCGA) database to identify differentially expressed (DE) RBPs between COAD tissue and normal colon tissue, and then the expression and prognostic significance of these RBPs were investigated in detail by systematic bioinformatics analysis. qRT-PCR was used to validate the expressions of prognosis-related RBP-encoding genes. Results Seven RBPs (RPL10L, ERI1, POP1, CAPRIN2, TDRD7, SNIP1 and PPARGC1A) were identified as hub genes associated with prognosis by a series of regression analyses, and were then used to construct a prognostic model. Further analysis based on this model indicated that the overall survival (OS) of the high-risk groups was lower than that of the low-risk groups. In this prognostic model, the area under the ROC curve (AUC) was 0.694, 0.709 and 0.665 for the TCGA cohort at 1, 3 and 5 years, respectively, while the AUC was 0.671, 0.633 and 0.601 for the GEO combined cohort at 1, 3 and 5 years, respectively, indicating the good predictive ability of the model. We also built a nomogram based on the 7 RBPs in the TCGA cohort, and the model showed good discriminatory ability for COAD. Conclusion We screened seven prognosis-related genes in COAD patients based on RBP-related genes, validated the expressions of the seven prognosis-related RBP-encoding genes by qRT-PCR and constructed a prognosis-related nomogram for patients with COAD.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tieying Hou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
21
|
Zhou JL, Zhao YZ, Wang SS, Chen MX, Zhou S, Chen C. RNA Splicing: A Versatile Regulatory Mechanism in Pediatric Liver Diseases. Front Mol Biosci 2021; 8:725308. [PMID: 34651015 PMCID: PMC8505697 DOI: 10.3389/fmolb.2021.725308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of high-throughput sequencing technology, the posttranscriptional mechanism of alternative splicing is becoming better understood. From decades of studies, alternative splicing has been shown to occur in multiple tissues, including the brain, heart, testis, skeletal muscle, and liver. This regulatory mechanism plays an important role in physiological functions in most liver diseases. Currently, due to the absence of symptoms, chronic pediatric liver diseases have a significant impact on public health. Furthermore, the progression of the disease is accelerated in children, leading to severe damage to their liver tissue if no precautions are taken. To this end, this review article summarizes the current knowledge of alternative splicing in pediatric liver diseases, paying special attention to liver damage in the child stage. The discussion of the regulatory role of splicing in liver diseases and its potential as a new therapeutic target is also included.
Collapse
Affiliation(s)
- Jian-Li Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yu-Zhen Zhao
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Shan-Shan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Hirsch TZ, Pilet J, Morcrette G, Roehrig A, Monteiro BJE, Molina L, Bayard Q, Trépo E, Meunier L, Caruso S, Renault V, Deleuze JF, Fresneau B, Chardot C, Gonzales E, Jacquemin E, Guerin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugières L, Rebouissou S, Letouzé E, Zucman-Rossi J. Integrated Genomic Analysis Identifies Driver Genes and Cisplatin-Resistant Progenitor Phenotype in Pediatric Liver Cancer. Cancer Discov 2021; 11:2524-2543. [PMID: 33893148 PMCID: PMC8916021 DOI: 10.1158/2159-8290.cd-20-1809] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Theo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pediatric Pathology, APHP, Robert Debré Hospital, Paris, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benedict J E Monteiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Laura Molina
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | | | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Florent Guerin
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Monique Fabre
- Department of Pathology, Hôpital Universitaire Necker-Enfants malades, AP-HP, Centre-Université de Paris, Université Paris Descartes, Paris, France
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Sophie Taque
- Département de Pédiatrie, CHU Fontenoy, Rennes, France
| | - Véronique Laithier
- Department of Children Oncology, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Orsay, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France.
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
23
|
Nagae G, Yamamoto S, Fujita M, Fujita T, Nonaka A, Umeda T, Fukuda S, Tatsuno K, Maejima K, Hayashi A, Kurihara S, Kojima M, Hishiki T, Watanabe K, Ida K, Yano M, Hiyama Y, Tanaka Y, Inoue T, Ueda H, Nakagawa H, Aburatani H, Hiyama E. Genetic and epigenetic basis of hepatoblastoma diversity. Nat Commun 2021; 12:5423. [PMID: 34538872 PMCID: PMC8450290 DOI: 10.1038/s41467-021-25430-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy; however, hereditary predisposition and acquired molecular aberrations related to HB clinicopathological diversity are not well understood. Here, we perform an integrative genomic profiling of 163 pediatric liver tumors (154 HBs and nine hepatocellular carcinomas) based on the data acquired from a cohort study (JPLT-2). The total number of somatic mutations is precious low (0.52/Mb on exonic regions) but correlated with age at diagnosis. Telomerase reverse transcriptase (TERT) promoter mutations are prevalent in the tween HBs, selective in the transitional liver cell tumor (TLCT, > 8 years old). DNA methylation profiling reveals that classical HBs are characterized by the specific hypomethylated enhancers, which are enriched with binding sites for ASCL2, a regulatory transcription factor for definitive endoderm in Wnt-pathway. Prolonged upregulation of ASCL2, as well as fetal-liver-like methylation patterns of IGF2 promoters, suggests their "cell of origin" derived from the premature hepatoblast, similar to intestinal epithelial cells, which are highly proliferative. Systematic molecular profiling of HB is a promising approach for understanding the epigenetic drivers of hepatoblast carcinogenesis and deriving clues for risk stratification.
