1
|
Wan Q, Yu X, Huang J, Yang L, Wang D, Zhou H, Zhang G, Mao S, Chen Y, Zhang Z, Wei J. An Investigative Study of LGALSL and HLA-DRB1 as Prognostic Biomarkers and Therapeutic Targets in Chronic Hepatitis B Patients With Persistent HBV DNA Viremia Under Entecavir Treatment. J Med Virol 2025; 97:e70329. [PMID: 40167905 DOI: 10.1002/jmv.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
Despite significant advances in chronic hepatitis B (CHB) treatment, some patients receiving entecavir (ETV) still experience poor clinical outcomes. Identifying host factors contributing to ETV anti-HBV failure in CHB patients with persistent HBV DNA positivity is crucial for developing targeted therapies. We conducted a comprehensive study using univariate and reverse Mendelian randomization (MR), incorporating sequencing data and publicly available genetic data, followed by gene set variation analysis (GSVA), gene set enrichment analysis (GSEA) and immune cell infiltration analysis to systematically explore causal associations between host factors and CHB. Univariate MR analyses revealed a significant inverse association between increased HLA-DRB1 levels and CHB risk (odds ratio [OR] 0.607, 95% confidence interval [CI] 0.478-0.771, p = 0.00004), while increased LGALSL levels were significantly associated with a heightened risk of poor CHB prognosis (OR 1.110, 95% CI: 1.017-1.212, p = 0.01885), as estimated using the inverse variance weighting (IVW) method. Analysis of immune cell infiltration showed significantly higher HLA and mast cell levels in the poor prognosis group. HLA-DRB1 showed a significant positive correlation with HLA, whereas LGALSL showed a significant negative correlation. Compared to patients with favorable prognoses, those with poor prognoses exhibited significantly higher serum LGALSL levels (ELISA), lower HLA-DRB1 expression in peripheral blood mononuclear cells (PBMCs) (qPCR), and significantly increased LGALSL expression in liver tissue (IHC). Therefore, LGALSL and HLA-DRB1 may serve as potential prognostic biomarkers for CHB patients receiving ETV, providing novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Qun Wan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Sichuan, China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Sichuan, China
| | - Jinyu Huang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Liting Yang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Deqiang Wang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Gongming Zhang
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Shenglan Mao
- Department of Clinical Laboratory, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yanmeng Chen
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
2
|
Smatti MK, Yassine HM, Mbarek H, Boomsma DI. Understanding Heritable Variation Among Hosts in Infectious Diseases Through the Lens of Twin Studies. Genes (Basel) 2025; 16:177. [PMID: 40004506 PMCID: PMC11855666 DOI: 10.3390/genes16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Genetic factors have been hypothesized to contribute to the heterogeneity in the response to infectious diseases (IDs). The classical twin design provides a powerful tool to estimate the role of genetic contributions to variation in infection outcomes. With this design, the impact of heritability on the proneness as well as infection- and vaccine-induced immune responses have been documented for multiple infections, including tuberculosis, malaria, leprosy, otitis media, polio, mumps, measles, rubella, influenza, hepatitis B, and human papillomavirus infections, and recently, SARS-CoV-2. The current data show the heritable aspect in nearly all infections considered. In this contribution, we review and discuss human twin studies on the heritability of host characteristics in liability and response to IDs. This review emphasizes the importance of considering factors such as sex, disease stages, and disease presentation when assessing heritability and argues that the classical twin design provides a unique circumstance for exploring the genetic contribution as twins share levels of maternal antibodies, ancestral background, often the dates and number of vaccine doses, differences in vaccines' manufacturing and storage, age, family environment, and other exposures. Additionally, we highlight the value of twin studies and the usefulness of combining the twin model with contemporary genomics technologies and advanced statistical tools to grasp a comprehensive and nuanced understanding of heritability in IDs.
Collapse
Affiliation(s)
- Maria K. Smatti
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar;
| | - Hadi M. Yassine
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar;
| | - Hamdi Mbarek
- Qatar Precision Health Institute, Qatar Foundation, Doha 5825, Qatar;
| | - Dorret I. Boomsma
- Complex Trait Genetics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Amsterdam Public Health (APH) Research Institute, 1081 HV Amsterdam, The Netherlands
- Amsterdam Reproduction and Development (AR&D) Research Institute, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hsieh MJ, Tsai PH, Chiang PH, Kao ZK, Zhuang ZQ, Hsieh AR, Ho HL, Chiou SH, Liang KH, Chen YC. Genomic insights into mRNA COVID-19 vaccines efficacy: Linking genetic polymorphisms to waning immunity. Hum Vaccin Immunother 2024; 20:2399382. [PMID: 39254005 PMCID: PMC11404610 DOI: 10.1080/21645515.2024.2399382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Genetic polymorphisms have been linked to the differential waning of vaccine-induced immunity against COVID-19 following vaccination. Despite this, evidence on the mechanisms behind this waning and its implications for vaccination policy remains limited. We hypothesize that specific gene variants may modulate the development of vaccine-initiated immunity, leading to impaired immune function. This study investigates genetic determinants influencing the sustainability of immunity post-mRNA vaccination through a genome-wide association study (GWAS). Utilizing a hospital-based, test negative case-control design, we enrolled 1,119 participants from the Taiwan Precision Medicine Initiative (TPMI) cohort, all of whom completed a full mRNA COVID-19 vaccination regimen and underwent PCR testing during the Omicron outbreak. Participants were classified into breakthrough and protected groups based on PCR results. Genetic samples were analyzed using SNP arrays with rigorous quality control. Cox regression identified significant single nucleotide polymorphisms (SNPs) associated with breakthrough infections, affecting 743 genes involved in processes such as antigenic protein translation, B cell activation, and T cell function. Key genes identified include CD247, TRPV1, MYH9, CCL16, and RPTOR, which are vital for immune responses. Polygenic risk score (PRS) analysis revealed that individuals with higher PRS are at greater risk of breakthrough infections post-vaccination, demonstrating a high predictability (AUC = 0.787) in validating population. This finding confirms the significant influence of genetic variations on the durability of immune responses and vaccine effectiveness. This study highlights the importance of considering genetic polymorphisms in evaluating vaccine-induced immunity and proposes potential personalized vaccination strategies by tailoring regimens to individual genetic profiles.
Collapse
Affiliation(s)
- Min-Jia Hsieh
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-Hsuan Chiang
- Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zih-Kai Kao
- Department of Information Management, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Zi-Qing Zhuang
- Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Biosafety level 3 laboratory, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chun Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei, Taiwan
- School of medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| |
Collapse
|
4
|
Ong YC, Tejo BA, Yap WB. An Immunoinformatic Approach for Identifying and Designing Conserved Multi-Epitope Vaccines for Coronaviruses. Biomedicines 2024; 12:2530. [PMID: 39595095 PMCID: PMC11592158 DOI: 10.3390/biomedicines12112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has exposed the vulnerabilities and unpreparedness of the global healthcare system in dealing with emerging zoonoses. In the past two decades, coronaviruses (CoV) have been responsible for three major viral outbreaks, and the likelihood of future outbreaks caused by these viruses is high and nearly inevitable. Therefore, effective prophylactic universal vaccines targeting multiple circulating and emerging coronavirus strains are warranted. METHODS This study utilized an immunoinformatic approach to identify evolutionarily conserved CD4+ (HTL) and CD8+ (CTL) T cells, and B-cell epitopes in the coronaviral spike (S) glycoprotein. RESULTS A total of 132 epitopes were identified, with the majority of them found to be conserved across the bat CoVs, pangolin CoVs, endemic coronaviruses, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Their peptide sequences were then aligned and assembled to identify the overlapping regions. Eventually, two major peptide assemblies were derived based on their promising immune-stimulating properties. CONCLUSIONS In this light, they can serve as lead candidates for universal coronavirus vaccine development, particularly in the search for pan-coronavirus multi-epitope universal vaccines that can confer protection against current and novel coronaviruses.
Collapse
Affiliation(s)
- Yu Chuan Ong
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Bimo Ario Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
5
|
Montin D, Santilli V, Beni A, Costagliola G, Martire B, Mastrototaro MF, Ottaviano G, Rizzo C, Sgrulletti M, Miraglia Del Giudice M, Moschese V. Towards personalized vaccines. Front Immunol 2024; 15:1436108. [PMID: 39421749 PMCID: PMC11484009 DOI: 10.3389/fimmu.2024.1436108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
The emergence of vaccinomics and system vaccinology represents a transformative shift in immunization strategies, advocating for personalized vaccines tailored to individual genetic and immunological profiles. Integrating insights from genomics, transcriptomics, proteomics, and immunology, personalized vaccines offer the promise of enhanced efficacy and safety, revolutionizing the field of vaccinology. However, the development of personalized vaccines presents multifaceted challenges, including technical, ethical, economic, and regulatory considerations. Addressing these challenges is essential to ensure equitable access and safety of personalized vaccination strategies. Despite these hurdles, the potential of personalized vaccines to optimize responses and mitigate disease burden underscores the significance of ongoing research and collaboration in advancing precision medicine in immunization.
