1
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
2
|
Huang Z, Ling W, Lyu G, Xu S, Ye F, Fang Y, Weng Z, Wu Q. Correlation analyses of ultrasonographic and histopathological characteristics of porta hepatis lymph nodes in biliary atresia. BMC Gastroenterol 2025; 25:398. [PMID: 40410677 PMCID: PMC12100777 DOI: 10.1186/s12876-025-03972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND To perform correlation analyses between the ultrasonographic characteristics of porta hepatis lymph nodes (PHLNs) and the pathological features of PHLNs and the liver in biliary atresia (BA). METHODS We analyzed the clinical ultrasonographic characteristics of PHLNs in 27 patients with BA, along with specific pathological features, including pathological size, the number of bile granules, the number of germinal centers, the proportion of lymphocytes, and the analysis of liver biopsy specimens. A series of correlation analyses were then performed between ultrasonography data, pathological features, and prognosis. RESULTS The level of ultrasound echogenicity of PHLNs was positively correlated with the number of bile granules (r = 0.377, p = 0.004), while ultrasound and pathological size were also positively correlated with the number of germinal centers (r = 0.591, p = 0.001; r = 0.459, p = 0.016, respectively). No significant correlations were detected between the stage of liver fibrosis and pathological features or postoperative jaundice (all p > 0.05). Different types of lymphocytes proliferating in the livers, and CD8 + cells were positively correlated with the pathological size of PHLNs (r = 0.390, p = 0.045; r = 0.424, p = 0.028, respectively), and the number of germinal centers(r = 0.554, p = 0.003; r = 0.482, p = 0.011, respectively).The ultrasonographic and pathological size of PHLNs were only positively correlated with the serum levels of direct bilirubin(r = 0.431, p = 0.025; r = 0.593, p = 0.001, respectively).Finally, the pathological size of PHLNs and the number of CD8 + cells in the liver were negatively correlated with the reduction of jaundice following Kasai portoenterostomy (KPE) surgery (r=-0.385, p = 0.047; r=-0.567, p = 0.0411; r=-0.002, p = 0.033, respectively). CONCLUSIONS Analyses demonstrated that the ultrasonographic features of PHLNs are significantly correlated with pathological features of PHLNs and the liver. In addition, the enlargement of PHLNs might represent a prognostic predictor following KPE surgery.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Pathology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Wen Ling
- Department of Medical Ultrasonics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Lyu
- Department of Medical Ultrasonics, The Second Affiliated Hospital of Fujian Medical University, Quan zhou, China
- Department of Clinical Medicine, Quan zhou Medical College, Quan zhou, China
| | - Shuxia Xu
- Department of Pathology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Fengying Ye
- Department of Medical Ultrasonics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Yifan Fang
- Department of Pediatric Surgery, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Zongjie Weng
- Department of Medical Ultrasonics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiumei Wu
- Department of Medical Ultrasonics, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Li X, Li T, Liu S, Zhao Y, Chen Y, Abudureyimu A, Zhang S, Ge L, Yang Q, Meng Y, Liu J, Musha J, Zhan J. Scar-associated macrophages and biliary epithelial cells interaction exacerbates hepatic fibrosis in biliary atresia. Pediatr Res 2025:10.1038/s41390-025-04100-2. [PMID: 40383871 DOI: 10.1038/s41390-025-04100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/21/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Biliary atresia (BA) is a severe pediatric biliary disorder characterized by the progressive obstruction of liver bile ducts. In the absence of treatment, fibrosis advances rapidly in most affected children. Despite the identification of various factors contributing to fibrosis progression, comprehensive investigations into the microenvironmental alterations within the liver are still scarce. METHODS Single-cell RNA sequencing (scRNA-seq) was conducted on two normal tissues adjacent to liver tumors, two choledochal cyst liver tissues, and four BA liver tissues. This analysis, combined with spatial localization data, elucidated the heterogeneity of the livers affected by BA. Ultimately, a diagnostic model for BA was developed, leveraging high-resolution fibrosis-related gene signatures. RESULTS We identified scar-associated macrophages (SAMs) originating from monocytes, which played a pivotal role in fibrosis progression and may be implicated in the epithelial-mesenchymal transition (EMT) of biliary epithelial cells (BECs). Furthermore, the hub genes CD96, EVL, S100A6, and S100A11 were found to be upregulated in SAMs and regulatory T cells (Tregs), aiding in the diagnosis of BA. CONCLUSION SAMs and BECs not only exhibited a pro-fibrotic phenotype but also co-localized within fibrotic regions. Their interaction may facilitate the activation of EMT, highlighting a potential therapeutic target for BA treatment. IMPACT Analysis of the immune landscape: Through single-cell and spatial transcriptomic techniques, the paper reveals the complex immune landscape associated with BA fibrosis. Exploration of new therapeutic targets: This paper reveals that SAMs can promote the progression of liver fibrosis by regulating the EMT conversion of BECs, opening up a new therapeutic approach. Application of diagnostic markers: The paper identifies biomarkers that may improve early diagnostic accuracy and postoperative prognosis and recommends their incorporation into clinical practice.
Collapse
Affiliation(s)
- Xin Li
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | - Tengfei Li
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Shaowen Liu
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yilin Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yuqiang Chen
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | | | - Shujian Zhang
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Liang Ge
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Qianhui Yang
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Yu Meng
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Jiaying Liu
- Graduate School, Tianjin Medical University, Tianjin, China
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China
| | - Jiayinaxi Musha
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Urumqi Children's Hospital, Xinjiang, China
| | - Jianghua Zhan
- General Surgery Department, Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
4
|
Liu D, Wang X, Han Y, Wang J, Sun Y, Hou Y, Wu Q, Zeng C, Ding X, Chang Y, Hu J, Huang X, Lu L. A donor PD-1 +CD8 + T SCM-like regulatory subset mobilized by G-CSF alleviates recipient acute graft-versus-host-disease. Signal Transduct Target Ther 2025; 10:120. [PMID: 40175340 PMCID: PMC11965471 DOI: 10.1038/s41392-025-02183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
Donor selection determines the occurrence of acute graft-versus-host-disease (aGVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT). To optimize the current clinical donor selection criteria and identify putative donor lymphocyte subsets associated with better recipient outcomes, we analyzed the peripheral CD4+ and CD8+ subsets in 80 granulocyte colony-stimulating factor (G-CSF) mobilized donors and examined the aGVHD incidence of the corresponding 80 haploidentical and identical allo-HSCT recipients. The G-CSF-induced expansion of subsets varied among donors. We discovered a novel PD-1+CD8+CD45RA+CCR7+ T lymphocyte subset in suitable donors that was significantly correlated with lower incidence of aGVHD and post-transplant anti-infection. The anti-aGVHD activity of this subset was confirmed in a validation cohort (n = 30). Single-cell RNA sequencing revealed that this T cell subset exhibited transcriptomic features of stem cell-like memory T cell (TSCM) with both Treg and Teff activities which indicated its dual functions in aGVHD inhibition and graft-versus-leukemia (GVL) effect. Intriguingly, upon G-CSF mobilization, the donor PD-1+CD8+ TSCM-like regulatory cells increased the PD-1 expression in a BCL6-dependent manner. Next, we showed that the mouse counterpart of this subset (PD-1+CD8+CD44-CD62L+) ameliorated aGVHD, and confirmed the existence of this subset in clinical recipients. In summary, we, for the first time, identified a novel donor peripheral T cell subset suppressing aGVHD while promoting the immune reconstitution of recipients. It may serve as an indicator for optimal haploidentical and identical donor selection. Importantly, the dual Treg and Teff function of these T cells makes it a promising treatment for not only aGVHD but also auto-immune diseases.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Sun
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Hou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Zeng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jiong Hu
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.
- Blood and Marrow Transplantation Center, Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Feng X, Feng B, Zhou J, Yang J, Pan Q, Yu J, Shang D, Li L, Cao H. Mesenchymal stem cells alleviate mouse liver fibrosis by inhibiting pathogenic function of intrahepatic B cells. Hepatology 2025; 81:1211-1227. [PMID: 38546278 PMCID: PMC11902620 DOI: 10.1097/hep.0000000000000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND AIMS The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH AND RESULTS Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas, and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (μMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in μMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the Mitogen-activated protein kinase and Nuclear factor kappa B signaling pathways. CONCLUSIONS Intrahepatic B cells serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.
