1
|
Han Z, Han S, Fang X, Lu M, Mao Y, Shi L, Song J, Wang T, Xiao J, Xiang L, Yang C, Zhu Z, Wang Y, Feng J. Acetyl-CoA carboxylase activation disrupts iron homeostasis to drive ferroptosis. Free Radic Biol Med 2025:S0891-5849(25)00720-8. [PMID: 40449808 DOI: 10.1016/j.freeradbiomed.2025.05.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/20/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme in de novo lipogenesis. Here, we show a unique function of ACC in disrupting cellular iron homeostasis to drive ferroptosis, an iron-dependent, lipid peroxidation-induced form of cell death. We observed neuronal lipid accumulation and elevated labile iron pool associated with ACC dephosphorylation in mouse models of obstructive sleep apnea (OSA), a highly prevalent neurodegenerative disorder. ACC gene (Acaca) knockout (KO) or inhibition of its enzymatic activity rescued cellular iron metabolism through restoring lysosomal integrity and function, suppressing neuronal ferroptosis. ACC inactivation-driven lysosomal iron homeostasis requires the NFE2L2/NRF2-TFEB axis. Empagliflozin mitigates cellular iron overload via the ACC-NRF2-TFEB-lysosome pathway to alleviate neuronal ferroptosis, cognitive impairment, and mood dysfunction in OSA mice. Furthermore, inhibiting neuronal ACC reduces microglial activation, characterized by elevated complement proteins and pro-inflammatory cytokines, while microglia-specific C1qa KO prevents neuronal injury in OSA mice. Our findings identify a unique coupling between iron homeostasis and lipogenic signaling, suggesting ACC as a potential therapeutic target for neuronal ferroptosis and the resultant microgliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Shuangyu Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Xiaoyan Fang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Mengyu Lu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Yuanling Mao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Leilei Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Junxiu Song
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Tian Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Jichen Xiao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Li Xiang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Changqing Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Zhigang Zhu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Yubao Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital.
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital.
| |
Collapse
|
2
|
Wang S, Jia Q, Liu X, Ma Y, Yang Y, Rong X, Wang Y, Wang H, Liu F, Yang S, Li Y, Han L. Hyperoside modulates bile acid and fatty acid metabolism, presenting a potentially promising treatment for non-alcoholic fatty liver disease. J Adv Res 2025:S2090-1232(25)00308-X. [PMID: 40349961 DOI: 10.1016/j.jare.2025.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/03/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a multifactorial chronic condition that requires a systematic approach for effective management. Multi-effect therapeutic drugs derived from traditional Chinese medicine are increasingly being recognized as promising alternatives for NAFLD intervention. Hyperoside, a natural flavone glycoside found in Cuscuta chinensis Lam, Forsythia suspensa, and Crataegus pinnatifida Bge, has been shown to effectively mitigate NAFLD in rats. However, the underlying mechanism through which hyperoside alleviates NAFLD remains unclear. OBJECTIVE This study aims to explore the specific mechanisms by which hyperoside intervenes in the progression of NAFLD. METHODS In this study, a high-fat diet was used to induce the NAFLD model in rats. An integrated analysis, including mass spectrometry-based lipidomics, TMT-based proteomics, 16S rRNA sequencing, and bile acid-targeted metabolomics, was employed to identify significantly altered metabolites and proteins. Western blotting, molecular docking, and isothermal titration calorimetry were conducted to analyze the direct targets of action. RESULTS The results indicate that hyperoside activates farnesoid X receptor (FXR), promoting fatty acid oxidation and the efflux of bile acids from the liver. Additionally, hyperoside inhibits hepatic ATP citrate lyase (ACLY) and works synergistically with activated FXR to suppress de novo lipogenesis. Hyperoside also inhibits intestinal microbes linked to bile-salt hydrolase (BSH) activity, which enhances the production of ileal bile acids (BAs), particularly conjugated BAs, thus reducing the liver toxicity of endogenous BAs. CONCLUSION Our findings suggest that hyperoside alleviates NAFLD by modulating fatty acid and bile acid metabolism through FXR and ACLY, suggesting its potential as a multi-effect candidate drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China.
| | - Qiang Jia
- Institute of Pharmaceutical Research, Shandong Key Laboratory of Digital Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoli Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China; Institute of Pharmaceutical Research, Shandong Key Laboratory of Digital Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yihan Ma
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China
| | - Ying Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China
| | - Xue Rong
- Institute of Pharmaceutical Research, Shandong Key Laboratory of Digital Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China; State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shenshen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117 Shandong, China.
| |
Collapse
|
3
|
Benmouna M, Benammar C, Khan AS, Djeziri FZ, Hichami A, Khan NA. Celastrol Improves Preference for a Fatty Acid, and Taste Bud and Systemic Inflammation in Diet-Induced Obese Mice. Nutrients 2025; 17:1308. [PMID: 40284173 PMCID: PMC12030286 DOI: 10.3390/nu17081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Obesity is associated with the altered gustatory perception of dietary fatty acids. Celastrol, a triterpene, has been demonstrated to exert anti-obesity effects in rodents. We assessed the role of Celastrol in the modulation of the oro-sensory perception of lipids in control and high-fat diet (HFD)-induced obese mice. METHODS Male mice of the C57B/6J strain were fed a HFD for 11 weeks and then were administered or not with Celastrol further for 4 weeks. The body weight was recorded weekly. Before the sacrifice, the animals were subjected to oro-sensory detection of a dietary long-chain fatty acid in a two-bottle choice paradigm. After the sacrifice, the fungiform taste buds were isolated and analyzed for mRNA expression, encoding fat sensors (CD36 and GPR120) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α). Circulating concentrations of IL-6 and TNF-α were also determined, and liver was used to analyze the mRNA expression of lipogenic genes. RESULTS Celastrol administration in obese mice decreased body weight and also re-established the loss of oro-sensory perception for a dietary fatty acid, and this phenomenon was, in part, due to the upregulation of mRNA, encoding fat taste receptors (CD36 and GPR120) in tongue taste bud cells. Furthermore, Celastrol decreased inflammation both in taste buds and blood circulation. CONCLUSIONS Our findings suggest that Celastrol decreases body weight gain, ameliorates the gustatory perception of lipids, and downregulates inflammation in obese mice.
Collapse
Affiliation(s)
- Manal Benmouna
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Chahid Benammar
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
| | - Amira Sayed Khan
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Fatima Zohra Djeziri
- Physiologie de Nutrition & Toxicology (NUTox), UMR UB/INSERM 1231 Center for Cellular & Translational Molecular Medicine (CTM), Université Bourgogne Europe, & FCS Bourgogne-Franche Comté, LipSTIC LabEx, 21000 Dijon, France; (M.B.); (C.B.); (F.Z.D.)
| | - Aziz Hichami
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| | - Naim A. Khan
- Laboratoire des Produits Naturels (LAPRONA), Université Abou Bekr Belkaid, Tlemcen 13000, Algeria; (A.S.K.); (A.H.)
| |
Collapse
|
4
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
5
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Etemad A, Tanaka Y, Wang S, Slae M, Sultan M, Elpeleg O, Hirokawa N. Mutations in the kinesin KIF12 promote MASH in humans and mice by disrupting lipogenic enzyme turnover. EMBO J 2025; 44:1608-1640. [PMID: 39920308 PMCID: PMC11914266 DOI: 10.1038/s44318-025-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
As a common cause of liver cirrhosis, metabolic dysfunction-associated steatohepatitis (MASH) is regarded as a target of therapeutic intervention. However, a successful therapy has not yet been found, partly because the molecular pathogenesis is largely elusive. Here we show that KIF12 kinesin suppresses MASH development by accelerating the breakdown of two lipid biosynthesis enzymes, acetyl-CoA carboxylase 1 (ACC1) and pyruvate carboxylase (PC), in hepatocytes. We report three familial early-onset liver cirrhosis pedigrees with homozygous KIF12 mutations, accompanying MASH-like steatosis and cholestasis. The mouse genetic model carrying the corresponding Kif12 nonsense mutation faithfully reproduced the phenotypes as early as between 8 and 10 weeks of age. Furthermore, KIF12-deficient HepG2 cells exhibited significant steatosis, which was ameliorated by overexpressing a proline-rich domain (PRD) of KIF12. We found that KIF12-PRD promotes the degradation of ACC1 and PC, and this effect is likely to be through its direct interaction with these enzymes. Interestingly, KIF12 enhanced the ubiquitination of ACC1 by the E3 ligase COP1 and colocalized with these proteins as seen by super-resolution microscopy imaging. These data propose a role for KIF12 in suppressing MASH by accelerating turnover of lipogenic enzymes.