Collapse
Affiliation(s)
- Genta Nagae
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Masashi Fujita
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Fujita
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Aya Nonaka
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Shiro Fukuda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Kazuhiro Maejima
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akimasa Hayashi
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan ,grid.411205.30000 0000 9340 2869Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Sho Kurihara
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Masato Kojima
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoro Hishiki
- grid.136304.30000 0004 0370 1101Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kohmei Ida
- grid.412305.10000 0004 1769 1397Department of Pediatrics, Teikyo University Mizonokuchi Hospital, Kawasaki, Japan
| | - Michihiro Yano
- grid.411403.30000 0004 0631 7850Department of Pediatrics, Akita University Hospital, Akita, Japan
| | - Yoko Hiyama
- grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| | - Yukichi Tanaka
- grid.414947.b0000 0004 0377 7528Department of Pathology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Takeshi Inoue
- grid.416948.60000 0004 1764 9308Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Hiroki Ueda
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Hidewaki Nakagawa
- grid.509459.40000 0004 0472 0267Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroyuki Aburatani
- grid.26999.3d0000 0001 2151 536XGenome Science Laboratory, Research Center for Advanced Science and Technology (RCAST), the University of Tokyo, Tokyo, Japan
| | - Eiso Hiyama
- grid.470097.d0000 0004 0618 7953Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan ,grid.257022.00000 0000 8711 3200Department of Biomedical Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan 734-8551, 1-2-3, Kasumi, Minami-ku, Hiroshima
| |
Collapse
|
24
|
Zheng Y, Zeng J, Xia H, Wang X, Chen H, Huang L, Zeng C. Upregulated lncRNA Cyclin-dependent kinase inhibitor 2B antisense RNA 1 induces the proliferation and migration of colorectal cancer by miR-378b/CAPRIN2 axis. Bioengineered 2021; 12:5476-5490. [PMID: 34511033 PMCID: PMC8806871 DOI: 10.1080/21655979.2021.1961656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LncRNA Cyclin‐dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) plays a role in the progression of multiple cancers like cholangiocarcinoma, osteosarcoma and several gastrointestinal tumors. Few studies have linked its function and mechanism to the development of colorectal cancer (CRC). The expression of CDKN2B-AS1, microRNA (miR)-378b, and cytoplasmic activation/proliferation-associated protein 2 (CAPRIN2) was analyzed in CRC patients and cell lines. The proliferation and migration of CRC cells were evaluated after gain and loss-of function mutations. Interactions between CDKN2B-AS1 and miR-378b, miR-378b and CAPRIN2 were validated by luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. The role of CDKN2B-AS1 was further confirmed in a xenograft mouse model. We found that the expression of CDKN2B-AS1 and CAPRIN2 was upregulated in CRC and they were linked to the poor differentiation and distant metastasis in CRC patients. CDKN2B-AS1 knockdown attenuated while CDKN2B-AS1 overexpression promoted CRC cell proliferation and migration. Notably, the results of Starbase 2.0 database analysis and in vitro experiments demonstrated that CDKN2B-AS1 could interact with miR-378b and regulate its expression. Furthermore, CAPRIN2 acted as a downstream target of CDKN2B-AS1/miR-378b that involved in modulating β-catenin expression in CRC cells. Upregulation of CDKN2B-AS1 contributed to CRC progression via regulating CAPRIN2 expression by binding to miR-378b. Downregulation of CDKN2B-AS1 suppressed tumor growth and Ki-67 staining in vivo that was related to the miR-378b/CAPRIN2 pathway. This study indicated that lncRNA CDKN2B-AS1 promoted the development of CRC through the miR-378b/CAPRIN2/β-catenin axis. CDKN2B-AS1 might serve as a potential and useful target in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jintao Zeng
- Department of Clinical Medicine, School of Basic Medicine, Chengde Medical College, Chengde, China
| | - Haoyun Xia
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Changqing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol 2021; 4:1049. [PMID: 34497364 PMCID: PMC8426487 DOI: 10.1038/s42003-021-02562-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA.
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Stefano Cairo
- Research and Development Unit, XenTech, Genopole-Campus 3, Fontaine, France
- Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti, Padua, Italy
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
26
|
Schmidt A, Armento A, Bussolati O, Chiu M, Ellerkamp V, Scharpf MO, Sander P, Schmid E, Warmann SW, Fuchs J. Hepatoblastoma: glutamine depletion hinders cell viability in the embryonal subtype but high GLUL expression is associated with better overall survival. J Cancer Res Clin Oncol 2021; 147:3169-3181. [PMID: 34235580 PMCID: PMC8484192 DOI: 10.1007/s00432-021-03713-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
Purpose Glutamine plays an important role in cell viability and growth of various tumors. For the fetal subtype of hepatoblastoma, growth inhibition through glutamine depletion was shown. We studied glutamine depletion in embryonal cell lines of hepatoblastoma carrying different mutations. Since asparagine synthetase was identified as a prognostic factor and potential therapeutic target in adult hepatocellular carcinoma, we investigated the expression of its gene ASNS and of the gene GLUL, encoding for glutamine synthetase, in hepatoblastoma specimens and cell lines and investigated the correlation with overall survival. Methods We correlated GLUL and ASNS expression with overall survival using publicly available microarray and clinical data. We examined GLUL and ASNS expression by RT-qPCR and by Western blot analysis in the embryonal cell lines Huh-6 and HepT1, and in five hepatoblastoma specimens. In the same cell lines, we investigated the effects of glutamine depletion. Hepatoblastoma biopsies were examined for histology and CTNNB1 mutations. Results High GLUL expression was associated with a higher median survival time. Independent of mutations and histology, hepatoblastoma samples showed strong GLUL expression and glutamine synthesis. Glutamine depletion resulted in the inhibition of proliferation and of cell viability in both embryonal hepatoblastoma cell lines. ASNS expression did not correlate with overall survival. Conclusion Growth inhibition resulting from glutamine depletion, as described for the hepatoblastoma fetal subtype, is also detected in established embryonal hepatoblastoma cell lines carrying different mutations. At variance with adult hepatocellular carcinoma, in hepatoblastoma asparagine synthetase has no prognostic significance.