Collapse
Affiliation(s)
- Davide Montin
- Division of Pediatric Immunology and Rheumatology, “Regina Margherita” Children Hospital, Turin, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Baldassarre Martire
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, “Monsignor A.R. Dimiccoli” Hospital, Barletta, Italy
| | - Maria Felicia Mastrototaro
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, “Monsignor A.R. Dimiccoli” Hospital, Barletta, Italy
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Kwiatkowska KM, Anticoli S, Salvioli S, Calzari L, Gentilini D, Albano C, Di Prinzio RR, Zaffina S, Carsetti R, Ruggieri A, Garagnani P. B Cells Isolated from Individuals Who Do Not Respond to the HBV Vaccine Are Characterized by Higher DNA Methylation-Estimated Aging Compared to Responders. Vaccines (Basel) 2024; 12:880. [PMID: 39204006 PMCID: PMC11360008 DOI: 10.3390/vaccines12080880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Healthcare workers (HCWs) are a high-risk group for hepatitis B virus (HBV) infection. Notably, about 5-10% of the general population does not respond to the HBV vaccination. In this study, we aimed to investigate DNA methylation (DNAm) in order to estimate the biological age of B cells from HCW of both sexes, either responder (R) or non-responder (NR), to HBV vaccination. We used genome-wide DNA methylation data to calculate a set of biomarkers in B cells collected from 41 Rs and 30 NRs between 22 and 62 years old. Unresponsiveness to HBV vaccination was associated with accelerated epigenetic aging (DNAmAge, AltumAge, DunedinPoAm) and was accompanied by epigenetic drift. Female non-responders had higher estimates of telomere length and lower CRP inflammation risk score when compared to responders. Overall, epigenetic differences between responders and non-responders were more evident in females than males. In this study we demonstrated that several methylation DNAm-based clocks and biomarkers are associated with an increased risk of non-response to HBV vaccination, particularly in females. Based on these results, we propose that accelerated epigenetic age could contribute to vaccine unresponsiveness. These insights may help improve the evaluation of the effectiveness of vaccination strategies, especially among HCWs and vulnerable patients.
Collapse
Affiliation(s)
| | - Simona Anticoli
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy
| | - Christian Albano
- Immunology Research Area, B Cell Unit, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Rita Carsetti
- Immunology Research Area, B Cell Unit, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Anna Ruggieri
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
7
|
Li X, Zhou Q, Lu Z, Huang R, Lin D, Xu J, Yu X, Li X. Association of HLA-DRB1 alleles with status of antibodies to hepatitis B surface and e antigen. J Med Virol 2024; 96:e29867. [PMID: 39169719 DOI: 10.1002/jmv.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Antigen presentation by HLA class II molecules to CD4+ T cells is an essential step for generating antibodies to hepatitis B antigens. In this study, we investigated the association between the HLA-DRB1 gene and the status of antibodies to hepatitis B surface and e antigens. Our results revealed a significant association between the status of anti-HBsAg and HLA-DRB1*04:03 (OR = 4.11, 95% CI = 1.50-10.84, p = 0.005, Padj. = 0.05) as well as HLA-DRB1*15:01 (OR = 1.74, 95% CI = 1.20-2.50, p = 0.002, Padj. = 0.045). MHC II binding predictions and in silico docking demonstrated strong binding affinity of HBsAg peptides to these two HLA-DRB1 molecules. Conversely, the status of anti-HBeAg was inversely associated with HLA-DRB1*14:54 (OR = 0.34, 95% CI = 0.18-0.64, p = 0.001, Padj. = 0.011), and in silico analysis revealed weak binding affinity of HBeAg peptides to HLA-DRB1*14:54. In conclusion, these findings support the involvement of HLA-DRB1 in humoral immunity against HBV infection.
Collapse
Affiliation(s)
- Xinze Li
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
- NHC Key Laboratory of Tropical Disease Control,School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiaomiao Zhou
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Zhe Lu
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Renliang Huang
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Dan Lin
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Jing Xu
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Xinhua Yu
- Hainan Women and Children's Medical Center, Haikou, Hainan, China
- Priority Area Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
| | - Xuexia Li
- NHC Key Laboratory of Tropical Disease Control,School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
8
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Ou G, Qing L, Zhang L, Yang Y, Ye G, Peng L, Li Y, Yang L, Liu Y. Cytokine IL-5 and HGF: combined prediction of non-/low immune response to hepatitis B vaccination at birth in infants born to HBsAg-positive mothers. Front Cell Infect Microbiol 2024; 14:1332666. [PMID: 38495649 PMCID: PMC10940320 DOI: 10.3389/fcimb.2024.1332666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background The immune response to hepatitis B vaccine may be influenced by numerous factors, and patients with non/low response re-exposed to hepatitis B virus remain susceptible. Thus, a better understanding of the underlying mechanisms of non/low immune response in infants born to Hepatitis B surface antigen (HBsAg)-positive mothers is essential. Methods 100 infants born to HBsAg-positive mothers from 2015 to 2020 were enrolled in the study, further divided into the non/low response group (n=13) and the moderate strong response group (n=87) based on the quantification of hepatitis B surface antibody at 12 months of age. The differential expression of 48 immune-related cytokines in the two groups was compared and analyzed in detail. The key cytokines were further identified and clinically predictive models were developed. Results We found that 13 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group, compared with the moderate strong response group at birth. In addition, 9 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group at 12 months of age. Furthermore, we found that IL-5 and HGF were promising predictors for predicting the immunization response to hepatitis B vaccine in infants, and the combination of the two cytokines showed the best predictive efficiency, with an area under the curve (AUC) value of 0.844. Conclusion The present study provides a theoretical basis on cytokines for developing and implementing effective immunotherapies against non/low immune response in infants born to HBsAg-positive mothers.
Collapse
Affiliation(s)
- Guanyong Ou
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ling Qing
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People’s Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Graduate Collaborative Training Base of Shenzhen Third People’s Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Yang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guoguo Ye
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Ling Peng
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanjie Li
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Yang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
10
|
Tălăngescu A, Calenic B, Mihăilescu DF, Tizu M, Marunțelu I, Constantinescu AE, Constantinescu I. Molecular Analysis of HLA Genes in Romanian Patients with Chronic Hepatitis B Virus Infection. Curr Issues Mol Biol 2024; 46:1064-1077. [PMID: 38392185 PMCID: PMC10887826 DOI: 10.3390/cimb46020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Hepatitis B, a persistent inflammatory liver condition, stands as a significant global health issue. In Romania, the prevalence of chronic hepatitis B virus (CHB) infection ranks among the highest in the European Union. The HLA genotype significantly impacts hepatitis B virus infection progression, indicating that certain HLA variants can affect the infection's outcome. The primary goal of the present work is to identify HLA alleles and specific amino acid residues linked to hepatitis B within the Romanian population. The study enrolled 247 patients with chronic hepatitis B; HLA typing was performed using next-generation sequencing. This study's main findings include the identification of certain HLA alleles, such as DQB1*06:03:01, DRB1*13:01:01, DQB1*06:02:01, DQA1*01:03:01, DRB5*01:01:01, and DRB1*15:01:01, which exhibit a significant protective effect against HBV. Additionally, the amino acid residue alanine at DQB1_38 is associated with a protective role, while valine presence may signal an increased risk of hepatitis B. The present findings are important in addressing the urgent need for improved methods of diagnosing and managing CHB, particularly when considering the disease's presence in diverse population groups and geographical regions.
Collapse
Affiliation(s)
- Adriana Tălăngescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Dan Florin Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenței Street, No. 91-95, 050095 Bucharest, Romania
| | - Maria Tizu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Ion Marunțelu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Alexandra E Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| |
Collapse
|
11
|
Al-Eitan LN, ElMotasem MFM, Khair IY, Alahmad SZ. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des 2024; 30:1031-1047. [PMID: 38898820 DOI: 10.2174/0113816128280417231204085137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 06/21/2024]
Abstract
Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moh'd Fahmi Munib ElMotasem
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
12
|
Qiu J, Zhang S, Feng Y, Su X, Cai J, Chen S, Liu J, Huang S, Huang H, Zhu S, Wen H, Li J, Yan H, Diao Z, Liang X, Zeng F. Efficacy and safety of hepatitis B vaccine: an umbrella review of meta-analyses. Expert Rev Vaccines 2024; 23:69-81. [PMID: 38055218 DOI: 10.1080/14760584.2023.2289566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND There is a lack of synthesis of literature to determine hepatitis B vaccine (HepB) strategies for hepatitis B virus (HBV) supported by quality evidence. We aimed to explore the efficacy and safety of HepB strategies among people with different characteristics. RESEARCH DESIGN AND METHODS PubMed, Cochrane Library, Embase, and Web of Science were searched for meta-analyses comparing the efficacy and safety of HepB up to July 2023. RESULTS Twenty-one meta-analyses comparing 83 associations were included, with 16 high quality, 4 moderate, and 1 low quality assessed by AMSTAR 2. Highly suggestive evidence supports HepB booster and HepB with 1018 adjuvant (HBsAg-1018) for improved seroprotection, and targeted and universal HepB vaccination reduced HBV infection Suggestive evidence indicated that targeted vaccination decreased the rate of hepatitis B surface antibody positivity and booster doses increased seroprotection in people aged 10-20. Weak evidence suggests potential local/systemic reaction risk with nucleotide analogs or HBsAg-1018. Convincing evidence shows HLA-DPB1*04:01 and DPB1*04:02 increased, while DPB1*05:01 decreased, hepatitis B antibody response. Obesity may reduce HepB seroprotection, as highly suggested. CONCLUSION Targeted vaccination could effectively reduce HBV infection, and adjuvant and booster vaccinations enhance seroprotection without significant reaction. Factors such as obesity and genetic polymorphisms may affect the efficacy.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Shiwen Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Yonghui Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Xin Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Jun Cai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Shiyun Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Jiazi Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Shiqi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Haokun Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Huiyan Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Jiaxin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Haoyu Yan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Zhiquan Diao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
- Jinan University-BioKangtai Vaccine Institute, Jinan University, Shenzhen, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China
- Jinan University-BioKangtai Vaccine Institute, Jinan University, Shenzhen, China
| |
Collapse
|
13
|
Setoyama H, Nishida N, Nagashima S, Ko K, Yamazoe T, Tanaka Y, Mizokami M, Tanaka J, Kanto T. Dried blood spot-based host genome analysis technique targeting pathological associations with hepatitis B: Development and clinical application in the Cambodian population. Hepatol Res 2023; 53:1147-1155. [PMID: 37522242 DOI: 10.1111/hepr.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
AIM Reports of patients with hepatitis B have highlighted associations between polymorphisms in the human leukocyte antigen (HLA)-DPB1, CXCL13, and CXCR5 genes and disease pathology. Owing to its potential to contribute to the development of new diagnostic and therapeutic methods, we aimed to establish a reliable host genome analysis technique that can be used in countries with inadequate infrastructure. METHOD We compared multiple commercially available kits for dried blood spot (DBS)-based sample collection to develop a basic DBS-based host genome analysis technique. We then collected blood samples from Cambodian patients with hepatitis B and performed single-nucleotide polymorphism genotyping and HLA allele typing by the DBS system. RESULT We were able to perform single-nucleotide polymorphism genotyping and HLA allele typing with host DNA samples obtained using a combination of a HemaSpot™ filter paper-based device and a SMITEST® EX-R&D DNA extraction kit. The accuracy of genotyping using samples obtained by this method was not inferior to one using samples obtained by venipuncture. In the Cambodian population, significant associations of HLA-DPB1*04:01 with protection against chronic hepatitis B virus (HBV) infection, and HLA-DPB1*05:01 and HLA-DPB1*13:01 with susceptibility to chronic HBV infection were identified. CONCLUSION Based on the DBS system, we clarified the associations of HLA-DPB1 alleles with chronic HBV infection in the Cambodian population for the first time. Because the DBS is a low-cost, durable, transportable, and easy-to-handle modality, genetic analysis based on the DBS system is a feasible strategy for obtaining a deeper understanding of HBV epidemiology, especially in middle- or low-income countries.