Collapse
Affiliation(s)
- Asieh Etemad
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shuo Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mordechai Slae
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Mutaz Sultan
- Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Luukkonen PK. Hidden metabolic effects of acetyl-CoA carboxylase inhibition. J Hepatol 2025; 82:544-545. [PMID: 39681499 DOI: 10.1016/j.jhep.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Panu K Luukkonen
- Department of Internal Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
8
|
Li J, Li C, Wu X, Dong Y, Li Y, Jiao X, Li J, Han L, Wang M. Protocatechuic Acid Suppresses Lipid Uptake and Synthesis through the PPARγ Pathway in High-Fat Diet-Induced NAFLD Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4012-4026. [PMID: 39907525 DOI: 10.1021/acs.jafc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most concerning health problems in the world. Dietary intervention is an effective way to prevent and improve NAFLD. As one of the main metabolites of anthocyanins, protocatechuic acid (PCA) exhibited strong activity to improve NAFLD, but the specific mechanism remains unclear. Currently, proteomics has been used to identify that PCA treatment could significantly influence the expression of 224 proteins, including 89 downregulated proteins and 135 upregulated proteins. KEGG analysis showed that PCA obviously inhibited the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Immunofluorescence and Western blot analyses further confirmed that PCA repressed the protein expression of PPARγ and subsequently inhibited the expression of free fatty acid (FFA) uptake proteins (CD36 and FABP2) and FFA synthesis proteins (ACC and FASN), respectively. These effects of PCA contributed to the inhibitory activity of excessive lipid accumulation in the liver. Our results highlighted that PCA could effectively alleviate high-fat diet-induced (HFD) NAFLD by inhibiting lipid absorption and synthesis through the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Chaoyue Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Yunlong Li
- Institute of Functional Food of Shanxi, Shanxi Agricultural University, Taiyuan 030006, P. R. China
| | - Xiaowen Jiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Jiating Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
9
|
Santos HO, Penha-Silva N. Revisiting the concepts of de novo lipogenesis to understand the conversion of carbohydrates into fats: Stop overvaluing and extrapolating the renowned phrase "fat burns in the flame of carbohydrate". Nutrition 2025; 130:112617. [PMID: 39566326 DOI: 10.1016/j.nut.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Carbohydrates can be converted into fatty acids via de novo lipogenesis (DNL). Although DNL is considered inefficient, these endogenous fatty acids contribute substantially to the esterification pathway in adipose tissue, together with fatty acids of feeding. This article revisited the concepts of DNL and aimed to discuss the clinical magnitude of carbohydrate overfeeding and fat mass accumulation. Although fat storage resulting from fat intake is more favorable for fat mass accrual than carbohydrates due to molecule structure and metabolism (e.g., oxidation and thermic effect), carbohydrates can substantially participate in lipogenesis and esterification under excess carbohydrate intake over time. Regarding only monosaccharide overfeeding, glucose and fructose favor the subcutaneous and visceral adipose tissue, respectively. While fructose and sucrose are considered villains in nonalcoholic fatty liver disease, energy surplus from carbohydrates, regardless of sources, can be considered an underlying cause of obesity. Interestingly, some degree of DNL in adipocytes may be favorable to mitigate a high deposition of fatty acids in the liver, conferring a physiological role. Although "fat burns in the flame of carbohydrate" is a praiseworthy phrase that has helped describe basic concepts in biochemistry for many decades, it appears to be overvalued and extrapolated even nowadays. DNL cannot be neglected. It is time to consider DNL an efficient biochemical process in health and disease.
Collapse
Affiliation(s)
- Heitor O Santos
- School of Medicine, Uberlândia Federal University, Uberlândia, MG, Brazil.
| | - Nilson Penha-Silva
- Institute of Biotechnology, Uberlândia Federal University, Uberlândia, MG, Brazil
| |
Collapse
|
10
|
Eccles-Miller JA, Johnson TD, Baldwin WS. Sexually Dimorphic Effects of CYP2B6 in the Development of Fasting-Mediated Steatosis in Mice: Role of the Oxylipin Products 9-HODE and 9-HOTrE. Biomedicines 2025; 13:295. [PMID: 40002708 PMCID: PMC11853041 DOI: 10.3390/biomedicines13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cytochrome P450 2B6 (CYP2B6) is a sexually dimorphic, anti-obesity CYP enzyme responsible for the metabolism of xeno- and endobiotics, including the metabolism of polyunsaturated fatty acids (PUFAs) into 9-hydroxyoctadecadienoic acid (9-HODE) and 9-hydroxyoctadecatrienoic acid (9-HOTrE). However, humanized CYP2B6 transgenic (hCYP2B6-Tg) mice are sensitive to diet-induced hepatic steatosis despite their resistance to obesity. The purpose of this study was to determine if 9-HODE, 9-HOTrE, or other factors contribute to the sexually dimorphic steatosis observed in hCYP2B6-Tg mice. Results: Cyp2b9/10/13-null (Cyp2b-null) mice were injected with either 9-HODE or 9-HOTrE for 2 days and were then subjected to a fasting period of 20 h to induce steatosis. Serum lipids were moderately increased, especially in females, after 9-HODE (triglycerides (TGs), very low-density lipoproteins (VLDLs)) and 9-HOTrE (high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), cholesterol) treatment. No change in hepatic lipids and few changes in hepatic gene expression were observed in mice treated with either oxylipin, suggesting that these oxylipins had minimal to moderate effects. Therefore, to further investigate CYP2B6's role in steatosis, hCYP2B6-Tg and Cyp2b-null mice were subjected to a 20 h fast and compared. Both male and female hCYP2B6-Tg mice exhibited increased steatosis compared to Cyp2b-null mice. Serum cholesterol, triglycerides, HDLs, and VLDLs were increased in hCYP2B6-Tg males. Serum triglycerides and VLDLs were decreased in hCYP2B6-Tg females, suggesting the greater hepatic retention of lipids in females. Hepatic oxylipin profiles revealed eight perturbed oxylipins in female hCYP2B6-Tg mice and only one in males when compared to Cyp2b-null mice. RNA-seq also demonstrated greater effects in females in terms of the number of genes and gene ontology (GO) terms perturbed. There were only a few overlapping GO terms between sexes, and lipid metabolic processes were enriched in hCYP2B6-Tg male mice but were repressed in hCYP2B6-Tg females compared to Cyp2b-nulls. Conclusions: hCYP2B6-Tg mice are sensitive to fasting-mediated steatosis in males and females, although the responses are different. In addition, the oxylipins 9-HODE and 9-HOTrE are unlikely to be the primary cause of CYP2B6's pro-steatotic effects.
Collapse
Affiliation(s)
| | | | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (J.A.E.-M.); (T.D.J.)
| |
Collapse
|
11
|
Zhang G, Jiang W, He F, Fu J, Xu X, Luo X, Cao Z. LDL-C and TC Mediate the Risk of PNPLA3 Inhibition in Cardiovascular Diseases. J Clin Endocrinol Metab 2025; 110:e231-e238. [PMID: 38636099 DOI: 10.1210/clinem/dgae264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT PNPLA3 is a promising target for the treatment of metabolic dysfunction-associated steatotic liver disease. ARO-PNPLA3 is a drug that efficiently lowers PNPLA3 expression in hepatocytes at the mRNA level, resulting in a significant reduction in liver fat in Phase I clinical trials. However, the long-term effects and potential side effects of ARO-PNPLA3 are not well understood. OBJECTIVE We conducted a 2-sample, 2-step Mendelian randomization analysis to investigate the association between PNPLA3 inhibition and 10 cardiovascular diseases (CVDs), as well as the role of lipid traits as mediators. METHODS We identified genetic variants near the PNPLA3 gene, which are linked to liver fat percentage, as instrumental variables for inhibiting PNPLA3. Additionally, positive control analyses on liver diseases were conducted to validate the selection of the genetic instruments. RESULTS Genetically predicted PNPLA3 inhibition significantly increased the risk of coronary atherosclerosis (1.14, 95% CI 1.06, 1.23), coronary heart disease (1.14, 95% CI 1.08, 1.21), and myocardial infarction (1.16, 95% CI 1.08, 1.26). Suggestive associations were observed for increased risk of heart failure (1.09, 95% CI 1.02, 1.17, P = .0143) and atrial fibrillation (1.17, 95% CI 1.00, 1.36, P = .0468). Blood low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) mediated approximately 16% to 25%, 16% to 30%, and 14% to 22% of the associations between PNPLA3 inhibition and coronary atherosclerosis, myocardial infarction, and coronary heart disease, respectively. CONCLUSION This study suggests that PNPLA3 inhibition increases the risk of major CVDs. Moreover, blood LDL-C and TC may mediate a significant proportion of the associations between PNPLA3 inhibition and coronary atherosclerosis, coronary heart disease, or myocardial infarction.
Collapse
Affiliation(s)
- Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fangxun He
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangshang Xu
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhixin Cao
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
12
|
Rauckhorst AJ, Sheldon RD, Pape DJ, Ahmed A, Falls-Hubert KC, Merrill RA, Brown RF, Deshmukh K, Vallim TA, Deja S, Burgess SC, Taylor EB. A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab 2025; 37:255-273.e6. [PMID: 39471817 PMCID: PMC11856365 DOI: 10.1016/j.cmet.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive 13C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Reid F Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kshitij Deshmukh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Thomas A Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
13
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
14
|
Gilgenkrantz H, Sayegh RA, Lotersztajn S. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annu Rev Pharmacol Toxicol 2025; 65:281-299. [PMID: 39259981 DOI: 10.1146/annurev-pharmtox-020524-012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.
Collapse
Affiliation(s)
- Helene Gilgenkrantz
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Rola Al Sayegh
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| | - Sophie Lotersztajn
- Université Paris Cité, INSERM, UMR-S1149, Centre de Recherche sur l'Inflammation (CRI), Paris, France;
| |
Collapse
|
15
|
Helsley RN, Zelows MM, Noffsinger VP, Anspach GB, Dharanipragada N, Mead AE, Cobo I, Carter A, Wu Q, Shalaurova I, Saito K, Morganti JM, Gordon SM, Graf GA. Hepatic Inactivation of Carnitine Palmitoyltransferase 1a Lowers Apolipoprotein B Containing Lipoproteins in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628437. [PMID: 39763810 PMCID: PMC11702516 DOI: 10.1101/2024.12.13.628437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of CPT1a SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of Cpt1a (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number. Despite a reduction in steady-state plasma lipids, VLDL-triglyceride (VLDL-TG) and cholesterol (VLDL-C) secretion rates are increased, suggesting accelerated clearance of apoB-containing lipoproteins (apoB-LPs) in LKO mice. Mechanistic approaches show greater peroxisome proliferator activated receptor α (PPARα) signaling which favors enhanced lipoprotein lipase-mediated metabolism of apoB-LPs, including increases in ApoCII and ApoAIV and reductions in ApoCIII & Angptl3. These studies provide mechanistic insight linking genetic variants and methylation status of CPT1a to reductions in circulating apoB-LPs in humans. HIGHLIGHTS Loss-of-function SNPs in CPT1a associate with reductions in plasma cholesterol in humans Hepatic Cpt1a expression positively associates with plasma cholesterol levels across inbred strains of miceLiver-specific Cpt1a deficiency lowers circulating apoB, plasma cholesterol, LDL-C, and LDL particle numberCpt1a ablation activates PPARα and favors clearance of apoB-containing lipoproteins.
