1
|
Wang Z, Huang Y, Song B, Shi Y, Yuan J. A Mitochondria-Targetable Europium(III) Complex-Based Probe for Time-Gated Luminescence and Lifetime Detection of Hypochlorous Acid In Vitro and In Vivo. Inorg Chem 2025. [PMID: 40257126 DOI: 10.1021/acs.inorgchem.5c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
We proposed a strategy for developing a mitochondria-targeting lanthanide complex-based probe, Mito-ANMTTTA-Eu3+, designed for hypochlorous acid (HClO) detection using time-gated luminescence intensity and lifetime modes. The probe consists of a terpyridine polyacid-Eu3+ complex as the luminophore, a 4-amino-3-nitrophenyl group for HClO recognition, and a triphenylphosphonium (TPP) group as the mitochondrial-targeting moiety. The probe initially exists in a "dark state," characterized by a relatively short luminescence lifetime. Upon reaction with HClO, the time-gated luminescence (TGL) intensity and the average luminescence lifetime of Mito-ANMTTTA-Eu3+ increased by approximately 20-fold and 15-fold, respectively. These features enable sensitive and accurate detection of HClO by utilizing TGL and luminescence lifetime as complementary detection strategies. Cell imaging studies revealed that the probe was predominantly localized in the mitochondria after coculture with live cells, and it could effectively image both endogenous and exogenous HClO in mitochondria under background-free TGL mode. Furthermore, the probe was effectively implemented for the imaging of HClO in zebrafish and the livers of drug-induced liver injury (DILI) mice, revealing a positive correlation between HClO levels and the degree of DILI. Consequently, this study paves a new way for designing lanthanide complex-based dual-made luminescent probes for biosensing and bioimaging.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
2
|
Hong J, Kim YH. Cutting-edge biotherapeutics and advanced delivery strategies for the treatment of metabolic dysfunction-associated steatotic liver disease spectrum. J Control Release 2025; 380:433-456. [PMID: 39923856 DOI: 10.1016/j.jconrel.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a condition with the potential to progress into liver cirrhosis or hepatocellular carcinoma, has become a significant global health concern due to its increasing prevalence alongside obesity and metabolic syndrome. Despite the promise of existing therapies such as thyroid hormone receptor-β (THR-β) agonists, PPAR agonists, FXR agonists, and GLP-1 receptor agonists, their effectiveness is limited by the complexity of the metabolic, inflammatory, and fibrotic pathways that drive MASLD progression, encompassing steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and reversible liver fibrosis. Recent advances in targeted therapeutics, including RNA interference (RNAi), mRNA-based gene therapies, monoclonal antibodies, proteolysis-targeting chimeras (PROTAC), peptide-based strategies, cell-based therapies such as CAR-modified immune cells and stem cells, and extracellular vesicle-based approaches, have emerged as promising interventions. Alongside these developments, innovative drug delivery systems are being actively researched to enhance the stability, precision, and therapeutic efficacy of these biotherapeutics. These delivery strategies aim to optimize biodistribution, improve target-specific action, and reduce systemic exposure, thus addressing critical limitations of existing treatment modalities. This review provides a comprehensive exploration of the underlying biological mechanisms of MASLD and evaluates the potential of these cutting-edge biotherapeutics in synergy with advanced delivery approaches to address unmet clinical needs. By integrating fundamental disease biology with translational advancements, it aims to highlight future directions for the development of effective, targeted treatments for MASLD and its associated complications.
Collapse
Affiliation(s)
- Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea; Cursus Bio Inc., Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea.
| |
Collapse
|
3
|
Morrison JI, Metzendorf NG, Liu J, Hultqvist G. Serotransferrin enhances transferrin receptor-mediated brain uptake of antibodies. Drug Deliv Transl Res 2025:10.1007/s13346-025-01811-1. [PMID: 39971861 DOI: 10.1007/s13346-025-01811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
The propensity of antibody-based therapies to systemically enter the brain interstitium and ameliorate pathology associated with numerous neurological maladies is precluded by the presence of the blood-brain barrier (BBB). Through distinct mechanisms, the BBB has evolved to regulate transport of essential ions, minerals, certain peptides and cells between the blood and the brain, but very restrictive otherwise. Hijacking receptor-mediated transport pathways of the BBB has proved fruitful in developing "Trojan Horse" therapeutic approaches to deliver antibody-based therapies to the brain milieu. The transferrin receptor (TfR)-mediated transcytosis pathway (RMT) is one such example where large recombinant molecules have been designed to bind to the TfR, which in turn activates the RMT pathway, resulting in delivery across the BBB into the brain milieu. Based on these findings, we here investigated whether the addition of serotransferrin could trigger the endogenous TfR-mediated RMT pathway and hence be used to enhance the uptake of TfR binding antibodies. By using an in vitro model of a mouse BBB we could test whether co-administration of mouse serotransferrin with mouse and human-based monoclonal antibodies enhanced brain uptake. In all cases tested, no matter if the monoclonal antibodies were designed to bind the TfR in a monovalent, partially monovalent/bivalent or entirely bivalent fashion, with high or low affinity or avidity, the addition of mouse serotransferrin significantly improved transport across the artificial BBB. This was also true for TfR binding antibodies that on their own passes the BBB poorly. These results were subsequently confirmed using a human in vitro BBB model, along with human serotransferrin and human TfR-binding antibody. To corroborate the in vitro results further, we conducted two pilot in vivo brain uptake study in wildtype mice, by intravenously co-administering a monoclonal TfR-binding antibody in the presence or absence of mouse serotransferrin as a proof-of-concept. In a similar outcome to the in vitro studies, we observed a significant almost two-fold increase in uptake of two different TfR binding antibodies in the brain when it was co-administered with mouse serotransferrin. These findings show for the first time that serotransferrin supplementation can significantly improve the ability of TfR-binding antibodies to traverse the BBB, which provides a realistic therapeutic opportunity for improving the delivery of therapeutic antibodies to the brain.
Collapse
Affiliation(s)
| | | | - Jielu Liu
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden
| | - Greta Hultqvist
- Institutionen För Farmaci, Uppsala Universitet, Uppsala, Sweden.
| |
Collapse
|
4
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
6
|
Shen P, Jiang X, Kuang Y, Wang W, Raj R, Wang W, Zhu Y, Zhang X, Yu B, Zhang J. Natural triterpenoid-aided identification of the druggable interface of HMGB1 occupied by TLR4. RSC Chem Biol 2024; 5:751-762. [PMID: 39092445 PMCID: PMC11289874 DOI: 10.1039/d4cb00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
HMGB1 interacts with TLR4 to activate the inflammatory cascade response, contributing to the pathogenesis of endogenous tissue damage and infection. The immense importance of HMGB1-TLR4 interaction in the immune system has made its binding interface an area of significant interest. To map the binding interface of HMGB1 occupied by TLR4, triterpenoids that disrupt the HMGB1-TLR4 interaction and interfere with HMGB1-induced inflammation were developed. Using the unique triterpenoid PT-22 as a probe along with photoaffinity labeling and site-directed mutagenesis, we found that the binding interface of HMGB1 was responsible for the recognition of TLR4 located on the "L" shaped B-box with K114 as a crucial hot-spot residue. Amazingly, this highly conserved interaction surface overlapped with the antigen-recognition epitope of an anti-HMGB1 antibody. Our findings propose a novel strategy for better understanding the druggable interface of HMGB1 that interacts with TLR4 and provide insights for the rational design of HMGB1-TLR4 PPI inhibitors to fine tune immune responses.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Yi Kuang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Weiwei Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine Nanjing 210046 P. R. China
| | - Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
| | - Wei Wang
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago Chicago IL USA
| | - Yuyuan Zhu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 210009 P. R. China +86-25-86185158 +86-25-86185157
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
7
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
8
|
Sui B, Wang R, Chen C, Kou X, Wu D, Fu Y, Lei F, Wang Y, Liu Y, Chen X, Xu H, Liu Y, Kang J, Liu H, Kwok RTK, Tang BZ, Yan H, Wang M, Xiang L, Yan X, Zhang X, Ma L, Shi S, Jin Y. Apoptotic Vesicular Metabolism Contributes to Organelle Assembly and Safeguards Liver Homeostasis and Regeneration. Gastroenterology 2024; 167:343-356. [PMID: 38342194 DOI: 10.1053/j.gastro.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND & AIMS Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.
Collapse
Affiliation(s)
- Bingdong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Runci Wang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Di Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yu Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Fangcao Lei
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haixiang Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemical and Biological Engineering, Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, The Second Military Medical University, Shanghai, China
| | - Lei Xiang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xutong Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiao Zhang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania
| | - Lan Ma
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania; Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangzhou, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Allam MM, Ibrahim RM, El Gazzar WB, Said MA. Dipeptedyl peptidase-4 (DPP-4) inhibitor downregulates HMGB1/TLR4/NF-κB signaling pathway in a diabetic rat model of non-alcoholic fatty liver disease. Arch Physiol Biochem 2024; 130:87-95. [PMID: 34543583 DOI: 10.1080/13813455.2021.1975758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Inflammatory and immune pathways play a crucial role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Sitagliptin blocks the dipeptidyl peptidase-4 (DPP-4) enzyme, mechanisms that alter inflammatory pathways and the innate immune system, and by which Sitagliptin affects the pathogenesis of NAFLD weren't previously discussed. OBJECTIVE This study aims to understand the interaction between Sitagliptin and innate immune response in order to meliorate NAFLD. METHODS Thirty- two Wistar male albino rats were categorised into four groups. Rats have received a standard diet or a high-fat diet either with or without Sitagliptin. Serum HMGB1, protein and mRNA expressions of hepatic TLR4 and NF-κB, inflammatory cytokines, and histopathological changes were analysed. RESULTS An ameliorative action of Sitagliptin in NAFLD was demonstrated via decreasing HMGB1-mediated TLR4/NF-κB signalling in order to suppress inflammation and reduce insulin resistance. CONCLUSION Sitagliptin may in fact prove to be a beneficial therapeutic intervention in NAFLD.