Collapse
Affiliation(s)
- Hiroko Setoyama
- Hepatitis Information Center, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Shintaro Nagashima
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taiji Yamazoe
- Hepatitis Information Center, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Kanto
- Hepatitis Information Center, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
14
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
15
|
Zhao M, Wang C, Li P, Sun T, Wang J, Zhang S, Ma Q, Ma F, Shi W, Shi M, Ma Y, Pan Y, Zhang H, Xie X. Single-cell RNA sequencing reveals the transcriptomic characteristics of peripheral blood mononuclear cells in hepatitis B vaccine non-responders. Front Immunol 2023; 14:1091237. [PMID: 37593735 PMCID: PMC10431960 DOI: 10.3389/fimmu.2023.1091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of a vaccine against hepatitis B has proven to be an important milestone in the prevention of this disease; however, 5%-10% of vaccinated individuals do not generate an immune response to the vaccine, and its molecular mechanism has not been clarified. In this study, single-cell RNA sequencing was performed on peripheral blood mononuclear cells (PBMCs) from three volunteers with a high immune response (HR) and three with no immune response (NR) to the hepatitis B vaccine. We found that the antigen-presenting activity scores of various antigen-presenting cells, the mitogen-activated protein kinase (MAPK) pathway activity scores of naive B cells, and the cell activity scores of three types of effector T cells were significantly decreased, whereas the cytotoxicity scores of CD3highCD16lowKLRG1high natural killer T (NKT) cells were significantly increased in the NR group compared with those in the HR group. Additionally, the expression levels of some classical molecules associated with distinct signaling pathways-including HLA-B, HLA-DRB5, BLNK, BLK, IL4R, SCIMP, JUN, CEBPB, NDFIP1, and TXNIP-were significantly reduced in corresponding subsets of PBMCs from the NR group relative to those of the HR group. Furthermore, the expression of several cytotoxicity-related effector molecules, such as GNLY, NKG7, GZMB, GZMM, KLRC1, KLRD1, PRF1, CST7, and CTSW, was significantly higher in CD3highCD16lowKLRG1high NKT cells derived from non-responders. Our study provides a molecular basis for the lack of response to the hepatitis B vaccine, including defective antigen presentation, decreased T cell activity, and reduced IL-4 secretion, as well as novel insight into the role of NKT cells in the immune response to the hepatitis B vaccine.
Collapse
Affiliation(s)
- Meie Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Chunxia Wang
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Sun
- Clinical Laboratory, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yapeng Ma
- Department of Laboratory Medicine, The First People’s Hospital of Tianshui, Tian Shui, Gansu, China
| | - Yunyan Pan
- Department of Laboratory Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Zhang
- Virus Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Wu TW, Chou CL, Chen CF, Wang LY. Common Genetic Variants of Response to Hepatitis B Vaccines Correlate with Risks of Chronic Infection of Hepatitis B Virus: A Community-Based Case-Control Study. Int J Mol Sci 2023; 24:ijms24119741. [PMID: 37298692 DOI: 10.3390/ijms24119741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatitis B (HB) vaccination effectively reduces the risks of chronic infection with the hepatitis B virus (HBV). It is unknown whether there is a common genetic determinant for response to the HB vaccine and susceptibility to chronic HBV infection. This case-control study, which included 193 chronic HBV carriers and 495 non-carriers, aimed to explore the effects of the most significant single nucleotide polymorphisms (SNPs) in response to the HB vaccine on the risks of chronic HBV infection. Out of 13 tested SNPs, the genotype distributions of four SNPs at the human leukocyte antigen (HLA) class II region, including rs34039593, rs614348, rs7770370, and rs9277535, were significantly different between HBV carriers and non-carriers. The age-sex-adjusted odds ratios (OR) of chronic HBV infection for rs34039593 TG, rs614348 TC, rs7770370 AA, and rs9277535 AA genotypes were 0.51 (95% confidence interval [CI], 0.33-0.79; p = 0.0028), 0.49 (95% CI, 0.32-0.75; p = 6.5 × 10-4), 0.33 (95% CI, 0.18-0.63; p = 7.4 × 10-4), and 0.31 (95% CI, 0.14-0.70; p = 0.0043), respectively. Multivariable analyses showed that rs614348 TC and rs7770370 AA genotypes were significantly independent protectors against chronic HBV infection. The multivariable-adjusted ORs for subjects with none, either one, or both of the protective genotypes were 1.00 (referent), 0.47 (95% CI: 0.32-0.71; p = 3.0 × 10-4), and 0.16 (95% CI: 0.05-0.54; p = 0.0032), respectively. Among eight HBeAg-positive carriers, only one of them carried a protective genotype. This study shows that response to the HB vaccine and susceptibility to chronic HBV infection share common genetic determinants and indicates that HLA class II members are the main responsible host genetic factors.
Collapse
Affiliation(s)
- Tzu-Wei Wu
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chao-Liang Chou
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Department of Neurology, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Chuen-Fei Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Li-Yu Wang
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| |
Collapse
|
18
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
19
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
20
|
Associations of HLA Polymorphisms with Anti-SARS-CoV-2 Spike and Neutralizing Antibody Titers in Japanese Rheumatoid Arthritis Patients Vaccinated with BNT162b2. Vaccines (Basel) 2023; 11:vaccines11020404. [PMID: 36851281 PMCID: PMC9965868 DOI: 10.3390/vaccines11020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019. Anti-SARS-CoV-2 spike (S) and neutralizing antibodies (Abs) are measured to evaluate the efficacy of vaccines. Human leukocyte antigen (HLA) may be associated with vaccine efficacy. Here, we investigated the association of HLA polymorphisms with the production of anti-SARS-CoV-2 S or neutralizing Abs in vaccinated rheumatoid arthritis (RA) patients in Japan. Genotyping of DRB1 and DQB1 was conducted in 87 Japanese RA patients vaccinated with BNT162b2. Associations of allele or haplotype carrier frequencies with anti-SARS-CoV-2 S or neutralizing Abs were examined. DRB1*12:01 was significantly positively associated with the production of S Ab (p = 0.0225, odds ratio [OR] 6.08, 95% confidence interval [CI] 1.32-28.03). The DQB1*03:01 allele carrier frequency tended to be higher in high responders of S Ab. Allele carrier frequencies of DRB1*15:01 (p = 0.0102, OR 9.26, 95% CI 1.65-52.01) and DQB1*06:02 (p = 0.0373, OR 7.00, 95% CI 1.18-41.36) were higher in responders of neutralizing Ab. Haplotype and two-locus analyses of DRB1 and DQB1 suggested that DRB1 alleles were the primary drivers of these associations. Logistic regression analysis showed associations of these alleles independent of clinical characteristics. Independent associations were found between HLA alleles and anti-SARS-CoV-2 Ab production by vaccinated RA patients.
Collapse
|
21
|
Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102653. [PMID: 36646193 PMCID: PMC9839462 DOI: 10.1016/j.nano.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.
Collapse
Affiliation(s)
- Carlos M. Valdemar-Aguilar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico.
| | - Laura S. Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Corresponding authors
| |
Collapse
|
22
|
Nakaharai K, Nakazawa Y, Mishima Y, Saito M, Shinozaki Y, Yoshida M. Association between a low response to rubella vaccination and reduced anti-severe acute respiratory syndrome coronavirus 2 immune response after vaccination with BNT162b2: a cross-sectional study. Clin Microbiol Infect 2023; 29:253.e1-253.e5. [PMID: 36150670 PMCID: PMC9485426 DOI: 10.1016/j.cmi.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Some vaccinated individuals fail to acquire an adequate immune response against infection. We aimed to determine whether mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination could induce a sufficient immune response against SARS-CoV-2 in low responders to other vaccinations. METHODS Using data from health-care workers who received two doses of the BNT162b2 vaccine (BioNTech/Pfizer), we conducted a single-centre, cross-sectional study to determine whether low responders to measles, rubella, and hepatitis B virus (HBV) vaccinations could acquire sufficient antibodies after SARS-CoV-2 vaccination. From May 2021 to June 2021, participants were tested for anti-SARS-CoV-2 spike (anti-S) IgG antibodies at least 2 weeks after the second dose of BNT162b2. The association between a low response to measles, rubella, and HBV vaccinations and the post-vaccination anti-S IgG titre was evaluated using the multivariable linear regression analysis. RESULTS All 714 participants were positive for the anti-S IgG titre (≥50.0 AU/mL) after two doses of BNT162b2 (median, 7126.8 AU/mL; interquartile range, 4496.2-11 296.8). There were 323 (45.2%), 131 (18.3%), and 43 (6.0%) low responders to measles, rubella, and HBV vaccinations, respectively. In the multivariable linear regression analysis, low responders to rubella vaccination had significantly low acquisition of the anti-S IgG titre after two doses of the BNT162b2 vaccine (standardized coefficient β, -0.110; 95% CI, -0.175 to -0.044). CONCLUSIONS A low response to rubella vaccination is a potential predictor of a reduced response to SARS-CoV-2 vaccination. Further studies are needed to determine whether a low response to rubella vaccination is associated with the durability of SARS-CoV-2 vaccination-induced immune response.
