1
|
Fan W, Yang S, Wei Y, Tian M, Liu Q, Li X, Ding J, Li X, Mao M, Han X, Du Y, Qiu C, Dong Y, Wang Y. Characterization of brain morphology associated with metabolic dysfunction-associated steatotic liver disease in the UK Biobank. Diabetes Obes Metab 2025; 27:3419-3430. [PMID: 40171859 DOI: 10.1111/dom.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Emerging evidence has linked metabolic dysfunction-associated steatotic liver disease (MASLD) with accelerated cognitive decline and dementia. We aimed to investigate the associations of MASLD with volumes of total brain tissue and subcortical grey matter, and white matter microstructures in the UK Biobank. METHODS This cross-sectional study included 29,195 individuals (aged 45-82 years) from the UK Biobank who undertook a magnetic resonance imaging (MRI) sub-study between 2014 and 2022. The brain MRI covers three modalities (T1, T2 FLAIR, and diffusion). Volumes of grey matter, subcortical grey matter structures, and regional cortex were derived from T1-weighted images. Fractional anisotropy (FA) and mean diffusivity (MD) were derived from diffusion tensor imaging (DTI) to assess global and tract-specific microstructure. MASLD was defined as the MRI-derived proton density fat fraction (MRI-PDFF) ≥5% and the presence of at least one cardiometabolic criterion. Data were analysed using multiple linear regression models. RESULTS MASLD was significantly associated with smaller volumes of total grey matter and subcortical grey matter (p < 0.05) and reduced Alzheimer's disease (AD)-signature cortical thickness (multivariable-adjusted β = -0.04; 95% confidence interval [CI]: -0.07, -0.01). Having MASLD was associated with higher total white matter hyperintensity (WMH) volume (multivariable-adjusted β = 0.12; 95% CI: 0.10, 0.15). For white matter microstructure, MASLD was associated with increased global FA (multivariable-adjusted β = 0.05; 95% CI: 0.03, 0.08) and reduced global MD (multivariable-adjusted β = -0.04; 95% CI: -0.07, -0.01). CONCLUSIONS Brain morphology associated with MASLD is characterized by smaller subcortical grey matter volume and higher coherence but lower magnitudes of white matter microstructure.
Collapse
Affiliation(s)
- Wenxiao Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Yiran Wei
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Minle Tian
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Qianying Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xiaomeng Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jiahao Ding
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xuewei Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Ming Mao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xiaolei Han
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yifeng Du
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chengxuan Qiu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yi Dong
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yongxiang Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Shandong Institute of Brain Science and Brain-inspired Research, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Wang Z, Li X, Liu X, Yang Y, Yan Y, Cui D, Meng C, Ali MI, Zhang J, Yao Z, Long Y, Yang R. Mechanistic insights into the anti-fibrotic effects of estrogen via the PI3K-Akt pathway in frozen shoulder. J Steroid Biochem Mol Biol 2025; 249:106701. [PMID: 39947440 DOI: 10.1016/j.jsbmb.2025.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The development of frozen shoulder (FS) is primarily characterized by pathological fibrosis, yet clinical treatment options remain limited. Recent studies have identified estrogen depletion during perimenopause as a significant contributor to the onset of FS and fibrosis. This study investigates the role of estradiol (E2) and the estrogen-related receptor (GPER) in fibrotic processes associated with FS to elucidate the underlying mechanisms. The functional relationship between E2, GPER, and FS progression was examined using a rat immobilization model and synovial-derived fibroblasts (SFs) from FS patients. E2's effects on GPER expression, fibroblast activation, and tissue fibrosis were evaluated through Western blotting, immunofluorescence staining, collagen contraction assays, wound healing assays, and histological staining. RNA sequencing identified signaling pathways and key regulators involved in E2 treatment. Both E2 and the GPER activator G1 exhibited antifibrotic effects, improving shoulder mobility, reducing extracellular matrix (ECM) deposition in the periarticular capsule, and decreasing the expression of fibrosis-related genes, including fibronectin, α-SMA, and COL3. In contrast, the GPER inhibitor G15 reversed these effects, suggesting that E2 mediates its antifibrotic action through GPER activation. Mechanistically, KEGG pathway analysis revealed that E2 suppresses the PI3K/AKT signaling pathway by inhibiting PI3K and AKT phosphorylation, thereby preventing fibroblast activation and reversing FS-associated fibrosis. These findings provide mechanistic insights into the previously unrecognized role of GPER in FS progression and may open new avenues for research to optimize future clinical therapies.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinhao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoshan Liu
- Pediatric Oncology, Children's Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yitao Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dedong Cui
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chenyang Meng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Maslah Idiris Ali
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zeyu Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Hwang SH, Choi YH, Huh DA, Kim L, Park K, Lee J, Choi HJ, Lim W, Moon KW. Per- and polyfluoroalkyl substances exposures are associated with non-alcoholic fatty liver disease, particularly fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126085. [PMID: 40113201 DOI: 10.1016/j.envpol.2025.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to exert hepatotoxic effects; however, their impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. This study aimed to investigate the association between PFAS exposure and NAFLD in Korean adults, thereby contributing to the generalization of PFAS's hepatotoxic effects. Using data from the 2018-2020 Korean National Environmental Health Survey (KoNEHS), we analyzed 2635 Korean adults. PFAS exposure levels were estimated based on the serum concentrations of five PFAS. NAFLD was assessed using two steatosis-related indices (hepatic steatosis index [HSI] and fatty liver index [FLI]) and two fibrosis-related indices (fibrosis-4 index [FIB-4] and aspartate aminotransferase to platelet ratio index [APRI]). The models included these indices as continuous and dichotomous variables, the latter based on diagnostic criteria from previous studies. Associations with PFAS exposure were examined using multiple linear regression and robust Poisson regression models. Positive associations were observed between PFAS exposure and three of the four continuous indices, excluding the FLI, as well as the prevalence of NAFLD diagnosed using these indices. Specifically, the HSI showed a significant association only with perfluorononanoic acid, whereas fibrosis-related indices (FIB-4 and APRI) were significantly associated with all five individual PFAS. The associations were stronger in female and non-obese groups when stratified by sex and obesity status. The results of the Bayesian kernel machine regression analysis evaluating the health effects of PFAS mixtures indicated an association between PFAS mixtures and NAFLD, particularly fibrosis-related indices. Additionally, significant associations with NAFLD indices were mostly observed in females and non-obese groups, supporting the findings from the individual PFAS exposure analyses. Our findings suggest that PFAS are associated with NAFLD, particularly for fibrosis. Considering the high serum PFAS concentrations in the Korean population, continuous monitoring and prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Se-Hyun Hwang
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Yun-Hee Choi
- Research Institute for Inflammation, Korea University College of Medicine, Seoul, 02841, Republic of Korea; School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea; Department of Safety and Health, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Lita Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Kangyeon Park
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Jiyoun Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| | - Hyeon Jeong Choi
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Woohyun Lim
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Republic of Korea
| |
Collapse
|
4
|
Ren T, Chen Q, Zhu C. The extrahepatic markers in postmenopausal women with metabolic dysfunction-associated steatotic liver disease: A systematic review. Clin Nutr ESPEN 2025; 68:22-31. [PMID: 40315986 DOI: 10.1016/j.clnesp.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent, multifactorial systemic metabolic disorder, now recognized as the most common chronic liver disease globally. Female susceptibility to MASLD varies across menstrual states, influenced by genetic factors, age, menopausal status, and physical activity. Postmenopausal women, experiencing a significant reduction in estrogen, are particularly vulnerable to metabolic imbalances, increasing their risk of MASLD, disease progression, liver fibrosis, insulin resistance, and adverse cardiovascular events compared to premenopausal women and age-matched men. This review systematically synthesizes current research on extrahepatic abnormalities associated with MASLD in postmenopausal women. This review identifies key extrahepatic markers associated with MASLD in postmenopausal women, highlighting gaps in current research and proposing targeted screening and management strategies. (Graphical Abstract).
Collapse
Affiliation(s)
- Tingting Ren
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qingling Chen
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China; Department of Infectious and Tropical Diseases, The Second Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China.
| |
Collapse
|
5
|
Kobayashi Y, Yamashita Y, Kimura T, Iwadare T, Okumura T, Wakabayashi SI, Kobayashi H, Sugiura A, Joshita S, Umemura T. Hormone replacement therapy for steatotic liver management after surgical menopause. Clin J Gastroenterol 2025; 18:352-356. [PMID: 39760964 DOI: 10.1007/s12328-024-02090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Although steatotic liver onset after natural menopause has been reported, evidence on the clinical course and treatment options for steatotic liver after surgical menopause is scarce. A 34-year-old woman with a history of severe obesity presented to our department with liver dysfunction following total hysterectomy and bilateral oophorectomy. Her serum estradiol level was notably low at 22 pg/mL, and a liver biopsy revealed significant fatty degeneration, lobular inflammation, hepatocyte ballooning, and stage F1 fibrosis. These findings supported a diagnosis of steatotic liver disease following surgical menopause. Subsequent initiation of hormone replacement therapy (HRT) with estrogen led to rapid improvements in liver function and steatotic liver symptoms. Steatotic liver disease should be considered in cases of liver impairment in postoperative menopausal patients, for which HRT represents a promising treatment option.
Collapse
Affiliation(s)
- Yoshiaki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan.