Collapse
Affiliation(s)
- Mona M Allam
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Reham M Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Mona A Said
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| |
Collapse
|
10
|
Fu J, Deng W, Ge J, Fu S, Li P, Wu H, Wang J, Gao Y, Gao H, Wu T. Sirtuin 1 alleviates alcoholic liver disease by inhibiting HMGB1 acetylation and translocation. PeerJ 2023; 11:e16480. [PMID: 38034869 PMCID: PMC10688304 DOI: 10.7717/peerj.16480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Background Alcoholic liver disease (ALD) encompasses a spectrum of liver disorders resulting from prolonged alcohol consumption and is influenced by factors such as oxidative stress, inflammation, and apoptosis. High Mobility Group Box 1 (HMGB1) plays a pivotal role in ALD due to its involvement in inflammation and immune responses. Another key factor, Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is known for its roles in cellular stress responses and metabolic regulation. Despite individual studies on HMGB1 and SIRT1 in ALD, their specific molecular interactions and combined effects on disease advancement remain incompletely understood. Methods Alcohol-induced liver injury (ALI) models were established using HepG2 cells and male C57BL/6 mice. HMGB1 and SIRT1 expressions were assessed at the mRNA and protein levels usingreverse transcription-quantitative polymerase chain reaction, western blot, and immunofluorescence staining. The physical interaction between HMGB1 and SIRT1 was investigated using co-immunoprecipitation and immunofluorescence co-expression analyses. Cellular viability was evaluated using the CCK-8 assay. Results In patients with clinical ALI, HMGB1 mRNA levels were elevated, while SIRT1 expression was reduced, indicating a negative correlation between the two. ALI models were successfully established in cells and mice, as evidenced by increased markers of cellular and liver damage. HMGB1 acetylation and translocation were observed in both ALI cells and mouse models. Treatment with the SIRT1 agonist, SRT1720, reversed the upregulation of HMGB1 acetylation, nuclear translocation, and release in the ethyl alcohol (EtOH) group. Furthermore, SIRT1 significantly attenuated ALI. Importantly, in vivo binding was confirmed between SIRT1 and HMGB1. Conclusions SIRT1 alleviates HMGB1 acetylation and translocation, thereby ameliorating ALI.
Collapse
Affiliation(s)
- Juan Fu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jun Ge
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shengqi Fu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Panpan Li
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huazhi Wu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiao Wang
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yi Gao
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Gao
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Wu
- Department of Infectious Diseases, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Kwan R, Chen L, Park MJ, Su Z, Weerasinghe SVW, Lee WM, Durkalski-Mauldin VL, Fontana RJ, Omary MB. The Role of Carbamoyl Phosphate Synthetase 1 as a Prognostic Biomarker in Patients With Acetaminophen-induced Acute Liver Failure. Clin Gastroenterol Hepatol 2023; 21:3060-3069.e8. [PMID: 37054752 PMCID: PMC10656042 DOI: 10.1016/j.cgh.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND & AIMS Carbamoyl phosphate synthetase 1 (CPS1) is a highly abundant mitochondrial urea cycle enzyme that is expressed primarily in hepatocytes. CPS1 is constitutively and physiologically secreted into bile but is released into the bloodstream upon acute liver injury (ALI). Given its abundance and known short half-life, we tested the hypothesis that it may serve as a prognostic serum biomarker in the setting of acute liver failure (ALF). METHODS CPS1 levels were determined using enzyme-linked immunosorbent assay and immunoblotting of sera collected by the ALF Study Group (ALFSG) from patients with ALI and ALF (103 patients with acetaminophen and 167 non-acetaminophen ALF etiologies). A total of 764 serum samples were examined. The inclusion of CPS1 was compared with the original ALFSG Prognostic Index by area under the receiver operating characteristic curve analysis. RESULTS CPS1 values for acetaminophen-related patients were significantly higher than for non-acetaminophen patients (P < .0001). Acetaminophen-related patients who received a liver transplant or died within 21 days of hospitalization exhibited higher CPS1 levels than patients who spontaneously survived (P = .01). Logistic regression and area under the receiver operating characteristic analysis of CPS1 enzyme-linked immunosorbent assay values improved the accuracy of the ALFSG Prognostic Index, which performed better than the Model for End-Stage Liver Disease, in predicting 21-day transplant-free survival for acetaminophen- but not non-acetaminophen-related ALF. An increase of CPS1 but not alanine transaminase or aspartate transaminase, when comparing day 3 with day 1 levels was found in a higher percentage of acetaminophen transplanted/dead patients (P < .05). CONCLUSION Serum CPS1 determination provides a new potential prognostic biomarker to assess patients with acetaminophen-induced ALF.
Collapse
Affiliation(s)
- Raymond Kwan
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Switch Therapeutics, Inc, San Francisco, CA
| | - Lu Chen
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Zemin Su
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | | | - William M Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Robert J Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI
| | - M Bishr Omary
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ; Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ; Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
12
|
Zheng X, Lu J, Liu J, Zhou L, He Y. HMGB family proteins: Potential biomarkers and mechanistic factors in cardiovascular diseases. Biomed Pharmacother 2023; 165:115118. [PMID: 37437373 DOI: 10.1016/j.biopha.2023.115118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Cardiovascular disease (CVD) is the most fatal disease that causes sudden death, and inflammation contributes substantially to its occurrence and progression. The prevalence of CVD increases as the population ages, and the pathophysiology is complex. Anti-inflammatory and immunological modulation are the potential methods for CVD prevention and treatment. High-Mobility Group (HMG) chromosomal proteins are one of the most abundant nuclear nonhistone proteins which act as inflammatory mediators in DNA replication, transcription, and repair by producing cytokines and serving as damage-associated molecular patterns in inflammatory responses. The most common and well-studied HMG proteins are those with an HMGB domain, which participate in a variety of biological processes. HMGB1 and HMGB2 were the first members of the HMGB family to be identified and are present in all investigated eukaryotes. Our review is primarily concerned with the involvement of HMGB1 and HMGB2 in CVD. The purpose of this review is to provide a theoretical framework for diagnosing and treating CVD by discussing the structure and function of HMGB1 and HMGB2.
Collapse
Affiliation(s)
- Xialei Zheng
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Junmi Lu
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jing Liu
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liufang Zhou
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cardiovascular Medicine, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Yuhu He
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
13
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Morrison JI, Petrovic A, Metzendorf NG, Rofo F, Yilmaz CU, Stenler S, Laudon H, Hultqvist G. Standardized Preclinical In Vitro Blood-Brain Barrier Mouse Assay Validates Endocytosis-Dependent Antibody Transcytosis Using Transferrin-Receptor-Mediated Pathways. Mol Pharm 2023; 20:1564-1576. [PMID: 36808999 PMCID: PMC9997753 DOI: 10.1021/acs.molpharmaceut.2c00768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The presence of the blood-brain barrier (BBB) creates a nigh-on impenetrable obstacle for large macromolecular therapeutics that need to be delivered to the brain milieu to treat neurological disorders. To overcome this, one of the strategies used is to bypass the barrier with what is referred to as a "Trojan Horse" strategy, where therapeutics are designed to use endogenous receptor-mediated pathways to piggyback their way through the BBB. Even though in vivo methodologies are commonly used to test the efficacy of BBB-penetrating biologics, comparable in vitro BBB models are in high demand, as they benefit from being an isolated cellular system devoid of physiological factors that can on occasion mask the processes behind BBB transport via transcytosis. We have developed an in vitro BBB model (In-Cell BBB-Trans assay) based on the murine cEND cells that help delineate the ability of modified large bivalent IgG antibodies conjugated to the transferrin receptor binder scFv8D3 to cross an endothelial monolayer grown on porous cell culture inserts (PCIs). Following the administration of bivalent antibodies into the endothelial monolayer, a highly sensitive enzyme-linked immunosorbent assay (ELISA) is used to determine the concentration in the apical (blood) and basolateral (brain) chambers of the PCI system, allowing for the evaluation of apical recycling and basolateral transcytosis, respectively. Our results show that antibodies conjugated to scFv8D3 transcytose at considerably higher levels compared to unconjugated antibodies in the In-Cell BBB-Trans assay. Interestingly, we are able to show that these results mimic in vivo brain uptake studies using identical antibodies. In addition, we are able to transversely section PCI cultured cells, allowing for the identification of receptors and proteins that are likely involved in the transcytosis of the antibodies. Furthermore, studies using the In-Cell BBB-Trans assay revealed that transcytosis of the transferrin-receptor-targeting antibodies is dependent on endocytosis. In conclusion, we have designed a simple, reproducible In-Cell BBB-Trans assay based on murine cells that can be used to rapidly determine the BBB-penetrating capabilities of transferrin-receptor-targeting antibodies. We believe that the In-Cell BBB-Trans assay can be used as a powerful, preclinical screening platform for therapeutic neurological pathologies.