Collapse
Affiliation(s)
- Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan City, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
- National Medical Center for Infectious Diseases, Hangzhou City, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou City, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou City, China
| |
Collapse
|
6
|
Leung J, Qu L, Ye Q, Zhong Z. The immune duality of osteopontin and its therapeutic implications for kidney transplantation. Front Immunol 2025; 16:1520777. [PMID: 40093009 PMCID: PMC11906708 DOI: 10.3389/fimmu.2025.1520777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein with various structural domains that enable it to perform diverse functions in both physiological and pathological states. This review comprehensively examines OPN from multiple perspectives, including its protein structure, interactions with receptors, interactions with immune cells, and roles in kidney diseases and transplantation. This review explores the immunological duality of OPN and its significance and value as a biomarker and therapeutic target in kidney transplantation. In cancer, OPN typically promotes tumor evasion by suppressing the immune system. Conversely, in immune-related kidney diseases, particularly kidney transplantation, OPN activates the immune system by enhancing the migration and activation of immune cells, thereby exacerbating kidney damage. This immunological duality may stem from different OPN splice variants and the exposure, after cleavage, of different structural domains, which play distinct biological roles in cellular interactions. Additionally, OPN has a significant biological impact posttransplantation and on chronic kidney disease and, highlighting its importance as a biomarker and potential therapeutic target. Future research should further explore the specific mechanisms of OPN in kidney transplantation to improve treatment strategies and enhance patient quality of life.
Collapse
Affiliation(s)
- Junto Leung
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Lei Qu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
- The 3rd Xiangya Hospital of Central South University, NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| |
Collapse
|
7
|
Meurer SK, Bronneberg G, Penners C, Kauffmann M, Braunschweig T, Liedtke C, Huber M, Weiskirchen R. TGF-β1 Induces Mucosal Mast Cell Genes and is Negatively Regulated by the IL-3/ERK1/2 Axis. Cell Commun Signal 2025; 23:76. [PMID: 39934802 PMCID: PMC11817834 DOI: 10.1186/s12964-025-02048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Mast cells develop from the myeloid lineage and are released from the bone marrow as immature cells, which then differentiate at the destination tissue based on cues from the local environment. In the liver, mast cells are recruited in diseased states to fibrogenic surroundings rich in TGF-β1. The aim of this study was to investigate TGF-β1 signaling in primary and permanent mast cells to identify common and unique mechanisms. The TGF-β receptor repertoire is similar among mast cells, with high expression of type I and type II receptors and very low expression of type III receptors (Betaglycan and Endoglin). Downstream, TGF-β1 activates the SMAD2/3 signaling axis and also SMAD1/5 with target genes Smad6 and Id1 in a transient manner. Initially, TGF-β1 upregulates the transcription of mucosal mast cell effectors Mcpt1 and Mcpt2 in all analyzed mast cells. This upregulation is reduced in the presence of IL-3, which promotes proliferation. Inhibition of ERK1/2 activation reduces proliferation and mitigates the negative effect of IL-3 on Mcpt1 mRNA and protein expression in the immortalized mast cell line PMC-306 but not in bone marrow-derived mast cells. Therefore, extracellular signal-regulated kinases ERK1/2 are identified as a mutual switch between IL-3-driven proliferation and TGF-β1-promoted mucosal mast cell differentiation in PMC-306. In conclusion, TGF-β1 promotes a mucosal gene signature and inhibits proliferation in mast cells, with these effects being counter-regulated by IL-3/ERK1/2.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| | - Gina Bronneberg
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Penners
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
8
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
9
|
Schoberleitner I, Faserl K, Lackner M, Coraça-Huber DC, Augustin A, Imsirovic A, Sigl S, Wolfram D. Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs. Biomolecules 2024; 14:1433. [PMID: 39595609 PMCID: PMC11592141 DOI: 10.3390/biom14111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Breast implant surgery has evolved significantly, yet challenges such as capsular contracture remain a persistent concern. This review presents an in-depth analysis of recent advancements in understanding the immune mechanisms and clinical implications associated with silicone mammary implants (SMIs). The article systematically examines the complex interplay between immune responses and capsular fibrosis, emphasizing the pathophysiological mechanisms of inflammation in the etiology of this fibrotic response. It discusses innovations in biomaterial science, including the development of novel anti-biofilm coatings and immunomodulatory surfaces designed to enhance implant integration and minimize complications. Emphasis is placed on personalized risk assessment strategies, leveraging molecular insights to tailor interventions and improve patient outcomes. Emerging therapeutic targets, advancements in surgical techniques, and the refinement of post-operative care are also explored. Despite notable progress, challenges such as the variability in immune responses, the long-term efficacy of new interventions, and ethical considerations remain. Future research directions are identified, focusing on personalized medicine, advanced biomaterials, and bridging preclinical findings with clinical applications. As we advance from bench to bedside, this review illuminates the path forward, where interdisciplinary collaboration and continued inquiry weave together to enhance the art and science of breast implant surgery, transforming patient care into a realm of precision and excellence.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Klaus Faserl
- Protein Core Facility, Institute of Medical Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Débora C. Coraça-Huber
- BIOFILM Lab, Department of Orthopedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - Angela Augustin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Anja Imsirovic
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Stephan Sigl
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Kellerer M, Javed S, Casar C, Will N, Berkhout LK, Schwinge D, Krebs CF, Schramm C, Neumann K, Tiegs G. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis. Hepatology 2024; 80:844-858. [PMID: 38441998 PMCID: PMC11407778 DOI: 10.1097/hep.0000000000000830] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.
Collapse
Affiliation(s)
- Mareike Kellerer
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pharmacy, The University of Faisalabad, Pakistan
| | - Christian Casar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nico Will
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K. Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Jacobs I, Ke BJ, Ceulemans M, Cremer J, D'Hoore A, Bislenghi G, Matteoli G, De Hertogh G, Sabino J, Ferrante M, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Fibrostricturing Crohn's Disease Is Marked by an Increase in Active Eosinophils in the Deeper Layers. Clin Transl Gastroenterol 2024; 15:e00706. [PMID: 38690831 PMCID: PMC11272291 DOI: 10.14309/ctg.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION Approximately 50% of patients with Crohn's disease (CD) develop intestinal strictures necessitating surgery. The immune cell distribution in these strictures remains uncharacterized. We aimed to identify the immune cells in intestinal strictures of patients with CD. METHODS During ileocolonic resections, transmural sections of terminal ileum were sampled from 25 patients with CD and 10 non-inflammatory bowel disease controls. Macroscopically unaffected, fibrostenotic, and inflamed ileum was collected and analyzed for immune cell distribution (flow cytometry) and protein expression. Collagen deposition was assessed through a Masson Trichrome staining. Eosinophil and fibroblast colocalization was assessed through immunohistochemistry. RESULTS The Masson Trichrome staining confirmed augmented collagen deposition in both the fibrotic and the inflamed regions, though with a significant increased collagen deposition in the fibrotic compared with inflamed tissue. Distinct Th1, Th2, regulatory T cells, dendritic cells, and monocytes were identified in fibrotic and inflamed CD ileum compared with unaffected ileum of patients with CD as non-inflammatory bowel disease controls. Only minor differences were observed between fibrotic and inflamed tissue, with more active eosinophils in fibrotic deeper layers and increased eosinophil cationic protein expression in inflamed deeper layers. Last, no differences in eosinophil and fibroblast colocalization were observed between the different regions. DISCUSSION This study characterized immune cell distribution and protein expression in fibrotic and inflamed ileal tissue of patients with CD. Immunologic, proteomic, and histological data suggest inflammation and fibrosis are intertwined, with a large overlap between both tissue types. However strikingly, we did identify an increased presence of active eosinophils only in the fibrotic deeper layers, suggesting their potential role in fibrosis development.