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Taiki Okumura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shun-Ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
6
|
Lian YE, Wang Y, Yang Y, Chen J. Weight-adjusted waist circumference index with hepatic steatosis and fibrosis in adult females: a cross-sectional, nationally representative study (NHANES 2017-2020). BMC Gastroenterol 2025; 25:137. [PMID: 40045243 PMCID: PMC11884151 DOI: 10.1186/s12876-025-03706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Obesity is detrimental to liver health. Weight-adjusted waist circumference (WWI) is a new indicator of obesity that is superior to body mass index (BMI) and waist circumference (WC) in predicting obesity. There are limited studies on the relationship between Metabolic Associated Fatty Liver Disease (MASLD) and WWI. Therefore, this study aimed to investigate the association between WWI, Controlled Attenuation Parameters (CAP), and Liver Stiffness Measurement (LSM), with special attention to gender differences. METHODS This cross-sectional study included participants from the 2017 to 2020 National Health and Nutrition Examination Survey (NHANES). The study used multiple linear regression models, smoothed curves, and threshold effects analyses to describe the relationships between variables. Multiple regression analyses were used to examine the associations between the four obesity indicators and CAP and LSM. Subject work characteristics (ROC) curves were used to assess the predictive value of WWI and other traditional obesity indicators for hepatic steatosis and liver fibrosis, and predictive power was assessed by area under the curve (AUC). RESULTS The study involved 6713 participants, including 3072 men (46%) and 3641 women (54%). The results showed that among female participants, higher WWI was associated with hepatic steatosis (OR = 1.71, 95% CI: 1.43, 2.04; P < 0.0001) and hepatic fibrosis (OR = 2.11, 95% CI: 1.58, 2.84; P < 0.0001). Smoothed curve fitting of WWI versus CAP showed a statistically significant positive correlation between WWI in male and female participants There was a statistically significant positive correlation with CAP for both male and female participants. The same significant non-linear relationship was found between WWI and LSM, with no significant difference between males and females. WWI was also a good predictor of hepatic steatosis compared to other obesity indicators and was more pronounced in male participants (AUC = 0.8224). Whereas in the comparison of WWI with LSM, wBMI was a better predictor in female participants (AUC = 0.7751). CONCLUSIONS Based on this study, WWI was significantly associated with the risk of hepatic steatosis and hepatic fibrosis in women, suggesting the potential of WWI as a screening tool. Due to the cross-sectional design, causality cannot be inferred. Longitudinal studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yu-E Lian
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu, 730050, China
| | - Yixuan Wang
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu, 730050, China
| | - Yinyin Yang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, 730050, China
| | - Jiayu Chen
- Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu, 730050, China.
| |
Collapse
|
7
|
Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int 2025; 45:e16088. [PMID: 39262132 PMCID: PMC11815604 DOI: 10.1111/liv.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, previously termed NAFLD, nonalcoholic fatty liver disease) is a complex multifactorial disease showing generally higher prevalence and severity in men than in women. With respect to women, men are also more prone to develop metabolic dysfunction-associated steatohepatitis, fibrosis and liver-related complications. Several genetic, hormonal, environmental and lifestyle factors may contribute to sex differences in MASLD development, progression and outcomes. However, after menopause, the sex-specific prevalence of MASLD shows an opposite trend between men and women, pointing to the relevance of oestrogen signalling in the sexual dimorphism of MASLD. The patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene, that encodes a triacylglycerol lipase that plays a crucial role in lipid metabolism, has emerged as a key player in the pathogenesis of MASLD, with the I148M variant being strongly associated with increased liver fat content and disease severity. Recent advances indicate that carrying the PNPLA3 I148M variant can be a risk factor for MASLD especially for women. To elucidate the molecular mechanisms underlying the sex-specific role of PNPLA3 I148M in the development of MASLD, several in vitro, ex vivo and in vivo models have been developed.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine—Biological Resource CenterFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Chiara Rosso
- Department of Medical SciencesUniversity of TurinTurinItaly
| | - Sara Della Torre
- Department of Pharmaceutical SciencesUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
8
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025; 45:15-32. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
9
|
Dileo E, Saba F, Parasiliti-Caprino M, Rosso C, Bugianesi E. Impact of Sexual Dimorphism on Therapy Response in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: From Conventional and Nutritional Approaches to Emerging Therapies. Nutrients 2025; 17:477. [PMID: 39940335 PMCID: PMC11821005 DOI: 10.3390/nu17030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of liver disease ranging from hepatic fat accumulation to steatohepatitis (metabolic dysfunction-associated steatohepatitis, MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma in the absence of excessive alcohol consumption. MASLD is characterized by substantial inter-individual variability in terms of severity and rate of progression, with a prevalence that is generally higher in men than in women. Steroids metabolism is characterized by sexual dimorphism and may have an impact on liver disease progression; indeed, several therapeutic strategies targeting hormone receptors are under phase 2/3 development. Despite the fact that the importance of sexual dimorphism in the setting of MASLD is well recognized, the underlying molecular mechanisms that can potentially drive the disease toward progression are not clear. The aim of this review is to delve into the crosstalk between sexual dimorphism and steroid hormone perturbation under nutritional and pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (E.D.); (F.S.); (M.P.-C.)
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (E.D.); (F.S.); (M.P.-C.)
| |
Collapse
|
10
|
Meng X, Sheng L, You Y, Dai H, Yu M, Wang F, Zhou Z, Shan Y, Sheng M. Integrated serum metabolomics and network pharmacology reveal molecular mechanism of Qixue Huazheng formula on peritoneal fibrosis. Front Pharmacol 2025; 16:1515038. [PMID: 39917615 PMCID: PMC11799242 DOI: 10.3389/fphar.2025.1515038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Background Peritoneal fibrosis (PF) causes peritoneal dialysis (PD) withdrawal due to ultrafiltration failure. Qixue Huazheng formula (QXHZF), comprising Astragalus membranaceus, Centella asiatica, and Ligusticum sinense, is applied to treat PD-related peritoneum injury related; however, the active components, core genes, and underlying mechanism involved remain unclear. Methods The anti-PF effects of QXHZF were verified in vivo and in vitro. Targets underlying QXHZF-mediated improvement of PD-induced PF were predicted using network pharmacology analysis. Metabolites associated with QXHZF treatment of PD-related PF were analyzed by serum metabolomics. Integration of network pharmacology and serum metabolomics findings identified potentially important pathways, metabolites, and targets, and molecular docking studies confirmed the interactions of key components and targets. Western blotting (WB), quantitative real-time PCR (qRT-PCR), TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and flow cytometry were conducted. Results QXHZF had potent therapeutic efficacy against PF according to WB, qRT-PCR, and pathological section examination. Network pharmacological analysis indicated that multiple QXHZF compounds contributed to improving PF by modulating various targets and pathways. Differential metabolites were identified by serum metabolomics analysis. Integrated data analysis indicated that steroid hormone biosynthesis, the Ras signaling pathway, apoptosis, and estrogen signaling contributed to the effects of QXHZF. Metabolite-target network and molecular docking analyses revealed that QXHZF can bind to estrogen receptor 1 (ESR1) and rapidly accelerated fibrosarcoma 1 (RAF1) through its components. WB demonstrated that QXHZF treatment reversed activation of the above-mentioned signaling pathways, thereby inhibiting PD fluid-induced PF. Conclusion QXHZF can significantly ameliorate PD-induced PF and may regulate estrogen signaling, the Ras pathway, and apoptosis in this context.