Collapse
Affiliation(s)
- Jamie I Morrison
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| | - Alex Petrovic
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| | | | - Fadi Rofo
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| | - Canan U Yilmaz
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| | - Sofia Stenler
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| | | | - Greta Hultqvist
- Institutionen för Farmaci, Uppsala Universitet, Uppsala 752 37, Sweden
| |
Collapse
|
15
|
Zhao ZB, Marschner JA, Iwakura T, Li C, Motrapu M, Kuang M, Popper B, Linkermann A, Klocke J, Enghard P, Muto Y, Humphreys BD, Harris HE, Romagnani P, Anders HJ. Tubular Epithelial Cell HMGB1 Promotes AKI-CKD Transition by Sensitizing Cycling Tubular Cells to Oxidative Stress: A Rationale for Targeting HMGB1 during AKI Recovery. J Am Soc Nephrol 2023; 34:394-411. [PMID: 36857499 PMCID: PMC10103235 DOI: 10.1681/asn.0000000000000024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/22/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.
Collapse
Affiliation(s)
- Zhi Bo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian A. Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU München, Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Helena Erlandsson Harris
- Departments of Rheumatology and of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio" and Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
16
|
Protective Effects of Sophorae tonkinensis Gagnep. (Fabaceae) Radix et Rhizoma Water Extract on Carbon Tetrachloride-Induced Acute Liver Injury. Molecules 2022; 27:molecules27248650. [PMID: 36557783 PMCID: PMC9780913 DOI: 10.3390/molecules27248650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Sophorae tonkinensis Radix et Rhizoma (STR) is a traditional Chinese herbal medicine. STR can reduce aminotransferase activity; however, the specific mechanism remains unclear. Here, we explored the potential therapeutic effects and hepatoprotective mechanism of STR on liver damage in mice. The chemical characteristics of the extract were characterized using ultra-high-performance liquid chromatography-tandem mass spectrometry fingerprinting, and its antioxidant capacity was verified using free radical scavenging tests. Forty-eight Kunming mice were randomly assigned into six groups. The model was made after the corresponding drug was given. The results showed that the STR water extract pretreatment significantly reduced serum aminotransferase and related liver function indicators compared with that in the model group. Furthermore, the STR water extract pretreatment significantly inhibited the apoptosis of liver cells, the level of liver high-mobility group box 1 (HMGB1), and inflammatory factors in hepatic tissue compared with that in the model group, and significantly downregulated the levels of toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) compared with those in the model group. Overall, the STR water extract exerted a significant protective effect on CCL4-induced acute liver injury in this study, and the accurate active ingredients of the STR water extract will be explored in the near future.
Collapse
|
17
|
Li L, Wen Y, Wrapp D, Jeong J, Zhao P, Xiong W, Atkins CL, Shan Z, Hui D, McLellan JS, Zhang N, Ju C, An Z. A novel humanized Chi3l1 blocking antibody attenuates acetaminophen-induced liver injury in mice. Antib Ther 2022; 6:1-12. [PMID: 36683763 PMCID: PMC9847341 DOI: 10.1093/abt/tbac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Acetaminophen (APAP) overdose is a leading cause of acute liver injury in the USA. The chitinase 3-like-1 (Chi3l1) protein contributes to APAP-induced liver injury (AILI) by promoting hepatic platelet recruitment. Here, we report the development of a Chi3l1-targeting antibody as a potential therapy for AILI. By immunizing a rabbit successively with the human and mouse Chi3l1 proteins, we isolated cross-reactive monoclonal antibodies (mAbs) from single memory B cells. One of the human and mouse Chi3l1 cross-reactive mAbs was humanized and characterized in both in vitro and in vivo biophysical and biological assays. X-ray crystallographic analysis of the lead antibody C59 in complex with the human Chi3l1 protein revealed that the kappa light contributes to majority of the antibody-antigen interaction; and that C59 binds to the 4α-5β loop and 4α-helix of Chi3l1, which is a functional epitope and hotspot for the development of Chi3l1 blocking antibodies. We humanized the C59 antibody by complementarity-determining region grafting and kappa chain framework region reverse mutations. The humanized C59 antibody exhibited similar efficacy as the parental rabbit antibody C59 in attenuating AILI in vivo. Our findings validate Chi3l1 as a potential drug target for AILI and provide proof of concept of developing Chi3l1 blocking antibody as a therapy for the treatment of AILI.
Collapse
Affiliation(s)
- Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jongmin Jeong
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Constance Lynn Atkins
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhao Shan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650106, China
| | - Deng Hui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ningyan Zhang
- To whom correspondence should be addressed. Ningyan Zhang, Cynthia Ju, Zhiqiang An. , ,
| | - Cynthia Ju
- To whom correspondence should be addressed. Ningyan Zhang, Cynthia Ju, Zhiqiang An. , ,
| | - Zhiqiang An
- To whom correspondence should be addressed. Ningyan Zhang, Cynthia Ju, Zhiqiang An. , ,
| |
Collapse
|
18
|
Yang T, Wang H, Wang X, Li J, Jiang L. The Dual Role of Innate Immune Response in Acetaminophen-Induced Liver Injury. BIOLOGY 2022; 11:biology11071057. [PMID: 36101435 PMCID: PMC9312699 DOI: 10.3390/biology11071057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
Acetyl-para-aminophenol (APAP), a commonly used antipyretic analgesic, is becoming increasingly toxic to the liver, resulting in a high rate of acute hepatic failure in Europe and the United States. Excessive APAP metabolism in the liver develops an APAP-protein adduct, which causes oxidative stress, MPTP opening, and hepatic necrosis. HMGB-1, HSP, nDNA, mtDNA, uric acid, and ATP are DMAPs released during hepatic necrosis. DMAPs attach to TLR4-expressing immune cells such KCs, macrophages, and NK cells, activating them and causing them to secrete cytokines. Immune cells and their secreted cytokines have been demonstrated to have a dual function in acetaminophen-induced liver injury (AILI), with a role in either proinflammation or pro-regeneration, resulting in contradicting findings and some research confusion. Neutrophils, KCs, MoMFs, NK/NKT cells, γδT cells, DCs, and inflammasomes have pivotal roles in AILI. In this review, we summarize the dual role of innate immune cells involved in AILI and illustrate how these cells initiate innate immune responses that lead to persistent inflammation and liver damage. We also discuss the contradictory findings in the literature and possible protocols for better understanding the molecular regulatory mechanisms of AILI.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
- Department of Respiratory and Critical Care Medicine, The Affiliated People’s Hospital of Jiangsu University, The Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang 212001, China
| | - Han Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; (T.Y.); (H.W.); (X.W.)
| |
Collapse
|
19
|
Wang J, Zhang L, Shi Q, Yang B, He Q, Wang J, Weng Q. Targeting innate immune responses to attenuate acetaminophen-induced hepatotoxicity. Biochem Pharmacol 2022; 202:115142. [PMID: 35700755 DOI: 10.1016/j.bcp.2022.115142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is an important cause of acute liver failure, resulting in massive deaths in many developed countries. Currently, the metabolic process of APAP in the body has been well studied. However, the underlying mechanism of APAP-induced liver injury remains elusive. Increasing clinical and experimental evidences indicate that the innate immune responses are involved in the pathogenesis of APAP-induced acute liver injury (AILI), in which immune cells have dual roles of inducing inflammation to exacerbate hepatotoxicity and removing dead cells and debris to help liver regeneration. In this review, we summarize the latest findings of innate immune cells involved in AILI, particularly emphasizing the activation of innate immune cells and their different roles during the injury and repair phases. Moreover, current available treatments are discussed according to the different roles of innate immune cells in the development of AILI. This review aims to update the knowledge about innate immune responses in the pathogenesis of AILI, and provide potential therapeutic interventions for AILI.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Shi
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
20
|
Zhang ZH, Yang HX, Jin Q, Wu YL, Cui ZY, Shang Y, Liu J, Zhan ZY, Lian LH, Nan JX. Luteolin attenuates hepatic injury in septic mice by regulating P2X7R-based HMGB1 release. Food Funct 2021; 12:10714-10727. [PMID: 34607339 DOI: 10.1039/d1fo01746b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2X7 receptor (P2X7R) and NLRP3 cooperatively participate in inflammation and hepatocyte damage during hepatic injury induced by lipopolysaccharides (LPS). High-mobility group box 1 (HMGB1) released from immune cells in response to such stimuli plays a vital role in mediating inflammation via TLR4 and the receptor for advanced glycation end products (RAGE), a receptor for HMGB1. However, the correlation among P2X7R, RAGE and TLR4 in regulating the release of HMGB1 has not been elucidated. Increasing the number of daily foods is found to be beneficial for hepatocyte damage in septic hepatic injury. Hence, we investigated the effects of luteolin, a natural flavonoid mainly existing in vegetables and fruits, on liver injury, focusing on how luteolin participates in hepatitis based on the P2X7R-RAGE-TLR4 axis by regulating the release of HMGB1. The results demonstrated that the indicators of hepatic injury such as increased ALT, AST in the serum and infiltration of immune cells were attenuated after luteolin treatment in LPS-induced mice. Luteolin could also suppress the production and release of HMGB1 and the activation of caspase 1 both in LPS-induced mice and LPS/ATP-stimulated HepG2 cells. Collectively, luteolin reversed LPS-induced hepatic injury, especially inflammation, likely by regulating the release of HMGB1 through the P2X7R-RAGE-TLR4 axis.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Quan Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Jian Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, Jilin Province 133002, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
21
|
Abstract