Collapse
Affiliation(s)
- Kazuhiko Nakaharai
- Department of Infectious Diseases and Infection Control, Jikei University School of Medicine, Tokyo, Japan; Department of Infection Control, Jikei University Hospital, Tokyo, Japan.
| | - Yasushi Nakazawa
- Department of Infectious Diseases and Infection Control, Jikei University School of Medicine, Tokyo, Japan,Department of Infection Control, Jikei University Hospital, Tokyo, Japan
| | - Yukie Mishima
- Department of Infection Control, Jikei University Hospital, Tokyo, Japan
| | - Mari Saito
- Department of Infection Control, Jikei University Hospital, Tokyo, Japan
| | - Yoichi Shinozaki
- Department of Infection Control, Jikei University Hospital, Tokyo, Japan
| | - Masaki Yoshida
- Department of Infectious Diseases and Infection Control, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Mentzer AJ, O'Connor D, Bibi S, Chelysheva I, Clutterbuck EA, Demissie T, Dinesh T, Edwards NJ, Felle S, Feng S, Flaxman AL, Karp-Tatham E, Li G, Liu X, Marchevsky N, Godfrey L, Makinson R, Bull MB, Fowler J, Alamad B, Malinauskas T, Chong AY, Sanders K, Shaw RH, Voysey M, Snape MD, Pollard AJ, Lambe T, Knight JC. Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection. Nat Med 2023; 29:147-157. [PMID: 36228659 PMCID: PMC9873562 DOI: 10.1038/s41591-022-02078-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine immunogenicity varies between individuals, and immune responses correlate with vaccine efficacy. Using data from 1,076 participants enrolled in ChAdOx1 nCov-19 vaccine efficacy trials in the United Kingdom, we found that inter-individual variation in normalized antibody responses against SARS-CoV-2 spike and its receptor-binding domain (RBD) at 28 days after first vaccination shows genome-wide significant association with major histocompatibility complex (MHC) class II alleles. The most statistically significant association with higher levels of anti-RBD antibody was HLA-DQB1*06 (P = 3.2 × 10-9), which we replicated in 1,677 additional vaccinees. Individuals carrying HLA-DQB1*06 alleles were less likely to experience PCR-confirmed breakthrough infection during the ancestral SARS-CoV-2 virus and subsequent Alpha variant waves compared to non-carriers (hazard ratio = 0.63, 0.42-0.93, P = 0.02). We identified a distinct spike-derived peptide that is predicted to bind differentially to HLA-DQB1*06 compared to other similar alleles, and we found evidence of increased spike-specific memory B cell responses in HLA-DQB1*06 carriers at 84 days after first vaccination. Our results demonstrate association of HLA type with Coronavirus Disease 2019 (COVID-19) vaccine antibody response and risk of breakthrough infection, with implications for future vaccine design and implementation.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tesfaye Demissie
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tanya Dinesh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nick J Edwards
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sally Felle
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Amy L Flaxman
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Karp-Tatham
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Grace Li
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natalie Marchevsky
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maireid B Bull
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Jamie Fowler
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bana Alamad
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert H Shaw
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Li P, Shi D, Shen W, Shi S, Guo X, Li J, Xu S, Zhang Y, Zhao Z. Pilot genome-wide association study of antibody response to inactivated SARS-CoV-2 vaccines. Front Immunol 2022; 13:1054147. [PMID: 36451823 PMCID: PMC9704361 DOI: 10.3389/fimmu.2022.1054147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 02/13/2024] Open
Abstract
Vaccines are a key weapon against the COVID-19 pandemic caused by SARS-CoV-2. However, there are inter-individual differences in immune response to SARS-CoV-2 vaccines and genetic contributions to these differences have barely been investigated. Here, we performed genome-wide association study (GWAS) of antibody levels in 168 inactivated SARS-CoV-2 vaccine recipients. A total of 177 SNPs, corresponding to 41 independent loci, were identified to be associated with IgG, total antibodies or neutral antibodies. Specifically, the rs4543780, the intronic variant of FAM89A gene, was associated with total antibodies level and was annotated as a potential regulatory variant affecting gene expression of FAM89A, a biomarker differentiating bacterial from viral infections in febrile children. These findings might advance our knowledge of the molecular mechanisms driving immunity to SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Ping Li
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Wenlong Shen
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xinjie Guo
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Zhang
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
25
|
Khor SS, Omae Y, Takeuchi JS, Fukunaga A, Yamamoto S, Tanaka A, Matsuda K, Kimura M, Maeda K, Ueda G, Mizoue T, Ujiie M, Mitsuya H, Ohmagari N, Sugiura W, Tokunaga K. An Association Study of HLA with the Kinetics of SARS-CoV-2 Spike Specific IgG Antibody Responses to BNT162b2 mRNA Vaccine. Vaccines (Basel) 2022; 10:563. [PMID: 35455312 PMCID: PMC9029840 DOI: 10.3390/vaccines10040563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
BNT162b2, an mRNA-based SARS-CoV-2 vaccine (Pfizer-BioNTech, New York, NY, USA), is one of the most effective COVID-19 vaccines and has been approved by more than 130 countries worldwide. However, several studies have reported that the COVID-19 vaccine shows high interpersonal variability in terms of humoral and cellular responses, such as those with respect to SARS-CoV-2 spike protein immunoglobulin (Ig)G, IgA, IgM, neutralizing antibodies, and CD4+ and CD8+ T cells. The objective of this study is to investigate the kinetic changes in anti-SARS-CoV-2 spike IgG (IgG-S) profiles and adverse reactions and their associations with HLA profiles (HLA-A, -C, -B, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1) among 100 hospital workers from the Center Hospital of the National Center for Global Health and Medicine (NCGM), Tokyo, Japan. DQA1*03:03:01 (p = 0.017; Odd ratio (OR) 2.80, 95%confidence interval (CI) 1.05-7.25) was significantly associated with higher IgG-S production after two doses of BNT162b2, while DQB1*06:01:01:01 (p = 0.028, OR 0.27, 95%CI 0.05-0.94) was significantly associated with IgG-S declines after two doses of BNT162b2. No HLA alleles were significantly associated with either local symptoms or fever. However, C*12:02:02 (p = 0.058; OR 0.42, 95%CI 0.15-1.16), B*52:01:01 (p = 0.031; OR 0.38, 95%CI 0.14-1.03), DQA1*03:02:01 (p = 0.028; OR 0.39, 95%CI 0.15-1.00) and DPB1*02:01:02 (p = 0.024; OR 0.45, 95%CI 0.21-0.97) appeared significantly associated with protection against systemic symptoms after two doses of BNT162b2 vaccination. Further studies with larger sample sizes are clearly warranted to determine HLA allele associations with the production and long-term sustainability of IgG-S after COVID-19 vaccination.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Junko S. Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (J.S.T.); (M.K.)
| | - Ami Fukunaga
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.F.); (S.Y.); (T.M.)
| | - Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.F.); (S.Y.); (T.M.)
| | - Akihito Tanaka
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Kouki Matsuda
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (K.M.); (K.M.); (H.M.)
| | - Moto Kimura
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (J.S.T.); (M.K.)
| | - Kenji Maeda
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (K.M.); (K.M.); (H.M.)
| | - Gohzoh Ueda
- Division of Core Diagnostics, Abbott Japan LLC., Tokyo 105-7115, Japan;
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (A.F.); (S.Y.); (T.M.)
| | - Mugen Ujiie
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (M.U.); (N.O.)
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (K.M.); (K.M.); (H.M.)
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (M.U.); (N.O.)
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| |
Collapse
|
26
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Koga M, Senkoji T, Kubota M, Ishizaka A, Mizutani T, Sedohara A, Ikeuchi K, Kikuchi T, Adachi E, Saito M, Koibuchi T, Hosomichi K, Ohashi J, Kawana-Tachikawa A, Matano T, Tsutsumi T, Yotsuyanagi H. Predictors associated with a better response to the Japanese aluminum-free hepatitis A vaccine, Aimmugen ® , for people living with HIV. Hepatol Res 2022; 52:227-234. [PMID: 34825436 DOI: 10.1111/hepr.13736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
AIM After the hepatitis A virus (HAV) outbreak among men who have sex with men (MSM) around 2018, the importance of HAV vaccination was emphasized, especially for MSM-living with human immunodeficiency virus (MSM-LWHIV). Aimmugen® is licensed and distributed exclusively in Japan. While administration of three doses is recommended, 85% of recipients in the general population were reported to acquire seroprotection after the second dose. In this study, we evaluated the efficacy of two or three vaccine doses along with predictors associated with the response to Aimmugen® in MSM-LWHIV. METHODS We retrospectively examined anti-HA-IgG titers of MSM-LWHIV vaccinated with Aimmugen® in our hospital. Patients' data were collected from medical records. RESULTS Between January 2018 and October 2019, 141 subjects whose median age was 46 years old, were examined. All the subjects were on antiretroviral therapy (ART) and the median CD4 count was 615/μL. The acquisition rate of protectable anti-HA-IgG titers after the second and third dose was 71.1% and 98.6%, respectively. In 114 subjects whose anti-HA-IgG titers were tested after the second-dose, factors significantly associated with better response were prolonged ART duration and higher CD4 count. The titers of anti-HA-IgG after the third dose were higher in those who became seropositive after the second-dose than those who did not. CONCLUSIONS Three-dose of Aimmugen® for MSM-LWHIV was effective while two-dose was less effective compared to non-HIV-infected people. People-LWHIV with shorter duration of ART and lesser CD4 cell count achieved lower titers of anti-HA-IgG and might require an additional vaccination.