Collapse
|
16
|
Mateo-Marín MA, Alves-Bezerra M. Targeting acetyl-CoA carboxylases for the treatment of MASLD. J Lipid Res 2024; 65:100676. [PMID: 39461620 PMCID: PMC11621487 DOI: 10.1016/j.jlr.2024.100676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatic accumulation of triglycerides is a hallmark feature of metabolic dysfunction-associated steatotic liver disease (MASLD). Growing evidence indicates that increased rates of de novo lipogenesis (DNL) are one of the earliest metabolic changes promoting hepatic steatosis in the onset of MASLD. The first step in DNL is catalyzed by acetyl-CoA carboxylases (ACC), which mediate the conversion of acetyl-CoA into malonyl-CoA. Given the critical role of ACC enzymes on DNL, ACC-based therapies have emerged as an attractive approach to address MASLD, leading to the development of pharmacologic inhibitors of ACC. In clinical trials, several of those compounds led to decreased DNL rates and improved hepatic steatosis in patients with MASLD. In this review, we describe the development of ACC dual inhibitors and isoform-specific inhibitors along with their clinical testing using monotherapy and combination therapy approaches. We also discuss their efficacy and safety profiles, identifying potential directions for future research. It is anticipated that advances in ACC-based therapies will be critical to the management of MASLD.
Collapse
Affiliation(s)
- María Antonia Mateo-Marín
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain
| | - Michele Alves-Bezerra
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain.
| |
Collapse
|
17
|
Dewald Z, Adesanya O, Bae H, Gupta A, Derham JM, Chembazhi UV, Kalsotra A. Altered drug metabolism and increased susceptibility to fatty liver disease in a mouse model of myotonic dystrophy. Nat Commun 2024; 15:9062. [PMID: 39433769 PMCID: PMC11494077 DOI: 10.1038/s41467-024-53378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Myotonic Dystrophy type 1 (DM1), a highly prevalent form of muscular dystrophy, is caused by (CTG)n repeat expansion in the DMPK gene. Much of DM1 research has focused on the effects within the muscle and neurological tissues; however, DM1 patients also suffer from various metabolic and liver dysfunctions such as increased susceptibility to metabolic dysfunction-associated fatty liver disease (MAFLD) and heightened sensitivity to certain drugs. Here, we generated a liver-specific DM1 mouse model that reproduces molecular and pathological features of the disease, including susceptibility to MAFLD and reduced capacity to metabolize specific analgesics and muscle relaxants. Expression of CUG-expanded (CUG)exp repeat RNA within hepatocytes sequestered muscleblind-like proteins and triggered widespread gene expression and RNA processing defects. Mechanistically, we demonstrate that increased expression and alternative splicing of acetyl-CoA carboxylase 1 drives excessive lipid accumulation in DM1 livers, which is exacerbated by high-fat, high-sugar diets. Together, these findings reveal that (CUG)exp RNA toxicity disrupts normal hepatic functions, predisposing DM1 livers to injury, MAFLD, and drug clearance pathologies that may jeopardize the health of affected individuals and complicate their treatment.
Collapse
Affiliation(s)
- Zachary Dewald
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Haneui Bae
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Andrew Gupta
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Cancer Center@Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerburg Biohub, Chicago, IL, USA.
| |
Collapse
|
18
|
Feng X, Zhang R, Yang Z, Zhang K, Xing J. Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism. J Clin Transl Hepatol 2024; 12:815-826. [PMID: 39280069 PMCID: PMC11393839 DOI: 10.14218/jcth.2024.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, has a high global prevalence and can progress to metabolic dysfunction-associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of MASLD is primarily driven by disturbances in hepatic lipid metabolism, involving six key processes: increased hepatic fatty acid uptake, enhanced fatty acid synthesis, reduced oxidative degradation of fatty acids, increased cholesterol uptake, elevated cholesterol synthesis, and increased bile acid synthesis. Consequently, maintaining hepatic lipid metabolic homeostasis is essential for effective MASLD management. Numerous novel molecules and Chinese proprietary medicines have demonstrated promising therapeutic potential in treating MASLD, primarily by inhibiting lipid synthesis and promoting lipid oxidation. In this review, we summarized recent research on MASLD, elucidated the molecular mechanisms by which lipid metabolism disorders contribute to MASLD pathogenesis, and discussed various lipid metabolism-targeted therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Xiaoxi Feng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Xing
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
19
|
Yang SR, Chen L, Luo D, Wang YY, Liang FX. Unlocking the potential: How acupuncture reshapes the liver-centered lipid metabolism pattern to fight obesity. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:523-532. [PMID: 39209583 DOI: 10.1016/j.joim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Obesity, a widespread global health issue, is frequently linked to disrupted lipid metabolism, resulting in excessive accumulation of adipose tissue and associated health complications. Acupuncture, a traditional Chinese medical modality, has exhibited potential as a viable intervention for addressing obesity. The underlying mechanism proposed involves the stimulation of specific acupoints to exert a regulatory influence on hepatic function. The liver has a central role in lipid metabolism, including processes such as lipid synthesis, storage and distribution. Acupuncture is believed to enhance the liver's efficiency in processing lipids, thereby reducing lipid accumulation and improving metabolic functions. Research indicates that acupuncture can influence the expression of certain genes and proteins involved in lipid metabolism in the liver. This includes upregulating genes that promote lipid breakdown and oxidation, and downregulating those involved in lipid synthesis. Additionally, acupuncture has been shown to improve insulin sensitivity, which is crucial for the regulation of lipid metabolism. Furthermore, the potential anti-inflammatory effects of acupuncture may play a significant role in its efficacy for the treatment of obesity. The presence of chronic inflammation has been strongly associated with metabolic disorders such as obesity. Through its ability to mitigate inflammation, acupuncture can potentially aid in the restoration of lipid metabolism and the reduction of body weight. Moreover, the amelioration of hepatic oxidative stress represents another mechanism by which acupuncture may contribute to the reduction of lipid deposition. Notably, the liver, being the primary site of lipid metabolism, maintains communication with various organs including the brain, adipose tissue, skeletal muscle and intestines. This perspective opens new avenues for the treatment of obesity, emphasizing the importance of holistic approaches in managing complex metabolic disorders. Please cite this article as: Yang SR, Chen L, Luo D, Wang YY, Liang FX. Unlocking the potential: How acupuncture reshapes the liver-centered lipid metabolism pattern to fight obesity. J Integr Med. 2024; 22(5): 523-532.
Collapse
Affiliation(s)
- Shu-Rui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Li Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Dan Luo
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Ya-Yuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Feng-Xia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan 430060, Hubei Province, China.
| |
Collapse
|
20
|
He JL, Zhao YW, Yang JL, Ju JM, Ye BQ, Huang JY, Huang ZH, Zhao WY, Zeng WF, Xia M, Liu Y. Enhanced interactions among gut mycobiomes with the deterioration of glycemic control. MED 2024; 5:909-925.e7. [PMID: 38670112 DOI: 10.1016/j.medj.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The gut mycobiome is closely linked to health and disease; however, its role in the progression of type 2 diabetes mellitus (T2DM) remains obscure. Here, a multi-omics approach was employed to explore the role of intestinal fungi in the deterioration of glycemic control. METHODS 350 participants without hypoglycemic therapies were invited for a standard oral glucose tolerance test to determine their status of glycemic control. The gut mycobiome was identified through internal transcribed spacer sequencing, host genetics were determined by genotyping array, and plasma metabolites were measured with untargeted liquid chromatography mass spectrometry. FINDINGS The richness of fungi was higher, whereas its dissimilarity was markedly lower, in participants with T2DM. Moreover, the diversity and composition of fungi were closely associated with insulin sensitivity and pancreatic β-cell functions. With the exacerbation of glycemic control, the co-occurrence network among fungus taxa became increasingly complex, and the complexity of the interaction network was inversely associated with insulin sensitivity. Mendelian randomization analysis further demonstrated that the Archaeorhizomycetes class, Fusarium genus, and Neoascochyta genus were causally linked to impaired glucose metabolism. Furthermore, integrative analysis with metabolomics showed that increased 4-hydroxy-2-oxoglutaric acid, ketoleucine, lysophosphatidylcholine (20:3/0:0), and N-lactoyl-phenylalanine, but decreased lysophosphatidylcholine (O-18:2), functioned as key molecules linking the adverse effect of Fusarium genus on insulin sensitivity. CONCLUSIONS Our study uncovers a strong association between disturbance in gut fungi and the progression of T2DM and highlights the potential of targeting the gut mycobiome for the management of T2DM. FUNDINGS This study was supported by MOST and NSFC of China.
Collapse
Affiliation(s)
- Jia-Lin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ya-Wen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jia-Lu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-Meng Ju
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bing-Qi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-Yi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi-Hao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wan-Ying Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei-Feng Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China.