Collapse
Affiliation(s)
- Inge Jacobs
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Bo-Jun Ke
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Matthias Ceulemans
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - André D'Hoore
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gabriele Bislenghi
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gianluca Matteoli
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Gert De Hertogh
- Katholieke Universiteit Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - João Sabino
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Marc Ferrante
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium
| | - Tim Vanuytsel
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Bram Verstockt
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
13
|
Wu P, Xie S, Cai Y, Liu H, Lv Y, Yang Y, He Y, Yin B, Lan T, Wu H. Causality of immune cells on primary sclerosing cholangitis: a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1395513. [PMID: 39011035 PMCID: PMC11246896 DOI: 10.3389/fimmu.2024.1395513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Background Observational studies have indicated that immune dysregulation in primary sclerosing cholangitis (PSC) primarily involves intestinal-derived immune cells. However, the causal relationship between peripheral blood immune cells and PSC remains insufficiently understood. Methods A bidirectional two-sample Mendelian randomization (MR) analysis was implemented to determine the causal effect between PBC and 731 immune cells. All datasets were extracted from a publicly available genetic database. The standard inverse variance weighted (IVW) method was selected as the main method for the causality analysis. Cochran's Q statistics and MR-Egger intercept were performed to evaluate heterogeneity and pleiotropy. Results In forward MR analysis, the expression ratios of CD11c on CD62L+ myeloid DC (OR = 1.136, 95% CI = 1.032-1.250, p = 0.009) and CD62L-myeloid DC AC (OR = 1.267, 95% CI = 1.086-1.477, p = 0.003) were correlated with a higher risk of PSC. Each one standard deviation increase of CD28 on resting regulatory T cells (Treg) (OR = 0.724, 95% CI = 0.630-0.833, p < 0.001) and CD3 on secreting Treg (OR = 0.893, 95% CI = 0.823-0.969, p = 0.007) negatively associated with the risk of PSC. In reverse MR analysis, PSC was identified with a genetic causal effect on EM CD8+ T cell AC, CD8+ T cell AC, CD28- CD127- CD25++ CD8+ T cell AC, CD28- CD25++ CD8+ T cell AC, CD28- CD8+ T cell/CD8+ T cell, CD28- CD8+ T cell AC, and CD45 RA- CD28- CD8+ T cell AC. Conclusion Our study indicated the evidence of causal effects between PSC and immune cells, which may provide a potential foundation for future diagnosis and treatment of PSC.
Collapse
Affiliation(s)
- Pu Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sinan Xie
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yunshi Cai
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Liu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yinghao Lv
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng He
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bangjie Yin
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Hepatic AI Translation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Jia K, Ma Z, Zhang Y, Xie K, Li J, Wu J, Qu J, Li F, Li X. Picroside II promotes HSC apoptosis and inhibits the cholestatic liver fibrosis in Mdr2 -/- mice by polarizing M1 macrophages and balancing immune responses. Chin J Nat Med 2024; 22:582-598. [PMID: 39059828 DOI: 10.1016/s1875-5364(24)60674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/28/2024]
Abstract
Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
15
|
Guan G, Cao H, Tang Z, Zhang K, Zhong M, Lv R, Wan W, Guo F, Wang Y, Gao Y. Mechanistic studies on the alleviation of ANIT-induced cholestatic liver injury by Polygala fallax Hemsl. polysaccharides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118108. [PMID: 38574780 DOI: 10.1016/j.jep.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1β, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.
Collapse
Affiliation(s)
- Guoqiang Guan
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Houkang Cao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Zixuan Tang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Kefeng Zhang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Mingli Zhong
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Rui Lv
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Weimin Wan
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Fengyue Guo
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Ya Gao
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
16
|
Wang Z, Liu Z, Zheng J, Huang L, Jin R, Wang X, Chen D, Xie Y, Feng B. The effects of low-dose IL-2 on Th17/Treg cell imbalance in primary biliary cholangitis mouse models. BMC Gastroenterol 2024; 24:87. [PMID: 38408917 PMCID: PMC10895794 DOI: 10.1186/s12876-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND/AIMS Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease. The imbalance of Th17/Treg cells has been reported in PBC patients. Low-dose IL-2 can alleviate disease severity through modulating CD4 + T cell subsets in patients with autoimmune diseases. Hence, the present study aimed to examine the effects and mechanism of low-dose IL-2 in PBC mouse models. METHODS PBC models were induced in female C57BL/6 mice by two immunizations with 2OA-BSA at two-week intervals, and poly I: C every three days. PBC mouse models were divided into the IL-2 treated and untreated groups and low-dose IL-2 was injected at three different time points. Th17 and Tregs were analyzed by flow cytometry, and the related cytokines were analyzed by ELISA. Liver histopathology was examined by H&E and immunohistochemical staining. RESULTS Twelve weeks after modeling, the serum AMA was positive and the ALP was significantly increased in PBC mouse models (P<0.05). The pathology showed lymphocyte infiltration in the portal area, damage, and reactive proliferation of the small bile duct (P<0.05). The flow cytometric showed the imbalance of Th17/Treg cells in the liver of PBC mouse models, with decreased Treg cells, increased Th17 cells, and Th17/Treg ratio (P < 0.05). After the low-dose IL-2 intervention, biochemical index and liver pathologies showed improvement at 12 weeks. Besides, the imbalance of Th17 and Treg cells recovered. Public database mining showed that Th17 cell differentiation may contribute to poor response in PBC patients. CONCLUSION Low-dose IL-2 can significantly improve liver biochemistry and pathology by reversing the imbalance of Th17 and Treg cells, suggesting that it may be a potential therapeutic target for PBC.
Collapse
Affiliation(s)
- Zilong Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Zhicheng Liu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Jiarui Zheng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Linxiang Huang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Rui Jin
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xiaoxiao Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Dongbo Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yandi Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China.
| |
Collapse
|
17
|
Lin CI, Wang YW, Liu CY, Chen HW, Liang PH, Chuang YH. Regulatory T cells in inflamed liver are dysfunctional in murine primary biliary cholangitis. Clin Exp Immunol 2024; 215:225-239. [PMID: 37916967 PMCID: PMC10876115 DOI: 10.1093/cei/uxad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease characterized by immune-mediated destruction of intrahepatic small bile ducts. CD8 T cells play a critical role in biliary destruction. However, regulatory T cells (Tregs) have also been identified in the portal tracts of PBC patients. This study tested the hypothesis that hepatic Tregs in PBC were dysfunctional in suppressing immune responses in disease by using our human PBC-like autoimmune cholangitis (AIC) mouse model induced by 2-octynoic acid-conjugated ovalbumin (2-OA-OVA). Our results showed that female and male mice immunized with 2-OA-OVA developed AIC; however, female AIC mice had more severe liver inflammation and fibrosis than male AIC mice. Levels of functional effector CD8 T cells and their chemoattractants, CXCL9 and CXCL10, in the liver were markedly elevated in female AIC mice than in male AIC mice. These results reinforce that CD8 T cells are the primary effector cells in PBC. The number of hepatic Tregs in AIC mice was also higher than in saline-treated mice, but there was no difference between male and female AIC mice. The suppressive function of AIC Tregs was evident despite a discrepancy in the changes in their co-inhibitory receptors and inhibitory cytokines. However, the expansion of hepatic Tregs by low-dose IL-2 treatment did not reduce immune responses to AIC, which may be due to the dysfunction of Tregs in inhibiting T cells. In conclusion, the function of Tregs in the inflamed liver of PBC was insufficient, and low-dose IL-2 treatment could not restore their function to suppress pathological immune responses. Transferring normal Tregs or directly targeting effector CD8 T cells may be beneficial for treating PBC.