Collapse
Affiliation(s)
- Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Sheng
- Department of Nephrology, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Yongqing You
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziren Zhou
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Research Center of First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Meda C, Dolce A, Torre SD. Metabolic dysfunction-associated steatotic liver disease across women's reproductive lifespan and issues. Clin Mol Hepatol 2025; 31:327-332. [PMID: 39098816 PMCID: PMC11791579 DOI: 10.3350/cmh.2024.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Marginean CM, Pirscoveanu D, Cazacu SM, Popescu MS, Marginean IC, Iacob GA, Popescu M. Non-Alcoholic Fatty Liver Disease, Awareness of a Diagnostic Challenge—A Clinician’s Perspective. GASTROENTEROLOGY INSIGHTS 2024; 15:1028-1053. [DOI: 10.3390/gastroent15040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease globally. NAFLD is a complex pathology, considered to be the hepatic expression of metabolic syndrome (MetS). It is supposed to become the main indication for liver transplantation in the coming years and is estimated to affect 57.5–74.0% of obese people, 22.5% of children and 52.8% of obese children, with 50% of individuals with type 2 diabetes being diagnosed with NAFLD. Recent research has proved that an increase in adipose tissue insulin resistance index is an important marker of liver injury in patients with NAFLD. Despite being the main underlying cause of incidental liver damage and a growing worldwide health problem, NAFLD is mostly under-appreciated. Currently, NAFLD is considered a multifactorial disease, with various factors contributing to its pathogenesis, associated with insulin resistance and diabetes mellitus, but also with cardiovascular, kidney and endocrine disorders (polycystic ovary syndrome, hypothyroidism, growth hormone deficiency). Hepatitis B and hepatitis C, sleep apnea, inflammatory bowel diseases, cystic fibrosis, viral infections, autoimmune liver diseases and malnutrition are some other conditions in which NAFLD can be found. The aim of this review is to emphasize that, from the clinician’s perspective, NAFLD is an actual and valuable key diagnosis factor for multiple conditions; thus, efforts need to be made in order to increase recognition of the disease and its consequences. Although there is no global consensus, physicians should consider screening people who are at risk of NAFLD. A large dissemination of current concepts on NAFLD and an extensive collaboration between physicians, such as gastroenterologists, internists, cardiologists, diabetologists, nutritionists and endocrinologists, is equally needed to ensure we have the knowledge and resources to address this public health challenge.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Denisa Pirscoveanu
- Neurology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Research Center of Gastroenterology and Hepatology, Gastroenterology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Internal Medicine Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Endocrinology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
13
|
Zhang S, Zuo X, Luan J, Bai H, Fu Z, Sun M, Zhao X, Feng X. The deleterious effects and potential therapeutic strategy of fluorene-9-bisphenol on circadian activity and liver diseases in zebrafish and mice. J Environ Sci (China) 2024; 145:13-27. [PMID: 38844314 DOI: 10.1016/j.jes.2023.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2025]
Abstract
Increasing evidence indicates that disturbance of the clock genes, which leads to systemic endocrine perturbation, plays a crucial role in the pathogenesis of metabolic and liver diseases. Fluorene-9-bisphenol (BHPF) is utilized in the manufacturing of plastic materials but its biological effects on liver homeostasis remain unknown. The impacts and involved mechanisms of BHPF on the liver diseases, metabolism, and circadian clock were comprehensively studied by zebrafish and mouse models. The therapeutic effect of melatonin (MT) was also verified. Zebrafish and mouse models with either acute exposure (0.5 and 1 µmol/L, 1-4 days post-fertilization) or chronic oral exposure (0.5 and 50 mg/(kg·2 days), 30 days) were established with various BHPF concentrations. Herein, we identified a crucial role for estrogenic regulation in liver development and circadian locomotor rhythms damaged by BHPF in a zebrafish model. BHPF mice showed chaos in circadian activity through the imbalance of circadian clock component Brain and Muscle Aryl hydrocarbon receptor nuclear translocator-like 1 in the liver and brain. The liver sexual dimorphic alteration along with reduced growth hormone and estrogens played a critical role in damaged glucose metabolism, hepatic inflammation, and fibrosis induced by BHPF. Besides, sleep improvement by exogenous MT alleviated BHPF-related glucose metabolism and liver injury in mice. We proposed the pathogenesis of metabolic and liver disease resulting from BHPF and promising targeted therapy for liver metabolism disorders associated with endocrine perturbation chemicals. These results might play a warning role in the administration of endocrine-disrupting chemicals in everyday life and various industry applications.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Papadimitriou K, Mousiolis AC, Mintziori G, Tarenidou C, Polyzos SA, Goulis DG. Hypogonadism and nonalcoholic fatty liver disease. Endocrine 2024; 86:28-47. [PMID: 38771482 DOI: 10.1007/s12020-024-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently proposed to be renamed to metabolic dysfunction-associated steatotic liver disease (MASLD), is a major global public health concern, affecting approximately 25-30% of the adult population and possibly leading to cirrhosis, hepatocellular carcinoma, and liver transplantation. The liver is involved in the actions of sex steroids via their hepatic metabolism and production of the sex hormone-binding globulin (SHBG). Liver disease, including NAFLD, is associated with reproductive dysfunction in men and women, and the prevalence of NAFLD in patients with hypogonadism is considerable. A wide spectrum of possible pathophysiological mechanisms linking NAFLD and male/female hypogonadism has been investigated. As therapies targeting NAFLD may impact hypogonadism in men and women, and vice versa, treatments of the latter may affect NAFLD, and an insight into their pathophysiological pathways is imperative. This paper aims to elucidate the complex association between NAFLD and hypogonadism in men and women and discuss the therapeutic options and their impact on both conditions.
Collapse
Affiliation(s)
- Kasiani Papadimitriou
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios C Mousiolis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Zhang Y, Zhang M, Jiang S, Hu H, Wang X, Yu F, Huang Y, Liang Y. Associations of perfluoroalkyl substances with metabolic-associated fatty liver disease and non-alcoholic fatty liver disease: NHANES 2017-2018. Cancer Causes Control 2024; 35:1271-1282. [PMID: 38764062 DOI: 10.1007/s10552-024-01865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES This study investigated the potential effects of perfluoroalkyl substance (PFAS) in serum on MAFLD, NAFLD, and liver fibrosis. METHODS Our sample included 696 participants (≥ 18 years) from the 2017-2018 NHANES study with available serum PFASs, covariates, and outcomes. Using the first quartile of PFAS as the reference group, we used weighted binary logistic regression and multiple ordered logistic regression used to analyze the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and multiple ordinal logistic regression to investigate the relationship between PFAS and MAFLD, NAFLD, and liver fibrosis and calculated the odds ratio (OR) and 95% confidence interval for each chemical. Finally, stratified analysis and sensitivity analysis were performed according to gender, age, BMI, and serum cotinine concentration. RESULTS A total of 696 study subjects were included, including 212 NAFLD patients (weighted 27.03%) and 253 MAFLD patients (weighted 32.65%). The quartile 2 of serum PFOA was positively correlated with MAFLD and NAFLD (MAFLD, OR 2.29, 95% CI 1.05-4.98; NAFLD, OR 2.37, 95% CI 1.03-5.47). PFAS were not significantly associated with liver fibrosis after adjusting for potential confounders in MAFLD and NAFLD. Stratified analysis showed that PFOA was strongly associated with MAFLD, NAFLD, and liver fibrosis in males and obese subjects. In women over 60 years old, PFHxS was also correlated with MAFLD, NAFLD, and liver fibrosis. CONCLUSION The serum PFOA was positively associated with MAFLD and NAFLD in US adults. After stratified analysis, the serum PFHxS was correlated with MFALD, NAFLD, and liver fibrosis.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Min Zhang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Shanjiamei Jiang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Heng Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Xinzhi Wang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Fan Yu
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China
| | - Yue'e Huang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| | - Yali Liang
- School of Public Health, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|
16
|
Yang M, Chen X, Shen Q, Xiong Z, Liu T, Leng Y, Jiao Y. Development and validation of a predictive nomogram for the risk of MAFLD in postmenopausal women. Front Endocrinol (Lausanne) 2024; 15:1334924. [PMID: 39165508 PMCID: PMC11334217 DOI: 10.3389/fendo.2024.1334924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aim Metabolic-associated fatty liver disease (MAFLD) has gradually become one of the main health concerns regarding liver diseases. Postmenopausal women represent a high-risk group for MAFLD; therefore, it is of great importance to identify and intervene with patients at risk at an early stage. This study established a predictive nomogram model of MAFLD in postmenopausal women and to enhance the clinical utility of the new model, the researchers limited variables to simple clinical and laboratory indicators that are readily obtainable. Methods Data of 942 postmenopausal women from January 2023 to October 2023 were retrospectively collected and divided into two groups according to the collection time: the training group (676 cases) and the validation group (226 cases). Significant indicators independently related to MAFLD were identified through univariate logistic regression and stepwise regression, and the MAFLD prediction nomogram was established. The C-index and calibration curve were used to quantify the nomogram performance, and the model was evaluated by measuring the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). Results Of 37 variables, 11 predictors were identified, including occupation (worker), body mass index, waist-to-hip ratio, number of abortions, anxiety, hypertension, hyperlipidemia, diabetes, hyperuricemia, and diet (meat and processed meat). The C-index of the training group predicting the related risk factors was 0.827 (95% confidence interval [CI] 0.794-0.860). The C-index of the validation group was 0.787 (95% CI 0.728-0.846). Calibration curves 1 and 2 (BS1000 times) were close to the diagonal, showing a good agreement between the predicted probability and the actual incidence in the two groups. The AUC of the training group was 0.827, the sensitivity was 0.784, and the specificity was 0.735. The AUC of the validation group was 0.787, the sensitivity was 0.674, and the specificity was 0.772. The DCA curve showed that the nomogram had a good net benefit in predicting MAFLD in postmenopausal women. Conclusions A predictive nomogram for MAFLD in postmenopausal women was established and verified, which can assist clinicians in evaluating the risk of MAFLD at an early stage.
Collapse
Affiliation(s)
- Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Tiejun Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yue Jiao
- Department of Intensive Care Unit, Changchun Tongyuan Hospital, Changchun, China
| |
Collapse
|
17
|
Polyzos SA, Goulis DG. Menopause and metabolic dysfunction-associated steatotic liver disease. Maturitas 2024; 186:108024. [PMID: 38760254 DOI: 10.1016/j.maturitas.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
Nonalcoholic fatty liver disease, recently proposed to be renamed metabolic dysfunction-associated steatotic liver disease, is a highly prevalent disease (25-30 % of the global general population) whose prevalence increases after menopause. Apart from the rates of simple steatosis, the severity of the disease (e.g., hepatic fibrosis) increases after menopause. Menopause is associated with higher abdominal adiposity and dysmetabolism of carbohydrate and lipid metabolism, which may contribute to the development and severity of metabolic dysfunction-associated steatotic liver disease and the higher cardiovascular risk observed after menopause. The association between menopause and metabolic dysfunction-associated steatotic liver disease renders menopausal hormone therapy an appealing way to reverse hepatic disease in parallel with the benefits of menopausal hormone therapy in other tissues. In this regard, most animal studies have shown a beneficial effect of estrogens on metabolic dysfunction-associated steatotic liver disease. Still, clinical studies are few, and their data are conflicting. The effect of menopausal hormone therapy on metabolic dysfunction-associated steatotic liver disease may be distinct among estrogen monotherapies and the combinations of estrogens and progestogens. It may also depend on the type of progestogen and the route of administration. However, more studies specifically designed for these aims are needed to draw secure conclusions. This review summarizes the data related to the association between menopause and metabolic dysfunction-associated steatotic liver disease, as well as between menopausal hormone therapy and metabolic dysfunction-associated steatotic liver disease, with a special focus on clinical studies.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Campus of Aristotle University, 54124 Thessaloniki, Greece.