Collapse
Affiliation(s)
- Andreas Schmidt
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany.
| | - Angela Armento
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Elfriede-Aulhorn-Straße 7, 72076, Tuebingen, Germany
| | - Ovidio Bussolati
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Verena Ellerkamp
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Marcus O Scharpf
- Institute for Pathology and Neuropathology, Department of General Pathology and Pathological Anatomy, Eberhard Karls University Tuebingen, Liebermeisterstr. 8, 72076, Tuebingen, Germany
| | - Philip Sander
- Institute for Pathology and Neuropathology, Department of General Pathology and Pathological Anatomy, Eberhard Karls University Tuebingen, Liebermeisterstr. 8, 72076, Tuebingen, Germany
| | - Evi Schmid
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Steven W Warmann
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Paediatric Surgery and Paediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| |
Collapse
|
27
|
He Q, Li Z, Lei X, Zou Q, Yu H, Ding Y, Xu G, Zhu W. The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell Int 2021; 21:325. [PMID: 34193169 PMCID: PMC8244213 DOI: 10.1186/s12935-021-02031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. METHODS The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. RESULTS Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. CONCLUSION The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
28
|
Liu J, Gao C, Wang L, Jian X, Ma M, Li T, Hao X, Zhang Q, Chen Y, Zhao J, Niu H, Zhu C, Zhao J, Xia N, Li Z, Dong Q. Trans-Ancestry Mutation Landscape of Hepatoblastoma Genomes in Children. Front Oncol 2021; 11:669560. [PMID: 33968779 PMCID: PMC8096978 DOI: 10.3389/fonc.2021.669560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant tumor in the liver of infants and young children. The incidence rate varies among different populations. However, genetic differences in HB patients with different epidemiological and ancestral backgrounds have not been found. In this study, we aim to analyze data from 16 patients treated at our center and collected published data from whole-exome sequencing studies on HB, and to explore the genetic differences between races. Data from a total of 75 HB patients of three races (24 Asian, 37 Caucasian and 14 Hispanic) were analyzed. We identified 16 genes with recurrent somatic mutations and 7 core pathway modules. Among them, the Wnt/β-catenin pathway had the highest mutation rate, and the mutation frequency in Caucasians and Hispanics was approximately twice as high as that in Asians. In addition, this study compared the characteristics of gene mutations between patients who underwent preoperative chemotherapy and those who did not and found that there was no significant difference in gene mutations between the two groups. We also preliminarily verified the function of cancer-associated candidate genes (CTNNB1 and KMT2D). In conclusion, we found ethnic differences in HB biology at the genomic level, which expands our understanding of the genetics of HB in children.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Chengwen Gao
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Mingdi Ma
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tong Li
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - XiWei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qian Zhang
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
| | - Jie Zhao
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| | - Nan Xia
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| | - Zhiqiang Li
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
30
|
Jin Y, Lyu Q. Basic research in childhood cancer: Progress and future directions in China. Cancer Lett 2020; 495:156-164. [PMID: 32841714 DOI: 10.1016/j.canlet.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Childhood cancer is a leading cause of death in children. Some childhood cancers have a particularly high mortality rate. Following the World Health Organization's emphasis on child health, most governments worldwide have taken measures to facilitate childhood cancer research. Thus, the scientific community is showing increasing interest in this area. Chinese government has prominence in building a system for the diagnosis and treatment of childhood cancer, thereby promoting the development of childhood cancer research. This review summarizes the research progress, challenges, and perspectives in childhood cancer, and the increasing contributions of National Natural Science Foundation of China (NSFC) in the past decade (2008-2018).
Collapse
Affiliation(s)
- Yaqiong Jin
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qunyan Lyu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
31
|
Honda S, Chatterjee A, Leichter AL, Miyagi H, Minato M, Fujiyoshi S, Ara M, Kitagawa N, Tanaka M, Tanaka Y, Shinkai M, Hatanaka KC, Taketomi A, Eccles MR. A MicroRNA Cluster in the DLK1-DIO3 Imprinted Region on Chromosome 14q32.2 Is Dysregulated in Metastatic Hepatoblastomas. Front Oncol 2020; 10:513601. [PMID: 33282720 PMCID: PMC7689214 DOI: 10.3389/fonc.2020.513601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver neoplasm in children. Despite progress in HB therapy, outcomes for patients with metastatic disease remain poor. Dysregulation of miRNA expression is one of the potential epigenetic mechanisms associated with pathogenesis of HB. However, miRNA profiles related to the different stages of HB tissues and cells, in particular of lung metastatic tumor cells, are unknown. In the present study, using array-based miRNA expression and DNA methylation analysis on formalin-fixed paraffin-embedded tissues, we aimed to identify miRNA changes that can discriminate between lung metastatic tumors, primary tumors (fetal and embryonal subtypes), and nontumorous surrounding livers. Our analysis demonstrated that a large cluster of microRNAs and snoRNAs located within the 14q32.2 DLK1-DIO3 region showed a strikingly upregulated expression pattern in HB tumors, especially metastatic tumors, compared to normal liver tissues. This revealed dysregulation of miRNAs similar to that seen in a malignant stem-like subtype of hepatocellular carcinoma associated with poor prognosis. These findings in HB mirror similar findings made in multiple other cancer types. With further analysis this may in future allow stratification of different stages and types of HB tumors based on their miRNA profiles, which could lead to new approaches to diagnosis and treatment in progressive HB patients.