Collapse
Affiliation(s)
- Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Liu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Jiang T, Xiang X, Wang X, Han Z, Cheng C, Zhu Y, Yang Z, Liang Y. Role of regulatory T cells in pathogenesis and therapeutics of primary biliary cholangitis and primary sclerosing cholangitis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:433-452. [DOI: 10.1016/b978-0-443-13947-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Zhang J, Wang H, Liu J, Fu L, Peng S. ANXA1 is identified as a key gene associated with high risk and T cell infiltration in primary sclerosing cholangitis. Hum Genomics 2023; 17:86. [PMID: 37735492 PMCID: PMC10512524 DOI: 10.1186/s40246-023-00534-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease, with unclear pathogenesis. Although immune disorders, especially T cell infiltration, are thought to play a vital role in PSC, the specific pathogenesis mechanisms remain incompletely understood. This study evaluated the potential key gene associated with the PSC pathogenesis and analyzed the associations of the key gene with prognosis and immune cell infiltration by combining bioinformatics analysis and experimental verification. METHODS Transcriptome data of PSC and normal human liver tissues (GSE159676) were obtained from the gene expression omnibus database. Differentially expressed genes (DEGs) were identified, and differences in biological states were analyzed. A protein-protein interaction (PPI) network was constructed. Hub genes were identified, and their expression was verified using transcriptome data of mice fed 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and Mdr2-/- mice (GSE179993, GSE80776), as well as by immunohistochemistry staining on clinical samples. The correlations between the key gene and other factors were evaluated by Pearson's correlation coefficient. Immune cell infiltration into human liver (GSE159676) was analyzed by xCell and verified by immunofluorescence staining on PSC liver samples. RESULTS Of the 185 DEGs identified, 113 were upregulated and 72 were downregulated genes in PSC. Genes associated with immune cell infiltration and fibrosis were significantly enriched in PSC. PPI network showed close interactions among DEGs. A module strongly associated with immune infiltration was identified, with annexin A1 (ANXA1) being the core gene. High expression of ANXA1 in PSC was confirmed in two public datasets and by immunohistochemistry staining on clinical samples. High ANXA1 expression was strongly associated with high-risk score for PSC. Also, ANXA1 expression was positively associated with chemokines and chemokine receptors and with the infiltration of immune cells, especially T cells, into liver with PSC. Immune infiltration, fibrosis, and cancer-related processes were markedly enriched in PSC with high expression of ANXA1. CONCLUSION ANXA1 is a key gene associated with high risk and infiltration of immune cells, especially T cells, in PSC. These findings provide new insight into the key biomarker of PSC and suggest that targeting ANXA1 may be a valuable strategy for the treatment of PSC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jinqing Liu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
20
|
Váncza L, Torok NJ. Primary sclerosing cholangitis and the path to translation. J Clin Invest 2023; 133:e174218. [PMID: 37655665 PMCID: PMC10471165 DOI: 10.1172/jci174218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Lóránd Váncza
- Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- VA, Palo Alto, California, USA
| | - Natalie J. Torok
- Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- VA, Palo Alto, California, USA
| |
Collapse
|
21
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
22
|
Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov 2023; 9:53. [PMID: 36759593 PMCID: PMC9911787 DOI: 10.1038/s41420-023-01347-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The ability of the human liver to both synthesize extracellular matrix(ECM), as well as regulate fibrogenesis, are integral functions to maintaining homoeostasis. Chronic liver injury stimulates fibrogenesis in response to the imbalance between ECM accumulation and fibrosis resolution. Liver disease that induces fibrogenesis is associated with multiple risk factors like hepatitis infection, schistosomiasis, alcohol, certain drugs, toxicants and emerging aetiology like diabetes and obesity. The activation of hepatic stellate cells (HSCs), whose function is to generate and accumulate ECM, is a pivotal event in liver fibrosis. Simultaneously, HSCs selectively promote regulatory T-cells (Tregs) in an interleukin-2-dependent pattern that displays a dual relationship. On the one hand, Tregs can protect HSCs from NK cell attack, while on the other hand, they demonstrate an inhibitory effect on HSCs. This paper reviews the dual role of Tregs in liver fibrogenesis which includes its promotion of immunosuppression, as well as its activation of fibrosis. In particular, the balance between Tregs and the Th17 cell population, which produce interleukin (IL)-17 and IL-22, is explored to demonstrate their key role in maintaining homoeostasis and immunoregulation. The contradictory roles of Tregs in liver fibrosis in different immune microenvironments and molecular pathways need to be better understood if they are to be deployed to manage this disease.
Collapse
|
23
|
Shi T, Malik A, Yang vom Hofe A, Matuschek L, Mullen M, Lages CS, Kudira R, Singh R, Zhang W, Setchell KD, Hildeman D, Pasare C, Wagner B, Miethke AG. Farnesoid X receptor antagonizes macrophage-dependent licensing of effector T lymphocytes and progression of sclerosing cholangitis. Sci Transl Med 2022; 14:eabi4354. [PMID: 36516265 PMCID: PMC9999117 DOI: 10.1126/scitranslmed.abi4354] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune-mediated bile duct epithelial injury and toxicity of retained hydrophobic bile acids drive disease progression in fibrosing cholangiopathies such as biliary atresia or primary sclerosing cholangitis. Emerging therapies include pharmacological agonists to farnesoid X receptor (FXR), the master regulator of hepatic synthesis, excretion, and intestinal reuptake of bile acids. Unraveling the mechanisms of action of pharmacological FXR agonists in the treatment of sclerosing cholangitis (SC), we found that intestinally restricted FXR activation effectively reduced bile acid pool size but did not improve the SC phenotype in MDR2-/- mice. In contrast, systemic FXR activation not only lowered bile acid synthesis but also suppressed proinflammatory cytokine production by liver-infiltrating inflammatory cells and blocked progression of hepatobiliary injury. The hepatoprotective activity was linked to suppressed production of IL1β and TNFα by hepatic macrophages and inhibition of TH1/TH17 lymphocyte polarization. Deletion of FXR in myeloid cells caused aberrant TH1 and TH17 lymphocyte responses in diethoxycarbonyl-1,4-dihydrocollidine-induced SC and rendered these mice resistant to the anti-inflammatory and liver protective effects of systemic FXR agonist treatment. Pharmacological FXR activation reduced IL1β and IFNγ production by liver- and blood-derived mononuclear cells from patients with fibrosing cholangiopathies. In conclusion, we demonstrate FXR to control the macrophage-TH1/17 axis, which is critically important for the progression of SC. Hepatic macrophages are cellular targets of systemic FXR agonist therapy for cholestatic liver disease.
Collapse
Affiliation(s)
- Tiffany Shi
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Astha Malik
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Annika Yang vom Hofe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louis Matuschek
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mary Mullen
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Celine S. Lages
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ramesh Kudira
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ruchi Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kenneth D.R. Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chandrashekhar Pasare
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Alexander G. Miethke
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
24
|
Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022; 13:945063. [PMID: 36016937 PMCID: PMC9395650 DOI: 10.3389/fimmu.2022.945063] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.
Collapse
Affiliation(s)
- Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| |
Collapse
|
25
|
Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol 2022; 44:461-474. [PMID: 35641679 PMCID: PMC9256571 DOI: 10.1007/s00281-022-00940-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022]
Abstract
Autoimmune liver diseases (AILD) include autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). These immune-mediated liver diseases involve a break down in peripheral self-tolerance with largely unknown aetiology. Regulatory T cells (Treg) are crucial in maintaining immunological tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in AILD. Currently, AILD do not have a curative treatment option and patients take life-long immunosuppression or bile acids to control hepatic or biliary inflammation. Clinical investigations using good manufacturing practice (GMP) Treg in autoimmune liver disease have thus far demonstrated that Treg therapy is safe and that Treg migrate to inflamed liver tissue. For Treg immunotherapy to achieve efficacy in AILD, Treg must be retained within the liver and maintain their suppressive phenotype to dampen ongoing immune responses to hepatocytes and biliary epithelium. Therefore, therapeutic Treg subsets should be selected for tissue residency markers and maximal functionality. Optimisation of dosing regime and understanding longevity of Treg in vivo are critical to successful Treg therapy. It is also essential to consider combination therapy options to complement infused Treg, for instance low-dose interleukin-2 (IL-2) to support pre-existing and infused Treg survival and suppressive function. Understanding the hepatic microenvironment in both early- and late-stage AILD presents significant opportunity to better tailor Treg therapy in different patient groups. Modification of a hostile microenvironment to a more favourable one either prior to or during Treg therapy could enhance the efficacy and longevity of infused GMP-Treg. Applying recent technology to discovery of autoantigen responses in AILD, T cell receptor (TCR) sequencing and use of chimeric antigen receptor (CAR) technology represents the next frontier for disease-specific CAR-Treg therapies. Consideration of all these aspects in future trials and discovery research would position GMP Treg immunotherapy as a viable personalised-medicine treatment option for effective control of autoimmune liver diseases.
Collapse
|
26
|
Krajewska NM, Fiancette R, Oo YH. Interplay between Mast Cells and Regulatory T Cells in Immune-Mediated Cholangiopathies. Int J Mol Sci 2022; 23:5872. [PMID: 35682552 PMCID: PMC9180565 DOI: 10.3390/ijms23115872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Immune-mediated cholangiopathies are characterised by the destruction of small and large bile ducts causing bile acid stasis, which leads to subsequent inflammation, fibrosis, and eventual cirrhosis of the liver tissue. A breakdown of peripheral hepatic immune tolerance is a key feature of these diseases. Regulatory T cells (Tregs) are a major anti-inflammatory immune cell subset, and their quantities and functional capacity are impaired in autoimmune liver diseases. Tregs can undergo phenotypic reprogramming towards pro-inflammatory Th1 and Th17 profiles. The inflamed hepatic microenvironment influences and can impede normal Treg suppressive functions. Mast cell (MC) infiltration increases during liver inflammation, and active MCs have been shown to be an important source of pro-inflammatory mediators, thus driving pathogenesis. By influencing the microenvironment, MCs can indirectly manipulate Treg functions and inhibit their suppressive and proliferative activity. In addition, direct cell-to-cell interactions have been identified between MCs and Tregs. It is critical to consider the effects of MCs on the inflammatory milieu of the liver and their influence on Treg functions. This review will focus on the roles and crosstalk of Tregs and MCs during autoimmune cholangiopathy pathogenesis progression.