Collapse
Affiliation(s)
- Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomoe Senkoji
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Megumi Kubota
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadashi Kikuchi
- Department of Infectious Diseases and Applied Immunology, Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomohiko Koibuchi
- Department of Infectious Diseases and Applied Immunology, Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Infectious Diseases and Applied Immunology, Hospital of the Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Crocchiolo R, Gallina AM, Pani A, Campisi D, Cento V, Sacchi N, Miotti V, Gagliardi OM, D'Amico F, Vismara C, Cornacchini G, Lando G, Cuppari I, Scaglione F, Rossini S. Polymorphism of the HLA system and weak antibody response to BNT162b2 mRNA vaccine. HLA 2022; 99:183-191. [PMID: 35025131 DOI: 10.1111/tan.14546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
The polymorphism of the HLA system has been extensively studied in COVID-19 infection, however there are no data about the role of HLA on vaccine response. We report here the HLA-A, -B, -C, and DRB1 allelic frequencies of n = 111 individuals after BNT162b2 mRNA vaccine, selected on the basis of lower antibody levels (<5% percentile) after the second dose among a total of n = 2569 vaccinees, and compare them with the frequencies of a reference population. We found that differences in the frequencies of the alleles HLA-A*03:01, A*33:03, B*58:01 and at least one haplotype (HLA-A*24:02~C*07:01~B*18:01~DRB1*11:04) are associated with a weaker antibody response after vaccination, together with the age of vaccinees. Our results might suggest a role played by some HLA alleles or haplotypes in antibody production after the BNT162b2 mRNA vaccine, giving insights into the tracking of potentially susceptible individuals across populations. Further studies are needed to better define our exploratory findings and dissect the role of HLA polymorphism on response to anti-COVID-19 vaccines.
Collapse
Affiliation(s)
- Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Anna Maria Gallina
- Italian Bone Marrow Donor Registry, E. O. Ospedali Galliera, Genoa, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Daniela Campisi
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Valeria Cento
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Nicoletta Sacchi
- Italian Bone Marrow Donor Registry, E. O. Ospedali Galliera, Genoa, Italy
| | - Valeria Miotti
- Laboratory of Immunogenetics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Oscar Matteo Gagliardi
- Postgraduate School of Clinical Pharmacology and Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Federico D'Amico
- Department of Infectious Diseases Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Vismara
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgia Cornacchini
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuliana Lando
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Irene Cuppari
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Chemical-Clinical and Microbiological Analyses, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvano Rossini
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
29
|
Performance and usability evaluation of novel intradermal injection device Immucise™ and reanalysis of intradermal administration trials of influenza vaccine for the elderly. Vaccine 2022; 40:873-879. [PMID: 35031147 DOI: 10.1016/j.vaccine.2021.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/24/2022]
Abstract
Under the pandemic situation, there is an urgent need to produce and acquire sufficient quantities of prophylactic vaccines. It becomes important to devise a way to achieve reliable immunity with lower doses to distribute limited supplies of vaccines to maximum number of people very quickly. Intradermal (ID) vaccination is one such method to increase the effectiveness of vaccines. However, this method has not been widely used in general clinical practice because it is technically difficult to inject vaccines precisely into the ID tissue. Therefore, new ID delivery systems that allow reliable ID administration are under development. In this paper, we summarize its design and present the results of performance and usability testing for the Immucise™ Intradermal Injection System (Immucise™). This study showed that Immucise™ can reduce dead volume and inject drugs precisely into the ID tissues of subjects from infants to the elderly and can be used correctly and safely by healthcare professionals. This randomized controlled trial compared ID administration with Immucise™ and standard subcutaneous (SC) administration of seasonal influenza vaccine by analyzing the efficacy of the vaccine in the elderly group at 90 days and 180 days after administration. It was found that the vaccine for the ID group was as effective or more effective than that for the SC group up to 180 days later. It was also found that the geometric mean titer values, especially for B strains, were higher in the two-dose ID group than in the two-dose SC group. These findings suggest that Immucise™ is one of the best devices to distribute a small amount of vaccine quickly and widely to a larger number of people with little loss of vaccine during a pandemic.
Collapse
|
30
|
McInnes G, Yee SW, Pershad Y, Altman RB. Genomewide Association Studies in Pharmacogenomics. Clin Pharmacol Ther 2021; 110:637-648. [PMID: 34185318 PMCID: PMC8376796 DOI: 10.1002/cpt.2349] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
The increasing availability of genotype data linked with information about drug-response phenotypes has enabled genomewide association studies (GWAS) that uncover genetic determinants of drug response. GWAS have discovered associations between genetic variants and both drug efficacy and adverse drug reactions. Despite these successes, the design of GWAS in pharmacogenomics (PGx) faces unique challenges. In this review, we analyze the last decade of GWAS in PGx. We review trends in publications over time, including the drugs and drug classes studied and the clinical phenotypes used. Several data sharing consortia have contributed substantially to the PGx GWAS literature. We anticipate increased focus on biobanks and highlight phenotypes that would best enable future PGx discoveries.
Collapse
Affiliation(s)
- Gregory McInnes
- Biomedical Informatics Training Program, Stanford University, Stanford, California, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California, USA
| | - Yash Pershad
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Departments of Genetics, Medicine, Biomedical Data Science, Stanford, California, USA
| |
Collapse
|
31
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
32
|
Khor SS, Omae Y, Nishida N, Sugiyama M, Kinoshita N, Suzuki T, Suzuki M, Suzuki S, Izumi S, Hojo M, Ohmagari N, Mizokami M, Tokunaga K. HLA-A*11:01:01:01, HLA-C*12:02:02:01-HLA-B*52:01:02:02, Age and Sex Are Associated With Severity of Japanese COVID-19 With Respiratory Failure. Front Immunol 2021; 12:658570. [PMID: 33968060 PMCID: PMC8100314 DOI: 10.3389/fimmu.2021.658570] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19) was announced as an outbreak by the World Health Organization (WHO) in January 2020 and as a pandemic in March 2020. The majority of infected individuals have experienced no or only mild symptoms, ranging from fully asymptomatic cases to mild pneumonic disease. However, a minority of infected individuals develop severe respiratory symptoms. The objective of this study was to identify susceptible HLA alleles and clinical markers that can be used in risk prediction model for the early identification of severe COVID-19 among hospitalized COVID-19 patients. A total of 137 patients with mild COVID-19 (mCOVID-19) and 53 patients with severe COVID-19 (sCOVID-19) were recruited from the Center Hospital of the National Center for Global Health and Medicine (NCGM), Tokyo, Japan for the period of February–August 2020. High-resolution sequencing-based typing for eight HLA genes was performed using next-generation sequencing. In the HLA association studies, HLA-A*11:01:01:01 [Pc = 0.013, OR = 2.26 (1.27–3.91)] and HLA-C*12:02:02:01-HLA-B*52:01:01:02 [Pc = 0.020, OR = 2.25 (1.24–3.92)] were found to be significantly associated with the severity of COVID-19. After multivariate analysis controlling for other confounding factors and comorbidities, HLA-A*11:01:01:01 [P = 3.34E-03, OR = 3.41 (1.50–7.73)], age at diagnosis [P = 1.29E-02, OR = 1.04 (1.01–1.07)] and sex at birth [P = 8.88E-03, OR = 2.92 (1.31–6.54)] remained significant. The area under the curve of the risk prediction model utilizing HLA-A*11:01:01:01, age at diagnosis, and sex at birth was 0.772, with sensitivity of 0.715 and specificity of 0.717. To the best of our knowledge, this is the first article that describes associations of HLA alleles with COVID-19 at the 4-field (highest) resolution level. Early identification of potential sCOVID-19 could help clinicians prioritize medical utility and significantly decrease mortality from COVID-19.
Collapse
Affiliation(s)
- Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Tetsuya Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Michiyo Suzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Satoshi Suzuki
- Biobank, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| |
Collapse
|
33
|
Zhao M, Li X, Xie S, Gong M, Yan R, Zheng A, Xu Y, Wu H, Wang Z. The dynamics and association of B and T cell receptor repertoires upon antibody response to hepatitis B vaccination in healthy adults. Hum Vaccin Immunother 2021; 17:3203-3213. [PMID: 33861159 DOI: 10.1080/21645515.2021.1913028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Hepatitis B (HB) vaccine is efficacious in preventing hepatitis B virus infection. However, the association between antibody response to the HB vaccine and dynamic immune repertoire changes in different cell subsets remains unclear. Nine healthy participants were administered three doses of HB vaccine following the 0, 1, 6 month schedule. Peripheral CD4+ T, memory B (MB), naïve B (NB), and plasma cells (PCs) were sorted before vaccination and 7 days following each dose. The complementary determining region 3 of T-cell receptor β (TCRβ) chain and B-cell receptor (BCR) heavy chain (IgG, IgM, IgA) repertoires were analyzed by high-throughput sequencing. All nine participants elicited protective antibody titers to the vaccine at the end of immunization. Compared with the baseline, MB cells showed a significant increase in IgG usage and decreased IgM usage and repertoire diversity at the end of vaccination. TCRβ diversity changes were highly correlated with those of the BCR in MB cells in participants with a faster and robust antibody responses. The percentage of shared clonotypes between NB and MB cells, and MB cells and PCs were much higher than that between NB cells and PCs. The more clonotypes sharing the faster and stronger antibody responses were observed after HB vaccination. These results suggest the integral involvement of MB cells in vaccine immunization. Interaction between CD4+ T and MB cells and B cell differentiation may improve antibody response to HB vaccine.