Collapse
Affiliation(s)
- Shohei Honda
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hisayuki Miyagi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Minato
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sunao Fujiyoshi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Ara
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masato Shinkai
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Tabibzadeh A, Tameshkel FS, Moradi Y, Soltani S, Moradi-Lakeh M, Ashrafi GH, Motamed N, Zamani F, Motevalian SA, Panahi M, Esghaei M, Ajdarkosh H, Mousavi-Jarrahi A, Niya MHK. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis. Sci Rep 2020; 10:18713. [PMID: 33127962 PMCID: PMC7599243 DOI: 10.1038/s41598-020-73770-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was conducted to evaluate the prevalence of the signaling pathways mutation rate in the Gastrointestinal (GI) tract cancers in a systematic review and meta-analysis study. The study was performed based on the PRISMA criteria. Random models by confidence interval (CI: 95%) were used to calculate the pooled estimate of prevalence via Metaprop command. The pooled prevalence indices of signal transduction pathway mutations in gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer were 5% (95% CI: 3-8%), 12% (95% CI: 8-18%), 17% (95% CI: 14-20%), and 20% (95% CI: 5-41%), respectively. Also, the mutation rates for Wnt pathway and MAPK pathway were calculated to be 23% (95% CI, 14-33%) and 20% (95% CI, 17-24%), respectively. Moreover, the most popular genes were APC (in Wnt pathway), KRAS (in MAPK pathway) and PIK3CA (in PI3K pathway) in the colorectal cancer, pancreatic cancer, and gastric cancer while they were beta-catenin and CTNNB1 in liver cancer. The most altered pathway was Wnt pathway followed by the MAPK pathway. In addition, pancreatic cancer was found to be higher under the pressure of mutation compared with others based on pooled prevalence analysis. Finally, APC mutations in colorectal cancer, KRAS in gastric cancer, and pancreatic cancer were mostly associated gene alterations.
Collapse
Affiliation(s)
- Alireza Tabibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Safarnezhad Tameshkel
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saber Soltani
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Moradi-Lakeh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - G Hossein Ashrafi
- Cancer Theme SEC Faculty, Kingston University, Penrhyn Road, London, KT1 2EE, UK
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Abbas Motevalian
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
33
|
Cairo S, Armengol C, Maibach R, Häberle B, Becker K, Carrillo-Reixach J, Guettier C, Vokuhl C, Schmid I, Buendia MA, Branchereau S, von Schweinitz D, Kappler R. A combined clinical and biological risk classification improves prediction of outcome in hepatoblastoma patients. Eur J Cancer 2020; 141:30-39. [PMID: 33125945 DOI: 10.1016/j.ejca.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
AIM Stratification of hepatoblastoma (HB) patients is based on clinical and imaging characteristics obtained at the time of diagnosis. We aim to integrate biomarkers into a tool that accurately predicts survival of HB patients. METHODS We retrospectively analysed 174 HB patients for the presence of four biomarkers and explored their prognostic potential by correlating with overall survival (OS) and event-free survival (EFS). RESULTS Mutations of CTNNB1, NFE2L2 and TERT were found in 135 (78%), 10 (6%) and 10 (6%) patients, respectively, and the adverse C2 subtype of the 16-gene signature in 63 (36%) patients. C2-patients had more frequent metastatic disease, higher alpha-fetoprotein levels, non-fetal histology and significantly worse 3-year OS (68% versus 95%) and EFS (63% versus 87%) than C1-patients. Patients carrying a NFE2L2 mutation had a significantly worse 3-year OS (57% versus 88%) than NFE2L2 wild-type patients and were more likely to have vessel invasive growth and non-fetal histology. TERT mutations were almost exclusively found in older patients, whereas CTNNB1 mutations showed no association with any clinical feature or outcome. In a multivariable analysis, the C2 subtype remained a significant predictor of poor outcome with hazard ratios of 6.202 and 3.611 for OS and EFS, respectively. When added to the Children's Hepatic tumors International Collaboration risk stratification, the presence of the C2 subtype identified a group of high-risk patients with a very poor outcome. CONCLUSION We propose a new stratification system based on the combination of clinical factors and the 16-gene signature, which may facilitate a risk-adapted management of HB patients.
Collapse
Affiliation(s)
- Stefano Cairo
- XenTech, 4 Rue Pierre Fontaine, Evry, France; Istituto di Ricerca Pediatrica (IRP), Padova, Italy.
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias I Pujol Research Institute (IGTP), Program of Predictive and Personalized Medicine of Cancer (PMPCC), Badalona, Spain; Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Spain.
| | - Rudolf Maibach
- International Breast Cancer Study Group Coordinating Center, Bern, Switzerland.
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany.
| | - Kristina Becker
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany.
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group, Germans Trias I Pujol Research Institute (IGTP), Program of Predictive and Personalized Medicine of Cancer (PMPCC), Badalona, Spain.
| | - Catherine Guettier
- Department of Anatomic Pathology and Cytopathology, Bicêtre Hospital, Paris Sud University, Le Kremlin Bicetre, France.
| | | | - Irene Schmid
- Department of Pediatrics, Division of Pediatric Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany.
| | | | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, Paris Sud University, Le Kremlin Bicetre, France.
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany.