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Ring Road, 56403 Thessaloniki, Greece.
| |
Collapse
|
18
|
Bulatova IA, Shevlyukova TP, Gulyaeva IL, Sobol AA, Khasanova VV. Functional state of the liver and endothelium in patients with menopausal metabolic syndrome. GYNECOLOGY 2024; 26:185-190. [DOI: 10.26442/20795696.2024.2.202757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. To assess the functional state of the liver and endothelium in patients with menopausal metabolic syndrome, depending on the degree of obesity.
Materials and methods. 70 patients with menopausal metabolic syndrome and obesity of varying degrees with an average age of 49.9±1.1 years and 30 practically healthy women without obesity and liver pathology with an average age of 47.3±2.6 years (comparison group) who were in the early postmenopausal period were examined. All women underwent biometric and laboratory-instrumental examination, including assessment of biometric indicators, determination of estradiol levels in the blood, biochemical markers of cytolysis and cholestasis, markers of endothelial dysfunction, assessment of microvascular tone reaction with calculation of the thermal vasodilation index, ultrasound examination of the liver and calculation of the Hepatic steatosis index (HSI).
Results. All patients with menopausal metabolic syndrome had a genoid type of obesity and hypoestrogenism. The level of estradiol decreased more significantly during the transition to the 1st degree of obesity (p=0.001). According to ultrasound and the HSI index, signs of liver steatosis were found in all patients with menopausal metabolic syndrome. Functional liver tests were within the reference values, 13% had an increase in the level of alkaline phosphatase, more significant in the group with grade 3 obesity (p=0.034). Laboratory markers of endothelial dysfunction were significantly higher in patients with menopausal metabolic syndrome than in the comparison group. The muscular and neurogenic index of thermal vasodilation significantly decreased in women with grade 1 obesity compared to the group with “pre-obesity“ (p=0.041 and 0.047). The lowest endothelial response was observed at the transition to the 1st degree of obesity in comparison with women with excess body weight.
Conclusion. For patients with menopausal metabolic syndrome to assess the condition of the liver, it is recommended to conduct a comprehensive instrumental laboratory examination, including ultrasound examination of the liver, biochemical parameters and calculation of the steatosis index.
Collapse
|
19
|
Bulatova IA, Shevlyukova TP. Features of the course of non-alcoholic fatty liver disease in women at different age periods: literature review. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:90-95. [DOI: 10.21518/ms2024-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review examines the epidemiology and risk factors of non-alcoholic fatty liver disease (NAFLD) for women. According to various sources, the global prevalence of NAFLD ranges from 20 to 40% of the adult population in the world. In Russia, 37.3% of polyclinic patients have NAFLD. NAFLD can occur at any age and has differences in prevalence and severity depending on ethnicity and gender. Over the past 10 years, there has been a trend towards an increase in the prevalence of NAFLD among women, as well as a sharper increase in mortality compared to men. Regardless of gender, prognostically significant risk factors for NAFLD include age, obesity, type 2 diabetes mellitus, insulin resistance, dyslipidemia. The clinical course and prognosis of NAFLD in women depends on age, reproductive stage and use of synthetic hormones. Premenopausal women have less pronounced liver fibrosis and a better life prognosis compared to postmenopausal men and women. The article describes the features of the course of NAFLD in the reproductive period, pre- and postmenopausal period, characterizes the effect of liver steatosis on the course and outcome of pregnancy, the perinatal condition of the mother and fetus. Thus, there are gender differences in the prevalence, risk factors, fibrosis, and clinical outcomes of NAFLD. The prevalence and severity of NAFLD in reproductive age is higher in men, but after menopause, there is an increase in this pathology in women, especially those with metabolic disorders. Liver steatosis can affect the course of pregnancy, labor and postpartum periods.
Collapse
|
20
|
Wu XN, Wang MZ, Zhang N, Zhang W, Dong J, Ke MY, Xiang JX, Ma F, Xue F, Hou JJ, Ma ZJ, Wang FM, Liu XM, Wu R, Pawlik TM, Ye K, Yu J, Zhang XF, Lyu Y. Sex-determining region Y gene promotes liver fibrosis and accounts for sexual dimorphism in its pathophysiology. J Hepatol 2024; 80:928-940. [PMID: 38336346 DOI: 10.1016/j.jhep.2024.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.
Collapse
Affiliation(s)
- Xiao-Ning Wu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Zhou Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Nan Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Meng-Yun Ke
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun-Xi Xiang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Feng Xue
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jing-Jing Hou
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhi-Jie Ma
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Fu-Min Wang
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xue-Min Liu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, China; Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; National-Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
21
|
Weng X, Xu J, Yang S. Association between the arm circumference and non-alcoholic fatty liver disease in American children and adolescence: a population-based analysis. Front Public Health 2024; 12:1323795. [PMID: 38859898 PMCID: PMC11163100 DOI: 10.3389/fpubh.2024.1323795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Background The arm circumference (AC) has been used as an important tool to access the risk of non-alcoholic fatty liver disease (NAFLD) in adults. However, the association between AC and NAFLD in children and adolescence remains unclear. This study aims to explore the relationship between AC and NAFLD in American children and adolescence. Methods 2017-2020 National Health and Nutrition Examination Survey (NHANES) was used to carry out the cross-sectional study. The association between AC and the risk of NAFLD, and liver steatosis was analyzed using weighted multivariable logistic regression and multivariate linear regression. Additionally, a two-part linear regression model was used to identify threshold effects in this study. Subgroup analysis, interaction tests and receiver operating characteristic (ROC) curve analysis were also carried out. Results A total of 1,559 children and adolescence aged 12-18 years old were included, and the prevalence of NAFLD was 27.3%. AC was positively correlated with the risk of NAFLD (OR = 1.25, 95% CI: 1.19, 1.32) and liver steatosis (β = 4.41, 95% CI: 3.72, 5.09). Subgroup analysis stratified by age and race showed a consistent positive correlation. A non-linear relationship and saturation effect between AC and NAFLD risk were identified, with an S shaped curve and an inflection point at 34.5 cm. Area under the ROC of AC to NAFLD was 0.812, with the sensitivity of 67.6%, the specificity of 83.8% and the cutoff value of 31.7 cm. Conclusion Our study shows that AC is independently correlated with an increased risk of NAFLD and the severity of liver steatosis in American children and adolescence.
Collapse
Affiliation(s)
- Xiaolu Weng
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shouxing Yang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
23
|
Tian Y, Xie Y, Hong X, Guo Z, Yu Q. 17β-Estradiol protects female rats from bilateral oophorectomy-induced nonalcoholic fatty liver disease induced by improving linoleic acid metabolism alteration and gut microbiota disturbance. Heliyon 2024; 10:e29013. [PMID: 38601573 PMCID: PMC11004821 DOI: 10.1016/j.heliyon.2024.e29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
After surgical or natural menopause, women face a high risk of nonalcoholic fatty liver disease (NAFLD), which can be diminished by hormone replacement therapy (HRT). The gut microbiota is subject to modulation by various physiological changes and the progression of diseases. This microbial ecosystem coexists symbiotically with the host, playing pivotal roles in immune maturation, microbial defense mechanisms, and metabolic functions essential for nutritional and hormone homeostasis. E2 supplementation effectively prevented the development of NAFLD after bilateral oophorectomy (OVX) in female rats. The changes in the gut microbiota such as abnormal biosynthetic metabolism of fatty acids caused by OVX were partially restored by E2 supplementation. The combination of liver transcriptomics and metabolomics analysis revealed that linoleic acid (LA) metabolism, a pivotal pathway in fatty acids metabolism was mainly manipulated during the induction and treatment of NAFLD. Further correlation analysis indicated that the gut microbes were associated with abnormal serum indicators and different LA metabolites. These metabolites are also closely related to serum indicators of NAFLD. An in vitro study verified that LA is an inducer of hepatic steatosis. The changes in transcription in the LA metabolism pathway could be normalized by E2 treatment. The metabolic perturbations of LA may directly and secondhand impact the development of NAFLD in postmenopausal individuals. This research focused on the sex-specific pathophysiology and treatment of NAFLD, providing more evidence for HRT and calling for the multitiered management of NAFLD.