The incidence rate of drug-induced liver injury has been high with the extensive use of drugs and the development and application of new drugs. The pathogenesis of drug-induced liver injury is not fully understood, so there is no significant breakthrough in its treatment. The diagnosis of drug-induced liver injury still depends on drug history, clinical manifestations, imaging, biochemical tests, and liver biopsy. This article reviews the recent progress in the understanding of the incidence rate, classification, risk factors, and serum markers of drug-induced liver injury.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
22
|
Liu J, Jiang M, Jin Q, Wu YL, Cui ZY, Cui BW, Shang Y, Zhan ZY, Lin YC, Jiao JY, Piao MH, Zhang ZH, Sun RH, Nan JX, Lian LH. Modulation of HMGB1 Release in APAP-Induced Liver Injury: A Possible Strategy of Chikusetsusaponin V Targeting NETs Formation. Front Pharmacol 2021; 12:723881. [PMID: 34366873 PMCID: PMC8333615 DOI: 10.3389/fphar.2021.723881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen (APAP), one of the most common antipyretic analgesics, which is safe at therapeutic dose, cause acute liver injury and even death at overdose. However, the mechanism of APAP-induced inflammation in liver injury is still controversial. Therefore, effective drug intervention is urgently needed. The aim of this study was to explore the inflammatory exact mechanism of APAP, especially on neutrophils, and to study the intervention effect of Chikusetsusaponin V (CKV) derived from Panax japonicus. Establishment of hepatotoxicity model of APAP in vitro and in vivo. In vitro, HepG2 cells, AML12 cells, primary mouse hepatocytes and neutrophils were used to mimic APAP-affected hepatocytes and neutrophil. In vivo, C57BL/6 mice were administrated overdose of APAP with or without neutrophil depletion or abolishing neutrophil extracellular traps (NETs) formation. In this study, APAP stimulation increased the level of HMGB1, IL-1β and Caspase-1 in mouse liver, especially hepatocytes, which had a synergistic effect with LPS/ATP combination. NETs were formatted at early stage of APAP or HMGB1-stimulated neutrophils’ damage. Conditioned mediums from APAP-treated hepatocytes induced more significant NETs than direct APAP stimulation. Neutrophil depletion or abolishing NETs formation decreased HMGB1 level, eventually blocked hepatocytes necrosis. CKV pretreatment interfered Caspase-1 activation and HMGB1 release in APAP-damaged hepatocytes. CKV also prevented NETs formation. These results indicate that the production of HMGB1 may depend on the activation of Caspase-1 and play a key role in liver inflammation caused by APAP. The cross-dialogue between hepatocytes and neutrophils can be mediated by HMGB1. Therefore, CKV has a positive intervention effect on NETs-related inflammation in APAP-damaged liver, targeting Caspase-1-HMGB1.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Min Jiang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Quan Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhen-Yu Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ben-Wen Cui
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Shang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yong-Ce Lin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing-Ya Jiao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei-Hua Piao
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Rong-Hui Sun
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Centre, Yanbian University Hospital, Yanji, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
23
|
Zhang C, Shi X, Su Z, Hu C, Mu X, Pan J, Li M, Teng F, Ling T, Zhao T, Xu C, Ji G, You Q. CD36 deficiency ameliorates drug-induced acute liver injury in mice. Mol Med 2021; 27:57. [PMID: 34092215 PMCID: PMC8182905 DOI: 10.1186/s10020-021-00325-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Acetaminophen (APAP) overdose causes hepatotoxicity and even acute liver failure. Recent studies indicate that sterile inflammation and innate immune cells may play important roles in damage-induced hepatocytes regeneration and liver repair. The scavenger receptor CD36 has its crucial functions in sterile inflammation. However, the roles of CD36 in APAP induced acute liver injury remain unclear and warrant further investigation. Methods WT C57BL/6 J and CD36−/− mice were intraperitoneally injected with APAP (300 mg/kg) after fasting for 16 h. Liver injury was evaluated by serum alanine aminotransferase (ALT) level and liver tissue hematoxylin and eosin (H&E) staining. Liver inflammatory factor expression was determined by real-time polymerase chain reaction (PCR). The protein adducts forming from the metabolite of APAP and the metabolism enzyme cytochrome P450 2E1 (CYP2E1) levels were measured by Western blot. Liver infiltrating macrophages and neutrophils were characterized by flow cytometry. RNA sequencing and Western blot were used to evaluate the effect of damage-associated molecular patterns (DAMP) molecule high mobility group B1 (HMGB1) on WT and CD36−/− macrophages. Moreover, PP2, a Src kinase inhibitor, blocking CD36 signaling, was applied in APAP model. Results The expression of CD36 was increased in the liver of mice after APAP treatment. Compared with WT mice, APAP treated CD36−/− mice show less liver injury. There was no significant difference in APAP protein adducts and CYP2E1 expression between these two strains. However, reduced pro-inflammatory factor mRNA expression and serum IL-1β level were observed in APAP treated CD36−/− mice as well as infiltrating macrophages and neutrophils. Moreover, CD36 deficiency impaired the activation of c-Jun N-terminal kinase (JNK) caused by APAP. Interestingly, the lack of CD36 reduced the activation of extracellular regulated protein kinases (Erk) and v-akt murine thymoma viral oncogene homolog (Akt) induced by HMGB1. RNA transcription sequencing data indicated that HMGB1 has a different effect on WT and CD36−/− macrophages. Furthermore, treatment with PP2 attenuated APAP induced mouse liver injury. Conclusion Our data demonstrated that CD36 deficiency ameliorated APAP-induced acute liver injury and inflammatory responses by decreasing JNK activation. CD36 might serve as a new target to reduce acute liver injury.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xiao Shi
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhongping Su
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Chao Hu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fengmeng Teng
- Affilated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ting Zhao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Che Xu
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Guozhong Ji
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China. .,Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.
| |
Collapse
|
24
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
25
|
Sasaki Y, Yoshino N, Okuwa T, Odagiri T, Satoh T, Muraki Y. A mouse monoclonal antibody against influenza C virus attenuates acetaminophen-induced liver injury in mice. Sci Rep 2021; 11:11816. [PMID: 34083649 PMCID: PMC8175586 DOI: 10.1038/s41598-021-91251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Molecular mimicry is one of the main processes for producing autoantibodies during infections. Although some autoantibodies are associated with autoimmune diseases, the functions of many autoantibodies remain unknown. Previously, we reported that S16, a mouse (BALB/c) monoclonal antibody against the hemagglutinin-esterase fusion glycoprotein of influenza C virus, recognizes host proteins in some species of animals, but we could not succeed in identifying the proteins. In the present study, we found that S16 cross-reacted with acetyl-CoA acyltransferase 2 (ACAA2), which is expressed in the livers of BALB/c mice. ACAA2 was released into the serum after acetaminophen (APAP) administration, and its serum level correlated with serum alanine aminotransferase (ALT) activity. Furthermore, we observed that S16 injected into mice with APAP-induced hepatic injury prompted the formation of an immune complex between S16 and ACAA2 in the serum. The levels of serum ALT (p < 0.01) and necrotic areas in the liver (p < 0.01) were reduced in the S16-injected mice. These results suggest that S16 may have a mitigation function in response to APAP-induced hepatotoxicity. This study shows the therapeutic function of an autoantibody and suggests that an antibody against extracellular ACAA2 might be a candidate for treating APAP-induced hepatic injury.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takashi Satoh
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
26
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
27
|
Watanabe H, Son M. The Immune Tolerance Role of the HMGB1-RAGE Axis. Cells 2021; 10:564. [PMID: 33807604 PMCID: PMC8001022 DOI: 10.3390/cells10030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE's roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.
Collapse
Affiliation(s)
- Haruki Watanabe
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
28
|
Rudjito R, Agalave NM, Farinotti AB, Lundbäck P, Szabo-Pardi TA, Price TJ, Harris HE, Burton MD, Svensson CI. Sex- and cell-dependent contribution of peripheral high mobility group box 1 and TLR4 in arthritis-induced pain. Pain 2021; 162:459-470. [PMID: 32796317 PMCID: PMC7808351 DOI: 10.1097/j.pain.0000000000002034] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Spinal high mobility group box 1 protein (HMGB1) plays crucial roles in arthritis-induced pain; however, the involvement of peripheral HMGB1 has not been examined previously. In this study, we addressed the role of peripheral HMGB1 and explored if sex contributes differentially to nociception in arthritis. We found Hmgb1 expression to be elevated in the ankle joints of male and female mice subjected to collagen antibody-induced arthritis. Blocking the action of peripheral HMGB1, however, only reversed collagen antibody-induced arthritis-mediated hypersensitivity in males. Intra-articular injection of the toll-like receptor (TLR)4-activating, partially reduced disulfide, but not the fully reduced all-thiol, HMGB1 evoked mechanical hypersensitivity in both sexes. A sex-dependent temporal profile in expression of inflammatory factors in the ankle joint was observed in response to intra-articular injection of disulfide HMGB1, with male mice showing a delayed, yet longer-lasting increase in mRNA levels for several of the investigated factors. Intra-articular HMGB1 did not induce cellular infiltration in the ankle joint suggesting its action on tissue resident cells. To further explore possible sex differences in cellular involvement, we used the macrophage inhibitor, minocycline, and mice with specific TLR4 depletion in myeloid cells or nociceptors. We found that inhibition of resident macrophages attenuated HMGB1-induced pain-like behavior only in male mice. Interestingly, although the contribution of TLR4 on myeloid cells to nociception was minimal in females compared to males, TLR4 on nociceptors are important for HMGB1-induced pain in both sexes. Collectively, our work highlights sex- and cellular location-dependent roles of HMGB1 and TLR4 in peripheral pain mechanisms.