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Germany.
| |
Collapse
|
34
|
He W, Zhang J, Liu B, Liu X, Liu G, Xie L, He J, Wei M, Li K, Ma J, Dong R, Ma D, Dong K, Ye M. S119N Mutation of the E3 Ubiquitin Ligase SPOP Suppresses SLC7A1 Degradation to Regulate Hepatoblastoma Progression. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:149-162. [PMID: 33209975 PMCID: PMC7644817 DOI: 10.1016/j.omto.2020.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
A previous study on hepatoblastoma revealed novel mutations and cancer genes in the Wnt pathway and ubiquitin ligase complex, including the tumor suppressor speckle-type BTB/POZ (SPOP). Moreover, the SPOP gene affected cell growth, and its S119N mutation was identified as a loss-of-function mutation in hepatoblastoma. This study aimed to explore more functions and the potential mechanism of SPOP and its S119N mutation. The in vitro effects of SPOP on cell proliferation, invasion, apoptosis, and in vivo tumor growth were investigated by western blot analysis, Cell Counting Kit-8, colony formation assay, flow cytometry, and xenograft animal experiments. The substrate of SPOP was discovered by a protein quantification assay and quantitative ubiquitination modification assay. The present study further proved that SPOP functioned as an anti-oncogene through the phosphatidylinositol 3-kinase/Akt signaling pathway to affect various malignant biological behaviors of hepatoblastoma both in vitro and in vivo. Furthermore, experimental results also suggested that solute carrier family 7 member 1 (SLC7A1) might be a substrate of SPOP and influence cell phenotype by regulating arginine metabolism. In conclusion, these findings demonstrated the function of SPOP and revealed a potential substrate related to hepatoblastoma tumorigenesis, which might thus provide a novel therapeutic target for hepatoblastoma.
Collapse
Affiliation(s)
- Weijing He
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Gongbao Liu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Lulu Xie
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Jiajun He
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Meng Wei
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai 201102, China
- Corresponding author Duan Ma, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
- Corresponding author Kuiran Dong, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China.
| | - Mujie Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China
- Corresponding author Mujie Ye, Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
35
|
Maekawa M, Higashiyama S. The Roles of SPOP in DNA Damage Response and DNA Replication. Int J Mol Sci 2020; 21:ijms21197293. [PMID: 33023230 PMCID: PMC7582541 DOI: 10.3390/ijms21197293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Speckle-type BTB/POZ protein (SPOP) is a substrate recognition receptor of the cullin-3 (CUL3)/RING type ubiquitin E3 complex. To date, approximately 30 proteins have been identified as ubiquitinated substrates of the CUL3/SPOP complex. Pathologically, missense mutations in the substrate-binding domain of SPOP have been found in prostate and endometrial cancers. Prostate and endometrial cancer-associated SPOP mutations lose and increase substrate-binding ability, respectively. Expression of these SPOP mutants, thus, causes aberrant turnovers of the substrate proteins, leading to tumor formation. Although the molecular properties of SPOP and its cancer-associated mutants have been intensively elucidated, their cellular functions remain unclear. Recently, a number of studies have uncovered the critical role of SPOP and its mutants in DNA damage response and DNA replication. In this review article, we summarize the physiological functions of SPOP as a “gatekeeper” of genome stability.
Collapse
Affiliation(s)
- Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
- Correspondence: ; Tel.: +81-89-960-5254
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan;
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| |
Collapse
|
36
|
Saltsman JA, Hammond WJ, Narayan NJC, Requena D, Gehart H, Lalazar G, LaQuaglia MP, Clevers H, Simon S. A Human Organoid Model of Aggressive Hepatoblastoma for Disease Modeling and Drug Testing. Cancers (Basel) 2020; 12:E2668. [PMID: 32962010 PMCID: PMC7563272 DOI: 10.3390/cancers12092668] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatoblastoma is the most common childhood liver cancer. Although survival has improved significantly over the past few decades, there remains a group of children with aggressive disease who do not respond to current treatment regimens. There is a critical need for novel models to study aggressive hepatoblastoma as research to find new treatments is hampered by the small number of laboratory models of the disease. Organoids have emerged as robust models for many diseases, including cancer. We have generated and characterized a novel organoid model of aggressive hepatoblastoma directly from freshly resected patient tumors as a proof of concept for this approach. Hepatoblastoma tumor organoids recapitulate the key elements of patient tumors, including tumor architecture, mutational profile, gene expression patterns, and features of Wnt/β-catenin signaling that are hallmarks of hepatoblastoma pathophysiology. Tumor organoids were successfully used alongside non-tumor liver organoids from the same patient to perform a drug screen using twelve candidate compounds. One drug, JQ1, demonstrated increased destruction of liver organoids from hepatoblastoma tumor tissue relative to organoids from the adjacent non-tumor liver. Our findings suggest that hepatoblastoma organoids could be used for a variety of applications and have the potential to improve treatment options for the subset of hepatoblastoma patients who do not respond to existing treatments.
Collapse
Affiliation(s)
- James A. Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - William J. Hammond
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Nicole J. C. Narayan
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| | - Helmuth Gehart
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| | - Michael P. LaQuaglia
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands; (H.G.); (H.C.)
- The Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, The Netherlands
| | - Sanford Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| |
Collapse
|
37
|
Sekiguchi M, Seki M, Kawai T, Yoshida K, Yoshida M, Isobe T, Hoshino N, Shirai R, Tanaka M, Souzaki R, Watanabe K, Arakawa Y, Nannya Y, Suzuki H, Fujii Y, Kataoka K, Shiraishi Y, Chiba K, Tanaka H, Shimamura T, Sato Y, Sato-Otsubo A, Kimura S, Kubota Y, Hiwatari M, Koh K, Hayashi Y, Kanamori Y, Kasahara M, Kohashi K, Kato M, Yoshioka T, Matsumoto K, Oka A, Taguchi T, Sanada M, Tanaka Y, Miyano S, Hata K, Ogawa S, Takita J. Integrated multiomics analysis of hepatoblastoma unravels its heterogeneity and provides novel druggable targets. NPJ Precis Oncol 2020; 4:20. [PMID: 32656360 PMCID: PMC7341754 DOI: 10.1038/s41698-020-0125-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of 59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1 and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of NQO1 and ODC1. Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression, respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic strategies for high-risk cases.