Collapse
Affiliation(s)
- Natalia M. Krajewska
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Rémi Fiancette
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ye H. Oo
- Centre for Liver and Gastrointestinal Research & NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Rare Diseases, European Reference Network Rare Liver Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Advanced Cellular Therapy Facility, University of Birmingham, Birmingham B15 2TT, UK
- Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
27
|
Xie JF, Wang J, Bai HH, He JJ, Jia RH, Wang X, Zhang WQ, Zhao XC, Zhang XC, Liu GY, Li XF. A Decreased Absolute Number of T reg Cells in Patients with Active Rheumatoid Arthritis is Associated with Elevated Serum Osteopontin Levels with Disease Progression. Adv Ther 2022; 39:3280-3291. [PMID: 35604524 DOI: 10.1007/s12325-022-02171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic and refractory autoimmune disease characterized by synovial inflammation with unknown aetiology. Immune system dysfunction mediated by CD4+ T lymphocytes, which is regulated by the cytokine osteopontin (OPN), plays an important role in the pathogenesis of RA. METHODS In this study, the levels of peripheral CD4+ T subsets and serum OPN in patients with active RA were measured and analysed to determine the possible pathogenesis of RA and to provide potential therapeutic targets. RESULTS Serum OPN levels in both patients with active RA and patients with refractory RA were higher than those in healthy controls (HCs). Compared with HCs, the absolute numbers of Th2 cells increased in patients with active RA, while the absolute counts of Th1 and Treg cells decreased. There was no significant difference in CD4+ T subset levels between new-onset and refractory patients. As the condition persisted or deteriorated, a gradual increase in the levels of OPN and gradual declines in the absolute counts of Th1 and Treg cells were observed in patients with active RA. The fewest Th1 and Treg cells and the highest OPN levels were observed in patients with high disease activity. The serum OPN level was only significantly negatively correlated with the absolute counts of Treg cells in the CD4+ T lymphocyte subsets. CONCLUSIONS Fewer Treg cells with the increase in disease activity may be related to the increased OPN concentration, which may provide new ideas and directions for the targeted immunoregulatory treatment of RA.
Collapse
Affiliation(s)
- Jian-Fang Xie
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huan-Huan Bai
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiao-Jiao He
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui-Huan Jia
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wen-Qi Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiang-Cong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xian-Cheng Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Guang-Ying Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
28
|
Tao X, Zhang R, Du R, Yu T, Yang H, Li J, Wang Y, Liu Q, Zuo S, Wang X, Lazarus M, Zhou L, Wang B, Yu Y, Shen Y. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model. J Exp Med 2022; 219:213141. [PMID: 35420633 DOI: 10.1084/jem.20212414] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells exhibit antifibrotic properties in liver fibrosis (LF) by suppressing activated hepatic stellate cell (HSC) populations. Prostaglandin E2 (PGE2) plays a dual role in innate and adaptive immunity. Here, we found that E-prostanoid 3 receptor (EP3) was markedly downregulated in NK cells from liver fibrosis mice and patients with liver cirrhosis. NK cell-specific deletion of EP3 aggravated hepatic fibrogenesis in mouse models of LF. Loss of EP3 selectively reduced the cytotoxicity of the CD27+CD11b+ double positive (DP) NK subset against activated HSCs. Mechanistically, deletion of EP3 impaired the adhesion and cytotoxicity of DP NK cells toward HSCs through modulation of Itga4-VCAM1 binding. EP3 upregulated Itga4 expression in NK cells through promoting Spic nuclear translocation via PKC-mediated phosphorylation of Spic at T191. Activation of EP3 by sulprostone alleviated CCL4-induced liver fibrosis in mice. Thus, EP3 is required for adhesion and cytotoxicity of NK cells toward HSCs and may serve as a therapeutic target for the management of LF.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Luo Y, Bednarek J, Chaidez A, Atif S, Wang D, Mack CL. Regulatory T Cell (Treg) Cytotoxic T Lymphocyte-associated Antigen-4 Deficits in Biliary Atresia (BA) and Disease Rescue With Treg Augmentation in Murine BA. GASTRO HEP ADVANCES 2022; 1:461-470. [PMID: 39131670 PMCID: PMC11307853 DOI: 10.1016/j.gastha.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Biliary atresia (BA) entails an inflammatory injury of the biliary tree, leading to fibrosis of the extrahepatic and intrahepatic bile ducts. The chronic inflammatory biliary injury may be due to lack of appropriate regulatory T cell (Treg) suppression of inflammation. The aims of the study were to characterize Treg deficits in human BA and to determine if Treg augmentation therapy improved outcomes in the rhesus rotavirus (RRV)-induced mouse model of BA. Methods Immunophenotyping of human peripheral blood and liver Tregs was performed with flow cytometry, Vectra-6 multicolor immunohistochemistry (IHC), and real-time polymerase chain reaction. Measured outcomes of Treg augmentation with the interleukin-2 monoclonal antibody JES6-1/interleukin-2 in the RRV-induced mouse model of BA included survival, direct bilirubin, IHC, and liver flow cytometry. Results Patients with BA had decreased peripheral blood Treg frequency and lack of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) upregulation despite a highly activated, effector Treg phenotype. IHC revealed decreased liver Treg frequency and Treg CTLA-4 expression. Treg augmentation in the murine model led to increased survival, decreased direct bilirubin levels and liver inflammation, and expansion of resident macrophages. In addition to the M2 phenotype of resident macrophages, these cells adopted an inflammatory M1 phenotype in response to RRV infection, which was inhibited with Treg augmentation. Conclusion Patients with BA have Treg deficiencies associated with lack of sufficient CTLA-4 expression that is necessary for cell-cell contact inhibition of inflammatory responses. Treg augmentation therapy in murine BA protected from disease. Future treatment trials for BA should include agents that enhance Treg number or function, mimic CTLA-4 function, and promote anti-inflammatory M2 macrophage phenotypes.
Collapse
Affiliation(s)
- Yuhuan Luo
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Joseph Bednarek
- Department of Pathology, University of Utah. Salt Lake City, Utah
| | - Alexander Chaidez
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Shaikh Atif
- Division of Allergy & Immunology, Department of Medicine, University of Colorado School of Medicine. Aurora, Colorado
| | - Dong Wang
- University of Colorado School of Medicine. Aurora, Colorado
| | - Cara L. Mack
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| |
Collapse
|
30
|
Wang Y, Wan Z, Jin R, Xu T, Ouyang Y, Wang B, Ruan G, Bai X. Tofacitinib for extraintestinal manifestations of inflammatory bowel disease: A literature review. Int Immunopharmacol 2022; 105:108517. [DOI: 10.1016/j.intimp.2022.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
|
31
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
32
|
Lu QK, Fan C, Xiang CG, Wu B, Lu HM, Feng CL, Yang XQ, Li H, Tang W. Inhibition of PDE4 by apremilast attenuates skin fibrosis through directly suppressing activation of M1 and T cells. Acta Pharmacol Sin 2022; 43:376-386. [PMID: 33850274 PMCID: PMC8791980 DOI: 10.1038/s41401-021-00656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Systemic sclerosis (SSc) is a life-threatening chronic connective tissue disease with the characteristics of skin fibrosis, vascular injury, and inflammatory infiltrations. Though inhibition of phosphodiesterase 4 (PDE4) has been turned out to be an effective strategy in suppressing inflammation through promoting the accumulation of intracellular cyclic adenosine monophosphate (cAMP), little is known about the functional modes of inhibiting PDE4 by apremilast on the process of SSc. The present research aimed to investigate the therapeutic effects and underlying mechanism of apremilast on SSc. Herein, we found that apremilast could markedly ameliorate the pathological manifestations of SSc, including skin dermal thickness, deposition of collagens, and increased expression of α-SMA. Further study demonstrated that apremilast suppressed the recruitment and activation of macrophages and T cells, along with the secretion of inflammatory cytokines, which accounted for the effects of apremilast on modulating the pro-fibrotic processes. Interestingly, apremilast could dose-dependently inhibit the activation of M1 and T cells in vitro through promoting the phosphorylation of CREB. In summary, our research suggested that inhibiting PDE4 by apremilast might provide a novel therapeutic option for clinical treatment of SSc patients.