Collapse
Affiliation(s)
| | | | - Xinyu Hong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| |
Collapse
|
24
|
Jin Z, Tian C, Kang M, Hu S, Zhao L, Zhang W. The 100 top-cited articles in menopausal syndrome: a bibliometric analysis. Reprod Health 2024; 21:47. [PMID: 38589898 PMCID: PMC11003046 DOI: 10.1186/s12978-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Significant scientific research has been conducted concerning menopausal syndrome(MPS), yet few bibliometric analyses have been performed. Our aim was to recognise the 100 most highly cited published articles on MPS and to analytically evaluate their key features. METHODS To identify the 100 most frequently cited articles, a search was conducted on Web of Science using the term 'menopausal syndrome'. Articles that matched the predetermined criteria were scrutinised to obtain the following data: citation ranking, year of publication, publishing journal, journal impact factor, country of origin, academic institution, authors, study type, and keywords. RESULTS The publication period is from January 1, 2000, to August 31, 2022. The maximum number of citations was 406 and in 2012. The median citations per year was 39.70. Most of the articles focused on treatment and complications. These articles were published in 36 different journals, with the Journal of MENOPAUSE having published the greatest number (14%). Forty-eight articles (48%) were from the United States, with the University of Pittsburgh being the leading institute (9%). Joann E. Manson was the most frequent first author (n = 6). Observational studies were the most frequently conducted research type (n = 53), followed by experimental studies (n = 33). Keyword analysis identified classic research topics, including genitourinary syndrome of menopause, bone mineral density (BMD), and anti-mullerian hormone (AMH) loci. CONCLUSION Using bibliometrics, we conducted an analysis to identify the inadequacies, traditional focal points, and potential prospects in the study of MPS across current scientific areas. Treatment and complications are at the core of MPS research, whereas prediction and biomarkers have less literature of high quality. There is a necessity for innovative analytical metrics to measure the real effect of these papers with a high level of citation on clinical application.
Collapse
Affiliation(s)
- Zishan Jin
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengjiao Kang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shiwan Hu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
25
|
Lee EH, Kim JY, Yang HR. Sex-specific differences in ectopic fat and metabolic characteristics of paediatric nonalcoholic fatty liver disease. Int J Obes (Lond) 2024; 48:486-494. [PMID: 38114813 DOI: 10.1038/s41366-023-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND/OBJECTIVES Sex-specific differences in obesity-related metabolic characteristics of non-alcoholic fatty liver disease (NAFLD) have rarely been explored, particularly in children with biopsy-verified NAFLD. The influence of sex hormones on ectopic fat disposition may cause inter-sex differences in various metabolic factors. This study aimed to assess the sex-based differences in ectopic fat and metabolic characteristics in children with NAFLD. SUBJECT/METHODS We enrolled 63 children with biopsy-verified NAFLD (48 boys; mean age, 12.9 ± 3.2 years; mean body mass index z-score [BMI-z], 2.49 ± 1.21). Ectopic fat in the liver and pancreas was quantified based on magnetic resonance imaging within 2 days of the liver biopsy. Laboratory tests, body composition, blood pressure, and anthropometric measurements were also assessed. RESULTS Sex-based differences were neither observed in age, BMI-z, or total body fat percentage nor in the proportions of obesity, abdominal obesity, diabetes, dyslipidaemia, hypertension, or metabolic syndrome. Furthermore, liver enzyme levels, lipid profiles, and pancreatic fat did not differ between the sexes. However, boys had significantly higher fasting insulin (median 133.2 vs. 97.8 pmol/L; p = 0.039), fasting plasma glucose (median 5.30 vs. 4.83 mmol/L; p = 0.013), homeostasis model assessment of insulin resistance (median 5.4 vs. 3.6; p = 0.025), serum uric acid (404.1 ± 101.2 vs. 322.4 ± 87.1 μmol/L; p = 0.009), and liver fat (median 26.3% vs. 16.3%; p = 0.014). CONCLUSIONS Male-predominant hepatic steatosis and insulin resistance caused by sex-specific ectopic fat accumulation may contribute to higher uric acid levels in boys than in girls with NAFLD.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Pediatrics, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea
| | - Ji Young Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
26
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Gupta U, Ruli T, Buttar D, Shoreibah M, Gray M. Metabolic dysfunction associated steatotic liver disease: Current practice, screening guidelines and management in the primary care setting. Am J Med Sci 2024; 367:77-88. [PMID: 37967750 DOI: 10.1016/j.amjms.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Metabolic dysfunction associated steatotic liver disease, previously known as non-alcoholic fatty liver disease, is the most common cause of chronic liver disease in the United States with rapidly rising prevalence. There have been significant changes recently in the field with screening now recommended for patients at risk for significant liver fibrosis in primary care and endocrine settings, along with clear guidance for management of metabolic comorbidities and changes in nomenclature. This paper serves as a summary of recent guidance for the primary care physician focusing on identifying appropriate patients for screening, selecting suitable screening modalities, and determining when referral to specialty care is necessary. The hope is that providers will shift away from past practices of utilizing liver tests alone as a screening tool and shift towards fibrosis screening in patients at risk for significant fibrosis. This culture change will allow for earlier identification of patients at risk for end stage liver disease and serious liver related complications, and overall improved patient care.
Collapse
Affiliation(s)
- Udita Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Thomas Ruli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Danyaal Buttar
- Department of Medicine, Campbell University School of Medicine, NC, USA
| | - Mohamed Shoreibah
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meagan Gray
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Jin S, Li S, Fang P, Pan C, Huang S. Association of hysterectomy with nonalcoholic fatty liver disease among US women. Lipids Health Dis 2024; 23:34. [PMID: 38297360 PMCID: PMC10829175 DOI: 10.1186/s12944-024-02020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A postmenopausal rise in the rates of nonalcoholic fatty liver disease (NAFLD) has been reported in women. This study thus sought to further probe the association of hysterectomy with NAFLD. METHODS The data utilized in this investigation were attained from the 2017-March 2020 cycle of the National Health and Nutrition Examination Survey (NHANES), reflecting a strategic utilization of comprehensive health and nutrition information in the US population, to conduct a cross-sectional examination of the relationship between self-reported hysterectomy and NAFLD. Subjects included in this study were women aged 20 years or older. The multivariable logistic regression methodologies were utilized to determine the pertinent odds ratios (ORs) and their associated 95% confidence intervals (CIs). RESULTS Of the 2,868 subjects enrolled in this study (mean age: 51.3 years, 95%CI: 50.0-52.6 years), 22.1% (95%CI: 19.7-24.7%) reported having undergone a hysterectomy, while 31.1% (95%CI: 28.1-34.1%) exhibited elastographic evidence of NAFLD, and 3.8% (95%CI: 2.6-5.6%) exhibited clinically significant fibrosis (CSF). Relative to women with no history of hysterectomy, those that had undergone hysterectomy exhibited a higher odd of NAFLD (OR:1.66, 95%CI: 1.24-2.21) in a multivariable model fully adjusted for age, ethnicity, body mass index, female hormone use, oophorectomy, diabetes, hyperlipidemia, and smoking status. Subgroup analyses revealed a stronger association among women who were not obese (OR:2.23, 95%CI:1.61-3.11), women who were not affected by diabetes (OR:1.76, 95%CI: 1.25-2.46), and without hyperlipidemia (OR: 1.87, 95%CI: 1.10-3.16). No significant association of hysterectomy with NAFLD encompassing CSF was identified. CONCLUSIONS The results of the present nationally representative analysis suggested an association between hysterectomy and increased NAFLD prevalence among US women. Knowledge of this relationship may better aid clinical efforts to screen for and manage NAFLD.
Collapse
Affiliation(s)
- Shuanghong Jin
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, China
| | - Shaoxun Li
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, China
| | - Peipei Fang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, China
| | - Chenwei Pan
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, China
| | - Shanshan Huang
- Department of Infectious Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, China.
| |
Collapse
|
29
|
Yang RX, Fan JG. Metabolic comorbidities, endocrine—Diabetes, polycystic ovarian syndrome, thyroid dysfunction. METABOLIC STEATOTIC LIVER DISEASE 2024:123-136. [DOI: 10.1016/b978-0-323-99649-5.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Tebbens M, Schutte M, Troelstra MA, Bruinstroop E, de Mutsert R, Nederveen AJ, den Heijer M, Bisschop PH. Sex Steroids Regulate Liver Fat Content and Body Fat Distribution in Both Men and Women: A Study in Transgender Persons. J Clin Endocrinol Metab 2023; 109:e280-e290. [PMID: 37463488 PMCID: PMC10735313 DOI: 10.1210/clinem/dgad409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Liver fat content and visceral fat volume are associated with insulin resistance and cardiovascular disease and are higher in men than in women. OBJECTIVE To determine the effect of estradiol and testosterone treatment on liver fat and visceral fat in transgender persons. DESIGN Open-label intervention study (SHAMVA) with a 1-year follow-up. SETTING Gender clinic in a hospital. PATIENTS 8 trans women and 18 trans men receiving hormone treatment. INTERVENTIONS Trans women received an antiandrogen and after 6 weeks estradiol was added. Trans men were randomized to receive triptorelin, testosterone, and anastrozole for 12 weeks or triptorelin and testosterone for 12 weeks, followed by only testosterone until week 52. MAIN OUTCOME MEASURES Liver fat content, visceral and abdominal subcutaneous fat volume, measured by magnetic resonance spectrometry or imaging at baseline, 6, 8, 18, and 58 weeks in transwomen or at baseline; at 6 and 12 weeks in trans men with anastrozole; and at 52 weeks in trans men without anastrozole. RESULTS In trans women, liver fat content decreased by 1.55% (-2.99 to -0.12) after 58 weeks, compared to week 6. Visceral fat did not change. In trans men with anastrozole, the liver fat content and visceral fat volume did not change. In trans men without anastrozole, after 52 weeks, liver fat content increased by 0.83% (0.14 to 1.52) and visceral fat volume increased by 34% (16 to 51). CONCLUSIONS Sex hormones regulate liver fat content and visceral fat in men and women.