Collapse
Affiliation(s)
- Masahiro Sekiguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Misa Yoshida
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Isobe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Hoshino
- Department of Pediatric Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryota Shirai
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Ryota Souzaki
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Arakawa
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Center for Cancer Genomics and Advanced Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Center for Cancer Genomics and Advanced Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teppei Shimamura
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yusuke Sato
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuo Kubota
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | | | - Yutaka Kanamori
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Satoru Miyano
- Center for Cancer Genomics and Advanced Therapeutics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Calvisi DF, Solinas A. Hepatoblastoma: current knowledge and promises from preclinical studies. Transl Gastroenterol Hepatol 2020; 5:42. [PMID: 32632393 DOI: 10.21037/tgh.2019.12.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The survival rate for patients with metastatic hepatoblastoma (HB) is steadily increased in the last thirty years from 27% to 79%. These achievements result from accurate risk stratification and effective chemotherapy and surgical care. However, patients with poor prognosis require more effective therapies. Recent years have witnessed new insights on the biology of HB, setting the stage for molecular classification and new targets of therapy. We review here the molecular pathology of HB, focusing on the driver genes involved in the process of oncogenesis and the identification of novel targets. We also address the role of in vivo models in elucidating the mechanisms of development of this disease and the pre-clinical phase of new treatment modalities.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
39
|
Song H, Bian Z, Mao S, Zhu J, Zhang Y, Gu S, Yin M, Fu Q, Pan Q. HBprem: A database of transcription, translation, and posttranscriptional and posttranslational modifications in hepatoblastoma. Clin Transl Med 2020; 10:e107. [PMID: 32564523 PMCID: PMC7403676 DOI: 10.1002/ctm2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hang Song
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Siwei Mao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
40
|
Song Y, Yuan H, Wang J, Wu Y, Xiao Y, Mao S. KLHL22 Regulates the EMT and Proliferation in Colorectal Cancer Cells in Part via the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2020; 12:3981-3993. [PMID: 32547233 PMCID: PMC7264042 DOI: 10.2147/cmar.s252232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common aggressive malignancies. KLHL22 functions as a tumor suppressor, and previous findings have demonstrated that KLHL22 can regulate the development of breast cancer and CRC. However, few studies have investigated the role of KLHL22 in CRC cell epithelial-to-mesenchymal transition (EMT) and proliferation. The current study aimed to detect the role of KLHL22 in CRC cell proliferation and EMT and to elucidate the probable molecular mechanisms through which KLHL22 is involved with these processes. Materials and Methods Transwell invasion, MTT, immunohistochemistry and Western blotting assays were performed to evaluate the migration, invasion and proliferation abilities of CRC cells, and the levels of active molecules involved in the Wnt/β-catenin signaling pathway were examined through Western blotting analysis. In addition, the in vivo function of KLHL22 was assessed using a tumor xenograft model. Results KLHL22 expression was weaker in CRC tissues than in nonmalignant tissues and could inhibit cell invasion, migration, and proliferation in vitro. Furthermore, the regulatory effects of KLHL22 on EMT were partially attributed to the Wnt/β-catenin signaling pathway. The in vivo results also showed that KLHL22 modulated CRC tumorigenesis. Conclusion KLHL22 can regulate the activity of GSK-3β to influence the level of PI3K, and this regulation promotes EMT inhibition partially through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi Song
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Huiping Yuan
- Department of Gastrointestinal Surgery, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, People's Republic of China
| | - Jia Wang
- Radiotherapy and Chemotherapy Department, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061000, People's Republic of China
| | - Yuhe Wu
- Basic Medical College, Gannan Medical University, Ganzhou, JiangXi 341000, People's Republic of China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shengxun Mao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
41
|
Aguiar TFM, Rivas MP, Costa S, Maschietto M, Rodrigues T, Sobral de Barros J, Barbosa AC, Valieris R, Fernandes GR, Bertola DR, Cypriano M, Caminada de Toledo SR, Major A, Tojal I, Apezzato MLDP, Carraro DM, Rosenberg C, Lima da Costa CM, Cunha IW, Sarabia SF, Terrada DL, Krepischi ACV. Insights Into the Somatic Mutation Burden of Hepatoblastomas From Brazilian Patients. Front Oncol 2020; 10:556. [PMID: 32432034 PMCID: PMC7214543 DOI: 10.3389/fonc.2020.00556] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.
Collapse
Affiliation(s)
- Talita Ferreira Marques Aguiar
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Tatiane Rodrigues
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Sobral de Barros
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Anne Caroline Barbosa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Renan Valieris
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Gustavo R Fernandes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Adolescent and Child With Cancer Support Group (GRAACC), Department of Pediatric, Federal University of São Paulo, São Paulo, Brazil
| | - Angela Major
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Israel Tojal
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Dirce Maria Carraro
- International Center for Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Isabela W Cunha
- Department of Pathology, Rede D'OR-São Luiz, São Paulo, Brazil.,Department of Pathology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Stephen Frederick Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Dolores-López Terrada
- Department of Pathology and Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Cancer Center, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Fujiyoshi S, Honda S, Minato M, Ara M, Suzuki H, Hiyama E, Taketomi A. Hypermethylation of CSF3R is a novel cisplatin resistance marker and predictor of response to postoperative chemotherapy in hepatoblastoma. Hepatol Res 2020; 50:598-606. [PMID: 31894653 DOI: 10.1111/hepr.13479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
AIM Most hepatoblastoma patients undergo pre/postoperative cisplatin treatment. Approximately 20% patients are cisplatin resistant, and show poor prognosis and high recurrence rates. However, some cisplatin-sensitive patients show early recurrence. We consider that a small population of cisplatin-resistant cells may remain after preoperative chemotherapy. Previous studies showed a correlation between DNA hypermethylation and hepatoblastoma progression. Here, we examined whether DNA hypermethylation was related to cisplatin resistance and could be a potential indicator for cisplatin as postoperative chemotherapy. METHODS We extracted DNA from 43 resected hepatoblastoma tumors. Methylation array analyses were performed in 11 samples, including six cisplatin-sensitive and five cisplatin-resistant samples. We also performed cDNA microarray analysis in parental and cisplatin-resistant HuH6 cells. Through comparison of the datasets, we selected the strongest correlated cisplatin-resistant candidate gene. Using bisulfite pyrosequencing, the candidate gene methylation level was assessed in 38 cisplatin-sensitive patients after checking its usefulness as a substitute modality of methylation array. Correlations between the methylation status and clinical data were analyzed. RESULTS CSF3R was the strongest correlated variable. Bisulfite pyrosequencing analysis also confirmed CSF3R was significantly hypermethylated in cisplatin-resistant patients. Among the 38 cisplatin-sensitive patients, recurrence curves showed that the CSF3R high methylation patients had significantly higher recurrence than CSF3R low methylation patients. The recurrence curve of methylation high patients was similar to that of cisplatin-resistant patients. CONCLUSIONS Our findings suggested that CSF3R hypermethylation was related to cisplatin resistance in HB patients and could be a predictor of postoperative chemotherapy, and indicate that CSF3R high methylation patients should be treated with non-CDDP regimens.