Collapse
Affiliation(s)
- Qiu-kai Lu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chen Fan
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Cai-gui Xiang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Wu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui-min Lu
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chun-lan Feng
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiao-qian Yang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Heng Li
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Wei Tang
- grid.419093.60000 0004 0619 8396Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
33
|
Kudira R, Pasula S, Kapil S, Miethke A. Isolation of Liver Mononuclear Cells from a Cholestatic Mice for Single Cell or Single Nuclei Sequencing. Bio Protoc 2022. [DOI: 10.21769/bioprotoc.4400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
34
|
Abstract
Failure of regulatory T (Treg) cells to properly control immune responses leads invariably to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, especially in the context of inflammation, has been documented in many human autoimmune diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low-dose natural IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in early clinical trials. Genetically modified IL-2 with an extended half-life and increased selectivity for Treg cells is now in clinical development. Administration of IL-2 combined with therapies targeting other pathways involved in the expression of autoimmune diseases should further enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical success of IL-2 treatment should bring the use of this cytokine to the forefront of biological treatments for autoimmune diseases.
Collapse
|
35
|
Kudira R, Sharma BK, Mullen M, Mohanty SK, Donnelly B, Tiao GM, Miethke A. Isolation and Culturing Primary Chaolangiocytes from Mouse Liver. Bio Protoc 2021; 11:e4192. [PMID: 34761065 PMCID: PMC8554810 DOI: 10.21769/bioprotoc.4192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocytes are epithelial cells lining the intrahepatic and extrahepatic bile ducts. Cholangiocytes perform key physiological functions in the liver. Bile synthesized by hepatocytes is secreted into bile canaliculi, further stored in the gallbladder, and finally discharged into the duodenum. Due to liver injury, biliary epithelial proliferate in response to endogenous or exogenous signals leading to cholangiopathies, inflammation, fibrosis, and cholangiocarcinoma. Cholangiocytes exhibit anatomical and functional heterogeneity, and understanding such diversified functions will potentially help in finding effective therapies for various cholestatic liver diseases. To perform such functional studies, effective cholangiocyte isolation and culture procedures are needed. This protocol will aid in easy isolation and expansion of cholangiocytes from the liver.
Collapse
Affiliation(s)
- Ramesh Kudira
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bal Krishan Sharma
- Hematology Department. Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mary Mullen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sujit K. Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory M. Tiao
- Department of Pediatric and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Kumar N, Surani S, Udeani G, Mathew S, John S, Sajan S, Mishra J. Drug-induced liver injury and prospect of cytokine based therapy; A focus on IL-2 based therapies. Life Sci 2021; 278:119544. [PMID: 33945827 DOI: 10.1016/j.lfs.2021.119544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is one of the most frequent sources of liver failure and the leading cause of liver transplant. Common non-prescription medications such as non-steroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and other prescription drugs when taken at more than the recommended doses may lead to DILI. The severity of DILI is affected by factors such as age, ethnicity, race, gender, nutritional status, on-going liver diseases, renal function, pregnancy, alcohol consumption, and drug-drug interactions. Characteristics of DILI-associated inflammation include apoptosis and necrosis of hepatocytes and hepatic infiltration of pro-inflammatory immune cells. If untreated or if the inflammation continues, DILI and associated hepatic inflammation may lead to development of hepatocarcinoma. The therapeutic approach for DILI-associated hepatic inflammation depends on whether the inflammation is acute or chronic. Discontinuing the causative medication, vaccination, and special dietary supplementation are some of the conventional approaches to treat DILI. In this review, we discuss a concise overview of DILI-associated liver complications, and current therapeutic options with special emphasis on biologics including the scope of cytokine therapy in hepatic repair and resolution of inflammation caused by over- the-counter (OTC) or prescription drugs.
Collapse
Affiliation(s)
- Narendra Kumar
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| | - Salim Surani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - George Udeani
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sara Mathew
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Sharon John
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Soniya Sajan
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America
| | - Jayshree Mishra
- Irma Lerma Rangel College of Pharmacy, Texas A&M University System, Kingsville, TX 78363, United States of America.
| |
Collapse
|
37
|
Pham DH, Kudira R, Xu L, Valencia CA, Ellis JL, Shi T, Evason KJ, Osuji I, Matuschek N, Pfuhler L, Mullen M, Mohanty SK, Husami A, Bull LN, Zhang K, Wali S, Yin C, Miethke A. Deleterious Variants in ABCC12 are Detected in Idiopathic Chronic Cholestasis and Cause Intrahepatic Bile Duct Loss in Model Organisms. Gastroenterology 2021; 161:287-300.e16. [PMID: 33771553 PMCID: PMC8238842 DOI: 10.1053/j.gastro.2021.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The etiology of cholestasis remains unknown in many children. We surveyed the genome of children with chronic cholestasis for variants in genes not previously associated with liver disease and validated their biological relevance in zebrafish and murine models. METHOD Whole-exome (n = 4) and candidate gene sequencing (n = 89) was completed on 93 children with cholestasis and normal serum γ-glutamyl transferase (GGT) levels without pathogenic variants in genes known to cause low GGT cholestasis such as ABCB11 or ATP8B1. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing was used to induce frameshift pathogenic variants in the candidate gene in zebrafish and mice. RESULTS In a 1-year-old female patient with normal GGT cholestasis and bile duct paucity, we identified a homozygous truncating pathogenic variant (c.198delA, p.Gly67Alafs∗6) in the ABCC12 gene (NM_033226). Five additional rare ABCC12 variants, including a pathogenic one, were detected in our cohort. ABCC12 encodes multidrug resistance-associated protein 9 (MRP9) that belongs to the adenosine 5'-triphosphate-binding cassette transporter C family with unknown function and no previous implication in liver disease. Immunohistochemistry and Western blotting revealed conserved MRP9 protein expression in the bile ducts in human, mouse, and zebrafish. Zebrafish abcc12-null mutants were prone to cholangiocyte apoptosis, which caused progressive bile duct loss during the juvenile stage. MRP9-deficient mice had fewer well-formed interlobular bile ducts and higher serum alkaline phosphatase levels compared with wild-type mice. They exhibited aggravated cholangiocyte apoptosis, hyperbilirubinemia, and liver fibrosis upon cholic acid challenge. CONCLUSIONS Our work connects MRP9 with bile duct homeostasis and cholestatic liver disease for the first time. It identifies a potential therapeutic target to attenuate bile acid-induced cholangiocyte injury.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ramesh Kudira
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lingfen Xu
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Pediatric Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Preclinical Education, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| | - Jillian L Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tiffany Shi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberley J Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Immaculeta Osuji
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nelson Matuschek
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Liva Pfuhler
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mary Mullen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sujit K Mohanty
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura N Bull
- Liver Center Laboratory, Department of Medicine and Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | | | - Sami Wali
- Pediatric Gastroenterology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
38
|
Xie Y, Liu S, Wang L, Yang H, Tai C, Ling L, Chen L, Liu S, Wang B. Individual heterogeneity screened umbilical cord-derived mesenchymal stromal cells with high Treg promotion demonstrate improved recovery of mouse liver fibrosis. Stem Cell Res Ther 2021; 12:359. [PMID: 34158112 PMCID: PMC8220795 DOI: 10.1186/s13287-021-02430-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background To investigate the heterogeneities of human umbilical cord mesenchymal stromal cells (HUCMSCs) derived from different donors and their therapeutic variations when applied to mouse liver fibrosis model. Methods The characteristics of HUCMSCs derived from multiple donors were comprehensively analyzed including expressions of surface markers, viability, growth curve, karyotype analysis, tumorigenicity, differentiation potentials, and immune regulation capability. Then, the HUCMSCs with distinct immunomodulatory effects were applied to treat mouse liver fibrosis and their therapeutic effects were observed. Results The HUCMSCs derived from multiple donors kept a high consistency in surface marker expressions, viability, growth curve, and tumorigenicity in nude mice but had robust heterogeneities in differentiation potentials and immune regulations. In addition, three HUCMSC lines applied to mice liver fibrosis model had different therapeutic outcomes, in line with individual immune regulation capability. Conclusion The HUCMSCs derived from different donors have individual heterogeneity, which potentially lead to distinct therapeutic outcomes in mouse liver fibrosis, indicating we could make use of the donor-variation of MSCs to screen out guaranteed general indicators of MSCs for specific diseases in further stromal cell therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02430-6.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Hui Yang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China
| | - Li Ling
- Department of Endocrinology, University Health Science Center, Hua Zhong University of Science and Technology Union Shenzhen Hospital and The 6th Affiliated Hospital of Shenzhen, Shenzhen, 518052, Guangdong, People's Republic of China
| | - Libo Chen
- Department of Endocrinology, University Health Science Center, Hua Zhong University of Science and Technology Union Shenzhen Hospital and The 6th Affiliated Hospital of Shenzhen, Shenzhen, 518052, Guangdong, People's Republic of China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
39
|
Bruha R, Vitek L, Smid V. Osteopontin - A potential biomarker of advanced liver disease. Ann Hepatol 2021; 19:344-352. [PMID: 32005637 DOI: 10.1016/j.aohep.2020.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
Cirrhosis is a primary cause of liver-related mortality and morbidity. The basic process driving chronic liver disease to cirrhosis is accelerated fibrogenesis. Although the pathogenesis of liver cirrhosis is a multifactorial process, the essential step in the evolution of liver fibrosis is the activation of hepatic stellate cells, which are the main source of collagen produced in the extracellular matrix. This activation process is mediated by multiple growth factors, cytokines, and chemokines. One of the hepatic stellate cell-activating signaling molecules (and also one associated with cell injury and fibrosis) is osteopontin (OPN). OPN concentration in the plasma has been found to be predictive of liver fibrosis in various liver diseases. OPN concentrations correlate significantly with the stage of fibrosis, liver insufficiency, portal hypertension, and the presence of hepatocellular cancer. However, due to its versatile signaling functions, OPN not only contributes to the development of liver cirrhosis, but is also implicated in the pathogenesis of other chronic hepatic diseases such as viral hepatitis, both alcoholic and non-alcoholic steatohepatitis, drug-induced liver injury, and hepatocellular cancer. Thus, the targeting of OPN pathways seems to be a promising approach in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Radan Bruha
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic.