Collapse
Affiliation(s)
- Marieke Tebbens
- Department of Endocrinology, Amsterdam UMC Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Moya Schutte
- Department of Endocrinology, Amsterdam UMC Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Marian A Troelstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Eveline Bruinstroop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology, Amsterdam UMC Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Tian Y, Hong X, Xie Y, Guo Z, Yu Q. 17β-Estradiol (E 2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2023; 12:2100. [PMID: 38136219 PMCID: PMC10740447 DOI: 10.3390/antiox12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Premature menopause is associated with an increased prevalence of nonalcoholic fatty liver disease (NAFLD). Menopausal hormone therapy (MHT) has been widely used in clinical practice and has the potential to protect mitochondrial function and alleviate NAFLD. After bilateral oophorectomy (OVX), female rats without 17β-estradiol (E2) intervention developed NAFLD, whereas E2 supplementation was effective in preventing NAFLD in female rats. The altered pathways and cellular events from both comparison pairs, namely, the OVX vs. sham group and the OVX vs. E2 group, were assessed using transcriptomic analysis. KEGG pathways enriched by both transcriptomic and metabolomic analyses strongly suggest that oxidative phosphorylation is a vital pathway that changes during the development of NAFLD and remains unchanged when E2 is applied. Liver tissue from the OVX-induced NAFLD group exhibited increased lipid peroxidation, impaired mitochondria, and downregulated ERα/SIRT1/PGC-1α expression. An in vitro study indicated that the protective effect of E2 treatment on hepatic steatosis could be abolished when ERα or SIRT1 was selectively inhibited. This damage was accompanied by reduced mitochondrial complex activity and increased lipid peroxidation. The current research indicates that E2 upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent OVX-induced NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (Y.T.); (X.H.); (Y.X.); (Z.G.)
| |
Collapse
|
32
|
Hutchison AL, Tavaglione F, Romeo S, Charlton M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J Hepatol 2023; 79:1524-1541. [PMID: 37730124 DOI: 10.1016/j.jhep.2023.08.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
While the association of metabolic dysfunction-associated steatotic liver disease (MASLD) with obesity and insulin resistance is widely appreciated, there are a host of complex interactions between the liver and other endocrine axes. While it can be difficult to definitively distinguish direct causal relationships and those attributable to increased adipocyte mass, there is substantial evidence of the direct and indirect effects of endocrine dysregulation on the severity of MASLD, with strong evidence that low levels of growth hormone, sex hormones, and thyroid hormone promote the development and progression of disease. The impact of steroid hormones, e.g. cortisol and dehydroepiandrosterone, and adipokines is much more divergent. Thoughtful assessment, based on individual risk factors and findings, and management of non-insulin endocrine axes is essential in the evaluation and management of MASLD. Multiple therapeutic options have emerged that leverage various endocrine axes to reduce the fibroinflammatory cascade in MASH.
Collapse
Affiliation(s)
| | - Federica Tavaglione
- Clinical Medicine and Hepatology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Michael Charlton
- Center for Liver Diseases, University of Chicago, United States.
| |
Collapse
|
33
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|
34
|
Sosa RA, Terry AQ, Ito T, Naini BV, Zheng Y, Pickering H, Nevarez-Mejia J, Busuttil RW, Gjertson DW, Kupiec-Weglinski JW, Reed EF, Kaldas FM. Immune Features of Disparate Liver Transplant Outcomes in Female Hispanics With Nonalcoholic Steatohepatitis. Transplant Direct 2023; 9:e1550. [PMID: 37876917 PMCID: PMC10593264 DOI: 10.1097/txd.0000000000001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 10/26/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is a severe immune-mediated stage of nonalcoholic fatty liver disease that is rapidly becoming the most common etiology requiring liver transplantation (LT), with Hispanics bearing a disproportionate burden. This study aimed to uncover the underlying immune mechanisms of the disparities experienced by Hispanic patients undergoing LT for NASH. Methods We enrolled 164 LT recipients in our institutional review board-approved study, 33 of whom presented with NASH as the primary etiology of LT (20%), with 16 self-reported as Hispanic (48%). We investigated the histopathology of prereperfusion and postreperfusion biopsies, clinical liver function tests, longitudinal soluble cytokines via 38-plex Luminex, and immune cell phenotypes generated by prereperfusion and postreperfusion blood using 14-color flow cytometry and enzyme-linked immunosorbent assay. Results Hispanic LT recipients transplanted for NASH were disproportionately female (81%) and disproportionately suffered poor outcomes in the first year posttransplant, including rejection (26%) and death (38%). Clinically, we observed increased pro-inflammatory and apoptotic histopathological features in biopsies, increased AST/international normalized ratio early posttransplantation, and a higher incidence of presensitization to mismatched HLA antigens expressed by the donor allograft. Experimental investigations revealed that blood from female Hispanic NASH patients showed significantly increased levels of leukocyte-attracting chemokines, innate-to-adaptive switching cytokines and growth factors, HMGB1 release, and TLR4/TLR8/TLR9/NOD1 activation, and produced a pro-inflammatory, pro-apoptotic macrophage phenotype with reduced CD14/CD68/CD66a/TIM-3 and increased CD16/CD11b/HLA-DR/CD80. Conclusions A personalized approach to reducing immunological risk factors is urgently needed for this endotype in Hispanics with NASH requiring LT, particularly in females.
Collapse
Affiliation(s)
- Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Allyson Q. Terry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Bita V. Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ying Zheng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David W. Gjertson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
35
|
Cooper KM, Delk M, Devuni D, Sarkar M. Sex differences in chronic liver disease and benign liver lesions. JHEP Rep 2023; 5:100870. [PMID: 37791378 PMCID: PMC10542645 DOI: 10.1016/j.jhepr.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
The epidemiology, natural history, and therapeutic responses of chronic liver diseases and liver lesions often vary by sex. In this review, we summarize available clinical and translational data on these aspects of the most common liver conditions encountered in clinical practice, including the potential contributions of sex hormones to the underlying pathophysiology of observed differences. We also highlight areas of notable knowledge gaps and discuss sex disparities in access to liver transplant and potential strategies to address these barriers. Given established sex differences in immune response, drug metabolism, and response to liver-related therapies, emerging clinical trials and epidemiological studies should prioritize dedicated analyses by sex to inform sex-specific approaches to liver-related care.
Collapse
Affiliation(s)
- Katherine M. Cooper
- UMass Chan Medical School, Department of Medicine, Division of Gastroenterology/Hepatology, Worcester, MA, United States
| | - Molly Delk
- University of California San Francisco, Department of Medicine, Division of Gastroenterology/Hepatology, San Francisco, CA, United States
| | - Deepika Devuni
- UMass Chan Medical School, Department of Medicine, Division of Gastroenterology/Hepatology, Worcester, MA, United States
| | - Monika Sarkar
- University of California San Francisco, Department of Medicine, Division of Gastroenterology/Hepatology, San Francisco, CA, United States
| |
Collapse
|
36
|
Crudele L, De Matteis C, Graziano G, Novielli F, Petruzzelli S, Piccinin E, Gadaleta RM, Cariello M, Moschetta A. AST/ALT-to-platelet ratio (AARPRI) predicts gynaecological cancers: a 8-years follow-up study in 653 women. Sci Rep 2023; 13:17793. [PMID: 37852989 PMCID: PMC10584967 DOI: 10.1038/s41598-023-44243-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), specifically liver steatosis and fibrosis with steatohepatitis (NASH), is often associated with visceral adiposopathy, whose pathogenetic features have been proposed as tumorigenic triggers. We performed a prospective analysis in 653 metabolic women to reveal any conditions that may predict and concur to cancer development during a 8-years period of follow-up. Among clinical and biochemical variables, only AST and non-invasive liver fibrosis scores (AARPRI, APRI, FIB-4, mFIB4) significantly distinguished cancer-developer women (n = 62, 9.5%) from those who did not develop cancer (p < 0.001). In ROC analysis, these scores also showed good sensitivity and specificity in differentiating women who developed cancer (all p < 0.001). We then calculated OR for these indexes finding that increased AARPRI was associated with the highest risk (OR = 6, p < 0.001) of gynaecological cancers development. We further validated these cut-off values in women who had developed other types of cancer, confirming that AARPRI is able to identify the risk for cancer development (OR = 5, p < 0.001). Our findings support the hypothesis that NAFLD, more than obesity per se, is directly associated with the clinical and pathogenic metabolic scenario of gynaecological cancers and encourage the use of liver fibrosis indexes to detect risk of cancer onset in women. Preventing adiposopathy and NAFLD through lifestyle and therapies may represent an instrumental strategy for cancer prevention and/or co-treatment in oncology.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Giusi Graziano
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), 65124, Pescara, Italy
| | - Fabio Novielli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Stefano Petruzzelli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy.