Collapse
Affiliation(s)
- Miaoxian Zhao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxing Gong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Ou G, Liu X, Jiang Y. HLA-DPB1 alleles in hepatitis B vaccine response: A meta-analysis. Medicine (Baltimore) 2021; 100:e24904. [PMID: 33832070 PMCID: PMC8036076 DOI: 10.1097/md.0000000000024904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/31/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The role of the HLA-DRB1 and HLA-DQB1 genes in the antibody response to hepatitis B (HB) vaccine has been well established; however, the involvement of the HLA-DPB1 allele in the HB vaccine immune response remained to be clarified by a systematic review. METHODS A meta-analysis was performed in which databases were searched for relevant studies published in English or Chinese up until June 1, 2020. Six studies were identified and a total of 10 alleles were processed into statistical processing in this meta-analysis. RESULTS Three thousand one hundred forty four subjects (including 2477 responders and 667 non-responders) were included in this research. Alleles HLA-DPB1∗02:02, DPB1∗03:01, DPB1∗04:01, DPB1∗04:02, and DPB1∗14:01 were found to be associated with a significant increase in the antibody response to HB vaccine, and their pooled odds ratios (ORs) were 4.53, 1.57, 3.33, 4.20, and 1.79, respectively; whereas DPB1∗05:01 (OR = 0.73) showed the opposite correlation. CONCLUSIONS These findings suggested that specific HLA-DPB1 alleles are associated with the antibody response to HB vaccine.
Collapse
Affiliation(s)
- Guojin Ou
- Department of Laboratory Medicine, West China Second University Hospital, Chengdu, Sichuan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Chengdu, Sichuan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Chengdu, Sichuan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, China
| |
Collapse
|
35
|
Variation and expression of HLA-DPB1 gene in HBV infection. Immunogenetics 2021; 73:253-261. [PMID: 33710355 DOI: 10.1007/s00251-021-01213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B virus (HBV) affects approximately 68 million people in China, and 10-15% of adults infected with HBV develop chronic hepatitis B, liver cirrhosis, liver failure or hepatocellular carcinoma (HCC). HLA-DPB1 gene polymorphism and expression have been shown to be associated with HBV infection susceptibility and spontaneous clearance. The aim of this study is to evaluate the role of HLA-DPB1 gene polymorphism in HBV infection. HLA-DPB1 and rs9277535 polymorphisms were investigated in 259 patients with HBV infection and 442 healthy controls (HCs) using sequence-based typing. The mRNA of HLA-DPB1 was measured by real-time polymerase chain reaction. HLA-DPB1 genes and rs9277535 polymorphisms were all associated with HBV infection in the Sichuan Han population. rs9277535A and HLA-DPB1*04:02 played a protective role against HBV infection. rs9277535G and DPB1*05:01 were associated with susceptibility to HBV infection. rs9277535GG had significantly higher HLA-DPB1 mRNA expression in the HBV infection group compared with the HC group. HLA-DPB1*05:01 and HLA-DPB1*21:01 had significantly lower mRNA expression in the HBV infection group compared with the HC group. The meta-analysis revealed that HLA-DPB1*02:01, HLA-DPB1*02:02, HAL-DPB1*04:01 and HLA-DPB1*04:02 protected against HBV infection, while HLA-DPB1*05:01, HLA-DPB1*09:01, and HLA-DPB1*13:01 were risk factors for susceptibility to HBV infection. HLA-DPB1*02:01, HLA-DPB1*02:02, and HLA-DPB1*04:01 were associated with HBV spontaneous clearance, while HLA-DPB1*05:01 was associated with chronic HBV infection. HLA-DPB1 alleles and rs9277535 have a major effect on the risk of HBV infection, and HBV infection is associated with lower HLA-DPB1 expression. HLA-DPB1 alleles have an important role in HBV susceptibility and spontaneous clearance.
Collapse
|
36
|
Nishida N, Sugiyama M, Ohashi J, Kawai Y, Khor SS, Nishina S, Yamasaki K, Yazaki H, Okudera K, Tamori A, Eguchi Y, Sakai A, Kakisaka K, Sawai H, Tsuchiura T, Ishikawa M, Hino K, Sumazaki R, Takikawa Y, Kanda T, Yokosuka O, Yatsuhashi H, Tokunaga K, Mizokami M. Importance of HBsAg recognition by HLA molecules as revealed by responsiveness to different hepatitis B vaccines. Sci Rep 2021; 11:3703. [PMID: 33654122 PMCID: PMC7925550 DOI: 10.1038/s41598-021-82986-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B (HB) vaccines (Heptavax-II and Bimmugen) designed based on HBV genotypes A and C are mainly used for vaccination against HB in Japan. To determine whether there are differences in the genetic background associated with vaccine responsiveness, genome-wide association studies were performed on 555 Heptavax-II and 1193 Bimmugen recipients. Further HLA imputation and detailed analysis of the association with HLA genes showed that two haplotypes, DRB1*13:02-DQB1*06:04 and DRB1*04:05-DQB1*04:01, were significantly associated in comparison with high-responders (HBsAb > 100 mIU/mL) for the two HB vaccines. In particular, HLA-DRB1*13:02-DQB1*06:04 haplotype is of great interest in the sense that it could only be detected by direct analysis of the high-responders in vaccination with Heptavax-II or Bimmugen. Compared with healthy controls, DRB1*13:02-DQB1*06:04 was significantly less frequent in high-responders when vaccinated with Heptavax-II, indicating that high antibody titers were less likely to be obtained with Heptavax-II. As Bimmugen and Heptavax-II tended to have high and low vaccine responses to DRB1*13:02, 15 residues were found in the Heptavax-II-derived antigenic peptide predicted to have the most unstable HLA-peptide binding. Further functional analysis of selected hepatitis B patients with HLA haplotypes identified in this study is expected to lead to an understanding of the mechanisms underlying liver disease.
Collapse
Affiliation(s)
- Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan.
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 113-0033, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, 856-8562, Japan
| | - Hirohisa Yazaki
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Kaori Okudera
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Akihiro Tamori
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, 558-8585, Japan
| | - Yuichiro Eguchi
- Division of Hepatology, Saga Medical School, Saga, 840-8502, Japan
| | - Aiko Sakai
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba-cho, 028-3694, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, 113-0033, Japan
| | - Takayo Tsuchiura
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Miyuki Ishikawa
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Ryo Sumazaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Yahaba-cho, 028-3694, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, 173-8610, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Japan Community Health Care Organization Funabashi Central Hospital, Funabashi, 273-8556, Japan
| | - Hiroshi Yatsuhashi
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, 856-8562, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, 272-8516, Japan
| |
Collapse
|
37
|
Identification of Two Critical Neutralizing Epitopes in the Receptor Binding Domain of Hepatitis B Virus preS1. J Virol 2021; 95:JVI.01680-20. [PMID: 33298539 PMCID: PMC8092832 DOI: 10.1128/jvi.01680-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.
Collapse
|
38
|
Seremba E, Ocama P, Ssekitoleko R, Mayanja-Kizza H, Adams SV, Orem J, Katabira E, Reynolds SJ, Nabatanzi R, Casper C, Phipps W. Immune response to the hepatitis B vaccine among HIV-infected adults in Uganda. Vaccine 2021; 39:1265-1271. [PMID: 33516601 DOI: 10.1016/j.vaccine.2021.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 01/16/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Co-infection with hepatitis B virus (HBV) and human immunodeficiency virus (HIV) is common in sub-Saharan Africa (SSA) and can rapidly progress to cirrhosis and hepatocellular carcinoma. Recent data demonstrate ongoing HBV transmission among HIV-infected adults in SSA, suggesting that complications of HIV/HBV co-infection could be prevented with HBV vaccination. Because HBV vaccine efficacy is poorly understood among HIV-infected persons in SSA, we sought to characterize the humoral response to the HBV vaccine in HIV-seropositive Ugandan adults. METHODS We enrolled HIV-infected adults in Kampala, Uganda without serologic evidence of prior HBV infection. Three HBV vaccine doses were administered at 0, 1 and 6 months. Anti-HBs levels were measured 4 weeks after the third vaccine dose. "Response" to vaccination was defined as anti-HBs levels ≥ 10 IU/L and "high response" as ≥ 100 IU/L. Regression analysis was used to determine predictors of response. RESULTS Of 251 HIV-positive adults screened, 132 (53%) had no prior HBV infection or immunity and were enrolled. Most participants were women [89 (67%)]; median (IQR) age was 32 years (27-41), and 68 (52%) had received antiretroviral therapy (ART) for > 3 months. Median (IQR) CD4 count was 426 (261-583), and 64 (94%) of the 68 receiving ART had undetectable plasma HIV RNA. Overall, 117 (92%) participants seroconverted to the vaccine (anti-HBs ≥ 10 IU/L), with 109 (86%) participants having high-level response (anti-HBs ≥ 100 IU/L). In multivariate analysis, only baseline CD4 > 200 cells/mm3 was associated with response [OR = 6.97 (1.34-34.71), p = 0.02] and high-level response [OR = 4.25 (1.15-15.69)], p = 0.03]. CONCLUSION HBV vaccination was effective in eliciting a protective humoral response, particularly among those with higher CD4 counts. Half of the screened patients did not have immunity to HBV infection, suggesting a large at-risk population for HBV infection among HIV-positive adults in Uganda. Our findings support including HBV vaccination as part of routine care among HIV-positive adults.