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China.
| |
Collapse
|
21
|
Sivakumar P, Saul M, Robinson D, King LE, Amin NB. SomaLogic proteomics reveals new biomarkers and provides mechanistic, clinical insights into Acetyl coA Carboxylase (ACC) inhibition in Non-alcoholic Steatohepatitis (NASH). Sci Rep 2024; 14:17072. [PMID: 39048608 PMCID: PMC11269579 DOI: 10.1038/s41598-024-67843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH) are major metabolic diseases with increasing global prevalence and no approved therapies. There is a mounting need to develop biomarkers of diagnosis, prognosis and treatment response that can effectively replace current requirements for liver biopsies, which are invasive, error-prone and expensive. We performed SomaLogic serum proteome profiling with baseline (n = 231) and on-treatment (n = 72, Weeks 12 and 16, Placebo and 25 mg PF-05221304) samples from a Phase 2a trial (NCT03248882) with Clesacostat (PF-05221304), an acetyl coA carboxylase inhibitor (ACCi) in patients with NAFLD/NASH. SomaSignal NASH probability scores and expression data for 7000+ analytes were analyzed to identify potential biomarkers associated with baseline clinical measures of NAFLD/NASH [Magnetic Resonance Imaging-Proton Density Fat Fraction (MRI-PDFF), alanine aminotransferase (ALT) and aspartate aminotransferase (AST)] as well as biomarkers of treatment response to ACCi. SomaSignal NASH probability scores identified biopsy-proven/clinically defined NIT-based (Presumed) NASH classification of the cohort with > 70% agreement. Clesacostat-induced reduction in steatosis probability scores aligned with observed clinical reduction in hepatic steatosis based on MRI-PDFF. We identify a set of 69 analytes that robustly correlate with clinical measures of hepatic inflammation and steatosis (MRI-PDFF, ALT and AST), 27 of which were significantly reversed with ACC inhibition. Clesacostat treatment dramatically upregulated Wnt5a protein and Apolipoproteins C3 and E, with drug-induced changes significantly correlating to changes on MRI-PDFF. Our data demonstrate the utility of SomaLogic- analyte panel for diagnosis and treatment response in NAFLD/NASH and provide potential new mechanistic insights into liver steatosis reduction, inflammation and serum triglyceride elevation with ACC inhibition. (Clinical Trial Identifier: NCT03248882).
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- Translational Clinical Sciences, Pfizer Research and Development, 500 Arcola Road, Collegeville, PA, 19426, USA.
| | - Michelle Saul
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Douglas Robinson
- Translational Biomarker Statistics, Pfizer Research and Development, San Diego, USA
| | - Lindsay E King
- Clinical Bioanalytics, Pfizer Research and Development, Cambridge, USA
| | - Neeta B Amin
- Internal Medicine, Pfizer Research and Development, Cambridge, USA
| |
Collapse
|
22
|
Wu L, Lv Y, Ge C, Luo X, Hu Z, Huang W, Zhan S, Shen X, Yu D, Liu B. Polysaccharide from Hericium erinaceus improved laying performance of aged hens by promoting yolk precursor synthesis and follicle development via liver-blood-ovary axis. Poult Sci 2024; 103:103810. [PMID: 38749108 PMCID: PMC11112365 DOI: 10.1016/j.psj.2024.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Little information is available on the effect of Hericium erinaceus polysaccharides (HEP) on laying hens, especially on improving liver and ovarian health and function. Therefore, this study was conducted to investigate the impacts of HEP on liver and ovarian function to delay the decline in the laying performance of aged hens. A total of 360 fifty-eight-wk-old laying hens were randomly allocated to 4 treatments, with 6 replicates of 15 birds each. After 2 wk of adaptation, the birds were fed basal diet (CON) or basal diets supplemented with 250, 500, and 750 mg/kg of HEP (HEP250, HEP500, and HEP 750, respectively) for 12 wk. The results showed that, compared with CON, hens fed HEP had significantly increased laying performance (P < 0.05) and promoted follicle development, as evidenced by the increased numbers of hierarchical follicles, small follicles, and total follicles (P < 0.05). Birds fed 500 mg/kg of HEP improved the liver function by increasing T-AOC activity (P < 0.05) and decreasing hepatic oxidative stress and inflammatory responses (inflammatory cell infiltration) caused by aging. The lipid metabolism was improved, and yolk precursor synthesis was promoted in the liver of HEP-treated laying hens by upregulating the mRNA expression of FAS, MTTP, PPAR-α, APOVLDL-Ⅱ, and VTG-Ⅱ (P < 0.05). In addition, HEP significantly decreased ovarian inflammation by regulating the mRNA levels of NF-κB, IL-1β, IL-6, and TNF-α (P < 0.05). As a result, the contents of E2, LH, and FSH in serum and the gene expression of ERα of the liver and FSHR of the ovary increased in HEP-treated hens (P < 0.05). In conclusion, dietary HEP supplementation exhibited potential hepatic and ovarian protective effects, thereby increasing the laying performance of aged hens by enhancing reproductive hormone secretion hormone secretion and promoting yolk precursor synthesis and follicle development via the liver-blood-ovary axis. The optimal supplementation level of HEP in aged hens was 500 mg/kg.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Pérez-Díaz AJ, Núñez-Sánchez MÁ, Ramos-Molina B. Revisiting liver metabolism through acetyl-CoA carboxylase inhibition. Trends Endocrinol Metab 2024; 35:563-565. [PMID: 38664153 DOI: 10.1016/j.tem.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
Liver-targeted acetyl-coenzyme A (CoA) carboxylase (ACC) inhibitors in metabolic dysfunction-associated steatotic liver disease (MASLD) trials reveal notable secondary effects: hypertriglyceridemia and altered glucose metabolism, paradoxically with reduced hepatic steatosis. In their study, Deja et al. explored how hepatic ACC influences metabolism using different pharmacological and genetic methods, coupled with targeted metabolomics and stable isotope-based tracing techniques.
Collapse
Affiliation(s)
| | - María Ángeles Núñez-Sánchez
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| |
Collapse
|
24
|
Berardi G, Cucchetti A, Sposito C, Ratti F, Nebbia M, D’Souza DM, Pascual F, Dogeas E, Tohme S, Vitale A, D’Amico FE, Alessandris R, Panetta V, Simonelli I, Colasanti M, Russolillo N, Moro A, Fiorentini G, Serenari M, Rotellar F, Zimitti G, Famularo S, Ivanics T, Donando FG, Hoffman D, Onkendi E, Essaji Y, Giuliani T, Lopez Ben S, Caula C, Rompianesi G, Chopra A, Abu Hilal M, Sapisochin G, Torzilli G, Corvera C, Alseidi A, Helton S, Troisi RI, Simo K, Conrad C, Cescon M, Cleary S, Kwon DCH, Ferrero A, Ettorre GM, Cillo U, Geller D, Cherqui D, Serrano PE, Ferrone C, Aldrighetti L, Kingham TP, Mazzaferro V. Recurrence and tumor-related death after resection of hepatocellular carcinoma in patients with metabolic syndrome. JHEP Rep 2024; 6:101075. [PMID: 38961853 PMCID: PMC11220535 DOI: 10.1016/j.jhepr.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND & AIMS Metabolic syndrome (MS) is a growing epidemic and a risk factor for the development of hepatocellular carcinoma (HCC). This study investigated the long-term outcomes of liver resection (LR) for HCC in patients with MS. Rates, timing, patterns, and treatment of recurrences were investigated, and cancer-specific survivals were assessed. METHODS Between 2001 and 2021, data from 24 clinical centers were collected. Overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival were analyzed as well as recurrence patterns and treatment. The analysis was conducted using a competing-risk framework. The trajectory of the risk of recurrence over time was applied to a competing risk analysis. For post-recurrence survival, death resulting from tumor progression was the primary endpoint, whereas deaths with recurrence relating to other causes were considered as competing events. RESULTS In total, 813 patients were included in the study. Median OS was 81.4 months (range 28.1-157.0 months), and recurrence occurred in 48.3% of patients, with a median RFS of 39.8 months (range 15.7-174.7 months). Cause-specific hazard of recurrence showed a first peak 6 months (0.027), and a second peak 24 months (0.021) after surgery. The later the recurrence, the higher the chance of receiving curative intent approaches (p = 0.001). Size >5 cm, multiple tumors, microvascular invasion, and cirrhosis were independent predictors of recurrence showing a cause-specific hazard over time. RFS was associated with death for recurrence (hazard ratio: 0.985, 95% CI: 0.977-0.995; p = 0.002). CONCLUSIONS Patients with MS undergoing LR for HCC have good long-term survival. Recurrence occurs in 48% of patients with a double-peak incidence and time-specific hazards depending on tumor-related factors and underlying disease. The timing of recurrence significantly impacts survival. Surveillance after resection should be adjusted over time depending on risk factors. IMPACT AND IMPLICATIONS Metabolic syndrome (MS) is a growing epidemic and a significant risk factor for the development of hepatocellular carcinoma (HCC). The present study demonstrated that patients who undergo surgical resection for HCC on MS have a good long-term survival and that recurrence occurs in almost half of the cases with a double peak incidence and time-specific hazards depending on tumor-related factors and underlying liver disease. Also, the timing of recurrence significantly impacts survival. Clinicians should therefore adjust follow-up after surgery accordingly, considering timing of recurrence and specific risk factors. Also, the results of the present study might help design future trials on the use of adjuvant therapy following resection.