| |
Collapse
|
37
|
Spooner MH, Garcia-Jaramillo M, Apperson KD, Löhr CV, Jump DB. Time course of western diet (WD) induced nonalcoholic steatohepatitis (NASH) in female and male Ldlr-/- mice. PLoS One 2023; 18:e0292432. [PMID: 37819925 PMCID: PMC10566735 DOI: 10.1371/journal.pone.0292432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health problem. Identification of factors contributing to the onset and progression of NAFLD have the potential to direct novel strategies to combat NAFLD. METHODS We examined the time course of western diet (WD)-induced NAFLD and its progression to nonalcoholic steatohepatitis (NASH) in age-matched female and male Ldlr-/- mice, with time-points at 1, 4, 8, 20 and 40 weeks on the WD. Controls included Ldlr-/- mice maintained on a purified low-fat diet (LFD) for 1 and 40 weeks. The approach included quantitation of anthropometric, plasma and liver markers of disease, plus hepatic histology, lipids, oxylipins, gene expression and selected metabolites. RESULTS One week of feeding the WD caused a significant reduction in hepatic essential fatty acids (EFAs: 18:2, ω6, 18:3, ω3) which preceded the decline in many C20-22 ω3 and ω6 polyunsaturated fatty acids (PUFA) and PUFA-derived oxylipins after 4 weeks on the WD. In addition, expression of hepatic inflammation markers (CD40, CD44, Mcp1, Nlrp3, TLR2, TLR4, Trem2) increased significantly in both female & male mice after one week on the WD. These markers continued to increase over the 40-week WD feeding study. WD effects on hepatic EFA and inflammation preceded all significant WD-induced changes in body weight, insulin resistance (HOMA-IR), oxidative stress status (GSH/GSSG ratio) and histological and gene expression markers of macrosteatosis, extracellular matrix remodeling and fibrosis. CONCLUSIONS Our findings establish that feeding Ldlr-/- mice the WD rapidly lowered hepatic EFAs and induced key inflammatory markers linked to NASH. Since EFAs have an established role in inflammation and hepatic inflammation plays a major role in NASH, we suggest that early clinical assessment of EFA status and correcting EFA deficiencies may be useful in reducing NASH severity.
Collapse
Affiliation(s)
- Melinda H. Spooner
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, Oregon State University, Corvallis OR, United States of America
| | - K. Denise Apperson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Donald B. Jump
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
38
|
Yang M, Su W, Li H, Li L, An Z, Xiao F, Liu Y, Zhang X, Liu X, Guo H, Li A. Association of per- and polyfluoroalkyl substances with hepatic steatosis and metabolic dysfunction-associated fatty liver disease among patients with acute coronary syndrome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115473. [PMID: 37722302 DOI: 10.1016/j.ecoenv.2023.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Etiology of hepatic steatosis and metabolic dysfunction-associated fatty liver disease (MAFLD) among acute coronary syndrome (ACS) remains unclear. Existing studies suggested the potential role of per- and polyfluoroalkyl substances (PFAS) in comorbidity of hepatic steatosis among ACS patients. Therefore, we conducted a cross-sectional study based on the ACS inpatients to assess the associations of plasma PFAS congeners and mixtures with hepatic steatosis and MAFLD. This study included 546 newly diagnosed ACS patients. Twelve PFAS were quantified using ultra-high-performance liquid chromatography-tandem mass spectrometry. Hepatic steatosis was defined by hepatic steatosis index (HSI). MAFLD was defined as the combination of hepatic steatosis based on the risk factor calculation with metabolic abnormalities. Generalized linear model was used to examine the associations of PFAS congeners with HSI and MAFLD. Adaptive elastic net (AENET) was further used for PFAS congeners selection. Mixture effects were also assessed with Bayesian kernel machine regression model (BKMR). Congeners analysis observed significant greater percent change of HSI for each doubling in PFOS (1.82%, 95% CI: 0.87%, 2.77%), PFHxS (1.17%, 95% CI: 0.46%, 1.89%) and total PFAS (1.84%, 95% CI: 0.56%, 3.14%). Moreover, each doubling in PFOS (OR=1.42, 95% CI: 1.13, 1.81), PFHxS (OR=1.31, 95% CI: 1.09, 1.59) and total PFAS (OR=1.43, 95% CI: 1.06, 1.94) was associated with increased risk of MAFLD. In AENET regression, only PFOS presented significant positive associations with HSI. Mixture analysis indicated significant positive associations between PFAS mixtures and HSI. This is the first study to demonstrate associations of PFAS congeners and mixtures with hepatic steatosis and MAFLD among ACS patients, which provides hypothesis into the mechanisms behind comorbidity of hepatic steatosis among ACS patients, as well as tertiary prevention of ACS.
Collapse
Affiliation(s)
- Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China
| | - Weitao Su
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
39
|
Alcantara-Diaz AL, Ruiz-Fernandez JF, Salazar-Alarcon JL, Salinas-Sedo G, Toro-Huamanchumo CJ. Diagnostic Performance of 2D Shear Wave (2D-SWE) for Liver Fibrosis in Adults Undergoing Bariatric Surgery. Obes Surg 2023; 33:3120-3126. [PMID: 37566340 DOI: 10.1007/s11695-023-06766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Among the most recent methods to diagnose liver fibrosis is 2D shear wave elastography (2D-SWE). However, the evidence in the Latin population is limited, and there is no consensus on the cutoff points for each stage of fibrosis. AIM To evaluate the diagnostic performance of 2D-SWE for liver fibrosis in adults with obesity who underwent bariatric surgery (BS). METHODS We conducted a cross-sectional study on patients with obesity who underwent BS between 2020 and 2021. Liver stiffness measurement was reported as the mean of valid measurements in kilopascals made with the 2D-SWE. The outcome was biopsy-proven liver fibrosis. ROC curves were constructed for significant fibrosis (F≥2) and advanced fibrosis (F≥3), with their respective area under the curve (AUC). To obtain the best cutoff point for each scenario, we used the Youden index. The 95% confidence intervals (95% CI) for each cutoff point were estimated by bootstrap with 1000 replications. RESULTS We analyzed data from 227 patients. The mean age was 37.8 ± 11.1 years and 65.2% were women. Overall, the AUC for significant and advanced fibrosis was 0.54 (95% CI: 0.47-0.62) and 0.73 (95% CI: 0.60-0.87), respectively. For advanced fibrosis, higher AUCs were found among women (AUC: 0.82; 95% CI: 0.59-1.00) and among patients with morbid obesity (AUC: 0.78; 95% CI: 0.61-0.99). CONCLUSION The 2D-SWE appears to be a valuable tool for screening advanced liver fibrosis in candidates for BS, mainly in the female population and in adults with morbid obesity.
Collapse
Affiliation(s)
- Ana L Alcantara-Diaz
- School of Medicine, Universidad de San Martín de Porres, Chiclayo, Peru
- SCIEMVE, Sociedad Científica de Estudiantes de Medicina Veritas, Chiclayo, Peru
| | | | | | | | - Carlos J Toro-Huamanchumo
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Av. La Fontana 750, 15024, Lima, Peru.
- OBEMET Center for Obesity and Metabolic Health, Lima, Peru.
| |
Collapse
|
40
|
Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women - Current knowledge and emerging concepts. JHEP Rep 2023; 5:100835. [PMID: 37771547 PMCID: PMC10522907 DOI: 10.1016/j.jhepr.2023.100835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 09/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. Alterations in reproductive hormones are linked to the development and/or progression of NAFLD/NASH in women. Women with polycystic ovary syndrome and those with oestrogen deficiency are at increased risk of NAFLD/NASH, with higher mortality rates in older women compared to men of similar ages. NAFLD/NASH is currently the leading indication for liver transplantation in women without hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is needed to improve outcomes. In this review, we discuss the hormonal and non-hormonal factors that contribute to NAFLD development and progression in women. Furthermore, we highlight areas of focus for clinical practice and for future research.
Collapse
Affiliation(s)
- Pei Chia Eng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Tricia Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S. Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
41
|
Conlon DM, Welty FK, Reyes-Soffer G, Amengual J. Sex-Specific Differences in Lipoprotein Production and Clearance. Arterioscler Thromb Vasc Biol 2023; 43:1617-1625. [PMID: 37409532 PMCID: PMC10527393 DOI: 10.1161/atvbaha.122.318247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Therapeutic approaches to reduce atherogenic lipid and lipoprotein levels remain the most effective and assessable strategies to prevent and treat cardiovascular disease. The discovery of novel research targets linked to pathways associated with cardiovascular disease development has enhanced our ability to decrease disease burden; however, residual cardiovascular disease risks remain. Advancements in genetics and personalized medicine are essential to understand some of the factors driving residual risk. Biological sex is among the most relevant factors affecting plasma lipid and lipoprotein profiles, playing a pivotal role in the development of cardiovascular disease. This minireview summarizes the most recent preclinical and clinical studies covering the effect of sex on plasma lipid and lipoprotein levels. We highlight the recent advances in the mechanisms regulating hepatic lipoprotein production and clearance as potential drivers of disease presentation. We focus on using sex as a biological variable in studying circulating lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | | | - Gissette Reyes-Soffer
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons
| | - Jaume Amengual
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences. University of Illinois Urbana Champaign
| |
Collapse
|
42
|
Zhao C, Shi J, Shang D, Guo M, Zhou C, Zhao W. Protective effect of phytoestrogens on nonalcoholic fatty liver disease in postmenopausal women. Front Pharmacol 2023; 14:1237845. [PMID: 37719855 PMCID: PMC10502324 DOI: 10.3389/fphar.2023.1237845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease characterized by hepatic steatosis, inflammation, and fibrosis that seriously endangers global public health. Epidemiological studies have shown that the incidence of non-alcoholic fatty liver disease in postmenopausal women has significantly increased. Studies have shown that estrogen deficiency is the main reason for this situation, and supplementing estrogen has become a new direction for preventing the occurrence of postmenopausal fatty liver. However, although classical estrogen replacement therapy can reduce the incidence of postmenopausal NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not suitable for the treatment of postmenopausal NAFLD. More and more recent studies have provided evidence that phytoestrogens are a promising method for the treatment of postmenopausal NAFLD. However, the mechanism of phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear. This paper summarizes the clinical and basic research evidence of phytoestrogens and reviews the potential therapeutic effects of phytoestrogens in postmenopausal NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue, enhancing glucose metabolism, reducing oxidative stress, reducing the inflammatory response, regulating intestinal flora, and blocking liver fibrosis (Graphical Abstract).