Collapse
Affiliation(s)
- E Seremba
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.
| | - P Ocama
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - R Ssekitoleko
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - H Mayanja-Kizza
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - S V Adams
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J Orem
- Uganda Cancer Institute, Kampala, Uganda
| | - E Katabira
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - S J Reynolds
- Johns Hopkins University School of Medicine, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - R Nabatanzi
- School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - C Casper
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Infectious Disease Research Institute Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - W Phipps
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Nishimura K, Yamana K, Fukushima S, Fujioka K, Miyabayashi H, Murabayashi M, Masunaga K, Okahashi A, Nagano N, Morioka I. Comparison of Two Hepatitis B Vaccination Strategies Targeting Vertical Transmission: A 10-Year Japanese Multicenter Prospective Cohort Study. Vaccines (Basel) 2021; 9:58. [PMID: 33477275 PMCID: PMC7830287 DOI: 10.3390/vaccines9010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
In 1985, a hepatitis B (HB) vaccination strategy against vertical HB virus transmission was introduced in Japan that recommended vaccination of infants at two, three, and five months of age (delayed strategy). This schedule was revised in 2013, recommending to vaccinate at birth and at 1 and 6 months of age (non-delayed strategy). We aimed to compare the vertical HB virus transmission rates and immunogenic responses between these two vaccination strategies. This Japanese multicenter prospective cohort study included 222 infants born between 2008 and 2017 to serum hepatitis B surface (HBs) antigen (HBsAg)-positive mothers. During the study period, 136 and 86 infants received delayed and non-delayed strategies, respectively. A positive vertical HB virus transmission was defined as a positive serum HBsAg status. Seropositive immunogenic response was defined as a serum anti-HBs titer of ≥10 mIU/mL. Post-vaccination serum HBsAg positivity rates did not differ significantly between the delayed (0/136 [0.0%, 95% confidence interval, 0.0-2.7%]) and non-delayed (2/86 [2.3%, 95% confidence interval, 0.3-8.1%]) strategy groups. Seropositive immunogenic response rates were 100.0% (136/136) and 97.7% (84/86), respectively. Although this study was under-powered to detect a statistically significant result, no vertical HB virus transmission was observed in the delayed strategy.
Collapse
Affiliation(s)
- Koji Nishimura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Keiji Yamana
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
- Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa 6758611, Japan
| | - Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
| | | | - Masao Murabayashi
- Department of Pediatrics, Numazu City Hospital, Numazu 4100302, Japan;
| | - Ken Masunaga
- Division of Neonatology, Tokyo Metropolitan Ohtsuka Hospital, Tokyo 1708476, Japan;
| | - Aya Okahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| |
Collapse
|
40
|
Omersel J, Karas Kuželički N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. J Clin Med 2020; 9:E3561. [PMID: 33167413 PMCID: PMC7694388 DOI: 10.3390/jcm9113561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Precision medicine approaches based on pharmacogenomics are now being successfully implemented to enable physicians to predict more efficient treatments and prevention strategies for a given disease based on the genetic background of the patient. This approach has already been proposed for vaccines, but research is lagging behind the needs of society, and precision medicine is far from being implemented here. While vaccinomics concerns the effectiveness of vaccines, adversomics concerns their side effects. This area has great potential to address public concerns about vaccine safety and to promote increased public confidence, higher vaccination rates, and fewer serious adverse events in genetically predisposed individuals. The aim here is to explore the contemporary scientific literature related to the vaccinomic and adversomic aspects of the three most-controversial vaccines: those against hepatitis B, against measles, mumps, and rubella, and against human Papilloma virus. We provide detailed information on the genes that encode human leukocyte antigen, cytokines and their receptors, and transcription factors and regulators associated with the efficacy and safety of the Hepatitis B and Measles, Mumps and Rubella virus vaccines. We also investigate the future prospects of vaccinomics and adversomics of a COVID-19 vaccine, which might represent the fastest development of a vaccine ever.
Collapse
Affiliation(s)
| | - Nataša Karas Kuželički
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
41
|
Nishikawa K, Kimura K, Kanda Y, Sugiyama M, Kakihana K, Doki N, Ohashi K, Bae SK, Takahashi K, Ishihara Y, Mizuno I, Onishi Y, Onozawa M, Onizuka M, Yamamoto M, Ishikawa T, Inoue K, Kusumoto S, Hashino S, Saito H, Kanto T, Sakamaki H, Mizokami M. A prospective trial of vaccine to prevent hepatitis B virus reactivation after hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 55:1388-1398. [PMID: 32071416 PMCID: PMC7329632 DOI: 10.1038/s41409-020-0833-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) reactivation reportedly occurs frequently after hematopoietic stem cell transplantation (HSCT) in resolved HBV-infected patients. Here, 50 patients with resolved HBV infections and scheduled to undergo HSCT were enrolled; all subjects were vaccinated with three doses of hepatitis B vaccine 12 months after HSCT and the incidence of HBV reactivation was monitored. The patients' characteristics were: median age, 61 (34-72) years; male/female, 27/19; allogeneic/autologous, 40/6; bone marrow/peripheral blood stem cells/cord blood, 26/16/4. Of the 46 patients who underwent HSCT, 19 were excluded and did not make it to vaccination due to relapse of underlying disease, HBV reactivation within 12 months of HSCT, or transfer of patients. The remaining 27 were vaccinated 12 months after HSCT and monitored for 2 years. Six showed HBV reactivation, with a 2-year cumulative reactivation incidence of 22.2%; the same incidence was 27.3% only in allogeneic HSCT patients. Factors associated with HBV reactivation included the discontinuation of immunosuppressants (P = 0.0379) and baseline titers of antibody against hepatitis B surface antigen (P = 0.004). HBV reactivation with vaccination following HSCT could occur despite maintenance of serum anti-HBs at more than protective levels.
Collapse
Affiliation(s)
- Koji Nishikawa
- Division of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kiminori Kimura
- Division of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University, Shimotuke, Japan
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kazuhiko Kakihana
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuteru Ohashi
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Sung Kwan Bae
- The Center for Liver Disease, Hamanomachi Hospital, Fukuoka, Japan
| | | | - Yuko Ishihara
- Division of Hematology, Jichi Medical University, Shimotuke, Japan
| | - Ishikazu Mizuno
- Department of Hematology, Hyogo Cancer Center, Akashi, Japan
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Masahide Yamamoto
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Ishikawa
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuaki Inoue
- Department of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Hashino
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidetsugu Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Hisashi Sakamaki
- Division of Hematology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
42
|
Yoshida K, Yokota K, Kutsuwada Y, Nakayama K, Watanabe K, Matsumoto A, Miyashita H, Khor SS, Tokunaga K, Kawai Y, Nagasaki M, Iwamoto S. Genome-Wide Association Study of Lean Nonalcoholic Fatty Liver Disease Suggests Human Leukocyte Antigen as a Novel Candidate Locus. Hepatol Commun 2020; 4:1124-1135. [PMID: 32766473 PMCID: PMC7395061 DOI: 10.1002/hep4.1529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is supposed to manifest its metabolic phenotype in the liver, but it is common to have lean individuals diagnosed with NAFLD, known as lean NAFLD. We conducted a two-stage analysis to identify NAFLD-associated loci in Japanese patients. In stage I, 275 metabolically healthy normal-weight patients with NAFLD were compared with 1,411 non-NAFLD controls adjusted for age, sex, and alcohol consumption by a genome-wide association study (GWAS). In stage II, human leukocyte antigen (HLA) in chromosome 6 (chr6) (P = 6.73E-08), microRNA (MIR) MIR548F3 in chr7 (P = 4.25E-07), myosin light chain 2 (MYL2) in chr12 (P = 4.39E-07), and glycoprotein precursor (GPC)6 in chr13 (P = 5.43E-07), as suggested by the GWAS, were assessed by single nucleotide polymorphism (SNP) association analysis of whole NAFLD against non-NAFLD in 9,726 members of the general population. A minor allele of the secondary lead SNP in chr6, rs2076529, was significantly associated (odds ratio [OR], 1.19; 95% confidence interval [CI], 1.11-1.28; P = 2.10E-06) and the lead SNP in chr7 was weakly associated (OR 1.15; 95% CI, 1.04-1.27; P = 6.19E-03) with increased NAFLD risk. Imputation-based typing of HLA showed a significant difference in the distribution of HLA-B, HLA-DR-beta chain 1 (DRB1), and HLA-DQ-beta chain 1 (DQB1) alleles in lean NAFLD GWAS. Next-generation sequence-based typing of HLA in 5,649 members of the general population replicated the significant difference of HLA-B allele distribution and the significant increase of the HLA-B*54:01 allele in whole NAFLD. Fecal metagenomic analysis of 3,420 members of the general population showed significant dissimilarity in beta-diversity analysis of rs2076529 and HLA-B*54:01 allele carriers from noncarriers. Veillonellaceae was increased but Verrucomicrobia was decreased in rs2076529 minor allele and HLA-B*54:01 allele carriers as in NAFLD. Conclusion: HLA was identified as a novel locus associated with NAFLD susceptibility, which might be affected by the alteration of gut microbiota.