Collapse
Affiliation(s)
- Sunao Fujiyoshi
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shohei Honda
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Minato
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Ara
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Basic Medical Science and Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiso Hiyama
- Japan Children's Cancer Group (JCCG) liver tumor committee (JPLT), Hiroshima, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery 1, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
43
|
Sindhi R, Rohan V, Bukowinski A, Tadros S, de Ville de Goyet J, Rapkin L, Ranganathan S. Liver Transplantation for Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12030720. [PMID: 32204368 PMCID: PMC7140094 DOI: 10.3390/cancers12030720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Unresectable hepatocellular carcinoma (HCC) was first removed successfully with total hepatectomy and liver transplantation (LT) in a child over five decades ago. Since then, children with unresectable liver cancer have benefitted greatly from LT and a confluence of several equally important endeavors. Regional and trans-continental collaborations have accelerated the development and standardization of chemotherapy regimens, which provide disease control to enable LT, and also serve as a test of unresectability. In the process, tumor histology, imaging protocols, and tumor staging have also matured to better assess response and LT candidacy. Significant trends include a steady increase in the incidence of and use of LT for hepatoblastoma, and a significant improvement in survival after LT for HCC with each decade. Although LT is curative for most unresectable primary liver sarcomas, such as embryonal sarcoma, the malignant rhabdoid tumor appears relapse-prone despite chemotherapy and LT. Pediatric liver tumors remain rare, and diagnostic uncertainty in some settings can potentially delay treatment or lead to the selection of less effective chemotherapy. We review the current knowledge relevant to diagnosis, LT candidacy, and post-transplant outcomes for these tumors, emphasizing recent observations made from large registries or larger series.
Collapse
Affiliation(s)
- Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
- Correspondence: ; Tel.: +1-412-692-7123
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC 29403, USA;
| | - Andrew Bukowinski
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Sameh Tadros
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Jean de Ville de Goyet
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy;
| | - Louis Rapkin
- Department of Hematology/Oncology, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Sarangarajan Ranganathan
- Department of Pathology, Children’s Hospital Medical Center of Cincinnati, Cincinnati, OH 45229, USA;
| |
Collapse
|
44
|
Ranganathan S, Lopez-Terrada D, Alaggio R. Hepatoblastoma and Pediatric Hepatocellular Carcinoma: An Update. Pediatr Dev Pathol 2020; 23:79-95. [PMID: 31554479 DOI: 10.1177/1093526619875228] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatoblastomas (HBs) and pediatric hepatocellular carcinomas (HCCs) together account for almost 80% of primary malignant liver tumors in children and adolescents/young adults. Children's Hepatic International Collaboration (CHIC), Children's Oncology Group (COG), SociétéInternationale d'Oncologie Pédiatrique (SIOP), and International Childhood Liver Tumors Strategy Group trials have contributed to define prognostic factors and risk stratification in these tumors. The recently proposed histologic International Consensus classification of HB and HCC in children based on retrospective analysis from CHIC cases represents the base to define entities with homogeneous clinicopathologic and molecular features. This review will provide a morphologic guide for the upcoming International Liver Tumor treatment trial (Pediatric Hepatic International Tumour Trial) to be conducted through several continents. There will be an emphasis on molecular features and immunohistochemical markers for the definition of the individual histologic subtypes of HB and to better characterize the group of liver tumors in the provisional category of hepatocellular neoplasm-not otherwise specified. A brief overview of HCC in children will also be provided.