Collapse
Affiliation(s)
- Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Lundbäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas A. Szabo-Pardi
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Theodore J. Price
- Department of Neuroscience, Pain Neurobiology Research Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | | | - Michael D. Burton
- Department of Neuroscience,Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Vodovotz Y, Barclay D, Yin J, Squires RH, Zamora R. Dynamics of Systemic Inflammation as a Function of Developmental Stage in Pediatric Acute Liver Failure. Front Immunol 2021; 11:610861. [PMID: 33519820 PMCID: PMC7844097 DOI: 10.3389/fimmu.2020.610861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
The Pediatric Acute Liver Failure (PALF) study is a multicenter, observational cohort study of infants and children diagnosed with this complex clinical syndrome. Outcomes in PALF reflect interactions among the child’s clinical condition, response to supportive care, disease severity, potential for recovery, and, if needed, availability of a suitable organ for liver transplantation (LTx). Previously, we used computational analyses of immune/inflammatory mediators that identified three distinct dynamic network patterns of systemic inflammation in PALF associated with spontaneous survivors, non-survivors (NS), and LTx recipients. To date, there are no data exploring age-specific immune/inflammatory responses in PALF. Accordingly, we measured a number of clinical characteristics and PALF-associated systemic inflammatory mediators in daily serum samples collected over the first 7 days following enrollment from five distinct PALF cohorts (all spontaneous survivors without LTx): infants (INF, <1 year), toddlers (TOD, 1–2 years.), young children (YCH, 2–4 years), older children (OCH, 4–13 years) and adolescents (ADO, 13–18 years). Among those groups, we observed significant (P<0.05) differences in ALT, creatinine, Eotaxin, IFN-γ, IL-1RA, IL-1β, IL-2, sIL-2Rα, IL-4, IL-6, IL-12p40, IL-12p70, IL-13, IL-15, MCP-1, MIP-1α, MIP-1β, TNF-α, and NO2−/NO3−. Dynamic Bayesian Network inference identified a common network motif with HMGB1 as a central node in all sub-groups, with MIG/CXCL9 being a central node in all groups except INF. Dynamic Network Analysis (DyNA) inferred different dynamic patterns and overall dynamic inflammatory network complexity as follows: OCH>INF>TOD>ADO>YCH. Hypothesizing that systemically elevated but sparsely connected inflammatory mediators represent pathological inflammation, we calculated the AuCon score (area under the curve derived from multiple measures over time divided by DyNA connectivity) for each mediator, and identified HMGB1, MIG, IP-10/CXCl10, sIL-2Rα, and MCP-1/CCL2 as potential correlates of PALF pathophysiology, largely in agreement with the results of Partial Least Squares Discriminant Analysis. Since NS were in the INF age group, we compared NS to INF and found greater inflammatory coordination and dynamic network connectivity in NS vs. INF. HMGB1 was the sole central node in both INF and NS, though NS had more downstream nodes. Thus, multiple machine learning approaches were used to gain both basic and potentially translational insights into a complex inflammatory disease.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert H Squires
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Zou J, Wang SP, Wang YT, Wan JB. Regulation of the NLRP3 inflammasome with natural products against chemical-induced liver injury. Pharmacol Res 2020; 164:105388. [PMID: 33359314 DOI: 10.1016/j.phrs.2020.105388] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The past decades have witnessed significant progress in understanding the process of sterile inflammation, which is dependent on a cytosolic complex termed the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome. Activation of NLRP3 inflammasome requires two steps, including the activation of Toll-like receptor (TLR) by its ligands, resulting in transcriptional procytokine and inflammasome component activation, and the assembly and activation of NLRP3 inflammasome triggered by various danger signals, leading to caspase-1 activation, which could subsequently cleave procytokines into their active forms. Metabolic disorders, ischemia and reperfusion, viral infection and chemical insults are common pathogenic factors of liver-related diseases that usually cause tissue damage and cell death, providing numerous danger signals for the activation of NLRP3 inflammasome. Currently, natural products have attracted much attention as potential agents for the prevention and treatment of liver diseases due to their multitargets and nontoxic natures. A great number of natural products have been shown to exhibit beneficial effects on liver injury induced by various chemicals through regulating NLRP3 inflammasome pathways. In this review, the roles of the NLRP3 inflammasome in chemical-induced liver injury (CILI) and natural products that exhibit beneficial effects in CILI through the regulation of inflammasomes were systematically summarized.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate target gene expression by binding to sequences in messenger RNA processing. Inflammation is a protective reaction from harmful stimuli. MiRNAs can be biomarkers of diseases related to inflammation and are widely expressed in serum. However, overall changes in serum miRNA levels during inflammation have yet to be observed. Here, we selected studies published until 20 January 2020 that examined miRNAs in mouse models of inflammation. Serum microRNA, inflammation, inflammatory and mouse were used as search terms to select articles from PubMed and MEDLINE. Among the articles, sepsis and 18 related miRNAs were mainly examined. Eleven miRNAs were related to brain disease and 10 with fibrosis. Seventeen injury-induced inflammatory disease studies were included, as well as other inflammatory diseases, such as metabolic disease, vascular disease, arthritis, asthma, autoimmune disease, inflammatory bowel disease, and thyroiditis. The data described miRNA-associated downstream pathways associated with inflammation as well as mitochondrial responses, oxidative responses, apoptosis, cell signalling, and cell differentiation. We expect that the data will inform future animal inflammation-related miRNA studies.
Collapse
Affiliation(s)
- Areum Lee
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
32
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
33
|
Hu F, Guo Q, Wei M, Huang Z, Shi L, Sheng Y, Ji L. Chlorogenic acid alleviates acetaminophen-induced liver injury in mice via regulating Nrf2-mediated HSP60-initiated liver inflammation. Eur J Pharmacol 2020; 883:173286. [PMID: 32603696 DOI: 10.1016/j.ejphar.2020.173286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP)-induced acute liver failure is a serious clinic issue. Our previous study showed that chlorogenic acid (CGA) alleviated APAP-induced liver inflammatory injury, but its concrete mechanism is still not clear. This study aims to elucidate the engaged mechanism involved in the CGA-provided alleviation on APAP-induced liver inflammation. CGA reduced the increased hepatic infiltration of immune cells and the elevated serum contents of high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) in mice treated with APAP. CGA decreased the enhanced hepatic mRNA expression of some pro-inflammatory molecules in mice treated with APAP and in RAW264.7 cells stimulated with HMGB1 or HSP60. CGA attenuated liver mitochondrial injury, rescued the decreased lon protease homolog (Lon) protein expression, and reduced mitochondrial HSP60 release in mice treated with APAP. Moreover, the CGA-provided alleviation on APAP-induced liver inflammatory injury was diminished in mice treated with anti-HSP60 antibody. Further results showed that the CGA-provided alleviation on APAP-induced liver inflammation was also diminished in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice. Meanwhile, the CGA-provided reduce on serum HSP60 content and restore of mitochondrial Lon protein expression were all diminished in Nrf2 knock-out mice treated with APAP. In conclusion, our study revealed that CGA alleviated APAP-induced liver inflammatory injury initiated by HSP60 or HMGB1, and Nrf2 was critical for regulating the mitochondrial HSP60 release via rescuing the reduced mitochondrial Lon protein expression.
Collapse
Affiliation(s)
- Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liang Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
34
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
35
|
Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med 2020; 26:42. [PMID: 32380958 PMCID: PMC7203545 DOI: 10.1186/s10020-020-00172-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The 2019 novel coronavirus disease (COVID-19) causes for unresolved reasons acute respiratory distress syndrome in vulnerable individuals. There is a need to identify key pathogenic molecules in COVID-19-associated inflammation attainable to target with existing therapeutic compounds. The endogenous damage-associated molecular pattern (DAMP) molecule HMGB1 initiates inflammation via two separate pathways. Disulfide-HMGB1 triggers TLR4 receptors generating pro-inflammatory cytokine release. Extracellular HMGB1, released from dying cells or secreted by activated innate immunity cells, forms complexes with extracellular DNA, RNA and other DAMP or pathogen-associated molecular (DAMP) molecules released after lytic cell death. These complexes are endocytosed via RAGE, constitutively expressed at high levels in the lungs only, and transported to the endolysosomal system, which is disrupted by HMGB1 at high concentrations. Danger molecules thus get access to cytosolic proinflammatory receptors instigating inflammasome activation. It is conceivable that extracellular SARS-CoV-2 RNA may reach the cellular cytosol via HMGB1-assisted transfer combined with lysosome leakage. Extracellular HMGB1 generally exists in vivo bound to other molecules, including PAMPs and DAMPs. It is plausible that these complexes are specifically removed in the lungs revealed by a 40% reduction of HMGB1 plasma levels in arterial versus venous blood. Abundant pulmonary RAGE expression enables endocytosis of danger molecules to be destroyed in the lysosomes at physiological HMGB1 levels, but causing detrimental inflammasome activation at high levels. Stress induces apoptosis in pulmonary endothelial cells from females but necrosis in cells from males. CONCLUSION Based on these observations we propose extracellular HMGB1 to be considered as a therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institutet at Karolinska University Hospital, Tomtebodavägen 18A, 171 77 Stockholm, Sweden
| | - William Ottestad
- Air Ambulance department, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kevin J. Tracey
- Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York, 11030 USA
- Department of Surgery, North Shore University Hospital, Northwell Health, 300 Community Drive, Manhasset, NY 11030 USA
| |
Collapse
|
36
|
Aulin C, Lassacher T, Palmblad K, Erlandsson Harris H. Early stage blockade of the alarmin HMGB1 reduces cartilage destruction in experimental OA. Osteoarthritis Cartilage 2020; 28:698-707. [PMID: 31982563 DOI: 10.1016/j.joca.2020.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The alarmin HMGB1 is an endogenous molecule that is released into the extracellular space upon trauma or cell activation. Extracellular HMGB1 initiates innate immune responses and besides mediating inflammation, has osteoclast-activating features and mediates pain, all important features in OA. The aim of this study was to examine the involvement of HMGB1 in experimental OA and to explore the effect of local anti-HMGB1-therapy on disease progression. METHOD OA was induced in mice by surgical destabilization of knee joints and HMGB1 expression and localization was assessed by immunohistochemistry. For therapy evaluation, HMGB1-neutralizing antibodies were injected intraarticularly, alone or encapsulated in an injectable hyaluronan-based delivery vehicle. Human primary chondrocytes were stimulated with rHMGB1 and analyzed by qPCR and cytometric bead-array. RESULTS HMGB1 immunostaining of mouse OA joints demonstrated intra- and pericellular expression in chondrocytes, overlapping with proteoglycan depleted areas. Intra-articular injection of anti-HMGB1 antibodies had cartilage-protective effects, comparable to treatment with a TNF inhibitor. Direct and vehicle-based delivery had similar ameliorating effects and the effect of a single, early injection could not be enhanced by repeated injections. In vitro stimulation of chondrocytes with rHMGB1 affected chondrocyte function by inducing protein expression of IL6 and IL8 and downregulating mRNA of COL2A1. CONCLUSIONS Our results suggest that the alarmin HMGB1 might be a new target for OA therapy development as we could observe an aberrant HMGB1 expression in mouse OA joints, stimulation of chondrocytes with rHMGB1 induced cytokine production and decreased matrix production and finally that HMGB1 blockade suppressed disease progression.