Collapse
Affiliation(s)
- ChenLu Zhao
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - JunHao Shi
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - DongFang Shang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Cheng Zhou
- First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - WenXia Zhao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
43
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
44
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
45
|
Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE, Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023; 77:1797-1835. [PMID: 36727674 PMCID: PMC10735173 DOI: 10.1097/hep.0000000000000323] [Citation(s) in RCA: 1023] [Impact Index Per Article: 511.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Affiliation(s)
- Mary E. Rinella
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | - Stephen Caldwell
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Diana Barb
- University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Rohit Loomba
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
46
|
Jaroenlapnopparat A, Charoenngam N, Ponvilawan B, Mariano M, Thongpiya J, Yingchoncharoen P. Menopause is associated with increased prevalence of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Menopause 2023; 30:348-354. [PMID: 36728528 DOI: 10.1097/gme.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE Data are inconsistent on whether menopause is a risk for nonalcoholic fatty liver disease (NAFLD). OBJECTIVE Using systematic review and meta-analysis, we aimed to collect all available data to determine the association between menopause and NAFLD. EVIDENCE REVIEW Potentially eligible studies were identified from EMBASE, MEDLINE, and Web of Science databases from inception to December 2021 using a search strategy that was composed of the terms for "NAFLD" and "menopause." Eligible study must contain two groups of participants: one group of postmenopausal women and another group of premenopausal women. Then, the study must report the association between menopause and prevalent NAFLD. We extracted such data from each study and calculated pooled odds ratio (OR) by combining effect estimates of each study using a random-effects model. Funnel plot was used to assess for the presence of publication bias. FINDINGS A total of 587 articles were identified. After two rounds of independent review by two investigators, 12 cross-sectional studies fulfilled the eligibility criteria. The meta-analysis of 12 studies revealed the significant association between menopause and NAFLD with a pooled OR of 2.37 (95% CI, 1.99-2.82; I2 = 73%). The association remained significant in a sensitivity meta-analysis of six studies that reported the association with adjustment for age and metabolic factors with a pooled OR of 2.19 (95% CI, 1.73-2.78; I2 = 74%). The funnel plot was fairly symmetric and was not suggestive of publication bias. CONCLUSIONS AND RELEVANCE The meta-analysis reveals that menopausal status was associated with approximately 2.4 times higher odds of NAFLD.
Collapse
Affiliation(s)
| | | | - Ben Ponvilawan
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | | | - Jerapas Thongpiya
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX
| | | |
Collapse
|
47
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
48
|
Association between perfluoroalkyl substances exposure and the prevalence of nonalcoholic fatty liver disease in the different sexes: a study from the National Health and Nutrition Examination Survey 2005-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44292-44303. [PMID: 36692718 DOI: 10.1007/s11356-023-25258-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/07/2023] [Indexed: 01/25/2023]
Abstract
There is evidence that perfluoroalkyl substances (PFASs) have effects on liver toxicity, and the effects may exhibit sex differences. Our study aims to explore the association between exposure to four PFASs (perfluorooctanoic acid, PFOA; perfluorooctane sulfonate, PFOS; perfluorohexane sulfonate, PFHxS; and perfluorononanoate, PFNA) and the risk of nonalcoholic fatty liver disease (NAFLD) in adults ≥ 20 years old in the US population. The data were based on the National Health and Nutrition Examination Survey (NHANES) 2005-2018. We used Poisson regression to explore the association between the four PFASs and NAFLD. We included 3464 participants; of these, 1200 (34.64%) individuals were defined as having NAFLD, and the prevalence of NAFLD was 39.52% in men and 30.40% in women. After Poisson regression, among the premenopausal and postmenopausal and total women, PFOA had a significantly positive association with NAFLD (p < 0.05). After principal component analysis, the "composite PFAS" was associated with NAFLD in postmenopausal and total women, and the RRs (95% CIs) were 1.306 (1.075, 1.586) and 1.161 (1.007, 1.339), respectively. In adults, we found that PFASs were associated with NAFLD, and the associations varied by sex, particularly for PFOA and PFNA, which had a positive association with NAFLD in women.
Collapse
|
49
|
Xu Z, Wu FW, Niu X, Lu XP, Li YR, Zhang ST, Ou JZ, Wang XM. Integrated strategy of RNA-sequencing and network pharmacology for exploring the protective mechanism of Shen-Shi-Jiang-Zhuo formula in rat with non-alcoholic fatty liver disease. PHARMACEUTICAL BIOLOGY 2022; 60:1819-1838. [PMID: 36124995 PMCID: PMC9518293 DOI: 10.1080/13880209.2022.2106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Shen-Shi-Jiang-Zhuo formula (SSJZF) exhibits a definite curative effect in the clinical treatment of non-alcoholic fatty liver disease (NAFLD). OBJECTIVE To explore the therapeutic effect and mechanism of SSJZF on NAFLD. MATERIALS AND METHODS Sprague Dawley rats were randomly divided into control, NAFLD, positive drug (12 mg/kg/day), SSJZF high-dose (200 mg/kg/day), SSJZF middle-dose (100 mg/kg/day), and SSJZF low-dose (50 mg/kg/day) groups. After daily intragastric administration of NAFLD rats for 8 weeks, lipid metabolism and hepatic fibrosis were evaluated by biochemical indices and histopathology. Then we uncovered the main active compounds and mechanism of SSJZF against NAFLD by integrating RNA-sequencing and network pharmacology, and PI3K/AKT pathway activity was verified by western blot. RESULTS High dose SSJZF had the best inhibitory effect on hepatic lipid accumulation and fibrosis in rats with NAFLD, which significantly down-regulated total triglycerides (58%), cholesterol (62%), aspartate aminotransferase (57%), alanine aminotransferase (41%) andγ-glutamyl transpeptidase (36%), as well as the expression of ACC (5.3-fold), FAS (12.1-fold), SREBP1C (2.3-fold), and CD36 (4.4-fold), and significantly reduced collagen deposition (67%). Then we identified 23 compounds of SSJZF that acted on 25 key therapeutic targets of NAFLD by integrating RNA-sequencing and network pharmacology. Finally, we also confirmed that high dose SSJZF increased p-PI3K/PI3K (1.6-fold) and p-AKT/AKT (1.6-fold) in NAFLD rats. DISCUSSION AND CONCLUSION We found for first time that SSJZF improved NAFLD in rats by activating the PI3K/Akt pathway. These findings provide scientific support for SSJZF in the clinical treatment of NAFLD and contribute to the development of new NAFLD drugs.
Collapse
Affiliation(s)
- Zheng Xu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan-Wei Wu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuan Niu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiao-Peng Lu
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Rong Li
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Ting Zhang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Guangdong Agriculture and Reclamation Central Hospital, Zhanjiang, Guangdong
| | - Jun-Zhao Ou
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Mei Wang
- Liu Pai Chinese Medical Center, The Seventh Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
50
|
Song MJ, Choi JY. Androgen dysfunction in non-alcoholic fatty liver disease: Role of sex hormone binding globulin. Front Endocrinol (Lausanne) 2022; 13:1053709. [PMID: 36482993 PMCID: PMC9722756 DOI: 10.3389/fendo.2022.1053709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the world. It is linked mainly to insulin resistance and metabolic syndrome including obesity and dyslipidemia. In addition, various endocrine dysfunctions including polycystic ovary syndrome (PCOS) and hypogonadism are involved in the development and progression of NAFLD. We need to know the disease pathophysiology more accurately due to the heterogeneity of clinical presentation of fatty liver disease. The liver is the major metabolic organ with sexual dimorphism. Sexual dimorphism is associated not only with behavioral differences between men and women, but also with physiological differences reflected in liver metabolism. In men, normal androgen levels prevent hepatic fat accumulation, whereas androgen deficiency induce hepatic steatosis. In women, higher androgens can increase the risk of NAFLD in PCOS. Sex hormone binding globulin (SHBG) is involved in androgen regulation. Recently, SHBG may be reported as a surrogate marker for NAFLD. Therefore, this review will focus on the mechanism of androgen dysfunction in the regulation of hepatic metabolism, the risk of developing NAFLD, and the potential role of SHBG in the course of NAFLD.; Keywords: Non-alcoholic fatty liver disease, insulin resistance, sexual dimorphism, androgen, sex hormone binding globulin.
Collapse
Affiliation(s)
| | - Jong Young Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|