Collapse
Affiliation(s)
- Sarangarajan Ranganathan
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Dolores Lopez-Terrada
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Rita Alaggio
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
45
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 DOI: 10.1186/s12943019-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
46
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 PMCID: PMC6942384 DOI: 10.1186/s12943-019-1124-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
47
|
Zhou B, Ho SS, Greer SU, Spies N, Bell JM, Zhang X, Zhu X, Arthur JG, Byeon S, Pattni R, Saha I, Huang Y, Song G, Perrin D, Wong WH, Ji HP, Abyzov A, Urban AE. Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res 2019; 47:3846-3861. [PMID: 30864654 PMCID: PMC6486628 DOI: 10.1093/nar/gkz169] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
HepG2 is one of the most widely used human cancer cell lines in biomedical research and one of the main cell lines of ENCODE. Although the functional genomic and epigenomic characteristics of HepG2 are extensively studied, its genome sequence has never been comprehensively analyzed and higher order genomic structural features are largely unknown. The high degree of aneuploidy in HepG2 renders traditional genome variant analysis methods challenging and partially ineffective. Correct and complete interpretation of the extensive functional genomics data from HepG2 requires an understanding of the cell line’s genome sequence and genome structure. Using a variety of sequencing and analysis methods, we identified a wide spectrum of genome characteristics in HepG2: copy numbers of chromosomal segments at high resolution, SNVs and Indels (corrected for aneuploidy), regions with loss of heterozygosity, phased haplotypes extending to entire chromosome arms, retrotransposon insertions and structural variants (SVs) including complex and somatic genomic rearrangements. A large number of SVs were phased, sequence assembled and experimentally validated. We re-analyzed published HepG2 datasets for allele-specific expression and DNA methylation and assembled an allele-specific CRISPR/Cas9 targeting map. We demonstrate how deeper insights into genomic regulatory complexity are gained by adopting a genome-integrated framework.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve S Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie U Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Noah Spies
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John M Bell
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaowei Zhu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph G Arthur
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Seunggyu Byeon
- School of Computer Science and Engineering, College of Engineering, Pusan National University, Busan 46241, South Korea
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ishan Saha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giltae Song
- School of Computer Science and Engineering, College of Engineering, Pusan National University, Busan 46241, South Korea
| | - Dimitri Perrin
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wing H Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA.,Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.,Tashia and John Morgridge Faculty Scholar, Stanford Child Health Research Institute, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma. Biosci Rep 2019; 39:BSR20192466. [PMID: 31511432 PMCID: PMC6757184 DOI: 10.1042/bsr20192466] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatoblastoma is a malignant tumor in the liver of children that generally occurs at the age of 2–3 years. There have been ample evidence from the preclinical as well as clinical studies suggesting the activation of Wnt/β-catenin signaling in hepatoblastoma, which is mainly attributed to the somatic mutations in the exon 3 of β-catenin gene. There is increased translocation of β-catenin protein from the cell surface to cytoplasm and nucleus and intracellular accumulation is directly linked to the severity of the cancer. Accordingly, the alterations in β-catenin and its target genes may be used as markers in the diagnosis and prognosis of pediatric live tumors. Furthermore, scientists have reported the therapeutic usefulness of inhibition of Wnt/β-catenin signaling in hepatoblastoma and this inhibition of signaling has been done using different methods including short interfering RNA (siRNA), miRNA and pharmacological agents. Wnt/β-catenin works in association with other signaling pathways to induce the development of hepatoblastoma including Yes-associated protein (YAP)1 (YAP-1), mammalian target of rapamycin (mTOR) 1 (mTOR-1), SLC38A1, glypican 3 (GPC3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-kB), epidermal growth factor receptor, ERK1/2, tumor necrosis factor-α (TNF-α), regenerating islet-derived 1 and 3 α (REG1A and 3A), substance P (SP)/neurokinin-1 receptor and PARP-1. The present review describes the key role of Wnt/β-catenin signaling in the development of hepatoblastoma. Moreover, the role of other signaling pathways in hepatoblastoma in association with Wnt/β-catenin has also been described.
Collapse
|
49
|
The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11101406. [PMID: 31547062 PMCID: PMC6826653 DOI: 10.3390/cancers11101406] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common form of primary liver malignancy found in pediatric populations. HB is considered to be clonal and arises from hepatoblasts, or embryonic liver progenitor cells. These less differentiated tumor-initiating progenitor cells, or cancer stem cells (CSCs), may contribute to tumor recurrence and resistance to therapies, and have high metastatic abilities. Phenotypic heterogeneity, undesired genetic and epigenetic alterations, and dysregulated signaling pathways provide CSCs with a survival advantage over current therapies. The molecular and cellular basis of HB and the mechanism of CSC induction are not fully understood. The Wnt/beta-catenin pathway is one of the major developmental pathways and is believed to play an important role in the pathogenesis of HB and CSC formation. This review summarizes the cellular and molecular characteristics of HB with a specific emphasis on CSCs and Wnt/beta-catenin signaling.
Collapse
|
50
|
Rivas MP, Aguiar TFM, Fernandes GR, Caires-Júnior LC, Goulart E, Telles-Silva KA, Cypriano M, de Toledo SRC, Rosenberg C, Carraro DM, da Costa CML, da Cunha IW, Krepischi ACV. TET Upregulation Leads to 5-Hydroxymethylation Enrichment in Hepatoblastoma. Front Genet 2019; 10:553. [PMID: 31249594 PMCID: PMC6582250 DOI: 10.3389/fgene.2019.00553] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma is an embryonal liver tumor carrying few genetic alterations. We previously disclosed in hepatoblastomas a genome-wide methylation dysfunction, characterized by hypermethylation at specific CpG islands, in addition to a low-level hypomethylation pattern in non-repetitive intergenic sequences, in comparison to non-tumoral liver tissues, shedding light into a crucial role for epigenetic dysregulation in this type of cancer. To explore the underlying mechanisms possibly related to aberrant epigenetic modifications, we evaluated the expression profile of a set of genes engaged in the epigenetic machinery related to DNA methylation (DNMT1, DNMT3A, DNMT3B, DNMT3L, UHRF1, TET1, TET2, and TET3), as well as the 5-hydroxymethylcytosine (5hmC) global level. We observed in hepatoblastomas a general disrupted expression of these genes from the epigenetic machinery, mainly UHRF1, TET1, and TET2 upregulation, in association with an enrichment of 5hmC content. Our findings support a model of active demethylation by TETs in hepatoblastoma, probably during early stages of liver development, which in combination with UHRF1 overexpression would lead to DNA hypomethylation and an increase in overall 5hmC content. Furthermore, our data suggest that decreased 5hmC content might be associated with poor survival rate, highlighting a pivotal role of epigenetics in hepatoblastoma development and progression.
Collapse
Affiliation(s)
- Maria Prates Rivas
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|