| | - Libor Vitek
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Institute of Medical Biochemistry and Laboratory Diagnostics, U Nemocnice 2, Prague, Czech Republic
| | - Vaclav Smid
- Charles University in Prague, 1st Faculty of Medicine and General University Hospital, 4th Department of Internal Medicine, U Nemocnice 2, Prague, Czech Republic
| |
Collapse
|
40
|
Wan M, Han J, Ding L, Hu F, Gao P. Novel Immune Subsets and Related Cytokines: Emerging Players in the Progression of Liver Fibrosis. Front Med (Lausanne) 2021; 8:604894. [PMID: 33869241 PMCID: PMC8047058 DOI: 10.3389/fmed.2021.604894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathological process caused by persistent chronic injury of the liver. Kupffer cells, natural killer (NK) cells, NKT cells, and dendritic cells (DCs), which are in close contact with T and B cells, serve to bridge innate and adaptive immunity in the liver. Meanwhile, an imbalanced inflammatory response constitutes a challenge in liver disease. The dichotomous roles of novel immune cells, including T helper 17 (Th17), regulatory T cells (Tregs), mucosa-associated invariant T cells (MAIT), and innate lymphoid cells (ILCs) in liver fibrosis have gradually been revealed. These cells not only induce damage during liver fibrosis but also promote tissue repair. Hence, immune cells have unique, and often opposing, roles during the various stages of fibrosis. Due to this heterogeneity, the treatment, or reversal of fibrosis through the target of immune cells have attracted much attention. Moreover, activation of hepatic stellate cells (HSCs) constitutes the core of fibrosis. This activation is regulated by various immune mediators, including Th17, Th22, and Th9, MAIT, ILCs, and γδ T cells, as well as their related cytokines. Thus, liver fibrosis results from the complex interaction of these immune mediators, thereby complicating the ability to elucidate the mechanisms of action elicited by each cell type. Future developments in biotechnology will certainly aid in this feat to inform the design of novel therapeutic targets. Therefore, the aim of this review was to summarize the role of specific immune cells in liver fibrosis, as well as biomarkers and treatment methods related to these cells.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Ding
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.,Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
41
|
Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells in autoimmune hepatitis: an updated overview. J Autoimmun 2021; 119:102619. [PMID: 33652348 DOI: 10.1016/j.jaut.2021.102619] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T-cells (Tregs) are key players in the maintenance of immune homeostasis by preventing immune responses to self-antigens. Defects in Treg frequency and/or function result in overwhelming CD4 and CD8 T cell immune responses participating in the autoimmune attack. Perpetuation of autoimmune damage is also favored by Treg predisposition to acquire effector cell features upon exposure to a proinflammatory challenge. Treg impairment plays a permissive role in the initiation and perpetuation of autoimmune liver diseases, namely autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis. In this Review, we outline studies reporting the role of Treg impairment in the pathogenesis of these conditions and discuss methods to restore Treg number and function either by generation/expansion in the test tube or through in vivo expansion upon administration of low dose IL-2. Challenges and caveats of these potential therapeutic strategies are also reviewed and discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
42
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
44
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Zhang M, Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front Immunol 2020; 11:1142. [PMID: 32676074 PMCID: PMC7333347 DOI: 10.3389/fimmu.2020.01142] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Fibrosis is the extensive deposition of fibrous connective tissue, and it is characterized by the accumulation of collagen and other extracellular matrix (ECM) components. Fibrosis is essential for wound healing and tissue repair in response to a variety of triggers, which include infection, inflammation, autoimmune disorder, degenerative disease, tumor, and injury. Fibrotic remodeling in various diseases, such as liver cirrhosis, pulmonary fibrosis, renal interstitial fibrosis, myocardial infarction, systemic sclerosis (SSc), and graft-versus-host disease (GVHD), can impair organ function, causing high morbidity and mortality. Both innate and adaptive immunity are involved in fibrogenesis. Although the roles of macrophages in fibrogenesis have been studied for many years, the underlying mechanisms concerning the manner in which T cells regulate fibrosis are not completely understood. The T cell receptor (TCR) engages the antigen and shapes the repertoire of antigen-specific T cells. Based on the divergent expression of surface molecules and cell functions, T cells are subdivided into natural killer T (NKT) cells, γδ T cells, CD8+ cytotoxic T lymphocytes (CTL), regulatory T (Treg) cells, T follicular regulatory (Tfr) cells, and T helper cells, including Th1, Th2, Th9, Th17, Th22, and T follicular helper (Tfh) cells. In this review, we summarize the pro-fibrotic or anti-fibrotic roles and distinct mechanisms of different T cell subsets. On reviewing the literature, we conclude that the T cell regulations are commonly disease-specific and tissue-specific. Finally, we provide perspectives on microbiota, viral infection, and metabolism, and discuss the current advancements of technologies for identifying novel targets and developing immunotherapies for intervention in fibrosis and fibrotic diseases.