Collapse
Affiliation(s)
- Giammauro Berardi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences-DIME, Alma Mater Studiorum, University of Bologna, Italy
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, Forlì, Italy
| | - Carlo Sposito
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Surgery, HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS, Milan, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, San Raffaele Hospital Department of Surgery, Milan, Italy
| | - Martina Nebbia
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Franco Pascual
- Department of Surgery, Paul Brousse Hospital, Villejuif, Paris, France
| | - Epameinondas Dogeas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alessandro Vitale
- Department of Surgical Oncological and Gastroenterological Sciences (DiSCOG), University of Padova, Padua, Italy
| | - Francesco Enrico D’Amico
- Department of Surgical Oncological and Gastroenterological Sciences (DiSCOG), University of Padova, Padua, Italy
| | - Remo Alessandris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgical Oncological and Gastroenterological Sciences (DiSCOG), University of Padova, Padua, Italy
| | - Valentina Panetta
- Laltrastatistica Consultancy and Training, Biostatistics Department, Rome, Italy
| | - Ilaria Simonelli
- Laltrastatistica Consultancy and Training, Biostatistics Department, Rome, Italy
| | - Marco Colasanti
- Department of Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | | | - Amika Moro
- Department of Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Matteo Serenari
- Hepato-biliary and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giuseppe Zimitti
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Simone Famularo
- Department of General Surgery, Humanitas University and Research Hospital, IRCCS, Milan, Italy
| | - Tommy Ivanics
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Daniel Hoffman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Edwin Onkendi
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Yasmin Essaji
- Department of Surgery, Virginia Mason Hospital, Seattle, WA, USA
- Department of Surgery, Seattle Medical Center, Seattle, WA, USA
| | - Tommaso Giuliani
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santiago Lopez Ben
- Department of Surgery, Hospital Universitari Dr Josep Trueta de Girona, Girona, Spain
| | - Celia Caula
- Department of Surgery, Hospital Universitari Dr Josep Trueta de Girona, Girona, Spain
| | - Gianluca Rompianesi
- Department of Clinical Medicine and Surgery, Università Federico Secondo, Naples, Italy
| | | | - Mohammed Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | | | - Guido Torzilli
- Department of General Surgery, Humanitas University and Research Hospital, IRCCS, Milan, Italy
| | - Carlos Corvera
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adnan Alseidi
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Scott Helton
- Department of Surgery, Virginia Mason Hospital, Seattle, WA, USA
| | - Roberto I. Troisi
- Department of Clinical Medicine and Surgery, Università Federico Secondo, Naples, Italy
| | - Kerri Simo
- Department of Surgery, Hospital, Toledo, OH, USA
| | - Claudius Conrad
- Department of Surgery, Saint Elizabeth Medical Center, Boston, MA, USA
| | - Matteo Cescon
- Hepato-biliary and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sean Cleary
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Umberto Cillo
- Department of Surgical Oncological and Gastroenterological Sciences (DiSCOG), University of Padova, Padua, Italy
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel Cherqui
- Department of Surgery, Paul Brousse Hospital, Villejuif, Paris, France
| | - Pablo E. Serrano
- Department of Surgery, McMaster University, Hamilton, ONT, Canada
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, San Raffaele Hospital Department of Surgery, Milan, Italy
| | - T. Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Surgery, HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS, Milan, Italy
| |
Collapse
|
25
|
Zhang D, Zhao Y, Zhang G, Lank D, Cooke S, Wang S, Nuotio-Antar A, Tong X, Yin L. Suppression of hepatic ChREBP⍺-CYP2C50 axis-driven fatty acid oxidation sensitizes mice to diet-induced MASLD/MASH. Mol Metab 2024; 85:101957. [PMID: 38740087 PMCID: PMC11145360 DOI: 10.1016/j.molmet.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars. METHODS We examined its role in regulating hepatocyte fatty acid oxidation (FAO) and the impact of hepatic Chrebpa deficiency on sensitivity to diet-induced MASLD/MASH in mice. RESULTS We discovered that hepatocyte ChREBP⍺ is both necessary and sufficient to maintain FAO in a cell-autonomous manner independently of its DNA-binding activity. Supplementation of synthetic PPAR⍺/δ agonist is sufficient to restore FAO in Chrebp-/- primary mouse hepatocytes. Hepatic ChREBP⍺ was decreased in mouse models of diet-induced MAFSLD/MASH and in patients with MASH. Hepatocyte-specific Chrebp⍺ knockout impaired FAO, aggravated liver steatosis and inflammation, leading to early-onset fibrosis in response to diet-induced MASH. Conversely, liver overexpression of ChREBP⍺-WT or its non-lipogenic mutant enhanced FAO, reduced lipid deposition, and alleviated liver injury, inflammation, and fibrosis. RNA-seq analysis identified the CYP450 epoxygenase (CYP2C50) pathway of arachidonic acid metabolism as a novel target of ChREBP⍺. Over-expression of CYP2C50 partially restores hepatic FAO in primary hepatocytes with Chrebp⍺ deficiency and attenuates preexisting MASH in the livers of hepatocyte-specific Chrebp⍺-deleted mice. CONCLUSIONS Our findings support the protective role of hepatocyte ChREBPa against diet-induced MASLD/MASH in mouse models in part via promoting CYP2C50-driven FAO.
Collapse
Affiliation(s)
- Deqiang Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Yuee Zhao
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Daniel Lank
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Sarah Cooke
- Neurosciences Graduate Program, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA
| | - Sujuan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd, Furong District, Changsha, Hunan Province 410011, PR China
| | - Alli Nuotio-Antar
- Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, USA; Caswell Diabetes Institute, University of Michigan Medical School, NCRC Building 20-3843, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
26
|
Iwaki M, Yoneda M, Wada N, Otani T, Kobayashi T, Nogami A, Saito S, Nakajima A. Emerging drugs for the treatment of hepatic fibrosis on nonalcoholic steatohepatitis. Expert Opin Emerg Drugs 2024; 29:127-137. [PMID: 38469871 DOI: 10.1080/14728214.2024.2328036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Approved drug therapies for nonalcoholic steatohepatitis (NASH) are lacking, for which various agents are currently being tested in clinical trials. Effective drugs for liver fibrosis, the factor most associated with prognosis in NASH, are important. AREAS COVERED This study reviewed the treatment of NASH with a focus on the effects of existing drugs and new drugs on liver fibrosis. EXPERT OPINION Considering the complex pathophysiology of fibrosis in NASH, drug therapy may target multiple pathways. The method of assessing fibrosis is important when considering treatment for liver fibrosis in NASH. The Food and Drug Administration considers an important fibrosis endpoint to be histological improvement in at least one fibrosis stage while preventing worsening of fatty hepatitis. To obtain approval as a drug for NASH, efficacy needs to be demonstrated on endpoints such as liver-related events and myocardial infarction. Among the current therapeutic agents for NASH, thiazolidinedione, sodium-glucose co-transporter 2, and selective peroxisome proliferator-activated receptors α modulator have been reported to be effective against fibrosis, although further evidence is required. The effects of pan-peroxisome proliferator-activated receptors, obeticholic acid, and fibroblast growth factor-21 analogs on liver fibrosis in the development stage therapeutics for NASH are of particular interest.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Otani
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology, Sanno Hospital, Minato-Ku, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
27
|
Deja S, Fletcher JA, Kim CW, Kucejova B, Fu X, Mizerska M, Villegas M, Pudelko-Malik N, Browder N, Inigo-Vollmer M, Menezes CJ, Mishra P, Berglund ED, Browning JD, Thyfault JP, Young JD, Horton JD, Burgess SC. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. Cell Metab 2024; 36:1088-1104.e12. [PMID: 38447582 PMCID: PMC11081827 DOI: 10.1016/j.cmet.2024.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
Collapse
Affiliation(s)
- Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Blanka Kucejova
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Morgan Villegas
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Natalia Pudelko-Malik
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nicholas Browder
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Eric D Berglund
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Internal Medicine and KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
28
|
Rivera JC, Espinoza-Derout J, Hasan KM, Molina-Mancio J, Martínez J, Lao CJ, Lee ML, Lee DL, Wilson J, Sinha-Hikim AP, Friedman TC. Hepatic steatosis induced by nicotine plus Coca-Cola™ is prevented by nicotinamide riboside (NR). Front Endocrinol (Lausanne) 2024; 15:1282231. [PMID: 38756999 PMCID: PMC11097688 DOI: 10.3389/fendo.2024.1282231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.
Collapse
Affiliation(s)
- Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Jocelyn Molina-Mancio
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Jason Martínez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Martin L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Biostatistics Department, UCLA Fielding School of Public Health, Los Angeles, CA, United States
| | - Desean L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Julian Wilson
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Guo W, Cao H, Shen Y, Li W, Wang W, Cheng L, Cai M, Xu F. Role of liver FGF21-KLB signaling in ketogenic diet-induced amelioration of hepatic steatosis. Nutr Diabetes 2024; 14:18. [PMID: 38609395 PMCID: PMC11014968 DOI: 10.1038/s41387-024-00277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The effectiveness of ketogenic diet (KD) in ameliorating fatty liver has been established, although its mechanism is under investigation. Fibroblast growth factor 21 (FGF21) positively regulates obesity-associated metabolic disorders and is elevated by KD. FGF21 conventionally initiates its intracellular signaling via receptor β-klotho (KLB). However, the mechanistic role of FGF21-KLB signaling for KD-ameliorated fatty liver remains unknown. This study aimed to delineate the critical role of FGF21 signaling in the ameliorative effects of KD on hepatic steatosis. METHODS Eight-week-old C57BL/6 J mice were fed a chow diet (CD), a high-fat diet (HFD), or a KD for 16 weeks. Adeno-associated virus-mediated liver-specific KLB knockdown mice and control mice were fed a KD for 16 weeks. Phenotypic assessments were conducted during and after the intervention. We investigated the mechanism underlying KD-alleviated hepatic steatosis using multi-omics and validated the expression of key genes. RESULTS KD improved hepatic steatosis by upregulating fatty acid oxidation and downregulating lipogenesis. Transcriptional analysis revealed that KD dramatically activated FGF21 pathway, including KLB and fibroblast growth factor receptor 1 (FGFR1). Impairing liver FGF21 signaling via KLB knockdown diminished the beneficial effects of KD on ameliorating fatty liver, insulin resistance, and regulating lipid metabolism. CONCLUSION KD demonstrates beneficial effects on diet-induced metabolic disorders, particularly on hepatic steatosis. Liver FGF21-KLB signaling plays a critical role in the KD-induced amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Wanrong Guo
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Medical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanyi Cao
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Jokinen MJ, Luukkonen PK. Hepatic mitochondrial reductive stress in the pathogenesis and treatment of steatotic liver disease. Trends Pharmacol Sci 2024; 45:319-334. [PMID: 38471991 DOI: 10.1016/j.tips.2024.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.