Collapse
Affiliation(s)
- C Aulin
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, And Division of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - T Lassacher
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, And Division of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - K Palmblad
- Department of Women and Child Health, Karolinska Institutet, Unit of Pediatric Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - H Erlandsson Harris
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, And Division of Rheumatology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
37
|
Day J, Otto S, Cash K, Eldi P, Hissaria P, Proudman S, Limaye V, Hayball JD. Aberrant Expression of High Mobility Group Box Protein 1 in the Idiopathic Inflammatory Myopathies. Front Cell Dev Biol 2020; 8:226. [PMID: 32363191 PMCID: PMC7180187 DOI: 10.3389/fcell.2020.00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction High Mobility Group Box Protein 1 (HMGB1) is a DNA-binding protein that exerts inflammatory or pro-repair effects upon translocation from the nucleus. We postulate aberrant HMGB1 expression in immune-mediated necrotising myopathy (IMNM). Methods Herein, we compare HMGB1 expression (serological and sarcoplasmic) in patients with IMNM with that of other myositis subtypes using immunohistochemistry and ELISA. Results IMNM (n = 62) and inclusion body myositis (IBM, n = 14) patients had increased sarcoplasmic HMGB1 compared with other myositis patients (n = 46). Sarcoplasmic HMGB1 expression correlated with muscle weakness and histological myonecrosis, inflammation, regeneration and autophagy. Serum HMGB1 levels were elevated in patients with IMNM, dermatomyositis and polymositis, and those myositis patients with extramuscular inflammatory features. Discussion Aberrant HMGB1 expression occurs in myositis patients and correlates with weakness. A unique expression profile of elevated sarcoplasmic and serum HMGB1 was detected in IMNM.
Collapse
Affiliation(s)
- Jessica Day
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sophia Otto
- Royal Adelaide Hospital, Adelaide, SA, Australia.,SA Pathology, Adelaide, SA, Australia
| | | | - Preethi Eldi
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Pravin Hissaria
- Royal Adelaide Hospital, Adelaide, SA, Australia.,SA Pathology, Adelaide, SA, Australia
| | - Susanna Proudman
- Royal Adelaide Hospital, Adelaide, SA, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Vidya Limaye
- Royal Adelaide Hospital, Adelaide, SA, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Adelaide, SA, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
38
|
Wan J, Kuang G, Zhang L, Jiang R, Chen Y, He Z, Ye D. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression. Int Immunopharmacol 2020; 83:106435. [PMID: 32222641 DOI: 10.1016/j.intimp.2020.106435] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a common antipyretic and analgesic drug, but its overdose can induce acute liver failure with lack of effective therapies. Hesperetin, a dihydrogen flavonoid compound, has been revealed to exert multiple pharmacological activities. Here, we explored the protective effects and mechanism of hesperetin on APAP-induced hepatotoxicity. The results showed that pretreatment with hesperetin dose-dependently attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities, hepatic pathological damage and apoptosis. Moreover, hesperetin mitigated APAP-induced oxidative stress and inflammatory response in mice by inhibiting oxidative molecules but increasing antioxidative molecules production, reducing inflammatory cells infiltration and proinflammatory cytokines production, blocking Toll-like receptor (TLR)-4 signal activation. In vitro experiment indicated that hesperetin dose-dependently inhibited APAP-primed cytotoxicity, apoptosis, and reactive oxygen species (ROS) in murine AML12 hepatocytes. Notably, hesperetin up-regulated expression of heme oxygenase-1 (HO-1) mRNA and protein in the liver of mice and AML12 cells exposed to APAP. Furthermore, knockdown of HO-1 by adenovirus-mediated HO-1 siRNA reverted these beneficial effects of hesperetin on APAP-induced hepatocytotoxicity as well as ROS and inflammatory response in vivo and in vitro. These findings demonstrated that hesperetin exerted a protective prophylaxis on APAP-induced acute liver injury by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via up-regulating HO-1 expression.
Collapse
Affiliation(s)
- Jingyuan Wan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 40016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 40016, China
| | - Yongtao Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen He
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Duyun Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
39
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Arnold K, Xu Y, Sparkenbaugh EM, Li M, Han X, Zhang X, Xia K, Piegore M, Zhang F, Zhang X, Henderson M, Pagadala V, Su G, Tan L, Park PW, Stravitz RT, Key NS, Linhardt RJ, Pawlinski R, Xu D, Liu J. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med 2020; 12:eaav8075. [PMID: 32188725 PMCID: PMC7315409 DOI: 10.1126/scitranslmed.aav8075] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/05/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Acetaminophen/paracetamol (APAP) overdose is the leading cause of drug-induced acute liver failure (ALF) in the United States and Europe. The progression of the disease is attributed to sterile inflammation induced by the release of high mobility group box 1 (HMGB1) and the interaction with receptor for advanced glycation end products (RAGE). A specific, effective, and safe approach to neutralize the proinflammatory activity of HMGB1 is highly desirable. Here, we found that a heparan sulfate (HS) octadecasaccharide (18-mer-HP or hepatoprotective 18-mer) displays potent hepatoprotection by targeting the HMGB1/RAGE axis. Endogenous HS proteoglycan, syndecan-1, is shed in response to APAP overdose in mice and humans. Furthermore, purified syndecan-1, but not syndecan-1 core protein, binds to HMGB1, suggesting that HMGB1 binds to HS polysaccharide side chains of syndecan-1. Last, we compared the protection effect between 18-mer-HP and N-acetyl cysteine, which is the standard of care to treat APAP overdose. We demonstrated that 18-mer-HP administered 3 hours after a lethal dose of APAP is fully protective; however, the treatment of N-acetyl cysteine loses protection. Therefore, 18-mer-HP may offer a potential therapeutic advantage over N-acetyl cysteine for late-presenting patients. Synthetic HS provides a potential approach for the treatment of APAP-induced ALF.
Collapse
Affiliation(s)
- Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erica M Sparkenbaugh
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 25799, USA
| | - Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mark Piegore
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mike Henderson
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 25799, USA
| | | | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisi Tan
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, China
| | - Pyong Woo Park
- Division of Respiratory Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard T Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Nigel S Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 25799, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rafal Pawlinski
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 25799, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T. Molecular Biomarkers in Drug-Induced Liver Injury: Challenges and Future Perspectives. Front Pharmacol 2020; 10:1667. [PMID: 32082163 PMCID: PMC7002317 DOI: 10.3389/fphar.2019.01667] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Drug-induced liver injury (DILI) is one among the common adverse drug reactions and the leading causes of drug development attritions, black box warnings, and post-marketing withdrawals. Despite having relatively low clinical incidence, its potentially severe adverse events should be considered in the individual patients due to the high risk of acute liver failure. Although traditional liver parameters have been applied to the diagnosis of DILI, the lack of specific and sensitive biomarkers poses a major limitation, and thus accurate prediction of the subsequent clinical course remains a significant challenge. These drawbacks prompt the investigation and discovery of more effective biomarkers, which could lead to early detection of DILI, and improve its diagnosis and prognosis. Novel promising biomarkers include glutamate dehydrogenase, keratin 18, sorbitol dehydrogenase, glutathione S-transferase, bile acids, cytochrome P450, osteopontin, high mobility group box-1 protein, fatty acid binding protein 1, cadherin 5, miR-122, genetic testing, and omics technologies, among others. Furthermore, several clinical scoring systems have gradually emerged for the diagnosis of DILI including the Roussel Uclaf Causality Assessment Method (RUCAM), Clinical Diagnostic Scale (CDS), and Digestive Disease Week Japan (DDW-J) systems. However, currently their predictive value is limited with certain inherent deficiencies. Thus, perhaps the greatest benefit would be achieved by simultaneously combining the scoring systems and those biomarkers. Herein, we summarized the recent research progress on molecular biomarkers for DILI to improved approaches for its diagnosis and clinical management.