Collapse
Affiliation(s)
- Ken Yoshida
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan
| | - Kazuha Yokota
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan
| | - Yukinobu Kutsuwada
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan.,Forensic Science Laboratory Tochigi Prefecture Police Headquarters Utsunomiya Japan
| | - Kazuhiro Nakayama
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan.,Laboratory of Evolutionary Anthropology Department of Integrated Biosciences Graduate School of Frontier Sciences University of Tokyo Kashiwa Japan
| | - Kazuhisa Watanabe
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan
| | - Ayumi Matsumoto
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan.,Department of Human Genetics Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan.,Department of Human Genetics Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Yosuke Kawai
- Genome Medical Science Project National Center for Global Health and Medicine Tokyo Japan.,Department of Human Genetics Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization Tohoku University Sendai Japan.,Center for the Promotion of Interdisciplinary Education and Research Kyoto University Kyoto Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics Center for Molecular Medicine Jichi Medical University Shimotsuke Japan
| |
Collapse
|
43
|
Anderson-Trocmé L, Farouni R, Bourgey M, Kamatani Y, Higasa K, Seo JS, Kim C, Matsuda F, Gravel S. Legacy Data Confound Genomics Studies. Mol Biol Evol 2020; 37:2-10. [PMID: 31504792 DOI: 10.1093/molbev/msz201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent reports have identified differences in the mutational spectra across human populations. Although some of these reports have been replicated in other cohorts, most have been reported only in the 1000 Genomes Project (1kGP) data. While investigating an intriguing putative population stratification within the Japanese population, we identified a previously unreported batch effect leading to spurious mutation calls in the 1kGP data and to the apparent population stratification. Because the 1kGP data are used extensively, we find that the batch effects also lead to incorrect imputation by leading imputation servers and a small number of suspicious GWAS associations. Lower quality data from the early phases of the 1kGP thus continue to contaminate modern studies in hidden ways. It may be time to retire or upgrade such legacy sequencing data.
Collapse
Affiliation(s)
- Luke Anderson-Trocmé
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Rick Farouni
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Mathieu Bourgey
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jeong-Sun Seo
- Bioinformatics Institute, Macrogen Inc, Seoul, Republic of Korea
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Changhoon Kim
- Bioinformatics Institute, Macrogen Inc, Seoul, Republic of Korea
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| |
Collapse
|
44
|
Ogawa M, Akine D, Sasahara T. Comparison of hepatitis B vaccine efficacy in Japanese students: a retrospective study. Environ Health Prev Med 2019; 24:80. [PMID: 31878867 PMCID: PMC6933897 DOI: 10.1186/s12199-019-0837-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background Two types of recombinant hepatitis B virus (HBV) vaccines are available in Japan. One type uses the antigen from genotype A (Heptavax-II®) and the other uses the antigen from genotype C (Bimmugen®). Potential differences in productivity of the hepatitis B virus surface (HBs) antibody between vaccines have not been studied in detail. We investigated the acquired level of immunity against HBV in association with two vaccines, their administration routes, and patient sex. We present the appropriate inoculation method based on the characteristics of each vaccine. Methods Data of 1135 medical and nursing students (481 men and 651 women) were used, each of whom was unvaccinated prior to recruitment and subsequently vaccinated three times prior to the study. The vaccine type and administration route differed according to the university department and enrolling year. The students were categorized into the following three groups: Bimmugen®-subcutaneous group, Heptavax-II®-subcutaneous group, and Heptavax-II®-intramuscular group. The total and sex-segregated positive rates of the HBs antibody among the three groups were compared using Pearson’s chi-square test. The effect of time between the HBs antibody test and vaccine administration on the HBs antibody level was also analyzed similarly. Results The Bimmugen®-subcutaneous group showed the highest positive HBs antibody rate (92.0%) among the three groups. In the Heptavax-II® group, the positive rate was 66.3% in the subcutaneous injection group and 89.1% in the intramuscular injection group. There was a significant difference among these three groups. In terms of sex, women showed a significantly higher average positive rate than men in each group. In terms of effect of time between the HBs antibody test and vaccine administration, no significant differences were observed. Conclusions Bimmugen® is associated with more effective HBs antibody production than Heptavax-II® in Japanese students. However, the Heptavax-II® vaccine is an appropriate choice for HBV vaccination in areas where HB is caused predominantly by HBV genotype C. With both vaccines, women tended to acquire more immunogenicity than men. Intramuscular injection may be the preferred administration route due to the possibility of local reactions.
Collapse
Affiliation(s)
- Masanori Ogawa
- Health Service Center, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Japan.
| | - Dai Akine
- Health Service Center, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Japan
| | - Teppei Sasahara
- Division of Clinical Infectious Diseases, Department of Infection and Immunity, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Japan
| |
Collapse
|
45
|
Komatsu H, Inui A, Suzuki Y, Sugiyama M, Fujisawa T. Deep sequencing of hepatitis B surface antigen gene in the preserved umbilical cords in immunoprophylaxis failure against mother-to-child HBV transmission. BMC Infect Dis 2019; 19:985. [PMID: 31752732 PMCID: PMC6873716 DOI: 10.1186/s12879-019-4624-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vaccine escape mutants (VEMs) are one of the causes of breakthrough infections in the mother-to-child transmission of hepatitis B virus (HBV). We hypothesized that VEMs existing as minor populations in the maternal blood are associated with breakthrough infections in children. We sought to determine whether VEMs exist as minor populations in the preserved umbilical cords of children with breakthrough infections. CASE PRESENTATION Two families (Family 1: three children, Family 2: two children) were enrolled. Despite immunoprophylaxis, a breakthrough infection occurred in two Family 1 children and two Family 2 children. Preserved umbilical cords, serum, and nails were used for the HBV DNA analysis. To detect VEMs, we performed direct and deep sequencing of hepatitis B surface antigen gene. The direct sequencing showed that there were no VEMs in the serum of the children or mother of Family 1 and family 2, but it identified a G145A mutant in the nails of the mother of Family 2. In Family 1, deep sequencing detected a T143S mutant as a minor population (1.7-2.0%) in the umbilical cords and serum of all three children and in the serum of the mother. A T126A mutant was also detected in the umbilical cord (9.2%) and serum (7.0%) of the first-born child of Family 1. In Family 2, the deep sequencing showed no VEMs in the umbilical cords, but it detected D144A (2.5%) and G145A (11.2%) mutants in the serum of the 2nd-born child. CONCLUSIONS VEMs were present as minor populations in the preserved umbilical cords of children with breakthrough infections. The VEMs did not become major populations after the breakthrough infections. The evolution of VEMs from a minor form to a major form might not be a prerequisite for breakthrough infections in mother-to-child transmission.
Collapse
Affiliation(s)
- Haruki Komatsu
- Department of Pediatrics, Toho University, Sakura Medical Center, 564-1 Shimoshizu Sakura, Chiba, 285-8741, Japan.
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Yasuto Suzuki
- Department of Pediatrics, Kushiro Red Cross Hospital, Hokkaido, Japan
| | - Masaya Sugiyama
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| |
Collapse
|
46
|
Chung S, Roh EY, Park B, Lee Y, Shin S, Yoon JH, Song EY. GWAS identifying HLA-DPB1 gene variants associated with responsiveness to hepatitis B virus vaccination in Koreans: Independent association of HLA-DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A. J Viral Hepat 2019; 26:1318-1329. [PMID: 31243853 DOI: 10.1111/jvh.13168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
Recently, HLA class II loci, including HLA-DPB1, have been reported to be associated with interindividual variance in the hepatitis B (HB) vaccine response. In this study, we investigated significant single nucleotide polymorphisms (SNPs) for anti-HBs antibody levels in 6867 healthy Koreans using a genome-wide association study (GWAS). In GWAS, the top 20 SNPs that showed significant association with anti-HBs levels (P < 1.0 × 10-29 ) all resided in HLA-DPB1. Utilizing PCR sequencing, we verified the relationship of the top 3 most significant SNPs (rs1042169, rs9277355 and rs9277356) from the GWAS and genotypes of HLA-DPB1 with the HB vaccine response in Korean infants who received a scheduled vaccination. The DPB1*04:02 allele has G, C and A nucleotides for the 3SNP sites, and was significantly more frequent in responders than in nonresponders (10.9% vs 1.0%, Pc = 0.018). DPB1*05:01 was significantly more frequent in nonresponders than in responders (49.0% vs 31.1%, Pc = 0.018). In multivariate logistic regression, DPB1*04:02 showed a significant association with both vaccine response (P = 0.037, OR = 8.465) and high-titre response (P = 0.027, OR = 9.860). The haplotypes rs1042169 G - rs9277355 C - rs9277356 A showed a significant association with a high-titre response only (P = 0.002, OR = 2.941). In conclusion, DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A is an independent predictor of the HB vaccine response in Koreans.
Collapse
Affiliation(s)
- Soie Chung
- Department of Laboratory Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Boram Park
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunhwan Lee
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Zhang Z, Wang C, Liu Z, Zou G, Li J, Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet 2019; 10:696. [PMID: 31475028 PMCID: PMC6702792 DOI: 10.3389/fgene.2019.00696] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is still a major health problem worldwide. Recently, a great number of genetic studies based on single nucleotide polymorphisms (SNPs) and genome-wide association studies have been performed to search for host determinants of the development of chronic HBV infection, clinical outcomes, therapeutic efficacy, and responses to hepatitis B vaccines, with a focus on human leukocyte antigens (HLA), cytokine genes, and toll-like receptors. In addition to SNPs, gene insertions/deletions and copy number variants are associated with infection. However, conflicting results have been obtained. In the present review, we summarize the current state of research on host genetic factors and chronic HBV infection, its clinical type, therapies, and hepatitis B vaccine responses and classify published results according to their reliability. The potential roles of host genetic determinants of chronic HBV infection identified in these studies and their clinical significance are discussed. In particular, HLAs were relevant for HBV infection and pathogenesis. Finally, we highlight the need for additional studies with large sample sizes, well-matched study designs, appropriate statistical methods, and validation in multiple populations to improve the treatment of HBV infection.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Changtai Wang
- Department of Infectious Diseases, the Affiliated Anqing Hospital of Anhui Medical University, Anqing, China
| | - Zhongping Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Duisburg-Essen, Essen, Germany
| |
Collapse
|
48
|
Lumley SF, McNaughton AL, Klenerman P, Lythgoe KA, Matthews PC. Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen. Front Immunol 2018; 9:1561. [PMID: 30061882 PMCID: PMC6054973 DOI: 10.3389/fimmu.2018.01561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics.
Collapse
Affiliation(s)
- Sheila F. Lumley
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna L. McNaughton
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|