Collapse
Affiliation(s)
- Mari J Jokinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
31
|
Rong S, Xia M, Vale G, Wang S, Kim CW, Li S, McDonald JG, Radhakrishnan A, Horton JD. DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER. Cell Metab 2024; 36:617-629.e7. [PMID: 38340721 PMCID: PMC10939742 DOI: 10.1016/j.cmet.2024.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.
Collapse
Affiliation(s)
- Shunxing Rong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Mingfeng Xia
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Simeng Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Shili Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
32
|
Eeda V, Patil NY, Joshi AD, Awasthi V. Advancements in metabolic-associated steatotic liver disease research: Diagnostics, small molecule developments, and future directions. Hepatol Res 2024; 54:222-234. [PMID: 38149861 PMCID: PMC10923026 DOI: 10.1111/hepr.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Metabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis. This review focused on depicting the latest advancements in MASLD research related to small molecule development for prophylaxis or treatment and diagnosis, with emphasis on mechanistic basis at the molecular level.
Collapse
Affiliation(s)
- Venkateswararao Eeda
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Nikhil Yuvaraj Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Aditya Dilip Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
33
|
Shah SGS, Barrado-Martín Y, Marjot T, Tomlinson JW, Kiparoglou V. Recruitment, Retention, and Training of Citizen Scientists in Translational Medicine Research: A Citizen Science Initiative on Non-Alcoholic Fatty Liver Disease. Cureus 2024; 16:e56038. [PMID: 38606249 PMCID: PMC11008778 DOI: 10.7759/cureus.56038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Citizen science is a participatory science approach in which members of the public (citizens) collaborate with scientists and professional researchers and become involved in research and innovation activities, resulting in the co-creation of scientific knowledge and innovation. Citizen science has been widely applied in research, particularly in the social sciences, environmental sciences, information and communication technologies, and public health. However, the application of this approach in clinical sciences, particularly in translational medicine research, is still nascent. This exploratory study involved members of the public (citizen scientists) in a translational medicine experiment on non-alcoholic fatty liver disease that incorporated a lifestyle and weight-loss intervention. The aim of this paper is to report successful methods and approaches for the recruitment, retention, and training of citizen scientists. For the citizen scientists' recruitment, online calls placed on the websites of our research project and biomedical research center and targeted emails were the most helpful. Of the 14 members of the public who expressed interest in our study, six were recruited as citizen scientists. Citizen scientists were mostly female (n = 5, 83%), white (n = 3, 50%), over 50 years of age (n = 4, 67%), educated to postgraduate level (n = 5, 83%), and either retired or not in employment (n = 5, 83%). The retention rate was 83% (n = 5), and the dropout rate was 17% (n = 1). We arranged instructor-led interactive online training sessions (an hour-long one-on-one session and two-hour group sessions). Research skills training covered ethics in research and qualitative and quantitative data analysis. Citizen scientists were given several incentives, such as reimbursement of travel and care costs, selection as citizen scientists of the month, publications of their blogs and perspective articles, and co-authorship and acknowledgement in papers and project deliverables. To conclude, members of the public (particularly middle-aged white women with postgraduate education) are interested in becoming citizen scientists in translational medicine research. Their retention rate is higher, and they can contribute to different research activities. However, they need training to develop their research skills and expertise. The training should be simple, comprehensive, and flexible to accommodate the schedules of individual citizen scientists. They deserve incentives as they work on a voluntary basis.
Collapse
Affiliation(s)
- Syed Ghulam Sarwar Shah
- Public Health, Oxford University Hospitals National Health Services (NHS) Foundation Trust, Oxford, GBR
| | | | - Thomas Marjot
- Diabetes and Endocrinology, University of Oxford, Oxford, GBR
| | | | | |
Collapse
|
34
|
Kim SJ, Hyun J. Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD. Mol Cells 2024; 47:100010. [PMID: 38237744 PMCID: PMC10960132 DOI: 10.1016/j.mocell.2024.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 02/12/2024] Open
Abstract
Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.
Collapse
Affiliation(s)
- So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
35
|
Qin F, Luo L, Liu YC, Bo XL, Wu FR, Wang FF, Tan MJ, Wei YQ, Dou XB, Wang CY, Huang XS, Wang HS. Diisoprenyl-cyclohexene-type meroterpenoids from a mangrove endophytic fungus Aspergillus sp. GXNU-Y65 and their anti-nonalcoholic steatohepatitis activity in AML12 cells. PHYTOCHEMISTRY 2024; 218:113955. [PMID: 38128773 DOI: 10.1016/j.phytochem.2023.113955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Nine previously undescribed diisoprenyl-cyclohexene-type meroterpenoids, aspergienynes A-I, together with five known analogues, were obtained from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y65. The diisoprenyl-cyclohexene-type meroterpenoids were elucidated based on multispectroscopic analysis, and the previously undescribed compounds' absolute configurations were established via electronic circular dichroism calculations. Biological activity results indicated that aspergienyne C (compound 3) had strong anti-nonalcoholic steatohepatitis activity against AML12 cells treated with PA (Palmitic acid) + OA (Oleic acid). At the same concentration of 20 μM, 3 significantly reduced triglyceride (TG) content compared with fenofibrate (positive control) in PA + OA treated AML12 cells, and obviously increased phosphorylation of acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yu-Chen Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang-Long Bo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Fu-Rong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Fan-Fan Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, People's Republic of China
| | - Mei-Jing Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - You-Quan Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xiao-Bing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Cai Yi Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Xi-Shan Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
36
|
Esler WP, Cohen DE. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. J Hepatol 2024; 80:362-377. [PMID: 37977245 PMCID: PMC10842769 DOI: 10.1016/j.jhep.2023.10.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The hepatic accumulation of excess triglycerides is a seminal event in the initiation and progression of non-alcoholic fatty liver disease (NAFLD). Hepatic steatosis occurs when the hepatic accrual of fatty acids from the plasma and de novo lipogenesis (DNL) is no longer balanced by rates of fatty acid oxidation and secretion of very low-density lipoprotein-triglycerides. Accumulating data indicate that increased rates of DNL are central to the development of hepatic steatosis in NAFLD. Whereas the main drivers in NAFLD are transcriptional, owing to both hyperinsulinemia and hyperglycaemia, the effectors of DNL are a series of well-characterised enzymes. Several have proven amenable to pharmacologic inhibition or oligonucleotide-mediated knockdown, with lead compounds showing liver fat-lowering efficacy in phase II clinical trials. In humans with NAFLD, percent reductions in liver fat have closely mirrored percent inhibition of DNL, thereby affirming the critical contributions of DNL to NAFLD pathogenesis. The safety profiles of these compounds have so far been encouraging. It is anticipated that inhibitors of DNL, when administered alone or in combination with other therapeutic agents, will become important agents in the management of human NAFLD.
Collapse
Affiliation(s)
- William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research Development and Medical, Cambridge, MA 02139 United States.
| | - David E Cohen
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115 United States.
| |
Collapse
|
37
|
Chu H, Zhang W, Tan Y, Diao Z, Li P, Wu Y, Xie L, Sun J, Yang K, Li P, Xie C, Li P, Hua Q, Xu X. Qing-Zhi-Tiao-Gan-Tang (QZTGT) prevents nonalcoholic steatohepatitis (NASH) by expression pattern correction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116665. [PMID: 37279813 DOI: 10.1016/j.jep.2023.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Zhi-Tiao-Gan-Tang or Qing-Zhi-Tiao-Gan Decoction (QZTGT) is based on the compatibility theory of traditional Chinese medicine (TCM), that is a combination of three classical formulae for the treatment of nonalcoholic fatty liver disease (NAFLD). Its pharmacodynamic material basis is made up of quinones, flavanones, and terpenoids. AIM OF THE STUDY This study aimed to look for a promising recipe for treating nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, and to use a transcriptome-based multi-scale network pharmacological platform (TMNP) to find its therapy targets. MATERIALS AND METHODS A classical dietary model of NASH was established using MCD (Methionine- and choline-deficient) diet-fed mice. Liver coefficients like ALT, AST, serum TC, and TG levels were tested following QZTGT administration. A transcriptome-based multi-scale network pharmacological platform (TMNP) was used to further analyze the liver gene expression profile. RESULTS The composition of QZTGT was analyzed by HPLC-Q-TOF/MS, a total of 89 compounds were separated and detected and 31 of them were found in rat plasma. QZTGT improved liver morphology, inflammation and fibrosis in a classical NASH model. Transcriptomic analysis of liver samples from NASH animal model revealed that QZTGT was able to correct gene expression. We used transcriptome-based multi-scale network pharmacological platform (TMNP) to predicted molecular pathways regulated by QZTGT to improve NASH. Further validation indicated that "fatty acid degradation", "bile secretion" and "steroid biosynthesis" pathways were involved in the improvement of NASH phenotype by QZTGT. CONCLUSIONS Using HPLC-Q-TOF/MS, the compound composition of QZTGT, a Traditional Chinese prescription, was separated, analyzed and identified systematically. QZTGT mitigated NASH symptoms in a classical dietary model of NASH. Transcriptomic and network pharmacology analysis predicted the potential QZTGT regulated pathways. These pathways could be used as therapeutic targets for NASH.
Collapse
Affiliation(s)
- Hang Chu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhipeng Diao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Peng Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yapeng Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Like Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jianguo Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ke Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Sun Q, Guo Y, Hu W, Zhang M, Wang S, Lei Y, Meng H, Li N, Xu P, Li Z, Lin H, Huang F, Qiu Z. Bempedoic Acid Unveils Therapeutic Potential in Non-Alcoholic Fatty Liver Disease: Suppression of the Hepatic PXR-SLC13A5/ACLY Signaling Axis. Drug Metab Dispos 2023; 51:1628-1641. [PMID: 37684055 DOI: 10.1124/dmd.123.001449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.