Collapse
Affiliation(s)
- Siyu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Infectious Diseases, Pidu District People's Hospital, Chengdu, China
| | - Jiang Long
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyao Jia
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Taoyou Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Ottestad W, Rognes IN, Skaga E, Frisvoll C, Haraldsen G, Eken T, Lundbäck P. HMGB1 concentration measurements in trauma patients: assessment of pre-analytical conditions and sample material. Mol Med 2019; 26:5. [PMID: 31892315 PMCID: PMC6938620 DOI: 10.1186/s10020-019-0131-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND HMGB1 is a mediator of systemic inflammation in sepsis and trauma, and a promising biomarker in many diseases. There is currently no standard operating procedure for pre-analytical handling of HMGB1 samples, despite that pre-analytical conditions account for a substantial part of the overall error rate in laboratory testing. We hypothesized that the considerable variations in reported HMGB1 concentrations and kinetics in trauma patients could be partly explained by differences in pre-analytical conditions and choice of sample material. METHODS Trauma patients (n = 21) admitted to a Norwegian Level I trauma center were prospectively included. Blood was drawn in K2EDTA coated tubes and serum tubes. The effects of delayed centrifugation were evaluated in samples stored at room temperature for 15 min, 3, 6, 12, and 24 h respectively. Plasma samples subjected to long-term storage in - 80 °C and to repeated freeze/thaw cycles were compared with previously analyzed samples. HMGB1 concentrations in simultaneously acquired arterial and venous samples were also compared. HMGB1 was assessed by standard ELISA technique, additionally we investigated the suitability of western blot in both serum and plasma samples. RESULTS Arterial HMGB1 concentrations were consistently lower than venous concentrations in simultaneously obtained samples (arterial = 0.60 x venous; 95% CI 0.30-0.90). Concentrations in plasma and serum showed a strong linear correlation, however wide limits of agreement. Storage of blood samples at room temperature prior to centrifugation resulted in an exponential increase in plasma concentrations after ≈6 h. HMGB1 concentrations were fairly stable in centrifuged plasma samples subjected to long-term storage and freeze/thaw cycles. We were not able to detect HMGB1 in either serum or plasma from our trauma patients using western blotting. CONCLUSIONS Arterial and venous HMGB1 concentrations cannot be directly compared, and concentration values in plasma and serum must be compared with caution due to wide limits of agreement. Although HMGB1 levels in clinical samples from trauma patients are fairly stable, strict adherence to a pre-analytical protocol is advisable in order to protect sample integrity. Surprisingly, we were unable to detect HMGB1 utilizing standard western blot analysis.
Collapse
Affiliation(s)
- William Ottestad
- Department of Anaesthesiology, Oslo University Hospital, PO Box 4956 Nydalen, NO-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ingrid N. Rognes
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend Skaga
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Torsten Eken
- Department of Anaesthesiology, Oslo University Hospital, PO Box 4956 Nydalen, NO-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Peter Lundbäck
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
43
|
Raevens S, Van Campenhout S, Debacker PJ, Lefere S, Verhelst X, Geerts A, Van Vlierberghe H, Colle I, Devisscher L. Combination of sivelestat and N-acetylcysteine alleviates the inflammatory response and exceeds standard treatment for acetaminophen-induced liver injury. J Leukoc Biol 2019; 107:341-355. [PMID: 31841237 DOI: 10.1002/jlb.5a1119-279r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte death during acetaminophen (APAP) intoxication elicits a reactive inflammatory response, with hepatic recruitment of neutrophils and monocytes, which further aggravates liver injury. Neutrophil elastase (NE), secreted by activated neutrophils, carries degradative and cytotoxic functions and maintains a proinflammatory state. We investigated NE as a therapeutic target in acetaminophen-induced liver injury (AILI). C57BL/6 mice were administered a toxic dose of APAP, 2 h prior to receiving the NE inhibitor sivelestat, N-acetylcysteine (NAC), or a combination therapy, and were euthanized after 24 and 48 h. Upon APAP overdose, neutrophils and monocytes infiltrate the injured liver, accompanied by increased levels of NE. Combination therapy of NAC and sivelestat significantly limits liver damage, as evidenced by lower serum transaminase levels and less hepatic necrosis compared to mice that received APAP only, and this to a greater extent than NAC monotherapy. Lower hepatic expression of proinflammatory markers was observed in the combination treatment group, and flow cytometry revealed significantly less monocyte influx in livers from mice treated with the combination therapy, compared to untreated mice and mice treated with NAC only. The potential of NE to induce leukocyte migration was confirmed in vitro. Importantly, sivelestat did not impair hepatic repair. In conclusion, combination of NE inhibition with sivelestat and NAC dampens the inflammatory response and reduces liver damage following APAP overdose. This strategy exceeds the standard of care and might represent a novel therapeutic option for AILI.
Collapse
Affiliation(s)
- Sarah Raevens
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | | | - Pieter-Jan Debacker
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | | | - Isabelle Colle
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, Tang K, Ye Z. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine 2019; 50:366-378. [PMID: 31735555 PMCID: PMC6921206 DOI: 10.1016/j.ebiom.2019.10.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/12/2023] Open
Abstract
Background Intrarenal calcium oxalate (CaOx) crystals induce inflammation and kidney tubular cell injury, which are processes that involve TLR4/NF-κB signalling. A recent genome-wide gene expression profile analysis of Randall's plaques in CaOx stone patients revealed that the expression of the long noncoding RNA H19 was significantly upregulated. However, to date, its role in kidney CaOx stones has not been reported. Method A Gene Expression Omnibus (GEO) dataset was utilized to analyse gene expression profiles. Luciferase reporter, Western blotting, qRT-PCR, immunofluorescence staining and reactive oxygen species (ROS) assays were employed to study the molecular mechanism of HMGB1/TLR4/NF-κB regulation by H19 and miR-216b. In vitro and in vivo assays were performed to further confirm the proinflammatory and prooxidative stress effects. Finding H19 expression was significantly increased and positively correlated with the expression levels of HMGB1, TLR4 and NF-κB in Randall's plaques and glyoxylate-induced CaOx nephrocalcinosis mouse models. H19 interacted with miR-216b and suppressed its expression. Additionally, miR-216b inhibited HMGB1 expression by directly binding its 3′-untranslated region. Moreover, H19 downregulation inhibited HMGB1, TLR4 and NF-κB expression and suppressed CaOx nephrocalcinosis-induced renal tubular epithelial cell injury, NADPH oxidase, and oxidative stress in vivo and in vitro. Interestingly, miR-216b inhibition partially reversed the inhibitory effect of H19 knockdown on HMGB1 expression. Interpretation We determined that H19 might serve as a facilitator in the process of CaOx nephrocalcinosis-induced oxidative stress and renal tubular epithelial cell injury, and we revealed that the interaction between H19 and miR-216b could exert its effect via the HMGB1/TLR4/NF-κB pathway. Funding This work was supported by the National Nature Science Foundation of China (Nos. 8196030190, 8190033175, 81370805, 81470935, 81900645, 81500534, and 81602236).
Collapse
Affiliation(s)
- Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, PR China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, PR China
| | - Kehua Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550000, PR China
| | - Hongyan Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 409912, PR China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550000, PR China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
45
|
Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019; 31:954-993. [PMID: 31184204 PMCID: PMC6765066 DOI: 10.1089/ars.2019.7818] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Significance: High-mobility group protein box 1 (HMGB1), a ubiquitous nuclear protein, regulates chromatin structure and modulates the expression of many genes involved in the pathogenesis of lung cancer and many other lung diseases, including those that regulate cell cycle control, cell death, and DNA replication and repair. Extracellular HMGB1, whether passively released or actively secreted, is a danger signal that elicits proinflammatory responses, impairs macrophage phagocytosis and efferocytosis, and alters vascular remodeling. This can result in excessive pulmonary inflammation and compromised host defense against lung infections, causing a deleterious feedback cycle. Recent Advances: HMGB1 has been identified as a biomarker and mediator of the pathogenesis of numerous lung disorders. In addition, post-translational modifications of HMGB1, including acetylation, phosphorylation, and oxidation, have been postulated to affect its localization and physiological and pathophysiological effects, such as the initiation and progression of lung diseases. Critical Issues: The molecular mechanisms underlying how HMGB1 drives the pathogenesis of different lung diseases and novel therapeutic approaches targeting HMGB1 remain to be elucidated. Future Directions: Additional research is needed to identify the roles and functions of modified HMGB1 produced by different post-translational modifications and their significance in the pathogenesis of lung diseases. Such studies will provide information for novel approaches targeting HMGB1 as a treatment for lung diseases.