Collapse
Affiliation(s)
- Mengjuan Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Song Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Tahvildari M, Dana R. Low-Dose IL-2 Therapy in Transplantation, Autoimmunity, and Inflammatory Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2749-2755. [PMID: 31740549 PMCID: PMC6986328 DOI: 10.4049/jimmunol.1900733] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/06/2019] [Indexed: 12/24/2022]
Abstract
Regulatory T cells (Tregs) play a central role in the induction and maintenance of immune homeostasis and self-tolerance. Tregs constantly express the high-affinity receptor to IL-2. IL-2 is a pleiotropic cytokine and a key survival factor for Tregs. It maintains Tregs' suppressive function by promoting Foxp3 expression and subsequent production of immunoregulatory cytokines. Administration of low-dose IL-2 is shown to be a promising approach to prevent allograft rejection and to treat autoimmune and inflammatory conditions in experimental models. The combination of IL-2 with its mAb (JES6-1) has also been shown to increase the t 1/2 of IL-2 and further enhance Treg frequencies and function. Low-dose IL-2 therapy has been used in several clinical trials to treat conditions such as hepatitis C vasculitis, graft-versus-host disease, type 1 diabetes, and systemic lupus erythematosus. In this paper, we summarize our findings on low-dose IL-2 treatment in corneal allografting and review recent studies focusing on the use of low-dose IL-2 in transplantation, autoimmunity, and other inflammatory conditions. We also discuss potential areas of further investigation with the aim to optimize current low-dose IL-2 regimens.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Kresge Eye Institute, Wayne State University, Detroit, MI 48201; and
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
47
|
Jing R, Qi T, Wen C, Yue J, Wang G, Pei C, Ma B. Interleukin-2 induces extracellular matrix synthesis and TGF-β2 expression in retinal pigment epithelial cells. Dev Growth Differ 2019; 61:410-418. [PMID: 31608440 PMCID: PMC6899885 DOI: 10.1111/dgd.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Macular fibrosis is a vital obstacle of vision acuity improvement of age‐related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL‐2) on epithelial‐mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF‐β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL‐2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α‐smooth muscle actin (α‐SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL‐1), TGF‐β2, and the activation of the JAK/STAT3 and NF‐κB signaling pathway. Furthermore, JAK/STAT3 and NF‐κB signaling pathways were specifically blocked by WP1066 or BAY11‐7082, respectively, and the expression of α‐SMA, COL‐1, Fn and TGF‐β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL‐2 with or without WP1066 or BAY11‐7082. After induction of IL‐2, the expressions of Fn, COL‐1, TGF‐β2 protein were significantly increased, and this effect was correlated with IL‐2 treatment duration, while α‐SMA protein expression did not change significantly. Both WP1066 and BAY11‐7082 could effectively downregulate the expression of Fn, COL‐1 and TGF‐β2 induced by IL‐2. What's more, both NF‐κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF‐κB inhibitor BAY 11‐7082 could obviously decrease RPE cells migration capability induced by IL‐2. IL‐2 promotes cell migration, ECM synthesis and TGF‐β2 expression in RPE cells via JAK/STAT3 and NF‐κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaqi Yue
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
48
|
Ravichandran G, Neumann K, Berkhout LK, Weidemann S, Langeneckert AE, Schwinge D, Poch T, Huber S, Schiller B, Hess LU, Ziegler AE, Oldhafer KJ, Barikbin R, Schramm C, Altfeld M, Tiegs G. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol 2019; 71:773-782. [PMID: 31173810 DOI: 10.1016/j.jhep.2019.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an idiopathic, chronic cholestatic liver disorder characterized by biliary inflammation and fibrosis. Increased numbers of intrahepatic interferon-γ- (IFNγ) producing lymphocytes have been documented in patients with PSC, yet their functional role remains to be determined. METHODS Liver tissue samples were collected from patients with PSC. The contribution of lymphocytes to liver pathology was assessed in Mdr2-/- x Rag1-/- mice, which lack T and B cells, and following depletion of CD90.2+ or natural killer (NK)p46+ cells in Mdr2-/- mice. Liver pathology was also determined in Mdr2-/- x Ifng-/- mice and following anti-IFNγ antibody treatment of Mdr2-/- mice. Immune cell composition was analysed by multi-colour flow cytometry. Liver injury and fibrosis were determined by standard assays. RESULTS Patients with PSC showed increased IFNγ serum levels and elevated numbers of hepatic CD56bright NK cells. In Mdr2-/- mice, hepatic CD8+ T cells and NK cells were the primary source of IFNγ. Depletion of CD90.2+ cells reduced hepatic Ifng expression, NK cell cytotoxicity and liver injury similar to Mdr2-/- x Rag1-/- mice. Depletion of NK cells resulted in reduced CD8+ T cell cytotoxicity and liver fibrosis. The complete absence of IFNγ in Mdr2-/-x Ifng-/- mice reduced NK cell and CD8+ T cell frequencies expressing the cytotoxic effector molecules granzyme B and TRAIL and prevented liver fibrosis. The antifibrotic effect of IFNγ was also observed upon antibody-dependent neutralisation in Mdr2-/- mice. CONCLUSION IFNγ changed the phenotype of hepatic CD8+ T cells and NK cells towards increased cytotoxicity and its absence attenuated liver fibrosis in chronic sclerosing cholangitis. Therefore, unravelling the immunopathogenesis of PSC with a particular focus on IFNγ might help to develop novel treatment options. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis, whose current medical treatment is hardly effective. We observed an increased interferon (IFN)-γ response in patients with PSC and in a mouse model of sclerosing cholangitis. IFNγ changed the phenotype of hepatic CD8+ T lymphocytes and NK cells towards increased cytotoxicity, and its absence decreased liver cell death, reduced frequencies of inflammatory macrophages in the liver and attenuated liver fibrosis. Therefore, IFNγ-dependent immune responses may disclose checkpoints for future therapeutic intervention strategies in sclerosing cholangitis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Cells, Cultured
- Cholangitis, Sclerosing/immunology
- Disease Models, Animal
- Humans
- Immunity, Cellular/immunology
- Immunologic Factors/immunology
- Immunologic Factors/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver/immunology
- Liver/pathology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Mice
- Mice, Knockout
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Annika E Langeneckert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dorothee Schwinge
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Poch
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Schiller
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonard U Hess
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annerose E Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine Hamburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
49
|
Zhou X, Xing J, Tang X, Sheng X, Zhan W. Immunological characteristics of Interleukin-2 receptor subunit beta (IL-2Rβ) in flounder (Paralichtlys olivaceus): Implication for IL-2R function. FISH & SHELLFISH IMMUNOLOGY 2019; 93:641-651. [PMID: 31344456 DOI: 10.1016/j.fsi.2019.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-2 receptor subunit beta of flounder (Paralichthys olivace, fIL-2Rβ) was annotated on the NCBI, its gene was cloned and characterized functionally in this study. And then the amino acids sequences and tertiary structure of fIL-2Rβ were analyzed, respectively. RT-PCR and ImageJ analyzed showed that fIL-2Rβ mRNA were expressed in the gill, spleen, kidney, intestines, liver, blood, muscle and skin, which showed high signals in spleen and blood. And then the recombinant protein of fIL-2Rβ extracellular region and its polyclonal antibodies were produced, native fIL-2Rβ molecules in flounder peripheral blood leukocytes (PBLs) were identified at 60.7 kDa by Mass spectrometry, which were in accordance with the molecular mass of full fIL-2Rβ protein calculated on the predicted protein sequence. Then the IL-2Rβ+ cell in T/B lymphocytes were characterized by Flow cytometry and indirect immunofluorescence assay, respectively. The results showed that the percentages of IL-2Rβ+ leukocytes, IL-2Rβ+/CD4+, IL-2Rβ+/IgM+ lymphocytes were 18.4 ± 2.7%, 4.5 ± 0.8%, 4.3% ± 0.5 in PBLs, and were 13.6 ± 0.9%, 4.6 ± 1.1%, 6.1% ± 0.4 in spleen, similarly, the percentages of IL-2Rβ+ leukocytes, IL-2Rβ+/CD4+, IL-2Rβ+/IgM+ lymphocytes were 9.4 ± 0.3%, 4.0 ± 0.5%, 5.7 ± 0.1% in head kidney, respectively. After KLH injection, compared with control group, the gene expression of IL-2, IL-2Rβ, CD3, TCR, CD79b and IgM in spleen of flounder were up-regulated, respectively (p < 0.05). And the FCM results showed that the percentages of IL-2Rβ+ leukocytes in PBLs were significantly increased post Keyhole limpet hemocyanin (KLH) injection, which peaked 23.9 ± 0.9% at 9th day (p < 0.05). To our knowledge, those results first reported that the characteristics of IL-2R and IL-2R + molecules were expressed on both B and T lymphocytes in fish. At the same time, this study lays a foundation for further exploring the interaction between IL-2 and IL-2R to promote cell proliferation and carrying out biological functions.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
50
|
Sun MY, Liu WT. Role of regulatory T cells in pathogenesis and therapy of autoimmune liver disease. Shijie Huaren Xiaohua Zazhi 2019; 27:665-670. [DOI: 10.11569/wcjd.v27.i11.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autoimmune liver disease (AILD) is a group of autoimmune-mediated hepatobiliary injuries, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. It has been demonstrated that gene susceptibility, molecular mimicry, and abnormal immune regulation networks contribute to the occurrence and progression of AILD, while the mechanism of the related abnormal immune environment remains undetermined. It is currently believed that autoimmune diseases are mainly caused by the destruction of autoimmune tolerance mechanisms. Regulatory T cell (Treg), as a key factor to peripheral immune tolerance, may play a critical role in AILD. This article aims to elucidate the pathogenesis of AILD from the perspective of Treg cells and provide insight into the application of Treg cells in the therapy of AILD.
Collapse
Affiliation(s)
- Meng-Yu Sun
- Department of Gastroenterology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Wen-Tian Liu
- Department of Gastroenterology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|