Collapse
Affiliation(s)
- Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yating Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Wenjun Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Mengdi Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Shijiao Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yuanyuan Lei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haitao Meng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Ning Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Pengfei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhiyu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haishu Lin
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| |
Collapse
|
39
|
Lin Y, Yang M, Huang L, Yang F, Fan J, Qiang Y, Chang Y, Zhou W, Yan L, Xiong J, Ping J, Chen S, Men D, Li F. A bacteria-derived tetramerized protein ameliorates nonalcoholic steatohepatitis in mice via binding and relocating acetyl-coA carboxylase. Cell Rep 2023; 42:113453. [PMID: 37976162 DOI: 10.1016/j.celrep.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Increased de novo lipogenesis (DNL) is a major feature of nonalcoholic steatohepatitis (NASH). None of the drugs targeting the catalytic activity of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in the DNL process, have been approved by the FDA. Whether cytosolic ACC1 can be regulated spatially remains to be explored. Herein, we find that streptavidin (SA), which is a bacterium-derived tetrameric protein, forms cytosolic condensates and efficiently induces a spatial re-localization of ACC1 in liver cells, concomitant with inhibited lipid accumulation. Both SA tetrameric structure and multivalent protein interaction are required for condensate formation. Interestingly, the condensates are further characterized as gel-like membraneless organelle (SAGMO) and significantly restrict the cytosolic dispersion of ACC1 and fatty acid synthase. Notably, AAV-mediated delivery of SA partially blocks mouse liver DNL and ameliorates NASH without eliciting hypertriglyceridemia. In summary, our study shows that insulating lipogenesis-related proteins by SAGMO might be effective for NASH treatment.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Huang
- Research Center for Medicine and Structural Biology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Fan Yang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jiachen Fan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yulong Qiang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuting Chang
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Wenjie Zhou
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Leilei Yan
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Xiong
- Department of Immunology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong Men
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| | - Feng Li
- Department of Medical Genetics, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| |
Collapse
|
40
|
Ma Y, Zhao C, Hu H, Yin S. Liver protecting effects and molecular mechanisms of icariin and its metabolites. PHYTOCHEMISTRY 2023; 215:113841. [PMID: 37660725 DOI: 10.1016/j.phytochem.2023.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
As a detoxification and metabolism organ, the liver plays a vital role in human health. However, an excessive consumption of drugs and toxins, exposure to pathogenic viruses, and unhealthy living habits can lead to liver damage, which may even develop into liver cirrhosis and liver cancer. Epimedium brevicornum Maxim. is a traditional Chinese medicine and dietary supplement in which the flavonoid icariin is a main functional component. Although the protective mechanisms of icariin and its metabolites against liver injury are not yet comprehensively understood, an increasing number of studies have confirmed their liver-protective and anticancer effects. Indeed, icaritin, one of the metabolites of icariin, is currently utilized as an active component of an anti-cancer drug. This paper presents a review of the molecular mechanisms through which icariin and its metabolites actively protect against the occurrence and development of liver injury, and, thus, provides a comprehensive reference for further research and their application in liver protection.
Collapse
Affiliation(s)
- Yurong Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
41
|
Matsukawa T, Yagi T, Uchida T, Sakai M, Mitsushima M, Naganuma T, Yano H, Inaba Y, Inoue H, Yanagida K, Uematsu M, Nakao K, Nakao H, Aiba A, Nagashima Y, Kubota T, Kubota N, Izumida Y, Yahagi N, Unoki-Kubota H, Kaburagi Y, Asahara SI, Kido Y, Shindou H, Itoh M, Ogawa Y, Minami S, Terauchi Y, Tobe K, Ueki K, Kasuga M, Matsumoto M. Hepatic FASN deficiency differentially affects nonalcoholic fatty liver disease and diabetes in mouse obesity models. JCI Insight 2023; 8:e161282. [PMID: 37681411 PMCID: PMC10544238 DOI: 10.1172/jci.insight.161282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown. Here, we show that hepatic FASN deficiency differentially affects NAFLD and diabetes depending on the etiology of obesity. Hepatocyte-specific ablation of FASN ameliorated NAFLD and diabetes in melanocortin 4 receptor-deficient mice but not in mice with diet-induced obesity. In leptin-deficient mice, FASN ablation alleviated hepatic steatosis and improved glucose tolerance but exacerbated fed hyperglycemia and liver dysfunction. The beneficial effects of hepatic FASN deficiency on NAFLD and glucose metabolism were associated with suppression of DNL and attenuation of gluconeogenesis and fatty acid oxidation, respectively. The exacerbation of fed hyperglycemia by FASN ablation in leptin-deficient mice appeared attributable to impairment of hepatic glucose uptake triggered by glycogen accumulation and citrate-mediated inhibition of glycolysis. Further investigation of the therapeutic potential of hepatic FASN inhibition for NAFLD and diabetes in humans should thus consider the etiology of obesity.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Takashi Yagi
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Tohru Uchida
- Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa, Hyogo, Japan
| | - Mashito Sakai
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Masaru Mitsushima
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Takao Naganuma
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Hiroyuki Yano
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, and
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, and
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | - Kazuki Nakao
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, Japan
| | - Yoshihiko Izumida
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Nutrigenomics Research Group, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Unoki-Kubota
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
- Division of Medical Chemistry, Department of Metabolism and Disease, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, NCGM, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michiko Itoh
- Department of Metabolic Syndrome and Nutritional Science, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, NCGM, Tokyo, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Duarte Lau F, Giugliano RP. Adenosine Triphosphate Citrate Lyase and Fatty Acid Synthesis Inhibition: A Narrative Review. JAMA Cardiol 2023; 8:879-887. [PMID: 37585218 DOI: 10.1001/jamacardio.2023.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Importance Adenosine triphosphate citrate lyase (ACLY) is a key regulatory enzyme of glucose metabolism, cholesterol and fatty acid synthesis, and the inflammatory cascade. Bempedoic acid, an ACLY inhibitor, significantly reduces atherogenic lipid markers, including low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol, and apolipoprotein B. Additional effects of ACLY inhibition include antitumor growth; reduction of triglycerides and proinflammatory molecules such as high-sensitivity C-reactive protein; less insulin resistance; reduction of hepatic lipogenesis; and weight loss. Observations While numerous ACLY inhibitors have been identified, most of the clinical data have focused on bempedoic acid. The Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen (CLEAR) program was a series of phase 3 clinical trials that evaluated its effects on lipid parameters and safety, leading to US Food and Drug Administration approval in 2020. CLEAR Outcomes was a phase 3, double-blind, randomized, placebo-controlled trial in individuals with a history of statin intolerance, serum LDL-C level of 100 mg/dL or higher, and a history of, or at high risk for, cardiovascular disease. Bempedoic acid modestly reduced the primary 4-way cardiovascular composite end point as well as the individual components of myocardial infarction and coronary revascularization but did not reduce stroke, cardiovascular death, or all-cause mortality. Rates of gout and cholelithiasis were higher with bempedoic acid, and small increases in serum creatinine, uric acid, and hepatic-enzyme levels were also observed. Conclusions and relevance ACLY inhibition with bempedoic acid has been established as a safe and effective therapy in high-risk patients who require further LDL-C lowering, particularly for those with a history of statin intolerance. The recently published CLEAR Outcomes trial revealed modest reductions in cardiovascular events with bempedoic acid, proportional to its LDL-C lowering, in high-risk individuals with statin intolerance and LDL-C levels of 100 mg/dL or higher. The additional effects of ACLY inhibition have prompted a more thorough search for novel ACLY inhibitors for conditions such as cancer, hypertriglyceridemia, chronic inflammation, type 2 diabetes, fatty liver disease, obesity, and metabolic syndrome. Similarly, therapies that reduce fatty acid synthesis are being explored for their use in cardiometabolic conditions.
Collapse
Affiliation(s)
| | - Robert P Giugliano
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
43
|
He Y, Wang S, Liu S, Qin D, Liu Z, Wang L, Chen X, Zhang L. MSL1 Promotes Liver Regeneration by Driving Phase Separation of STAT3 and Histone H4 and Enhancing Their Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301094. [PMID: 37279389 PMCID: PMC10427353 DOI: 10.1002/advs.202301094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Male-specific lethal 1 (MSL1) is critical for the formation of MSL histone acetyltransferase complex which acetylates histone H4 Lys16 (H4K16ac) to activate gene expression. However, the role of MSL1 in liver regeneration is poorly understood. Here, this work identifies MSL1 as a key regulator of STAT3 and histone H4 (H4) in hepatocytes. MSL1 forms condensates with STAT3 or H4 through liquid-liquid phase separation to enrich acetyl-coenzyme A (Ac-CoA), and Ac-CoA in turn enhances MSL1 condensate formation, synergetically promoting the acetylation of STAT3 K685 and H4K16, thus stimulating liver regeneration after partial hepatectomy (PH). Additionally, increasing Ac-CoA level can enhance STAT3 and H4 acetylation, thus promoting liver regeneration in aged mice. The results demonstrate that MSL1 condensate-mediated STAT3 and H4 acetylation play an important role in liver regeneration. Thus, promoting the phase separation of MSL1 and increasing Ac-CoA level may be a novel therapeutic strategy for acute liver diseases and transplantation.
Collapse
Affiliation(s)
- Yucheng He
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shichao Wang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Zhangmei Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Liqiang Wang
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Xiangmei Chen
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
44
|
Tan Y, Huang Z, Liu Y, Li X, Stalin A, Fan X, Wu Z, Wu C, Lu S, Zhang F, Chen M, Huang J, Cheng G, Li B, Guo S, Yang Y, Zhang S, Wu J. Integrated serum pharmacochemistry, 16S rRNA sequencing and metabolomics to reveal the material basis and mechanism of Yinzhihuang granule against non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116418. [PMID: 36990301 DOI: 10.1016/j.jep.2023.116418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.