Collapse
Affiliation(s)
- Mao Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - LeeAnne Daley
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Katelyn Dial
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Joanna Woo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Charles Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York
| |
Collapse
|
46
|
FBXW7 suppresses HMGB1-mediated innate immune signaling to attenuate hepatic inflammation and insulin resistance in a mouse model of nonalcoholic fatty liver disease. Mol Med 2019; 25:29. [PMID: 31215394 PMCID: PMC6582600 DOI: 10.1186/s10020-019-0099-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Innate immune dysfunction contributes to the development and progression of nonalcoholic fatty liver disease (NAFLD), however, its pathogenesis is still incompletely understood. Identifying the key innate immune component responsible for the pathogenesis of NAFLD and clarifying the underlying mechanisms may provide therapeutic targets for NAFLD. Recently, F-box- and WD repeat domain-containing 7 (FBXW7) exhibits a regulatory role in hepatic glucose and lipid metabolism. This study aims to investigate whether FBXW7 controls high-mobility group box 1 protein (HMGB1)-mediated innate immune signaling to improve NAFLD and the mechanism underlying this action. Methods Mice were fed a high-fat diet (HFD) for 12 or 20 weeks to establish NAFLD model. Hepatic overexpression or knockdown of FBXW7 was induced by tail-vein injection of recombinant adenovirus. Some Ad-FBXW7-injected mice fed a HFD were injected intraperitoneally with recombinant mouse HMGB1 to confirm the protective role of FBXW7 in NAFLD via inhibition of HMGB1. Results FBXW7 improves NAFLD and related metabolic parameters without remarkable influence of body weight and food intake. Moreover, FBXW7 markedly ameliorated hepatic inflammation and insulin resistance in the HFD-fed mice. Furthermore, FBXW7 dramatically attenuated the expression and release of HMGB1 in the livers of HFD-fed mice, which is associated with inhibition of protein kinase R (PKR) signaling. Thereby, FBXW7 restrains Toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE) signaling in HFD-fed mouse livers. In addition, exogenous HMGB1 treatment abolished FBXW7-mediated inhibition of hepatic inflammation and insulin resistance in HFD-fed mouse livers. Conclusions Our results demonstrate a protective role of FBXW7 in NAFLD by abating HMGB1-mediated innate immune signaling to suppress inflammation and consequent insulin resistance, suggesting that FBXW7 is a potential target for therapeutic intervention in NAFLD development. Electronic supplementary material The online version of this article (10.1186/s10020-019-0099-9) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
He Y, Li S, Tang D, Peng Y, Meng J, Peng S, Deng Z, Qiu S, Liao X, Chen H, Tu S, Tao L, Peng Z, Yang H. Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation. Free Radic Biol Med 2019; 137:24-36. [PMID: 30991142 DOI: 10.1016/j.freeradbiomed.2019.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Sterile inflammation is initiated by damage-associated molecular patterns (DAMPs) and a key contributor to acute liver injury (ALI). However, the current knowledge on those DAMPs that activate hepatic inflammation under ALI remains incomplete. We report here that circulating peroxiredoxin-1 (Prdx1) is a novel DAMP for ALI. Intraperitoneal injection of acetaminophen (APAP) elicited a progressive course of ALI in mice, which was developed from 12 to 24 h post injection along with liver inflammation evident by macrophage infiltration and upregulations of cytokines (IL-1β, IL-6 and TNF-α); these alterations were concurrently occurred with a robust and progressive production of serum Prdx1. Similar observations were also obtained in carbon tetrachloride (CCl4)-induced ALI in mice. Removal of the source of serum Prdx1 protected mice deficient in Prdx1 from APAP and CCl4-induced liver injury, and decreased macrophage infiltration, IL-1β, IL-6 and TNF-α production. As a result, Prdx1-/- mice were strongly protected from APAP-induced death that was likely progressed from ALI. Additionally, intravenous re-introduction of recombinant Prdx1 (rPrdx1) in Prdx1-/- mice reversed or reduced all the above events, demonstrating an important contribution of circulating Prdx1 to ALI. rPrdx1 potently induced in primary macrophages the expression of pro-IL-1β, IL-6, TNF-α, and IL-1β through the NF-κB signaling as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, evident by caspase-1 activation. Furthermore, a significant elevation of serum Prdx1 was demonstrated in patients (n = 15) with ALI; the elevation is associated with ALI severity. Collectively, we provide the first demonstration for serum Prdx1 contributing to ALI.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sisi Qiu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Zhang D, Gao M, Jin Q, Ni Y, Zhang J. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B 2019; 9:455-468. [PMID: 31193829 PMCID: PMC6543088 DOI: 10.1016/j.apsb.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cell death plays important roles in living organisms and is a hallmark of numerous disorders such as cardiovascular diseases, sepsis and acute pancreatitis. Moreover, cell death also plays a pivotal role in the treatment of certain diseases, for example, cancer. Noninvasive visualization of cell death contributes to gained insight into diseases, development of individualized treatment plans, evaluation of treatment responses, and prediction of patient prognosis. On the other hand, cell death can also be targeted for the treatment of diseases. Although there are many ways for a cell to die, only apoptosis and necrosis have been extensively studied in terms of cell death related theranostics. This review mainly focuses on molecular imaging and therapeutic strategies directed against necrosis. Necrosis shares common morphological characteristics including the rupture of cell membrane integrity and release of cellular contents, which provide potential biomarkers for visualization of necrosis and necrosis targeted therapy. In the present review, we summarize the updated joint efforts to develop molecular imaging probes and therapeutic strategies targeting the biomarkers exposed by necrotic cells. Moreover, we also discuss the challenges in developing necrosis imaging probes and propose several biomarkers of necrosis that deserve to be explored in future imaging and therapy research.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
49
|
HMGB1 is a Central Driver of Dynamic Pro-inflammatory Networks in Pediatric Acute Liver Failure induced by Acetaminophen. Sci Rep 2019; 9:5971. [PMID: 30979951 PMCID: PMC6461628 DOI: 10.1038/s41598-019-42564-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) overdose (APAPo) is predominant in the NIH Pediatric Acute Liver Failure (PALF) Study. We assayed multiple inflammatory mediators in serial serum samples from 13 PALF survivors with APAPo + N-acetylcysteine (NAC, the frontline therapy for APAPo), 8 non-APAPo + NAC, 40 non-APAPo non-NAC, and 12 non-survivors. High Mobility Group Box 1 (HMGB1) was a dominant mediator in dynamic inflammation networks in all sub-groups, associated with a threshold network complexity event at d1–2 following enrollment that was exceeded in non-survivors vs. survivors. We thus hypothesized that differential HMGB1 network connectivity after day 2 is related to the putative threshold event in non-survivors. DyNA showed that HMGB1 is most connected in non-survivors on day 2–3, while no connections were observed in APAPo + NAC and non-APAPo + NAC survivors. Inflammatory dynamic networks, and in particular HMGB1 connectivity, were associated with the use of NAC in the context of APAPo. To recapitulate hepatocyte (HC) damage in vitro, primary C57BL/6 HC and HC-specific HMGB1-null HC were treated with APAP + NAC. Network phenotypes of survivors were recapitulated in C57BL/6 mouse HC and were greatly altered in HMGB1-null HC. HC HMGB1 may thus coordinate a pro-inflammatory program in PALF non-survivors (which is antagonized by NAC), while driving an anti-inflammatory/repair program in survivors.
Collapse
|
50
|
Yang H, Liu H, Zeng Q, Imperato GH, Addorisio ME, Li J, He M, Cheng KF, Al-Abed Y, Harris HE, Chavan SS, Andersson U, Tracey KJ. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol Med 2019; 25:13. [PMID: 30975096 PMCID: PMC6460792 DOI: 10.1186/s10020-019-0081-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 protein (HMGB1) serves a central role in inflammation as a transporter protein, which binds other immune-activating molecules that are endocytosed via the receptor for advanced glycation end-products (RAGE). These pro-inflammatory complexes are targeted to the endolysosomal compartment, where HMGB1 permeabilizes the lysosomes. This enables HMGB1-partner molecules to avoid degradation, to leak into the cytosol, and to reach cognate immune-activating sensors. Lipopolysaccharide (LPS) requires this pathway to generate pyroptosis by accessing its key cytosolic receptors, murine caspase 11, or the human caspases 4 and 5. This lytic, pro-inflammatory cell death plays a fundamental pathogenic role in gram-negative sepsis. The aim of the study was to identify molecules inhibiting HMGB1 or HMGB1/LPS cellular internalization. METHODS Endocytosis was studied in cultured macrophages using Alexa Fluor-labeled HMGB1 or complexes of HMGB1 and Alexa Fluor-labeled LPS in the presence of an anti-HMGB1 monoclonal antibody (mAb), recombinant HMGB1 box A protein, acetylcholine, the nicotinic acetylcholine receptor subtype alpha 7 (α7 nAChR) agonist GTS-21, or a dynamin-specific inhibitor of endocytosis. Images were obtained by fluorescence microscopy and quantified by the ImageJ processing program (NIH). Data were analyzed using student's t test or one-way ANOVA followed by the least significant difference or Tukey's tests. RESULTS Anti-HMGB1 mAb, recombinant HMGB1 antagonist box A protein, acetylcholine, GTS-21, and the dynamin-specific inhibitor of endocytosis inhibited internalization of HMGB1 or HMGB1-LPS complexes in cultured macrophages. These agents prevented macrophage activation in response to HMGB1 and/or HMGB1-LPS complexes. CONCLUSION These results demonstrate that therapies based on HMGB1 antagonists and the cholinergic anti-inflammatory pathway share a previously unrecognized molecular mechanism of substantial clinical relevance.
Collapse
Affiliation(s)
- Huan Yang
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Hui Liu
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Qiong Zeng
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Gavin H. Imperato
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Meghan E. Addorisio
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Jianhua Li
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Yousef Al-Abed
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Helena E. Harris
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Sangeeta S. Chavan
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Kevin J. Tracey
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|