Collapse
Affiliation(s)
- Yingying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhihong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xiaotian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fanqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Meilin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiaqi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276017, China.
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276017, China.
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
45
|
Wang X, Luo J, Lu Z, Fang S, Sun M, Luo W, Shen J, Liu A, Ye H. Therapeutic effect of fenofibrate for non-alcoholic steatohepatitis in mouse models is dependent on regime design. Front Pharmacol 2023; 14:1190458. [PMID: 37251331 PMCID: PMC10213340 DOI: 10.3389/fphar.2023.1190458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver diseases. In most cases, NAFLD progresses from benign steatosis to steatohepatitis (NASH), and then to cirrhosis. No treatment is currently approved for NAFLD/NASH in the clinic. Fenofibrate (FENO) has been clinically used to treat dyslipidemia for more than a half century, but its effects on NASH are not established. FENO's half-life is quite different between rodent and human. The aim of this study was to investigate the potential of pharmacokinetic-based FENO regime for NASH treatment and the underlying mechanisms. Methods: Two typical mouse NASH models, methionine-choline deficient (MCD) diet-fed mice and choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, were used. MCD model was designed as therapeutic evaluation in experiment 1 and CDAHFD model was designed as preventive in experiment 2. Three doses of FENO (5, 25, 125 mg/kg), two times a day (BID), were administered to the above models. Serum markers of liver injury, cholestasis, and the histology of liver tissues were investigated. Normal mice were used as a model in experiment 3 for toxicity evaluation, Quantitative-PCR and Western Blot assays were used to investigate the inflammatory responses, bile acid synthesis as well as lipid catabolism. Results: Mice on the MCD and CDAHFD diets developed steatohepatitis as expected. Treatment with FENO (25 mg/kg·BID) significantly decreased hepatic steatosis, inflammation and fibrosis in both therapeutic and preventive models. In the MCD model, the therapeutic action of FENO (25 mg/kg·BID) and 125 mg/kg·BID on histopathology and the expression of inflammatory cytokines were comparable. In reducing macrophage infiltration and bile acid load, FENO (25 mg/kg·BID) was superior to 125 mg/kg·BID. In all the aspects mentioned above, FENO (25 mg/kg·BID) was the best among the 3 doses in the CDAHFD model. In a third experiment, the effects of FENO (25 mg/kg·BID) and 125 mg/kg·BID on lipid catabolism were comparable, but 125 mg/kg·BID increased the expression of inflammatory factors and bile acid load. In both models, FENO (5 mg/kg·BID) showed little effect in hepatic steatosis and inflammation, neither the adverse effects. FENO (125 mg/kg·BID) aggravated liver inflammation, increased bile acid synthesis, and promoted the potential of liver proliferation. In toxicity risk assay, FENO (25 mg/kg·BID) treatment showed low potential to trigger bile acid synthesis, inflammation and hepatocyte proliferation. Conclusion: A new regime, FENO (25 mg/kg·BID) is potentially a therapeutic strategy for the NASH treatment. Translational medicine is warranted to prove its effectiveness in the clinic.
Collapse
Affiliation(s)
- Xinxue Wang
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jia Luo
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhuoheng Lu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Shenzhe Fang
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Mengxia Sun
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Wenjing Luo
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jianwei Shen
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Hua Ye
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Zhang Z, TeSlaa T, Rabinowitz JD. Reply to: revisiting the role of serine metabolism in hepatic lipogenesis. Nat Metab 2023; 5:762-764. [PMID: 37169877 DOI: 10.1038/s42255-023-00793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Zhaoyue Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - Tara TeSlaa
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
47
|
He L, Huang C, Wang H, Yang N, Zhang J, Xu L, Gu T, Li Z, Chen Y. Galanin ameliorates liver inflammation and fibrosis in mice by activating AMPK/ACC signaling and modifying macrophage inflammatory phenotype. Front Immunol 2023; 14:1161676. [PMID: 37180164 PMCID: PMC10169601 DOI: 10.3389/fimmu.2023.1161676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Background and aims Galanin is a naturally occurring peptide that plays a critical role in regulating inflammation and energy metabolism, with expression in the liver. The exact involvement of galanin in non-alcoholic fatty liver disease and related fibrosis remains controversial. Methods The effects of subcutaneously administered galanin were studied in mice with non-alcoholic steatohepatitis (NASH) induced by a high-fat and high-cholesterol diet for 8 weeks, and in mice with liver fibrosis induced by CCl4 for 7 weeks. The underlying mechanism was also studied in vitro on murine macrophage cells (J774A.1 and RAW264.7). Results Galanin reduced inflammation, CD68-positive cell count, MCP-1 level, and mRNA levels of inflammation-related genes in the liver of NASH mice. It also mitigated liver injury and fibrosis caused by CCl4. In vitro, galanin had anti-inflammatory effects on murine macrophages, including reduced phagocytosis and intracellular reactive oxygen species (ROS). Galanin also activated AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling. Conclusion Galanin ameliorates liver inflammation and fibrosis in mice, potentially by modifying macrophage inflammatory phenotype and activating AMPK/ACC signaling.
Collapse
Affiliation(s)
- Lingnan He
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chao Huang
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endoscopic, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Naibin Yang
- Department of Infectious Diseases, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Leiming Xu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ting Gu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhenghong Li
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanwen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
48
|
Mohan S, Nair A, Poornima MS, Raghu KG. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells. Chem Biol Interact 2023; 375:110365. [PMID: 36764371 DOI: 10.1016/j.cbi.2023.110365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Hyperinsulinemia (HI) induced insulin resistance (IR) and associated pathologies are the burning and unsolvable issues in diabetes treatment. The cellular, molecular and biochemical events associated with HI are not yet elucidated. Similarly, no focused research on designing therapeutic strategies with natural products for attenuation of HI are seen in literature. Keeping this in mind we planned the present study to evaluate the alterations occurring at ER/Ca2+ homeostasis/mitochondria associated endoplasmic reticulum membranes (MAMs) in HepG2 cells during HI and to evaluate the possible beneficial effect of vanillic acid (VA) to mitigate the complications. An in vitro model of HI was established by treating HepG2 cells with human insulin (1 μM) for 24 h. Then, ER stress, Ca2+ homeostasis, MAMs, IR and hepatic lipogenesis were studied at protein level. Various proteins critical to ER, Ca2+ homeostasis and MAMs such as p-IRE-1α, ATF6, p-PERK, p-eIF2α, CHOP, XBP1, p-CAMKII, InsP3R, SERCA, JNK, GRP78, VDAC, Cyp D, GRP75, MFN2, PTEN and mTORC were studied and found altered significantly causing ER stress, defect in Ca2+ movements and distortion of MAMs. The decreased expression of IRS2 and an unaltered expression of IRS1 confirmed the development of selective insulin resistance in hepatocytes during HI and this was the crucial factor for the progression of the hepatic lipid accumulation. We found simultaneous treatment of VA is beneficial up to a certain extent to protect HepG2 cells from the adverse effect of HI via its antioxidant, antilipogenic, mitochondrial and ER protection properties.
Collapse
Affiliation(s)
- Sreelekshmi Mohan
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupama Nair
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M S Poornima
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, Council of Scientific and Industrial Research (CSIR) - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
49
|
Cao H, Cai Q, Guo W, Su Q, Qin H, Wang T, Xian Y, Zeng L, Cai M, Guan H, Chen S, Liang H, Xu F. Malonylation of Acetyl-CoA carboxylase 1 promotes hepatic steatosis and is attenuated by ketogenic diet in NAFLD. Cell Rep 2023; 42:112319. [PMID: 37002924 DOI: 10.1016/j.celrep.2023.112319] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Protein post-translational modifications (PTMs) participate in important bioactive regulatory processes and therefore can help elucidate the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the involvement of PTMs in ketogenic diet (KD)-improved fatty liver by multi-omics and reveal a core target of lysine malonylation, acetyl-coenzyme A (CoA) carboxylase 1 (ACC1). ACC1 protein levels and Lys1523 malonylation are significantly decreased by KD. A malonylation-mimic mutant of ACC1 increases its enzyme activity and stability to promote hepatic steatosis, whereas the malonylation-null mutant upregulates the ubiquitination degradation of ACC1. A customized Lys1523ACC1 malonylation antibody confirms the increased malonylation of ACC1 in the NAFLD samples. Overall, the lysine malonylation of ACC1 is attenuated by KD in NAFLD and plays an important role in promoting hepatic steatosis. Malonylation is critical for ACC1 activity and stability, highlighting the anti-malonylation effect of ACC1 as a potential strategy for treating NAFLD.
Collapse
Affiliation(s)
- Huanyi Cao
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China; Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Qingxian Cai
- Department of Hepatopathy, the Third People's Hospital of Shenzhen, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, P.R. China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Qiao Su
- Animal Experiment Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Hancheng Qin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Tian Wang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Yingxin Xian
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hua Liang
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, P.R. China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, P.R. China.
| |
Collapse
|
50
|
Dandan M, Han J, Mann S, Kim R, Li K, Mohammed H, Chuang JC, Zhu K, Billin AN, Huss RS, Chung C, Myers RP, Hellerstein M. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: prevention by fenofibrate. J Lipid Res 2023; 64:100339. [PMID: 36737040 PMCID: PMC10017426 DOI: 10.1016/j.jlr.2023.100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.
Collapse
Affiliation(s)
- Mohamad Dandan
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Julia Han
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sabrina Mann
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Rachael Kim
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin Li
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | - Kaiyi Zhu
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|